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ABSTRACT 

In non-proportionally damped structures, both energy dlsslpatl.on and 

energy transformation exist . To characterize such aspects, ln this paper, 

a new concept of complex damping ratio is introduced by means of 

generalizing the concept of Rayleigh quotient . The real part of this new 

quantity is the traditionally defined damping ratio, which reflects the 

modal energy dissipation per cycle; whereas, the imaginary part describes 

a ratio of energy transformation of a virtual mode per cycle. With this 

new concept, modal equations are set up and other relevant theoretical 

results are developed. Such a theory of complex damping ls not only an 

alternativeway to describe the phenomena of complex modes, but also a 

useful tool, with strong physical meaning, for solving many theoretical 

and engineering problems of non-proportionally damped systems. 
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1 INTRODUCTION 

In recent years considerable progress has been made in the field of 

mechanical vibrations and structural dynamics. However, many important 

questions remain to be answered in particularly concerning non­

proportionally damped systems. For example, using proportional damping 

to describe real structures may result in severe errors (see Sigh 1986). 

Under what conditions do we have to change our models, Where do these 

errors come from and how can we minimlze these errors? These questions are 

often asked in considering whether the structure responses should be 

calculated of estimated in the design of dampers; in the measurement of the 

damping matrix to evaluate the capability of energy dissipation of 

structures and in the construction of a valid damping matrix in finite 

element modeling. In the area of modal testing, we also face similar 

questions when we deal with damping ratios and with the measurement of 

damping matrix (see Liang and Lee 1991). Most of these unanswered 

questions are due to the lack of knowledge on energy relationship in 

non-proportionally damped structures. They may be systemically answered by 

using a theory of complex damping introduced ln this paper. This theory 

unifies energy dissipation and energy transformation by means of one 

complex quantity. The real part of this complex quantity 1s the 

traditional damping ratio, describing the ratio of energy dissipation in a 

perlod; The imaginary part ls the ratio of energy transmission in the same 

period. 

One important advantage of using complex damping theory ls as follows: 

When a structure ls in vibration, the energy d1sslpatlon and transmission 

often bring the same results to a local region. Therefore, they are difficult 

to be distinguished . Traditionally, these energy terms are thought to be 

undecoupleable for a general damped system in N-dimens1onal space. We can 

now introduce a complex valued quantity, the complex damping ratio, to 

study each specific mode of the system. In so doing, we also may realize 

the physical meanings of the quantities. 

2 CONCEPT OF COMPLEX DAMPING RATIOS, MATHEMATICAL TREATMENT 

2. l INTRODUCTION OF COMPLEX DAMPING COEFFICIENT 

XA-2 



In this section we will introduce the quantity of complex damping 

coefficient . The equation of motion for a general HOOF system can be 

written as 

M X" ( t) + C X' ( t) + K X ( t) • F( t) 

without loss of generality, consider the monlc homogeneous form : 

I X"(t) + f X'(t) +RX ( t) • 0 

w1 th order n. 

The above equation has eigenvalue matrix 

A• diag(>. ) • d1ag(-( w + J. R w ) 
l l l l I 

and eigenvector matrix P . Then we have 
1 

P A2 + C P A + K P 
1 1 1 - 0 

R •QA QT 
k 

A 2 • d1ag( w 
k nl 

T Pre-multiplying Q of equation (1) results ln 

R 1...2 + QTC p1 A + A R - 0 
k 

where 

[ 
r r r 

I 
1l 12 tn 

R • QT p - r r r 
t 21 22 2n 

r r r 
nt n2 nn 

So, using the notations (1) and (2), we 
th can have the following expression of equations for the 11 

entries, that is, 
>.2 r + QT f 

I 11 l 
p >. + 

2 
0 w r -11 l nl I l 

where Q and P 
l l 

are the 1
th column of matrices Q and p 

Note that, 

r - QT p 
ll l tl 

(1) 

(2) 

(3) 

(4) 

t 
respect 1 ve l y. 

If the system ls proportionally damped, r
11 

must not be zero . We can al so 

show that at least two of the terms r
1
J, l • 1, . . . ,n, are not equal to 

zero for at least one PJ in the case of non-proportionally damped system . 

