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A specialization of the Schmidt method of orthogonalization in
structural analysis is developed matrically. In the force method of
analysis the orthogonalization of the internal force systems leads to a
diagonal flexibility matrix. In the clisplacement method the orthogo~
nalization of the internal strain systems leads to a diagonal stiffneas
matrix. A comparative analysis concerning the aspects of computational
procedure and computer memory requirements is made between the
above method and the one of finding the eigenvalues and eigenvectors
of the flexibility or stiffness matrices. A computer program flow chart
for orthogonalization by the Schmidt Method and a simple example of
the building of a set of orthogonal strain systems are presented.

INTRODUCTION

The theory of groups (systems) of redundant forces and displacements was formulated
in (Reference 1), The final objective in the use of groups (systems) of redundant forces or
displacements is to have a well conditioned flexibility or stiffness matrix which is the matrix
to be inverted in the computational procedure.

The best conditioning of the flexibilily or stiffness matrix that can be reached is the
diagonalization. This is obtained when the so called orthogonal systems of internal forces or
strains are used. The uge of these systems — at least those of internal forces, in the force
method — is very old and well-known in slructural analyses (see for example References 3,
4 and 5.InReference 4 a speclalization of the Schmidt method of orthogonalization to structural
analysis is developed for the generation of orthogonal systems of internal forces, In Refer-
ence 5 the method of generating orthogonal systems of internal forces by finding the eigen-
values and eigenvectors of the flexibility matrix is developed, strictly by matrix formulation,

In this paper the Schmidt method ol orthogonalization in structural analysis is developed
matrically following the theory presented in Reference 1, When the force method is used the
orthogonalization of the internal force systems leads to a diagonal flexibility matrix, In the
displacement method, on the other hand, one is lead to a diagonal stiffness matrix, In the
force (displacement) method one starts with any transformation matrix of redundant forces
(redundant displacements) into internal forces (strains), the columns of which constitute a
set of systems of internal forces (stralns). At the end of the process one obtains another
transformation matrix, the columns of which constitute a set of orthogonal systems of internal
forces (strains), From this set,a diagonal flexibility (stiffness) matrix is obtained.

A comparative analysis concerning the aspects of computational procedure and the require-
ments of the computer memory is made betweenthe two methods of orthogonalization referred
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to above, This analysis shows that the specialization of the Schmidt method has great ad-
vantages over the method of finding the eigenvalues and eigenvectors.

A computer-program flow chart based on the above theory and a simple example of the
building of a set of orthogonal strain systems are presented.

The increased use of the displacement method in recent years, specially in the analysis of
discrete idealizations of continuous structural systems, such as plates and shells (Refer-
ence 6), and solids (Reference 7) seems to indicate the desirability to explore the use of
orthogonal strain systems.

THE FLEXIBILITY AND THE STIFFNESS MATRIX

The flexibility matrix relative to the X unknowns (redundancies) is given by

D:bT

x= 2ix FPix m

where by represents the matrix of element forces due to unit values of the redundancies
X and t is flexibility matrix of the unassembled structural elements, The flexibility matrix
relative to the Z unknowns (redundancies) is

.
D= (b Qpy) LB Qy)) {2)

where the redundancies X are related to Z by the matrix equation

X = szz (2a)

Applying the rules of the transpose of a product of matrices and using Equation 1, Equation 2
is iransformed into

T .
0, =Q,,0,04, (3)

Alternatively, the matrix l)z can be written‘as

T
i b
D,z b, b, {4)
where
b2 Bz 9 {4a)

By the rules of matrix multiplication the typical term of Dz is

T

zij = Pzp = (B!
where the indexes i and j indicate the order of the columns of b p involved,
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Similarly the stiffness matrices relative to the X and Z wiknowns are calculated from

T (6)

due to unit values of the redundant

where 0y represents the matrix of element strains
assembled structural elements and

displaccments X,and r is the stiffness matrix of the un

T
KZ‘ QZXKXQZX Z”'Z (7)

where, as before, the unknowns X and Z are related by the equation X % Qo Z,

THE METHOD OF ORTHOGONALIZATION
The method will be developed for the (lexibility matrix but it is exactly the same when
applied to the stiffness matrix.

Startin . with any transformation matrix b¢ which leads to the flexibility Dy from
E.quatmn 1, one obtains Dy, Lquatlcns 3 or 4, wh1ch is a diagonal matrix. Postmultiplying

both sides of Equation 4a by QZX results in:

=i
b= Piz A7 (8)

or Q'Z'x the following triangular matrix will be assumed:

N T
! - - . - - -
QIZ QI3 QIi QI} an
(®] 1 - .. - - -
%3 oPY ; %
O 6] I —Osi- —031 -Q3n
-1 _ e
QXZ z {9}
0 0 o - Lo -Q,, - -Q,
i} n
0 0 0 c - | -Q
in

. -1 . . .
The elements of Qyy have to be calculated in order to produce a diagonal matrix Dy .
This condition is expressed oy:

DZij =DZji = 0 {i=z=1,2---n, and i #j) {10)
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Considering Equations 8 and 9 the j‘h column of b,y is developed as:

b - b I e
(Biz); = qyt iz} * QP05+ ag,(b; 04

*Qij‘blz’i'"+°j-|,j‘b|z}j-| +(bm)j (n

Substituting into Equation 5 the value of (b iz} j from Equation 11 it follows that

