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ABSTRACT

Existing theories are examined with the object of
selecting the best methods for computing aerodynamic lift
distributions for use in structural design. Subsonic, tran-
sonic and supersonic Mach numbers are included. Con-
figurations consist of wing-body combinations such as might
be employed for airplane-type vehicles. The present inves-
tigation is limited to the linear range of angle of attack.

The simplesttheories whichgive accuracy consistent
with structural design practiceare reduced to computational
procedure; the accuracy of a theoryhaving been established
by comparison with existing experimental data. In cases
where no adequate theory is available or experimental data
is lacking, further research is recommended, Future ex-
tensions to nonlinear regimes, more general configurations,

and higher Mach numbers are also described.
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SECTION I

INTRODUCTION

Increases in the speed of aircraft in recent years have resulted in
the widespread use of low aspect ratio swept wings. Procedures for speci-
fying aerodynamic load distributions for structural design that were adequate
for high aspect ratio wings in low-speed flight may therefore require re-
vision. On high-speed aircraft, also, a larger fraction of the total load is
likely to be carried by the body than would be the case for the larger-winged
aircraft more typical of low-speed flight, Wing-body interference effects
can also become more pronounced in modern slender configurations where
much of the wing area is nearly adjacent to the body. In addition, modern
structural design procedures include consideration of aeroelastic loads.

For these reasons, the available procedures for calculating aerodynamic
load distributions have been examined with the object of selecting those

which are simplest and most accurate for current use in structural design.
The present study is limited to symmetric wing-body combina-
tions traveling at subsonic or moderate supersonic speeds (invalid in the
hypersonic flow regime). Effects of external stores, nacelles, engines,
propellers, wing-tail interference, etc., are not examined. Within
these limitations, complete analytical procedures are specified by
which wing and body normal force distributions may be obtained. Since
no theory is entirely satisfactory for all of the configurations to which
it might be applied, experimentally determined loads should be used
whenever they are available. A theoretical method, however, provides
an independent estimate of what to expect from experimental results.
Empirical methods are avoided in the present investigation.
For many years, Ref. 1 provided the standard procedure for
computing wing air load distribution. This method is still used in some
cases where the span loading is desired on a rigid high-aspect ratio

subsonic wing. However, in modern application, the wing {or body)



is a flexible structure which deforms under load changing its angle of
attack distribution and hence being subjected to new aerodynamic
forces. Gray and Schenk, in Ref. 2, present a matrix solution of this
aeroelastic problem. A similar approach is assumed in the present
investigation in which the primary objective is the selection of ap-
propriate methods of determining the required aerodynamic matrix.

A brief description of the static aeroelastic problem is presented in the
following section. Solution of the problem is greatly simplified if the
deflection is linearly related to the load which, in turn, varies linearly
with angle-of-attack. The presentation is therefore restricted to the
linear case.

Before a choice can be made from among available theories for
calculating load distribution, it is necessary to select rules by which
competing procedures are to be judged. In Section III, limits of ac-
ceptable error are established (10% in lift; 3% in center of pressure)
as being consistent with the requirements of preliminary structural
design. Then, of those methods of determining aerodynamic load
distribution which satisfy these criteria, the simplest available
procedure is recommended.

The aerodynamic force which is of primary interest to the
structural designer is the component normal to the wing-body plane.
This report, therefore, deals with the distribution of normal force.
The term "lift" will often be used, no distinction being made between
the two components except at very high angles of attack, since the
calculations are carried out by similar procedures.

The investigation covers airplane-type configurations in steady
symmetric flight (no yaw) at subsonic, transonic, and supersonic speeds.
Although the shape of the aircraft may be quite general, special vehicles,
such as helicopters and ground-effects machines, are not studied. The
load distribution on wings is treated in Section IV; bodies are discussed
in Section V. Each part is further subdivided inte subsonic, transonic,
and supersonic flow regimes. In each regime, the simplest theory of
adequate accuracy is selected and reduced to a numerical procedure.
Comparisons with experimental data illustrate the accuracy and limita-

tions of the preferred methods.



Further investigation is indicated in Section VI for flow regimes
or configuration geometries in which no available procedure meets the
prescribed accuracy requirement. In addition, experimental programs
are recommended where available data is inadequate to determine the

accuracy or limitations of the theoretical calculation of load.



Espinadls

Approved for Public Release



SECTION II

STATIC AEROELASTICITY

A. AEROELASTIC OPERATIONS

When a flexible wing {or body), is subjected to a net aerodynamic
load, in general it will be warped to some new shape. The changes in
slopes of the distorted lifting surface will then induce a modification of
the load distribution and a further deformation of the surface. This
process can be represented by the following simple, but general mathe-

matical relations

@-a, = I, [P (Z-1

y=

Zz, lal (Z-2)

where (@ (x,y)— ao(x’y) represents the change in angle of attack
distribution, in an X-y plane due to the deflections caused by the load

P (X,y) } Z“. [P] is a structural operator by means of which an
angle of attack distribution can be obtained from a given load distri-

bution. Similarly, ‘IA [a] , is an operator which converts angles into forces.
The symbols imply, for example, that by some operation on the angle of
attack distribution at all points ;,7 , a distribution of loads at points Ky
is obtained. An integration of @(f,7)multiplied by a kernel function is
usually required.

If the structural operation is applied to both sides of Eq.(II-2}, then

it becomes

Zs [Pl= Z; [z, [a]]



which, combined with Eq. (II-1) yields

a-a, = X [2'4 [a']] (Ir-3)

The angle of attack distribution may, in principle, be determined from
this implicit relation. If the operators are linear, however, a much
simpler expression results,

A linear operator is one for which

Z, [a+a,] = z, [a)] + Z [a.] (7 -4)

Linear operations applied to Eq.(II-1) would yield

Zy[a-a,) = Z, [d]- Za[a,) = Z4 [ 2, [P]] -5

and from Eq.(il-2).

P = Z,[Z:[P1] + X4 [@)) (- 6)

or

Z[P]=2,[a,] (z-7)

where Y[P] represents a new linear operation consisting of the combination:

Z[Pl= P-Z, [Z.s [P]]

If this operator has a unique inverse,Z"[P], then

P=X" [‘[A [Q'o]] (7 - 8)



B. EXAMPLE - SUPERSONIC WING

A specific example will illustrate the analysis. Linearized super-
sonic wing theory will be applied to the thin triangular wing illustrated

below.

ﬁ""‘%?

7 )
MACH [ LINE MACH\LINE

By linear theory {Section 13 of Ref. 3, for example), the pressure dif-
ference between bottom and top surfaces of the wing at the point x, ¥

is

Ap - 4o 2 ff a(E,p)dédy -9
LTI Y A sy Eroers



where o™ free strearmn dynamic pressure,ﬁ =‘\/M-€,:7 (M.sfree stream Mach
number), and § 1is the cross-hatched area. The operator Zg4 (@] thus
multiplies @& by the kernel function"‘("xt‘[——;—)z—_-k_l'_g—;—;_'_——ﬁ ,integrates over the
indicated area, and differentiates the result with respectto ¥ . The
operator is linear, however, since the angle of attack distribution appears
only as the object of linear operations. Consegquently the total pressure
can be computed by a superposition of any arrangement of distributions

@; (E,%) such that

Q(E,7) = @, (E,72)+ Q(E,p) +. - Q; (E,7)+---

In particular, suppose that the wing is subdivided into a number of ordered

boxes as shown below

and in box @, Q, (E,y)= @ = constant, while @, (§,#%) = 0 outside of
this region. Similarly, in the other regions, @; = constant in box

but zero elsewhere. Formal substitution results in the equation

AP lx,y)= @, 2, [A+a,X,, 1]+ + @20 Za,, /]

where

dEd7y
= 2 -10)
-Z'A’ 47,ax H J(X_a)l _ﬁz (y..?)z (H

i



and §; is the area of the ;¥  box. If the box lies outside of the mach
lines from (x,y) then zAi =0 . If§; lies partially within the cross-
hatched area, then its influence is to be weighted by some predetermined
rule.