With 

= R Q 
l 

or QT a 1 QT R 
l 2 I 

w 
nl 

we have 
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Suppose r 
I I 

Define the 

r • 
II 

1 -
2 

w 
nl 

p 
11 

.. 0. Letting equation (4) be 

>. 2 + d >. + 2 
"' 0 w 

I I nl 

term 

(QT C p )/ QT p = l 
I J I J I J 

to be a generalized Rayleigh quotient 

(5) 

divided by r yields 
11 

(6) 

(7) 

Since P is generally a complex vector, so ls the generalized Rayleigh 
11 

quotient W 
2 

( QT CP ) / ( QT KP ) 
nl I 11 I 1l 

We therefore use a complex number 

d = a +Jb to describe this quantity, 
I I I 

d • a + Jb • w 2 (QT C P )/ ( QT KP 
I I I nl I 11 I 11 

( 8) 

For convenience, equation (7) and its corresponding differential equation 

u" + (a + J b ) u' + u • 0 (9) 
I I I I I 

th ls called the characteristic equation and differential equation of the i 

virtual mode. 

Now consider the physical meaning of Pre-multiplying QT of equation (b). 

We may call the term Pt A2
, C Pt A and R Pt the inertial force, 

damping force and spring force respectively. (see Clough,1985). Therefore 

QTP
1
A2

, QTCPtA and QTKP
1 

are the virtual work done along the virtual 

displacement Q. Under this consideration, the quantity d ls a kind of 
I 

ratlo of damping virtual work ( QT C P ) and inertial virtual work ( 
I 11 

T T ~ Q P ) or spring virtual work ( Q KP ). In a later section, we will 
I 11 I 1l 

see that, the quantity d can play an important role the vibration 

analyses, we therefore named to be the 1th complex dampi ng coefficient. 
I 

2.2 SOME CHARACTERISTICS OF COMPLEX DAMPING 

Substituting notations of >.
1 

and>.: into equation (7) and rearranging the 

results ln two equations, for the real part, we have: 

(2E
2 

- 1 l w
2 2 

=-Ewa+ / 1 - E 2 
b + w w 

I I nl I I I I I I 
(10a) 

and for lhe imaginary part, we have: 

-2 ~ ✓ 1 - I; 
2 2 ✓ 1 - ~ 2 + I; I b w :s - w a w 

I I I I I I I I 
(10b) 
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Combining the above two equation• yields 
El 2 

+ ,.,a ) a• w 
l Wl nl l 

( 1 l n ) 

b 
✓ 1 - ( 2 2 a • l w - w 

l nl l 
( 11b) 

w 
l 

From equation Clla), 1t is easy to see that, a is always greater than 
l 

zero if E is non-zero. However, b appears to be undefined. We will show 
l l 

that, for a given M-C-K system, the sign of b is uniquely determined . 

Taking the complex conjugate of equation (9), we have 

• 2 T • T • ct • a - Jb • w (Q c P )/ ( a R P > 
l l l nl l 1l l tl 

t.h 
Therefore, the sign of b

1 
1s completely determined by the i eigenvector 

t.h t.h P . In other words, only one of the i complex conjugate pair of the l 
11 

eigenvectors can give the correct value of b . We thus define this 
l th · 

eigenvector as the i pr1nc1pal elgenvector of the M-C-K system, and 
t.h define the corresponding eigenvalue the i pr1nc1p•l elgenvalue of the 

M-C-K system. We alao define the e1gen-matr1x which consists of all n 

principal eigenvectors and eigenvaluea the pr1nc1pa1 e1gen-matr1x. 

2.3 CRITERIA FOR PROPORTIONAL DAMPING, FIRST APPLICATION OF THE 

COMPLEX DAMPING THEORY 

It is easy to show that b
1 

can be used as .an index to calculate the 

difference between the undamped natural frequency of the system, w , and 
l 

that of corresponding non-proportionally damped system, w . In fact, we 
nl 

have the following theorem: 

Theorem 1: The following facts are equivalent: 

1) The system has proportional damping, that is, 

c M- 1K = K M- 1C or c R = Kc 
2) The eigen-matrix has following properties : 

Re(A) Im (A)= Im(A) Re(A) 

A Re(A) = Re(A) A 

3) The system has only normal mode, (all eigenvectors of system are 

weakly complex) that ls, P =QA : 
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4) The undamped natural frequencies of the system and the corresponding 

eigenvalues of the generalized stiffness Kare all equal. Namely, 

w , i • 1, ... , n 
nl 

w • 
I 

5) All the imaginary parts of the generalized Rayleigh quotient l are 
I J 

zero. That ls, b • 0, 1 • 1, ... , n 
I 

Since statements 1) and 2) 3) are well established, (see the paper "A 

Strong Criterion For Testing Proportionally Damped Systems", Theorem 6 and 

Corollary 6) we will only prove 4) and 5). 