T T T
= b_) f(b b_y ¢ .
Oi; = Q1 Pzt izt Q0050 (b|2}2+°31(b1z’i”b|z’3
b1 t(b b )T ¢ T e
MR U R A TR P U R LIPS N L ) L PER
Introducing Equation 5 into the right-hand side terms of Equation 12
D‘_-.'Q_D‘.q. + e
zii b ozin ' 9250712 1935023 % Pz
b Y f(b
+
o,y Pziyjor Bz fb (3)

Applying now the diagonalisation condition, (Equation 10), to the terms of Equation 13 it
is seen that the left-hand side term and the right-hand side terms, but the one which has Qjj
and the last, are zero. This leads finally to:

T
(Byz % b,
Q.= - B {14)
' Zii

With matrix 0-;2,(- the elements of which are computed by Equation 14, a diagonal flexibility
matrix D, is obtained, using Equation 3,

Concluding, it is important to mention that in the actual computation it is not necessary to
invert matrix Q3% to calculate D, from Equation 3. In fact, in computing row by row, the
elements of Q;'z in Equation 14, the columns of b,, are found successively from Equation 11,
These constitute a set of n orthogonal systems of internal stresses, Moreover, the elements
of D, which is a diagonal matrix are also found during the computational procedure. To
check the accuracy of the diagonalization, D, can be computed by Equation 4,

COMPARISON BETWEEN THE TWQO METHODS OF ORTHOGONALIZATION
The problem is: given the matrices bix and f, find b7, whose columns constitute a set
of orthogonal systems of internal forces or strains, and also find D, which is a diagonal
matrix,
In both methods matrices by and f are initially stored in the computer and the same
storage is provided for D, (in the method of finding the eigenvalues and eigenvectors), for
the diagonal elements of matrix DZ and for the elements of Q'x'z {in the present method).

In the method of finding the eigenvalues and eigenvectors, matrix Dy (Equation 1) is set up
using Equation 5. A program of finding eigenvalues and eigenvectors is then applied to
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matrix Dy . The diagonal matrix of the eigenvaluesis matrix Dz and the matrix of the eigen-
vectors is matrix Qy, . If matrix b, is desired it has to be computed from Equation 4a.

In the present method the diagonal elements of D7 and the numerators of the elements of
QS('Z (Equation 14) are calculated by the same kind of computation which is used in the
other method to compute Dy (Equation 5). The only additional work are the divisions needed
to compute the elements of 0';(2 (Equation 14). It is to be noticed that the total number of
elements of D, and Q-)’(Z that have to be computed is the same as in Dy . The columns of
b;7 are successively computed by Equatica 11 and stored in the same locations of the
columns of byy which are no longer needed. The drawback of this method is that if ma-
trix @y, is needed it has to be computed by the inversion of Q'x'z .

Summing up, with slightly more computational work (the divisions in Equation 14 and the
multiplications and sums in Equation 11) than the work of building up matrix Dy, the present
method gives matrices b7 and Dy.

COMPUTER PROGRAM AND EXAMPLE

A computer program based on the method of orthogonalization was developed using Basic,
Fortran language for the IBM 1620 computer at the Instituto Tecnoldgico de Aerondutica.
The flow chart of this program is presented in Figure 1,

The orthogonalization of the strain systems of the structure of Figure 2 is presented as
example. Matrix @, which represents the strains associated to the degrees of freedom
indicated in Figure 2 is:

l 0o 0 0 0 0
0 | ) o 0O 9]
o 0 O ! 0 o
o o 0 0 J o
0 0 0 0 0] o
] 0 O 0 0 0
0 0 | o 0 0
_________________ —_ {15}
0 ¢ 0 o O c
Ux = o | o 0 o 0
o 0 | 0 0 0
I 0] 0 0 o 0
0 0 o) | 0 0
o (o] -1 0 0 i
0 | O 0 0
0 O 0 0 l
0 0 | 0 o |
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Matrix r is:
roo= Erl Mo ¥y Ty My 16] (16)
with
o=, = [|2 é] | {17
2 ) -0. 3
fy = F, 20, =7, = t 2 -0. 3 {18)

-0.3 -0 3 0.06

| -0. 166 0 ~0.171 0.061 0.039

0 | 0 0.028 0. 176 0. 039

0 0 0 | -0. 189 0.026

0 0 0 0 | 0.026

0 0 0 0 0 0

| ~0.166 o -0.171 0.06! 0.039

0 0 | -1.250  ~1.013 0.434
0 0 0 0 0 0 {19)

a - 0 | 0 0.028  —-0.176 0. 039

0 0 | -1.250 -1.013 0.434

| - 0.166 0 -0. 171 0.061 0.039

0 0 0 | ~0.189 0.026

0 0 - I.250 {03 0.565

0 | 0 0.028  -0.176 0.039

0 0 o : 0.026

0 0 — |. 250 1,013 0.565

and

Ky, = rs.ooo 5.833 0.240 3.453 3 329 o.ozaj (20)
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Figure 1, Flow Chart of the Program for Orthogonalization
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Figure 2, Structure of the rExampIe
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