Thus IA,' is a function only of the point X,y at which the pres-
sure is to be determined, and the location &, 9 of the / 2 box. If
the pressures are assumed to be uniform in each box at the value at its

centreoid, then at the J th position

A',OJ-—- ZAIJ' QI -}-ZAZJ a2+z’43j a3+..-+.ZAiJ_ Q;?‘IA‘?Q}_ dZO (T -1}

where
IA ij = 'Z’Ai evaluated at box J
designated by the point {XJ hyJ.)

Hence the entire pressure distribution in matrix form becomes

- - - - -
Fﬂfo: Q,
A;OJ- = A’J a, (IT-12)
Ap, a,
— - L - L -

AU is just the matrix of values of .IA,- . and is called the aerodynamic
J

matrix.



In a similar manner the deflection at some point X,y on the

wing may be expressed in the form (see Eq.2-55 of Ref. 4, for example)

wix,y) = ff c(x,y, &, VJA,O(E,?)d{d')? (Ir-73)
wing

area

where € (X,),§,7)is a structural influence function depending on the wing
shape and boundary conditions. The change in angle of attack corre-

sponding to this deflection would then be

a-a, =5% ff cix,y, .5,9;)A10(5,7;)d£a’97 (r-/4)
win

are

This too is a linear operation, and by a procedure analogous to that for

the load calculation, Eq.(1I-14) may be approximated by the matrix form

A ] [ B 7 7
Q, Czc:,T (AP’
O’- - Q’ol. = Cu APJ (IZ -15)
e aﬂj I.aonj b J LAPnJ
[Cij] is the resulting matrix of structural influence coefficients

10



The operation corresponding to Eq.(II-6) would require left

multiplication of both sides of Eq.(II-15) by [Aij] . Then

and the inverse operation implied by Eq. (II-8) becomes

Aﬁ: I - A,.J. Cij (Z-17)

Here [I] is the identity matrix; [ ] [ ] [C‘J]

is the matrix formed by subtracting Equ] E:'j] from [I

and [ [1]-[] [eg] ]~ i it inverse.

C. AERODYNAMIC MATRIX AND OPERATOR

The structural influence coefficients, C:’J , are assumed to
be known from a suitable structural analysis; this report presents a
selection and evaluation of methods of computing the aerodynamic matrix
[A FJ] . In order to accommodate an arbitrary choice of number and
arrangement of elements into which the wing may be subdivided, only the
aerodynamic operator ZA [O'] will be given. However, since it
is eventually to be used in aeroelastic computations as just described,

linear operations will be presented which convert arbitrary angle of

attack distributions into local lifting pressures,

11



Although the example of a flexible wing was chosen to illustrate
the aeroelastic problem, the result would be the same for a bedy. In
that case, the body planform is subdivided into strips perpendicular to
its long axis. The desired operator must give a linear relation between
the force on a strip and the axial distribution of angle of attack. In some
cases, also, the wing may be treated by a strip method. For example,
a high-aspect ratio wing is sometimes analyzed as a beam rather than a

plate; then only the spanwise loading need be calculated.

D. THE USE OF EXPERIMENTAL DATA

The methods prescribed in this report for determining the aero-
dynamic operator will be entirely theoretical. Possible empirical
improvements are avoided since they may introduce large and unexpected
errors when applied to new or unusual configurations. On the other hand,
the designer can increase the accuracy of his load prediction by using
data applicable to his configuration. Such data may be incorporated into
the aeroelastic analysis by effectively substituting the experimental
result for the theoretical one. Assuming that experimental pressure
distributions have been obtained for some known distributions of angle of

attack, then an aerodynamic matrix can be found which fits the data.

Ap, =| A a, (z-1e
exp. exp exp.

The unique experimental determination of the matrix [A i.f]ex-p
generally impractical since it would require a number of measurements
of pressure distribution equal to the number of columns of the matrix.

A new linearly independent angle of attack distribution would be required

for each run.

12



An approximate solution can be obtained from one measurement
of pressure distribution (at uniform angle of attack, for example) by

assuming that the pressure at a given point is most sensitive to the local

angle of attack. Then let ,
A.;J- = K“' AIJ (E——f.g)
exp. theor.
where [K] is a diagonal matrix. A single measurement of pressure
distribution will then suffice to determine the elements of K” . The

explicit relation is

A‘foi exp.

'j = . - (E‘ZO)
J% A’Jﬂnear. aJ'exp.

Other approximations, based on applicable physical considerations,
may be more accurate than in Eq.II-19, in some cases, and will be
mentioned where appropriate. Once an experimental aerodynamic matrix
has been obtained, it should supersede the purely theoretical one in making

aeroelastic calculations. It should be noted, however, that the assumption

of linearity is still implied.

13
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SECTION III

ACCURACY CRITERIA

A. STRUCTURAL DESIGN PROCEDURES

Even with the aid of high-speed computing machines, an aero-
elastic analysis can be a complex and tedious process. In order to
avoid losing sight of the relationship between the physical properties
of a configuration and its structural performance, it is desirable to
use the simplest possible method of calculating aerodynamic load
without an undue sacrifice in accuracy. Aerodynamic load distri-
butions should, therefore, be specified to an accuracy consistent with
that maintained in structural design practice. Current procedures for
designing aircraft structures will therefore be reviewed here to provide
a basis for the formulation of a criterion for the accuracy required in
calculating the distribution of aerodynamic loads.

The final structure must meet both of the following minimum
requirements,

1. The structure must not yield at a specified "limit load".

2. The structure must not fail at the design "ultimate load".
The limit load is the maximum which the structure is ever expected to
encounter (sometimes with a 15% margin of safety). The ultimate load
is the limit load times a factor of safety usually taken as 1.5. Older
types of aluminum would fail at about 1. 5 times their yield, hence a
structure could be designed to just meet both requirements. More
modern aluminum and steel alloys fail somewhat closer to the yield
point; consequently a structure using these materials which meets the
ultimate strength requirement will automatically fulfill the yield specifi-
cation also (Ref. 5).

A carefully designed structure is expected to just meet these
requirements. If, under test, it proves either too strong or too weak it

must be redesigned to save weight or to meet specifications. Sometimes

15



structures are deliberately designed with a negative margin. Those
elements which fail during test are then strengthened until the entire

structure just meets specifications.

B. EFFECT OF AERODYNAMIC LOAD DISTRIBUTION
ON STRUCTURAL DESIGN

The designer of an aircraft structure knows that in a maximum
load maneuver, the total lift on his configuration will equal its weight
times the allowable number of "g's" acceleration. Thus, in this condi-
tion, the total force is given, and only its distribution must be determined
by aerodynamic analysis or measurement. In the case of a gust, the load-
ing depends on both the distribution of lift and its rate of change with
local angles of attack.

However, although the lift distribution must therefore be accurately
determined, the design of any particular element of the structure will
depend on a weighted integration of all of the forces acting on the element.
Hence local errors in the estimated load distribution will generally be
smoothed out in the integration process. For example, integrable mathe-
matical singularities in the theoretical lift distribution will not result in
spectacular loads on structural members.

Usually, the structural designer must know the distribution of
aerodynamic lift at large angles of attack as well as at moderate values.

A high-speed maneuver will apply the design load at a relatively small
angle of attack, but at lower speeds the aircraft may reach the design load
at nearly maximum lift coefficient. The distributions of 1lift in these two
situations may be quite different from each other. An acceptable design
procedure should be based on sufficient information about the change of
lift distribution at high angles of attack to be sure to design for the more
critical case. Since aeroelastic analysis is at present limited to linear
treatment, the effects of nonlinear phenomena, such as stall, can be only
approximately estimated.