PROOF: 

If a system has no complex mode, then b
1
's must be zero. This ls 

an obvious sufficient condition. From the condition, all the P 's 
11 

must be all non-complex valued, that ls, 

QI • p 11 ' 1 :a 1, ... N 

Then 1t ls easy to see, from eq·uatlon (8), ct
1 

ls a real scalar, 

or, b • O; Also, from the argument Q • P
1 

we know that other 
l l 

generalized Rayleigh Quotient l
1
J 's, J • J , are zero. 

Next, consider the the necessary condition. It is clear from equation 

(10b), that this condition is equivalent to the following: 

w • w , i • 1, .. . ,n 
l nl 

Or, in this case, we have 
A A •• QT K Q • A 

k 

(12) 

(13) 

We know that, (see the paper "A Strong Criterion of Proportionally Damped 

Systems" by the same authors) for an M-C-K system, if equation (12) holds, 

it has real-valued eigenvector matrix. Therefore, we know the necessary 

condition is also true here. • 
Theorem 1 ls important . It provides two new criteria to judge whether a 

system is proportionally damped. Namely, if all the imaginary part of 

l = 0 or lf w =- w, 1 = 1, ... n. In addition lt confirms the 
I J n I l 

sufficient and necessary relationship between the complex damping 

coefficient and the damping property of the system. Also, from the 

equation (10b), we have a simple but import corollary. 

Corollary 1: 
lh For a damped system, if its 1 complex damping coefficient 

lh ls real, lts 1 undamped natural frequency ls equal to that of 
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corresponding proportionally damped system. 

2.4 INVARIANTS OF SYSTEMS 

A general damping matrix can always be written as 

C • C + C (14) 
P n 

where CP contains all the exact damping ratios of the system, 

~
1
's, by means of the relationship 

~ :a 
l 

d 
l l • 

d 
l I 

2 w 
l 

(15) 

th T where d 1s the 11 entry of matrix QC Q, which ls a real number. 
l l p 

th Now, consider the 1 eigenvalue of the system with damping C, denoted by 

A (C), and that of the system with damping C , denoted by A (C ), both 
l · p I p 

systems have the same generalized stiffness matrices R. For convenience, 

the second system ls called the correspondlng proportionally damped system 

or simply the corresponding system, of the first system,; and denote the 

first system by H(C) and the corresponding system by H(C ). If b • O, or 
. p l 

w ,. w , for all 1 • 1, .. , N, the system H(C) and the corresponding 
nl l · 

proportionally damped system H(C ) will have the same eigenvalue matrices. 
p 

Next let us consider some invariants of system H(C) by comparing with its 

corresponding system H(C where H(.) ls the state matrix of the 
p 

system, 1. e. 

First, consider the proportionally damped system, we have the following 

corollary: 

Corollary 2: For a M-C-K system with proportional damping, no matter how 

the damping matrix C changes, as long as the system ls proportionally 

damped, all undamped natural frequencies remain unchanged. That ls, 

w • constant 
I 

i=l, ... ,N (16) 

This corollary is a direct deduction from theorem 1, condltlon (4). From 

this fact, we can state, for any proportionally damped system, lf the mass 

and stiffness matrices remain unchanged but only the damping matrix 
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varies, that system will have the inva.riant in undamped natural frequencies . 

Otherwise, we know that, equation (16) will be no longer valid if the 

system becomes non-proportionally damped. However, we have: 

Le1111111 1: The determinant of the state matrix and the corresponding 

generalized stiffness matrix a.re identical. That is, 

det( H) • det( K )· (17) 

From the second formula of H matrix given on the previous page, using 

simple manipulation of linear algebra, we can easily establish this lemma. 

Theorem 2: For a M-C-K system, if only the damping matrix C changes while 

both Mand K matrices remain unchanged, the product of all undamped 

natural frequencies also remains unchanged. That is, 

2N 

TT ''\ • constant 
l•l 

With the help of lemma 1, this result ls quite clear, since 

2N 

TT w
1 

• det(H) • det(K) 
l•l 

(18) 

These invariants will play an important role 1n the energy analyais of the 

damped systems. The energy analysis will, in turn, help us to understand 

the physical meanings of these invariants, and also give the physical 

meaning of the complex damping coefficients. 