The structural design process for a given load distribution usually
begins with a preliminary analysis, followed by a load test of this first

design, and then by a modification as dictated by the test results.

16



During this process the aerodynamic load specification may also be
improved as a result of wind tunnel tests. A logical procedure would
thus make use of purely theoretical load distributions only for the
preliminary design. Revisions of this design could then incorporate
the results of wind tunnel tests to improve the specification of load dis~

tribution.,

C. CRITERIA FOR ACCURACY REQUIRED IN THE
SPECIFICATION OF AERODYNAMIC LOADS

If the structural designer achieves his goal, and the structure
fails (or yields) exactly at the design load, then the structure incorpo-
rates any errors introduced in the specification of load distribution.
Moreover, since a new design is usually similar to previous structures
for which data is already available, the designer stands a good chance
of attaining this result. In particular, this will be true when the struc-
ture is designed by "beefing up" the weakest members until the minimum
requirements are just achieved.

However, due to variations in assembly, material properties and
dimensions of members, different samples of similar built~up structures
will not fail at identical loads. Some idea of the expected variation in
material properties may be deduced from the specification given in Ref. 5.
About a 3% difference is allowed between the minimum tensile strength
acceptable to the user and the minimum guaranteed by the manufacturer.
This handbook (Ref. 5) is not concerned with samples which exceed their
minimum specifications; but 2 design based on tests of a structure which
happens to be put together from overly strong components will, of course,
result in generally weaker production specimens. Little data has been
found on the statistical variation of strength of complex built-up struc-
tures. Some general information on the subject is described in Ref. 6.

The foregoing discussions lead to the following conclusions con-
cerning a quantitative specification of the accuracy required in the

calculation of aerodynamic load distributions.

17



1. The structural design process will generally involve a pre-
liminary analysis, test, and revision during which experimental aero-
dynamic load data may also be acquired; hence, the initial calculation
of aerodynamic load distribution, which should be applied only to the
preliminary structural design, may incorporate a margin of error which
will later be reduced by wind tunnel tests.

2. Even though the entire distribution of lift is computed, when
actually applied in structural design the loads will be integrated over
appropriate areas. Consequently, in formulating a criterion for accepta-
bility of a proposed procedure for computing load distribution, accuracy
requirements will be imposed only on the prediction of total load and
centers of pressure. In keeping with the expected variations of strength
among similar structures, the error in spanwise location of center of
pressure of a wing panel should not exceed 3% of the maximum span of
the panel. Similarly, the chordwise center of pressure should be pre-
dicted to within 3% of the maximum chord. The streamwise location of
center of pressure on a body should be calculated to within 3% of the
length of the body.

3. Since, in the maneuver condition, the total load is known and
only its distribution remains to be determined by aerodynamic calcula-
tions, a substantial error in total lift can be tolerated. However, to
avoid introducing larger errors by incorrectly distributing the load
between the wing and the body, the error in total lift calculated on each
component should not exceed 10% . This requirement is consistent with
the 3% allowance on center of pressure error if it is assumed that one
of the two components (wing or body) carries over two-thirds of the total
load. Similarly, the error in gust loading corresponding to a 10% error
in lift will be approximately 3% when the angle of attack induced by the
gust is about one-third of the steady angle of attack. To be conservative,
a 10% margin of safety should be provided for a high gust-loading condition,
at least in preliminary design stages,

4. Although a 3% error in estimation of load distribution appears
to be consistent with structural design requirements, the criterion must

be applied with caution in certain cases. While a 3% error in net load

18



may be acceptable, the aerodynamic forces constitute only a portion of
the total. Thus, for example, on a heavily loaded fuel-carrying wing,

the aerodynamic lift may be nearly balanced by the wing's own weight.

If the wing weight is 50% of its lift, a 3% error in wing lift calculation
could amount to 6% or more of the net load. In such cases, experimental
data and extra safety margins would probably be required.

On the other hand, a slender body with a very small camber will
have some pitching moment at zero lift; hence its center of pressure will
lie at infinity. In such cases a 3% error in center of pressure becomes
meaningless, and an equivalent criterion must be expressed in terms of

the structural load rather than the center of pressure position.
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SECTION 1V

WING LOAD DISTRIBUTIONS

A. GENERAL CONSIDERATIONS
1. Coordinate System

The wing is assumed to lie in the X,y plane, as shown in Fig. 1,
in a uniform oncoming stream of velocity, ¢/, {Mach numberM,, } which
is directed along the X -axis. Symmetry about the 4,2z plane is also
assumed. The wing may have any small arbitrary distribution of angle

of attack (symmetric about the x,z plane).
2. Governing Equations

From the conservation laws for steady irrotational flow of a perfect
gas, the following linearized equation for perturbation velocity potential

may be derived: (see Ref. 7 for a derivation)

E a’"¢
(/- Mz)axf yz+ 322 =0 (v -1)

Perturbations in velocity have been assumed small compared with

U, , so that the velocity components, in terms of the potential are:

_ 8%

X component = U tUp =g+ Uy
- - 9¢

y component = v = By
- = B¢

Z component = w = 5z

3. Normalizing Transformations

A linear stretching of the X coordinate by an amount

NIr-mMFE ¥ av-z)

(the Prandtl-Glauert transformation) converts Eq.(IV-1) into the three-

dimensional Laplace equation. Similarly, the Ackeret transformation:

X = NMp“-1 X (IZ-3)
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produces a normalized wave equation
2 ¢ 92 o2¢
2xz dy? dz%

These transformations eliminate Mach number from the differential

o (IV-4)

equations, and hence can be used to relate the subsonic flow over a
wing to the incompressible flow over a related planform or to determine

the effect of varying the Mach number of a supersonic stream.
4. Boundary Conditions

In subsonic flow, boundary conditions are applied at an infinite
distance above and to the side of the wing where ¢+0 and in the plane
of the wing. In supersonic flow the velocity potential is zero outside of
the Mach cone bounding the disturbed region. On the surface of the
wing assumed to lie in the X,y plane, the flow must follow the local

slope of the wing. In the linearized approximation

Y

=-Q(x -
U 9z 220 { ’ _y) (E 5)
where  (Xx,y) is the distribution of angle of attack. In the X,¥

plane, outside of the wing planform,
ol :
-5-% 1.0 = Continuous function of z (I7-6)

5. Linearized Pressure Coefficient

The pressure coefficient is defined as a nondimensional difference

between local pressure and free stream pressure

o = %‘ (IZ-7)

where is the free stream dynamic pressure.
- y

By linear theory
%= e T U (-8

Ona thin lifting wing at angle of attack, the expansion of the flow at a
point on the upper surface will be matched by a corresponding compres-

sion at the same point on the lower surface. Hence the lifting pressure

Vo ax

AcCp = fu _ £ (8¢ (1Iv - 9)
o0

¢ -c )
Psottom ‘Pfop Upper surface
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6. Subsonic Solutions

Solutions to the partial differential equations which satisfy the
required boundary conditions are generally built up from a super-
position of elementary solutions. In the subsonic case, the most
commonly-used elementary solutions are the vortex and the pressure
perturbation.

A differential length, d; , of a vortex of strength [ induces
at a point (x,y, z) the velocity

_ I'R
dV = o Tw-nri o 9 (¥ - /0)

As shown on the following sketch, &2 is the distance from the point
(x“y, z) to the axis of the vortex and |x-§[ is the distance from the
differential element of the vortex to a plane through the point (x,y,z)

normal to the vortex element.

Az 9
.

(X,¥,2)

Each velocity component in a Cartesian coordinate system satisfies the
Laplace equation.
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As an example of the procedure of satisfying a boundary condition
by a superposition of vortex solutions, consider first the vertical velocity

induced at the point (¥, y) by a symmetric horseshoe vortex of strength ar

lying in the (X, y) plane.

Az

¥ (spanwise direction)
co9r £ Y

X
The spanwise vortex segment will induce the velocity
. dr 7 (x -E)
dWeenter = 417 = iz dy

Ly [(x-8)2+(y-9)?]

(Iv-11)
_ _dr Yy
I (x-E) |VOX-EVtly-7)* Ax-E)Vorlyp ]
Similarly, the left arm of the horseshoe f(a@f - ) will contribute the
vertical velocity at (x,y)
__dr . x-£ _
dw_,'? #mly-7) [ Vix-E)2+ (y+p)? /] (r-12)
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and the other arm will produce the upwash

dr X-E
= ' BNy = + -

Hence the net result of the entire horseshoe vortex is

_dri_/_ X -£) -(y -7)* { WX -E):+(y + )%
dw_ § y_? (I+ X‘E —y+7? !+ x_g (IJZ-J‘P)

Next, through the same station, £ , add a large number of such sym-

metric horseshoe vortices of varying span and having a total strength-ﬂ:

Then the picture in the X,y plane looks as follows: 9%
Y
b/2 b/2 -
o
&
9k | aar
o9 19f
1)
X
|
w
+
Y |
|
Fryrp vy rw\rl EERERREN
oo

X
By a summation (integral) of all contributions of the form given by Eq. (IV-14)
but where @I is replaced by the elementary vortex of strength -'3'6,‘?* %’_]

awie,y) 4 (% 5 or)| 1 (i BT ) | PTG 4
a§ 41ro Iy \3E/| YT xX-£ y+7 X-£ 7

(IZ-/5)
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And finally the planform of a wing can be covered with an array of

these nets as indicated in the following sketch.

Um*
| —_—
? !
X
b/2(€) > c
T
3
y
|
x
#&XD
Yion

The total upwash at ¥,y is then

o r° f(n ¥ vt "
wrx,_w-.-#i J; 8 oo [ l (HJX E)+ly-9) ) ! (’A@ n’-f(yny)‘J\ b dg

ap\eE/ |v-7 x-§ AV
am-16)
This upwash is related to the wing geometry through the
boundary condition of no flow through the wing surface, This
condition requires that (to the linear approximation)
Wix,y) = —Upa@(X,y) (¥ ~77)

where & (x,y}is the local slope of the wing in the streamwise direction.
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The boundary conditions at Z=@® and Yy = oo are automatically
satisfied by the form of the elementary vortex solution.

The spanwise elements of vorticity constitute a vortex sheet of

strength

J’(E,?) = —-aa—‘g- (IY-/8)

which is assumed to lie in the plane of the wing. This vortex sheet
produces a discontinuity in the streamwise component of velocity
over the region of the X,y plane occupied by the wing planform.
This component of velocity perturbation at the point ¢, 2 on the

upper surface of the wing will be

uupfel' = 2L rfg:?"

An equal and opposite increment in velocity will appear on the lower

surface so that the total perturbation is given by

{rw-19)
Au=F (E,9) = -g—g—

Hence the integral equation (IV-16) may also be written

winy)= 5L f ] J'f-(EJ |5t /!+‘6"£"+”"'F) ' 6+ "E“"Z*(’m:) o dE
L4 o

o7 |¥-7\ x-E E2E] x-¥
(IV-20)
where, by symmetry about the X -axis
N J' +6) dul ! JO-E)* +ly-7)* (IZ-21)
won=z5 1) e e e i B

From the linear expression for pressure coefficient, Eq.(IV-9), the
velocity perturbation on the upper surface is & = %2 AcCp
Hence in the form given by Eq.({IV-21), the boundary conditions are to

be satisfied by a superposition of pressure perturbation solutions.
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7. Supersonic Solutions

The most commonly used fundamental supersonic solutions are
the source and the doublet. The velocity potential for an elementary
source of strength Kg is

b, = Ks (IZ-22)

Nx-E)2 -y -n)*~(z -Z)?

This equation gives the velocity potential at points X,y, Z generated

by a source at the point §£,%, & . The wave equation has been normal-
ized to the form given in Eq.(IV-4), and corresponds to a flow at Mach

number = 42 . Without the normalization, the solution would be

Ks

Nix-E)2-RBEly - 92 -p2(z-L)?
where ﬁ =¥ =T

If the source lies in the plane £=0 ; then the normalized velocity

(mr-23)

potential becomes

_ Ks (
¢S_ d(_x_g)z _(‘y_p)z_zz 1?25‘)

The vertical component, -g—f— , becomes

3¢£ - KSZ 37
- 2
0z [(X_E)Z_(y_v)l_zz:l

Since Vz is antisymmetric with respect to the X,y plane, the source

V,= (or-25)

produces an upward component of flow above the plane and a downward
flow below, thus satisfying boundary conditions typical of the thickness
problem of a symmetric airfoil. Since disturbances cannot propagate
forward in a supersonic flow, the flow over the top surface of an air-
foil is sometimes independent of the bottom surface and then it is
possible to represent the flow over a lifting wing by a superposition of
source solutions.

The more obvious elementary solution for the lifting case is the

doublet, which is the limit of the potential due to a source above and
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one below the X,y plane as they approach each other. The doublet
potential will be the vertical derivative of the source, hence for a
normalized doublet of strength X in the X,y plane

_ Kpz

— { 2
P [(X-EJz -(y—?;)z-zz] 3/2 I7-26)

The corresponding vertical velocity will then be

a¢n Kp 3szz

8z -[(x_g)z_(y_vJZ_zl]alz [(;_E)l_(y_le_ZZ]-rfz
(27}

Vg =

which is symmetrical about 2= @ .

To satisfy the boundary conditions in the plane of the wing, a
superposition of sources or doublets may be used. The distribution of
their strength is adjusted to satisfy the required boundary conditions.
Thus for a distribution of doublets over the surface of a wing, the

velocity potential at the point X,y,z would be (at My,=~Z )

Kn(E,7)zdEd
¢(X..Y,ZJ=ff [ D 7 £ 7 (-28)
& (x-

2
E):-(y-mi?-z z]y

The area of integration is the region for which the denominator is
real; that is the intersection of the Mach forecone {rom the point

X,y,2 with the plane of the wing (£ = 0) as shown below.

Areg of Integration
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The boundary conditions require that on the wing surface

3¢(A‘,y,2) = a ﬂ‘ Kp ({,?’Z d"d? =v a ,='U a(x,y’
oz 20 {az A [(—F.J‘—(y-w‘-z‘Tu Lk

o (17-29)

where @ (x,y) is the local slope of the wing. This integral equation

for KD (£,7) has been solved directly for a few wing planforms (Ref. 7).
Similarly, source solutions may be superposed to give velocity

potentials of the form (at M= 42 )

_ Ks (£,9)dEdy ~30
Pixy,2z) = ﬂ ___Rs S (I7-30)
 x-E-ty-p?- 23

The corresponding boundary condition on the top surface of the wing

then becomes

goyt) [ ] 8 ‘[f __Kstemdidy L _ |, ay ()
az , oz Vix-gr-ty-pR-2°

Puckett has shown (Ref.8), however, that this integral equation is
satisfied if K (E,%) =——Ull%(£'-?’_ . Then, in the plane of the wing

- e a &, 7)dEd i
$ix,y) = -2 7 (17-32)

Nex-E) - (y-9)?

§

As previously mentioned, source solutions can be used to
treat lift problems when the upper surface of a wing does not com-
municate with the lower surface, as for straight two-dimensional
airfoils. Evvard (Ref.9,10) has extended this method to three-
dimensional wings by imagining a diaphragm of unknown slope lying
in the plane of the wing and preventing disturbances from one surface

from propagating to the other. An additional boundary condition, zero
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pressure difference, must then be applied to the diaphragm. Evvard
finds that the contribution of the sources on the diaphragm to the velocity
potential on the wing exactly cancels the contribution of sources on part
of the wing surface, so that the boundary conditions on the top surface
are all satisfied when the region of integration is modified to that shown

below.

kﬁa’"aﬂ = 4_2—

| _—
—

x,E

¢(x,y) - - ?;of/ a(fﬁ?)d£d7 (IY-33)
Sw!