3 ENERGY METHODS AND DYNAMICS MEANINGS 

In the above section, we mathematically pointed out that the quantity d 
l 

can describe the complex property of a system. We now try to interpret 

its physical meaning by the simplest case of SOOF system. 

3. 1 ENERGY DISSIPATION 

Consider a SOOF system with free decay vibration: 

m x" + c x' + k x • 0 

where m, c, and k are all real scalars. We can rewrite this equation in 

another form: 

x"+2/;wx'+w2 x•O (19) 

whore t; and whave the same standard meaning in vibrational analysis. 

Solution of Eq (la) requires certain initial conditions. For example, we 
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can have 

x •exp(>. t) 

Now, consider the work done by the inertial force, denoted 

(20) 

by W, by lhe 
ID 

damping force, denoted by W , and by the spring force, denoted by W. 
c k 

Since the displacement (20) ls 1n general complex valued, so will be the 

work done. It 1s important to know that, the work done can also be 

considered as virtual work. because the displacement x ls in fact the 

virtual displacement. For convenience, we may call it the complex virtual 

work or simply the complex work. Consider the work done ln one cycle, with 

period of T • 2nlw. We have 
2ff/W 

W • • J x" X dt • : " 
0 

2ff/W 

W
0 

• J 2(w x' x dt • 2 (w " 

0 

I 
21f/W 

w • k X X dt 
k 

0 

2 
w 

• - TJ 
2 ). 

where TJ ls a complex number 

TJ • ( exp( 

Now denote TJ by equation (23) 

TJ • TJ e J; 
0 

2>. T) - 1) 

} (21) 

(22) 

(23) 

ln the normal complex plane, 
(n) 

denoted by C .This complex work ls shown in 
p 

Flg. 1. If a number is mapped onto this normal complex plane, lts module will 

be multiplied by TJ wlth an angle; of rotation counterclockwise. To 
0 

(11) simplify the matter, we may use a modlfled complex plane C w\th units 
P (nl 

measured by TJ and x-axis coincident with a line of angle; ln C . In 
0 p 

this plane, we have 

w >. 1 ( -(w + J ✓ 1 - E2 ) • 2 • 2 w 
• 

w • ~w } (24) 
C 

2 

w w 1 ( -(w J ✓ 1 (2 ) • 2>. 
.. 

2 w 
k 

The energy equation ( 24) satisfies the law of conservation of energy, or 

the law of virtual work. That ls, 

w + w + w = 0 
m C k 
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Furthermore, the dissipated energy, W , ls real-valued. In other words, 
. (ml o 

W lies along the x- axis of the C plane. However, both W and W are 
C p • k 

complex work done. The sum of their real parts, (w, are Just the energy 

given from the system in the specific circle to the damper. The damper 

dissipates the exact amount of energy (w. Both W and W will have an 
Ill k 

angler to the x-axia, which 1s called the loss angle. If the damping 

ratio ( ls small enough, we can have the following relation: 

Im(~) Im(W ) Im(Wk) 
r • ( • tan(Re(~) ) • tan[ Re(Wm) ] • tan[Re(W ) 

Ill k 

(25) 

where the least three tangent forms are called loss tangent. 

Theorem 3: For a SDOF system with real valued damping coefficient, 

denoted by (19), its damping ratio equals to the ratio of work done by 

damping force and the geometric sum of work done by inertia and spring 

forces during a cycle . That is, 
w 

C 

2 / W W 
Ill k 

Equations (25) and (26) can be also be obtained in figure 1. 

Figure 1 

Im 

/ 

complex c<m> 
p 

C 

2 
- ( w 

Re 

plane 

(26) 

The module of the complex work W (or W) ls equal tow. If we return 
Ill k 

( n) to the C plane, and suppose at the beginning of the circle, the 
p 

amplitude of the displacement is one, then, the quantity w represents the 

amount of the kinetic energy at this moment. So, for convenience, we also 

call the undamped natural frequency virtual energy, denoted by g and 
V 

have the following corollary. 

Corollary 3: For a SOOF sys tem with real valued damping coefflc\ent, 

denot~d by (19), its virtual energy equals the square root of generalized 
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stiffness, 

g -~- ff. w (27) 
y 

Compare corollary 1 with corollary 3, we see that, the virtual energy of 

system (19) is an invariant. In other words, for a system ( 19). no matter 

how the damping coefficient c changes, the virtual energy remains 

unchanged. Also, an MDOF proportionally damped system can be decoupled 

into n-real modes of n-individual equations, like equation (19), as stated 

by the following corollary. 