Vix-§)? - (y-n)?

Another useful concept takes advantage of the conical similarity

existing in certain regions of supersonic flow. If the boundary conditions

b
x ]
then the normalized wave equation (Eq.(IV-#)) may be reduced to the

are such that the velocity potential is a function only of -¥— and

Laplace equation for the streamwise velocity.

Appropriate solutions may then be obtained by the powerful methods
of complex variables. Wing pressure distributions obtained by superpo-
sitions of conical flows are given in Refs. 3 and 11. In the case of arbitrary
angle of attack distribution treated here, conically similar boundary con-

ditions are not available; hence such methods cannot be exploited.
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8. Slender Wing Theory

If the wing is "slender" (low aspect ratio) as well as "thin"

(small thickness ratio), then the first term of Eq.(IV-1) may be neglected
since changes in ¢ with the streamwise coordinate, X , will be
small compared with variations in the other directions. The remaining
equation then becomes the twe-dimensional Laplace equation in the cross-
flow (y,Z) plane. In determining solutions of this equation, functions of
the X coordinate are equivalent to constants in satisfying the equation
and boundary conditions in the y,2 plane. Hence in such sclutions
each cross section of the wing is analyzed as though it were in an incom-
pressible two-dimensional flow. Streamwise functions are used if
needed to satisfy longitudinal boundary conditions.

Since the term involving Mach number does not appear, it is ap-
parent that solutions for slender configurations hold at subsonic, transonic,
and supersonic speeds. This result was first applied to low-aspect-ratio
wings by Jones in Ref.12. Near M, =/ , the first term of Eq.(IV-1)
becomes negligibly small for a wider range of aspect ratio than would be
true at other speeds. By writing the equation in non-dimensional form it

is readily seen that, in fact, the slenderness assumption is valid when

)GAR << /
where ﬂ: ,I—M,,‘,'[

AR

aspect -ratio
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B. HIGH ASPECT RATIO SUBSONIC WINGS
1. The Weissinger Method

Equation {IV-16), relating the upwash velocity on the wing sur-
face to a distribution of vorticity, forms the basis of most linear

subsonic lifting theories. The equation is repeated below.

et € ff!)a ar\| _i ( &-EFH%?J’)_ / (ﬂ“'f’z*‘y*’é)‘z\ .
wixy) ¥ﬂ~£ J; a—?'a—;— -7 !+ X—E T 1+ Xf id’,’ d; (.ZYIGJ

By equating the vertical perturbations of the flow to the local slope of

the wing surface, (Eq.IV-16) becomes an integral equation for the un-

known distribution of vorticity f'({, ?) in terms of the prescribed

wing angle distribution

alxy) = - 250 w-34)

Um

The incompressible case will be considered first. A Prandtl-Glauert

compressibility correction will be employed later to account for Mach

number effects.

Such a two-dimensional integral equation is very difficult to deal
with, especially in the general case of arbitrary distribution of wing
slope. Consequently, various approximations are employed to reduce
the problem to a one-dimensional one. In Weissinger's lifting surface
procedure, (Ref.13), the chordwise variation of vorticity is approximated
by the solution of the corresponding problem for a flat wing of infinite
aspect ratio. Lawrence (Ref.14), on the other hand, inserts the spanwise
load distribution for a high aspect ratio flat wing and solves the remaining
integral equation for the chordwise loading. The recommended procedure,
therefore, is to use the Weissinger solution for high aspect ratio wings,
and the Lawrence method, which will be described in Section IV C, for
low aspect ratios. For a flat'wing, both methods approach the correct
loading at zero and infinite aspect ratio; hence the selection of a criterion
for switching from one method to the other is not critical.

In the two-dimensional case, a vortex sheet of strength F(r) = _gL

x
is assumed to lie in the plane of the wing, The flow angles induced by this
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vorticity are then equated to the local slope of the wing mean camber line.

The following sketch illustrates the nature of the problem:

Wing meon camber line

A~ o~ A -
L X &

A
bb\\b_b/

Y (x) =strength of vortex sheet

et o]

The vertical velocity induced by the distributed vorticity at &= x,
2= 0  will be

! r° reg)de
wix) = 2_17 g Hﬁ— (O-35)

The boundary condition, applied in the z=0 plane, then requires

that for a local wing slope :—:

dz _ ww) _ ! € Y(E)dE
dx = Un ~ 2mUyh J; E-x (r-36)

The singularityinthe integrand at the point £= x is tobe evaluated by
using the Cauchy principal value.
The general solution for this equation, as given for example on

page 122 of Ref. 15, is

. cd
yix) = 277({0 V/c;x Tgii F—% dE + kE-f-; (I7-37)
[-]

The constant of integration, K , must vanish since the vorticity is

required by the Kutta condition to be zero at the wing trailing edge.
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For 1 flat wing at angle of attack & , the boundary condition
becomes

dz _ _
ax a

and Eq.(IV-37) may be integrated to give
rex) _ 2 c-X
LE2 = 2 N (I¥-38)
Upe X
From two-dimensional airfoil theory, the lift on a unit span of the wing
is proportional to the circulation, and produces a section lift coefficient
of 27 & . Hence the angle of attack is related to the spanwise distri-

bution of circulation by the equation

dlL
dy £ Voo 1 =pUmznac
and thus
j (y)
o = A TV7-39
(y) Uy 7TC (17-39)

Now, in terms of the spanwise distribution of circulation, the vorticity

is given by Eq.(IV-38) as

- 2ty [c—x
Vex,y) = p—p N (I-40)

Inserting the chordwise function into the integral equation

(Eq.{IV-16) gives the one-dimensional form

e x-£

-?-m
wiy}= —Lr-f {[ aI'( ) [y = (H- V(x-l'?ﬂr-‘r)‘}L “? j[rx EJ +(v+7 !%

(I7-4#/)

It is still necessary to specify a value for x in the integrand and to
evaluate the remaining one-dimensional integral equation for 1"(7,?)

In his lifting surface method, Weissinger selects the three-quarter chord
line as the locus at which to apply the boundary condition. That is

X = -%_‘— . This choice will cause the approximate two-dimensional

relation between local wing slope and vorticity distribution (Eq.IV-38)
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to be rigorously correct not only for (& =constant, but for any linear
variation of O with x .

Although it is now possible to reduce Eq.(IV-41) to a one-
dimensional integral equation, Weissinger indicates its solution only
for the case of a rectangular wing. For a swept wing, it is more
convenient to replace this spanwise integral equation by a less exact
one derived by assuming that the vorticity distributed across the chord
at each spanwise station is all collected into a concentrated vortex at
the quarter-chord. Then when the boundary condition is applied at the
three-quarter chord station, the two-dimensional (infinite wing)
boundary condition is satisfied rigorously in the case of a flat wing,
but no longer holds for arbitrary linear distribution of wing slope.

The geometry of the problem is illustrated in Fig. 2, where a
concentrated vortex is placed on the quarter chord line which has a
sweep-back angle A (The Weissinger "L”Method).

The strength of the bound vortex varies in an unknown manner
along its length starting at zero at the right wing tip. Then at every
point it is joined by an infinitesimal trailing vortex which increases
the strength of the bound vortex by dI°. The strength at the center is
a maximum [, , after which the departing vortices reduce the
strength to zero at the left wing tip. The loading is assumed to be sym-
metrical, and the bound vortex is assumed to lie in a straight line
broken at the center line in the case of a swept wing. The strengths of
the bound and trailing vortices are determined by requiring that at
each spanwise station the downwash at the three-quarter chord point
be fnatched to the local chordwise slope of the wing surface (mean
slope if the section is cambered).* The wing slope is allowed to vary
in the spanwise direction (being symmetrical about the center line,

however), but at each spanwise station the wing is assumed to be at some

mean angle of attack.