Corollary 4: If an MDOF system with proportional damping is decoupled 

into n-real modes, then each mode has invariant virtual energy, regardless 

whether or not the damping matrix changes. 

Now, consider the imaginary parts of the complex work W and W . The work 
• k 

done by the inertial and the spring force contains the real part, the 

energy to have been dissipated, contains the imaginary part. Only when this 

later part is included, the virtual energy ls equal tow. And this amount 

of energy is the conservative portion of the energy during this circle, 

(from kinetic energy to potential energy) . If the damping ls equal to 

zero, the conservative portion of the energy is equal tow. However, as 

the damping ratio~ becomes larger, this amount of energy will become 

smaller by the factor/ 1 - ~2 
, because a certain amount energy ls 

dissipated. The interesting thing is, the portion of energy or work done, 
( 11) 

under the notation of complex work or the C plane, is perpendicular to 
p 

W . This important conclusion also holds for MDOF system. 
C 

3.2 ENERGY TRANSMISSION 

Now, let us consider the imaginary coefficient of the velocity term ln the 

equation of motion 

m x" + j c x' + k = 0 

Or, in a more familiar form, 

2 
x" + 2j ~w x'+ w x = 0 (28) 

where m, c and k are real scalars. In practice, equation (28) has no re,a.l 

meaning, if it describes a SDOF system. However, it wlll have clear 
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physical meaning if it is used to express a virtual mode of a MOOF system. 

Suppose the solution to equation (28) is 

x • exp( v t). 
then 

x',. v exp( v t) and x" • v2exp( v t) 

Therefore we have the characteristic equation as follows 

2 2 v + 2 J Cw v + w • 0 

Tho solution of equation (28) ls given by 

I) lC J w ( - C ± ✓ 1 + r.2 
Without loss of generality, we may write 

II • J w ( - /:. + ✓ 1 + r. 2 

The solution does not have real part. 

(29) 

Again using the concept of a modified c<•> 
p 

number, ~•(exp( 211 T) -1), we may obtain 

plane, with the complex 

the work done for one cycle 

T • 2n/w: 

w I) 1 J w ( -c /1 • c2 .. 
2 -2 + 

m 

w .. J r.w } (30) 
C 

2 

w w 1 J w ( -(: /1 + (:2 = 2 V 
.. 

2 -
k 

The above quantities expressed 1n equations (30) satisfy the law of 

conservation of energy or the law of virtual work. That ls, 

W+W+W•O 
a c k 

In addition, these work done quantities are all imaginary. Thus, during a 

cycle, no energy ls dissipated. Figure 2 gives a typical response time 

history of system (28) subjected to an impulse. It is seen that, without 

real part of the damping coefficient the amplitude of vibration will not 

decrease. In other words, no energy is dis• ipated. The above described 

impulse response does not behave like a SDOF system. Rather, it behaves 

llke an MDOF system with some more natural frequencies, (see figures 2). In 

a certain cycle the amplitude seems to decrease whereas in a different. 

cycle it increases. It ls easy to understand that, during a certain cycle, 

the energy, which is proportional to the square of the amplitude, ls 
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Fig. 2 Time History of lmaginarily Damped System 
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different from that ln another cycle. Energy changes or transfers from 

time to time. The interesting thing is, energy is also transferred wllhln 

a system wlth real-valued damping . But the energy-transfer ls essentially 

different from the case where the damping ls only imaginary-valued . 

Ene,·gy dlsslpatlon ln real-valued and imaginary-valued systems are 

different. The portion of energy transferring between klnetlc energy and 

potential energy ls included 1n both the first cnse (?.4) and second cu!;<~ 

(30), In the first case lt ls the part of 

±+ J w / 1 - ~2
; and ln the second case, lt ls the part 

± +J w / 1 + t.2 
• 

In the flrst case, the energy transfers or dissipates to the the damper ls 

represented by the part ~w. The energy transferred to an "imaginary" 

device in the second case ls represented by the part Jt.w . The major 

'difference here is that the energy quantity ~w ls changed from mechanical 

work to another type of energy, l.n most cases thermal energy, wh1 le the 

quantity Jt.w remains 1n the form of mechanical work . We may think of I.hi ~ 

energy ls transferred to somewhere and stored there for a period of lime 
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and then lt may be transferred back to the mass-spring system at a 

later time. Based on this concept we may call the quantity J2~w the 

imaginary damping coefficient and the quantity~ the imaginary damping 

ratio. This ls stated ln the following theorem. 

Theorem 4: For an imaginary damped system, denoted by (28), the imaginary 

damping ratlo equals the absolute ratlo of work done by the imaginary 

damping force and the geometric sum of work done by the inertia and spring 

force ln a circle. That ls, 
w 

C ( 31) 
2 j W W 

m k 

In this paper we refer to the change of energy of ~w the energy 

dissipation, and the change of j~w the energy transformation. It ls 

interesting to note that, wlth a glven amount energy transferred, the 

virtual energy, € , i.e. the "undamped" natural frequency !vi, ls no 
V 

longer equal tow. It ls modified by the factor 

(-t;±/1+~2 

This tells us that, with the energy transformation, the total energy 

during cycles changes. It also suggests, that for a SDOF system, there 

appears to have two different values of virtual energy. But for a SDOF 

system, equation (28) does not have real meaning, neither does the virtual 

energy of SDOF system have real meaning . In fact, we refer a "SDOF system" 

to be a virtual mode of an MDOF system. For any given MDOF system, its 

N-undamped natural frequencies are uniquely determined. The,refore, we have 

the following corollary. 

Corollary 5: A glven N-dimenslonal HOOF system has and only has N-virtual 

energy . That ls, 

~ • w for l • 1, ...• N 
vi I 

Typlca.l ly, "virtual energy" ls not used ln energy conslderatlons of a SDOF 

system. f~wever, for convenience, we state the following corollary using 

the virtual energy of SDOF system to actually express the energy 

relatlonshlp between different modes of an MDOF system. 

Corollary 6: For a SDOF system (28) with an imaginary damping coefficient 

Jc, If the value of Jc changes, the virtual energy of the system will also 

be changed. 
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3. 3 COMPLEX WORK DONE 

Consider now the case when a SDOF system has both real and imaginary 

damping coefficient, 
2 x" + 2( E +JC) w x'+ w x a O (32) 

That is , the system has complex damping ratio . From theorems 4 and 5, 

!.t is not difficult to qualitatively understand the results of complex 

work done. Complex work done consists both energy dissipation and energy 

transformation. And, its virtual energy or undamped natural frequency w!.11 

not be an invariant. Also, we know that, an MDOF system can only be 

"decoupled" with the form (32) . Therefore, each equation (28) will no 

longer have invariant virtual energy. On the other hand, from theorem 3, 

we know that, the product of total virtual energy is still an invariant .. 

Fig.3 shows the typical time history of complex damped systems, Flg . 4(a) 

ls a real structure, one of its time histories is given ln Fig 4(b) which 

shows the complex damping effects. 

To quantitatively describe the complex work done and all its implications 

ls rather complicated. However, it is possible for special cases. One 

example is the complex damping of lightly damped structures (see the paper 

"Lightly Damped Systems" by the same authors) . Figure 3 (a) gives a 

response of the complex damped system. Figure 3(b) shows a ti.me hi.story of 

a real structure . 

CONCLUSIONS 

1) If a vibrational structure is non-proportionally damped, there exist 

both energy dissipation and energy transformation resulted by damping 

effects . The energy transformation is essentially the conservative energy. 

If the non-proportionality ls heavy, this amount energy cannot be simply 

neglected nor be mistaken as dissipative energy. Otherwise severe errors 

may be caused. 

2) To describe both the energy dlsslpatlon and the energy transformation 

quantitatively, a complex-valued generalized Rayleigh quotient can be 

used, which ls obtained from natural parameters of the structure. This 

quantity is called complex damping, whose real part ls traditional damping 
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Fig. 4(a) 5-Floor Structure 

Fig. 4(b) Acceleration Time History (4th floor, north-west) 
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ratio and imaginary part stands for the ratio of energy transformation. 

3) Wlth the help of complex damping, the energy relattonship of modal 

equation, the energy based invariants of systems, and therefore the 

physical meanings of complex damping itself are explained by the 

theory of complex damping described by this paper. 

ACKNOWLEDGEMENT 

Funding for the research reported in this paper has been provided Jointly 

by the State University of New York at Buffalo and the National Science 

Foundation through the National Center for Earthquake Engineering Research 

under master contract number ECE86-07591. 