* The bound vortex is placed at the one-quarter chord because the two-
dimensional theory indicates that this will be the moment center. Then
the boundary condition is applied at the three-quarter chord to make the
spanwise load correspond to the two-dimensional value in the limit of a
wing of infinite span. See, for example, Chapter VIII of Ref. 16.
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This matching requirement leads to an integral equation which is
solved by representing the unknown vorticity distribution by a Fourier
series. The coefficients of the series are determined by selecting a
finite number of spanwise stations (usually 7) at which the downwash is
equated to the wing slope. Then the problem reduces to that of solving
the resulting linear algebraic equations for the vortex strength at the
selected stations. The details of the procedure are described in Ref. 17
{(as well as in Ref. 13) and are repeated below in a somewhat condensed
manner.

The contribution, -dw , to the downwash at the point X, y
due to an element of an incompressible ideal vortex of length &g is

equivalent to Eq.(IV-10).

Lrr~d

Hence the downwash at the point X,y due to the bound vortex is

obtained by integrating the contributions of all of its elements giving

b
o
cosA+y Sinl (x cosA-ysinA) I (%) d

-w(x’y)]_':“;'rf {x A Y Ji )F(?)d’?i +¥”J 7 Y (m_“‘z)

b cosAlGe{p| tanA) +ty-p/ ]t cosAlfx-pltant+{y-p T

The contribution from each trailing vortex is readily evaluated since

the strength is constant. On the right side of the wing, for example,

x-9 tanA

—dw df(z-y‘J. as - dr x-7 ton/\ e+ 1| (3
|}'1+(77 -y)‘]* " $m(p-y) ¥(x- » tanAY+ (9~ _v) )
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The downwash due to the entire trailing vortex system therefore becomes

[ x-|7lton A !
WONr = 4"7f y-7 |}+ JX-I?ltanA)!-l-(y —72)! ] Iomdy (-44)

The total downwash due to all vortices results from summing the parts

b
z

expressed in Eqs.(IV-42 and IV-44). If, in addition, the expressions
in Eq.{IV-42) are integrated by parts, the result may be written

~wix,y)= —-fr_@i?; + 4‘7"j [V(Xf'i;tan/i)‘+(y__mz _
$

/
“ur » Y7 (xtytonA)y -7} y=7

(I-45)

b
]
20oniTryT |7ty o 1 [(VG-ptanlrty-—77 |
+x‘-y'tan‘A Fdy+ a7 A |_ x-ylanA)y-9)  y-7 F?wd?

Now evaluating at the 3/4 chord line, where

X=TC+ |v| tan A

the nondimensional equation for the downwash distribution is given by

b
_ W Lj" ¢'tadr |, T
7 ”

i/
7
, Tt 7 ft.(r,z-)c- (r)dt (I-4¢)

=l

where 7 = Z:L —3/7 = LU ; and on the

right side of the wing where ¢ >0

ltT
Lier) et B rriton T ECD || stantlte b rendl+ SF
7 's'ﬂ‘f) I*Z?‘t tﬂﬂA ]+2.§t tan A

e TE0

Ltz) = r—[dﬁ‘—(f t)tanA] + 5 (t z)? J 7= 0
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-ﬁ'— (t) on the left half of the wing may be found by symmetry with the
right side. It may be noted that the expression for £ (¢,z) for T20
differs in a sign within the last term from the expression given by
Weissinger in Ref. 13. Weissinger's equation appears to be incorrect.
The result given here agrees with that of De Young {Ref. 17}, which,
also has a misprint, at this point; the condition P =0 being written
ps0

2. Computation of Spanwise Load
Equation (IV-46) is an integral equation expressing 6(2)in terms
of prescribed values of —&'(t) . Weissinger solves it numerically by

replacing G () by the Fourier series

»ny
G(¢) = ZI au sinud T-47)
ﬂ:
where
cos ¢ =7

and, by the usual formula for Fourier coefficients

a, = _g_j;”c;(sw sinudd

Unfortunately, the unknown function 6(95} appears in the integral for
determining C‘J'“ . This difficulty is resolved by employing Multhopp's

numerical integration formula (Ref. 18) which reads

! m
I’ fiprdy = ’”’1’; f Pn) sin Ep (1r-438)
where
o nwr

n “msi + Tn= cos,
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In other words, the function f () is evaluated at #7 points in the
interval from -/39p =/ , and the integral is {approximately) the sum
of these values times appropriate weighting factors.

Using this formula on the function G ($)S$/nu @ produces the
following result for the coefficients a/u

14]
Qu= 737 ) G(@n)Sinpu @ (F-#9)

Then substituting these values for C;u into Eq.{IV~47) gives

m ”t
G(@) = 7,,27,- z G (8p) Z: Sinp By Sinu b (-50)
n=/ A=

By differentiating

d;;@ = Glp)- 2 ZG(gn)Zﬂsm/u On cos u ¢ (-51)
o

Now Eq.{IV=-46) can be 1ntegrated (with the aid of a trapezoidal integration

formula) since the unknown function G',"(Z') can be expressed through Eq.(IV-51)
in terms of the M unknown constants Gy {(€n) . The result, for a

symmetric wing at station # is

mff

_ (szzv‘f' ng G(6y,)- Z (ZBW; ra” 93,,,)6,,(9,,) (I7-52)

NEY

¥-= /,2,3,.... —'?’-;—’
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Here

m+/

b = M+
vy ¥5in 8,
5in 6 1- (=177
byn = = n¥EY

o5 6=c058,) 20t 1

Gvn = 2(M+/) E e (Lope Lo ies- )

mf/
bzw*bv, me+i-n 7 ¥
B’m = m+/

M = arbitrary integer defining the number of subdivisions employed

in the trapezoidal integration formula of Multhopp.

'rn/" = Z’Cn/"' n ¥ m2+, » MFEO )
= 'Fn/‘ : n '—'m—' d ﬂ*a
> (I¥-53)
= fﬂ/& n# 2 ? /“:0
- I n="t s u=o J
m
fou = ) Sinpe, 8, cosu, 8y (I7-54)
/“I=,.|315

2
Lz;u" Ly, M - = (Z'v [V]’* ey Tl l‘MA ( ’) (ty-Tu) —l] o
-55)

; JI+ & @y-gatemf+(L) €00 A 2“,,,\&-,5 Ty tend) el 7, )

£yt 1+2 & 7, tan s 1+2& Ty tana
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Also

- v

7 = cos(
6= il
6y = r:-::'
% = Ty

Although the final result Eq.(IV-52) appears to be fairly compli-
cated, the equations break down into a reasonable number of simple
relations which may be readily programmed for machine computation.

To determine a wing loading distribution, values of G (6y) must first be

determined by satisfying Eq.(IV-52) at m;’ points. The points fall at

spanwise locations Ty = cosml:-’,- = -%’2'— where 9,, = m—-‘;g- . Generally,

m = 7 1is sufficient to establish an accurate loading curve. In that
case, Eq.(IV-52} will produce four simultaneous linear equations
relating the known slope of the wing (—z—)y at the spanwise locations
T = .924;.707;. 383;0 to the corresponding unknowns

G(—g); Gﬁ,l),- G(-"a—"—); G(T”)

The section lift coefficient, €y , is then given by

256 (6y)
&ty = @52
where the lift on the section {per unit span) is £ = {'CLZC . If the

lift is desired at intermediate points, then Eq.(IV-50) may be used to
give G(@) for arbitrary P where ¢ = cosg= 'b% .

The numerical procedure given above follows that of Ref. 17,
which preceded the widespread use of high-speed computing machines.
Although this method can be readily programmed (a FORTRAN listing
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is given in Appendix A), other numerical solutions of Eqg.(IV~41) might
be more convenient. For example, if 617)is assumed to be an unknown
constant over a small interval A7, then the integrations yield algebraic
functions which may be evaluated at any desired number of points. The
ability of high-speed computing machines to solve large numbers of
simultaneous linear equations makes feasible the numerical determina-
tion of the required constant values of 6’'¢z). Such a procedure forms
the basis of a machine program for calculating aeroelastic wing loads
developed by Mason {Ref. 19}.

The basic Weissinger method, as described here, does not specify
the number of spanwise stations at which the downwash is to be matched
to the wing slope. If seven spanwise locations are used (the root section
plus three on either side), then the charts given by De Young and Harper
in Ref. 17 may be used to simplify the computations. For many cases,
seven stations are sufficient. Weissinger, for example, finds no advantage
in using fifteen stations on a swept rectangular wing of aspect ratio 5.
However, on wings with discontinuous twist, such as would appear with
deflection of a partial-span flap, more stations may be required. Alterna-~
tively, the coefficients associated with the seven-station solution may be
altered to account for the spanwise discontinuities. The latter procedure

is adopted in Ref. 20.
3. Chordwise Load Distribution

The Weissinger L " method gives only the spanwise loading on
flat wings and assumes that the two-dimensional value is {y=27Q. To
determine the local pressure on an arbitrarily cambered and twisted wing

it is necessary to establish also:

a. The chordwise distribution of the lift on a given section
as a function of the local camber distribution; and,
b. A definition of angle of attack of a cambered airfoil
section to be used to establish the proper local boundary conditions in
the Weissinger procedure. That is, in Eq.(IV-46), w(y)=-Va(y) ,
where @ (y) must be defined in the case of a cambered wing.
The two properties, chordwise load distribution and Q@ (y)are

to be determined from the corresponding characteristics of a two~dimensional
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cambered airfoil. Examining first the chordwise load distribution,
let

Cp = (IZ-357)
Now by integrating this equation across the wing chord, the spanwise

loading is obtained.

TE
J:E Acpdx = ¢y (.y)a_d’_m =cCp Wy gim x FLW

Hence

C..l - i m
Ct 2-dim

and the pressure distribution becomes

CL 3. o
AC s __J—d_ﬁ_ - ZI?-5
Fz..d,m Qz-d,‘m ACp ( 8)

The three-dimensional spanwise loading is obtained from Eq.(IV-56),

while the solution of the two-dimensional problem was previously

given by Eq.(IV-37}). From that result for a wing of chordwise slope j:
c dz 5
Ac =2-L‘”’=i‘f_‘:i df [ = .
Pz-d;'m Vo bid X 0 X-E C- dg 174 59)
The spanwise loading is determined by integrating this expres-
sion across the wing
C TE.
c = = -
Lo otim ‘L‘_!‘Acf’z-d;m dx= 2mcly@ly) (Ir-co)

By equating the spanwise loading to the form assumed in the derivation of
the Weissinger equations, an effective @ (¥)is obtained. In Eq.(IV-60),
the chord on the left side of the equation is the reference value used in
defining the span load coefficient Cy ; while ¢(y) on the right is the

local chord.
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To illustrate the procedure, consider the flat two-dimensional

airfoil at angle of attack G . Then g—f =-d&, and Eq.{IV-59) gives

rix) _ C-x
2

The distribution of lifting pressure over the chord is

= 2 -
Ap = ply ¥ = 2)000_., O:g (¥-61)
Integrating across the chord gives the spanwise loading
gL 2
dy - Pl"amc (IP-62)

or in coefficient form

_ dL [
Ct dJ/ X%U‘:'C = 277

As an additional example, the lift distribution will be calculated

(I7-63)

for an indicial angle of attack as illustrated in the following sketch.

This solution may be useful in the construction of an aerodynamic matrix.

[ ] -
o""“‘?"’lﬂi’l‘— c £

0
T oEEe
g-g- - -& ¥ = &S R+4% S (r-6¢)
2 -0 Xrax<fsc |
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The equation of the vorticity distribution Eq.{IV-~59),

becomes, in this case,
X+4X%
— _ZU- C-X = ! E .
Foo = —5% 55— a [j;_( rey 2 iy dg] (I7-65)

which gives, on integration,

ro = 22X [5,,,-:(27+242-c>_ 5,-”-/(2?-5):|

r c c
(I7-66)
+ 1,,' 2NCKKE NCR-FZ #cx +(c-20) X | R4AX =X '
24CxxT CIR+BRIF(R+ARIT + CX +(C-2x)(R+AN)  X-X,
The pressure difference between corresponding points on lower and
upper wing surfaces is then given by
dp = pUFx) (I¥-67)
and the corresponding pressure coefficient is
_ A - £ ex)
A6y z—uez 2 Un (I7-68)

2 Ym
Now the effective angle of attack of each spanwise section may

be calculated from Eq.{IV-60) and the chordwise pressure distribution
obtained from Eq.(IV-58) where C‘a-dﬂﬂ is the spanwise lift coef-
ficient given by the Weissinger theory; and d¢om, , and C_',=—CLJ; fﬁc‘p(xge_‘,m ax

are determined by the two-dimensional theory just presented.
4. Effects of Compressibility

Compressibility may be accounted for by application of the
Prandtl-Glauert rule as indicated in Ref. 17. For Mach numbers
below that for which sonic speeds first appear on the airfoil, the
linearized potential flow equation may be applied to indicate the effect of

Mach number on pressure distribution. From this equation:

¢ 9  3%¢ _ 0
ox: . Qy* 9z2 (Ir-69)

it is apparent that increasing the x-dimension of the wing by the

factor TJ_’F_-T- will eliminate the Mach number from the equation.
o

(1-M*)

46



Further, since the linearized pressure coefficient is proportional

to —g—g; , the pressures should also be increased everywhere by this

factor. Thus at Mach number M, the pressure at a point x,¥y is
given by
C-Po X

Cp (X,¥)= Vi \yrm= Y (I7-7¢)

where Cp, is the pressure coefficient at M 4= 0 at the corresponding
point b-_—J—M’,')Of a wing whose planform ha::, been altered by increasing
its chordwise dimensions by the factor Vs - The angle of attack
distribution @ (x,y)transforms to a@ﬁg:y) . Fig. 3 illustrates the
effect of the transformation in a typical wing planform.

Since the transformed wing will have a smaller aspect ratio
than the actual planform, it may be desirable to calculate its pressure
distribution by the method given in Section IVC rather than by the
Weissinger procedure. The low aspect ratio theory generally becomes
applicable for any wing planform as M« - 1 since the aspect ratio of

the transformed wing is smaller than that of the actual wing by a

/
factor of TW_.,—?

5. Summary of Computational Procedure

The calculation of the pressure distribution on a wing of arbitrary
twist and camber may be reduced to the following steps:

a. Convert the wing planform to an "equivalent"” wing

at M,= 0 by elongating the streamwise coordinates by the factor{#
.-

b. Subdivide the transformed wing span into #? strips
whose centers lie at the stations 7 = ¢os§ ;;f;’;’,!- y 77/,2,3,...m

c. At each strip find an effective angle of attack, @& (7,)
from the two-dimensional analysis. That is, Eq.(IV-59) gives
Fx,ty) for any prescribed distribution of wing slope gf(;,l},) ;
and Eq.(IV-68) the corresponding chordwise pressure distribution,
Acp (x,Tp) . Then the effective angle of attack at section ¥,
is computed from Eq.(IV-60).
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d. Scolve the integral equation (IV-46) using the ef-

fective angle distribution ¥ (7, = ";/“”’. A FORTRAN program for carrying
-

out this part of the process is given in Appendix A.*
e. Find the spanwise loading in coefficient form from
Eq.{IV-56). This step is also included in the given FORTRAN program.
f. Calculate the local pressure coefficients for the
transformed wing using Eq. (IV-58). In this equationAcP(XJz_dmand its
integral Cy 2-dim have been obtained in Step (¢). The three-dimensional

section lift coefficient, , is available from Step {(e).