REFERENCES 

Caughey, T.K. and O'JCelly, M.M.J. "Classical Normal Mode ln Damped 

Linear Dynamic Systems" J. of Appl. Mech. ASME Vol 32, pp. 583-588, 1985. 

Clough, R. W. and Penzien, "Dynamics of Structures," McGraw-Hill, New 

York, 1975. 

Ewins, D.J "Modal Testing, Theory and -Practice" Research Studies Press 

LTD. England (1988). 

Ibrahim, S.R., Mikulcik, E.C. "A Method for the Direct Identification of 

Vibration Parameters from the Free Response", the shock & Vlb. bulletin 47 

Sept. 1977. 

Inman, D. "Vibration wlth Control, Measurement and Stability", 

Prentice-Hall, Englewood Cliffs, 1989. 

Juang, J-N.; Pappa, R. S. " An Eigensystem Real1zatlon Algorithm (ERA) for 

Modal Parameter Identification and Model Reduction" prensented at NASA/JPL 

workshop on ldentlflcatlon and control of flexible spnce structures, J . of 

uldance, Control and Dynamics, Vol. 8, No. 5, Sept-Oct . 1985, pp.620-627 . 

Kozi n, F. and Natke, H. G. ( 1986) . "System Identlficat ion Techniques", 

Structural Safety, Vol.#, pp.269-316. 

Lancaster, P." Lambda-Matrices and Vibrating Systems" (1966) Pergamon Press. 

Liang, 2. and Lee, G.C . "On Complex Damping of MDOF Systems" Proc. of 

IMAC-8, 1990, pp. 1048-1055. 

Liang, 2. and Lee, G. C. "Representation of Damping Matrix", J. of Eng. 

JCA-18 



Mech. ASCE., May 1991 (to appear). 

Lla.ng, 2., Lee, G.C. and Tong, M. (1991) "A Strong C:l'1ter1on For Testing 

Proportionally Damped System11" Proc. of Damping '91, Fob. 13-15 1091, Snn 

Diego, CA., Sponsored by Wright Laboratory, Flight Dynamics Directorate, 

Wright-Patterson Air force Base . 

Liang, 2., Lee, G. C. and Tong, M. ( 1991) "On A Linear Property of Ught. ly 

Damped Systems" Proc. of Damping '91, Feb. 13-15 1991, San Diego, CA., 

Sponsored by Wright Laboratory, Flight Dynamics Directorate, Wright­

Patterson Air force Base . 

Un, R. C., Liang, 2., Soong, T. T. and Zhang, R. H. "An Experimental Study 

of Seismic Structural Response With Added Viscoelstic Dampers", Technical 

report NCEER-88-0023. 1988. 

Natke, H. G., Yao, J. T-P . ( 1986) "System Identification Approach in Structural 

Damage Evaluation", ASCE Structures Congress '86, Preprint 17-1 . 

Natke, H. G. "Updating Computational Models in the Frequency omaln Based on 

Measured Data: A Survey", Probalistic Engineering Mech. Vol. 3, No . 1 1988. 

Shinozuka, M., Yun, C-B. and Imai, H. (1982). "Indetlflcation of Linear 

Structural Dynamic Systems", J. of Structural Engineering, ASCE, Vol . 108, 

No. Et-6, pp.1371-1390. 

Singh, M. D. and Ghafory-Ashtiary, M. (1986) "Modal Time History of 

Non-classically Damped Structures For Seismic Motions". Earthquake 

Engineering and Structural Dynamics, Vol 13 . pp133-146. 

Tong, M., Liana, Z. and Lee, G. C. ( 1991) "On an Appl teat 1on of 

Complex Damping Coefficients" Proc . of Damping '91, Feb. 13-15 1991, San 

Diego, CA., Sponsored· by Wright Laboratory, Flight Dynamics Directorate, 

Wright-Patterson Air force Base. 

Tong, M., Liang, 2 and Lee, G. C. ( 1991) "Techniques in Design and Using VE 

Dampers" Proc. of Damping '91, Feb. 13-15 1991, San DI.ego, CA., Sponsored by 

Wright Laboratory, Flight Dynamics Directorate, Wright-Patterson Air force 

Base. 

Vold, H; Rocklin, G. " The Numerical Implementation of a Mulll.-Input Modal 

Estimation Method for Mini-Computer," Proc. of IMAC-1, 1982, pp. 542-li 'ifl. 

JCA-19 