€t 3-dim
g. Apply the Mach number correction given by Eq.(IV-70).

The quantity ‘o, (w__._._z

formed wing, while the operation described by Eq.(IV-70) converts the

) is the result obtained in Step (f) for the trans-

result to the physical wing at the flight Mach number.

6. Comparison with Experiment

In order to check the range of validity of the Weissinger pro-
cedure, theoretical predictions of total lift and center of pressure have
been compared with available experimental data for a variety of geo-
metric parameters and flight conditions. Figures 4 - 9 show comparisons
of measured lift curve slope (at zero angle of attack) as a function of
aspect ratio with experimental data taken from Refs. 21 - 27. The use of
the coordlnatesﬁ 25 and AR (where[j 1//-7.’) eliminates the need for
separate curves at each Mach number. The wing planform is defined by
the aspect ratio (AR) , taper ratio (7R) and sweepback angle, A g, of
the leading edge. All wings have symmetrical trapezoidal shapes as
sketched below. M.,,J

~ i
| N
\/

* Numerical computation reported here have been carried out, in
part, at the Computation Center, Mass. Institute of Technology.

48



- 3 C i
Then the aspect ratio = Tt o ffc i and the taper ratio = c,,:,t
0 tip

The wings are alsc symmetric in thickness (no camber), with

. . ¢y .. maximum thickness
thickness ratios (c ) “hord

The only variable flight condition considered was the Mach number

up to about .15.

which ranged from 0 to .96. The data were taken from wind tunnel tests
in which various Reynolds numbers were encountered. It has been
assumed, however, that the lift is insensitive to Reynolds number in
these experiments. The plots show generally good agreement between
experiment and theory., The limitations of the theory implied by this
comparison and other experimental checks will be discussed in the next
section (Sec. IV)

Figures 10 - 16 show plots of predicted and experimental stream-
wise center of pressure. The ordinate in each plot is the ratio of the

distance where Xe p is measured from the foremost point of

5o

Croot
the wing to the center of pressure; andc¢,,,s is the wing root chord (see
sketch below), The center of pressure position is given for zero angle
of attack, but the experimental values are actually obtained from the

initial slopes of the lift and moment curves, since the ratio of pitching

is derived, is indeterminate at @=0

-

moment to lift, from which x_ p

Centers of
Pressure of
Each Wing
Panel

——

Center of Pressure

e—— C rpot

On Figs. 17 to 19, the theoretical spanwise center of pressure
on an individual wing panel is compared with the experiments of Refs. 26.

The plotted parameter, _igf_zeh , is indicated on the above sketch.
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The lift and center of pressure positions give only an over-all
indication of the accuracy of a load distribution theory. Obviously,
many distributions are possible with the same values for these integrated
properties. A comparison of theoretical and experimental spanwise
loading is shown in Fig. 20. The experimental data were obtained from
Ref. 28.

In order to assess the effect of angle of attack on the load distri-
bution experimental curves are presented of lift coefficient, and center
of pressure location for two wing planforms in Figs. 21 - 24. The
theory, being linear, predicts a constant slope of the lift curve and a |,
constant center of pressure location. The experimental data on the wing
of higher aspect ratio remain linear up to about 10°, Wing stall,
evidenced by a loss of lift, seems to begin beyond this point. On the low
aspect ratio wing, the lift curve slope appears to increase at angles of
attack around 8° before stall begins near @ = 18° The increase in
slope appears to be due to vortex separation from side edges and becomes
more significant as the aspect ratio decreases since the separated vortex

then influences a larger proportion of the wing surface.
7. Limitations of the Weissinger Method

The Weissinger procedure is fundamentally designed to give the
spanwise loading on thin, uncambered wings of high aspect ratio in
incompressible flow. Its range of validity may be estimated from the
trends indicated by the comparisons with experiment shown in Figs. 4
to 23. The following table summarizes the range of geometrical and
flight parameters over which the method gives load distributions which

are of acceptable accuracy, as defined in Section III.

50



Table 1

Range of Applicability of Weissinger Theory

RANGE OF
PARAMETER VALIDITY COMMENTS
BAR 2 - 00 At a given aspect ratio, the pro-
(B =471-m7) cedure is probably less accurate
on a cambered wing than on a
flat wing.
A 0-60° Morehighly swept wings could probably
L. E. be treated more accurately by the Lawrence
Method (Sec.IVC)

TR 0-1 Works well on tapered wings since
largest errors probably occur in
the vicinity of the wing tips.

t 0-.12 Probably is satisfactory to t/c ».15

e on high aspect ratio wings.

| 0-8° Holds over greater range of angle
of attack if stall or vortex separa-
tion do not become significant.

M. 0-.9 The limitation on f3AR restricts the
Mach number range.

h 0-.1 Consistent with angle of attack and

c thickness limitations.

{(h = maximum height
of mean camber line)
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8. Comparison with Other Theories

In degree of complication, the Weissinger method as presented
here stands between the simpler lifting-line theories and the more
complicated complete lifting surface theories. Several other methods
have also been proposed which are approximately equivalent to the
Weissinger method in ease and versatility of application and hence
might be substituted, but do not seem to offer any particular advantage.
Other variations are available in the literature but none appears
significantly superior. A brief discussion will indicate the major
distinctions between the competing lifting-line methods. The basic
principles of lifting surface methods will also be described. While
they might give improved accuracy in predicting effects of camber, the
small difference in result does not seem to justify the extra labor.

The older lifting line theories, based on Prandtl's analysis (Ref. 29)
were designed to give the spanwise load distribution on unswept wings. If
the wing is replaced by a straight vortex, as indicated below, whose
strength is !"(?), then the trailing vortices of strength _g;ﬁ induce an up-
wash velocity wiyat the peint y on the lifting line. Following the deriva-

tion beginning on page 137 of Ref. 30, for example:

& o
) (7 3y 97
w(y)-‘--‘mf - (IZ-7/)
L4 J’j
u
ot — b
Y r
- < (r} =y .7
4T
. T
|
2 -

The wing, at the station y , is at an effective angle of attack @, (y)
which is the sum of the geometric angle, @& (y)(referred to the local

zero lift angle in the case of cambered wings), and the upwash angle
wiy)

U induced by the trailing vortices. Hence,
o
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(
Q,y) = ®(y)+ %‘Q (IV-72)
o0

The Prandtl lifting line theory assumes that the lift carried by
the section at y is equal to the two-dimensional lift curve slope
multiplied by the effective angle, @, . Using the theoretical value of

27 for the section lift coefficient then gives for the lift per unit span

dL (y)= 217 2L 20 ) [Q‘ (y) - M] (7-73)
dy 2 ® Voo

The lift is also proportional to the circulation:
dL
- (.y) = v f'(.y’) (I7-7¢)
dy R Ye

Hence, combining Egs.(IV-71l), (IV-73), and (IV-74), produces the fol-

lowing integral equation for the circulation

3 Cff'd?
Ty = mU,a(y)cly) - c‘;ylj': 3’7_? (I7-75)

Various methods have been proposed for solving this integral

equation. The one given by Glauert {and which Prandtl attributes to
E. Trefftz), makes the substitution % = —g— cos & (0S 8s77),

Then the circulation may be expressed as a Fourier series in &

a0
Fap =" 8,5inp8é (w-76)
n=/
When this series is inserted in Eq.(IV-75), the integration may be per-

formed, and the follewing equation relating the coefficients results.

oo
Z [Bﬂ $in n@ (5/)79 + -g-’gi)] =, casing (I7-77)
Matching the boundary conditions at m points on the semi span (m values
of 6° between 0 and IIZ- ) produces m linear equations from which the
first m values of Bn can be determined.

An improved method of solution by Irmgard Lotz (Ref. 31), simpli-

fies the calculation considerably and is the procedure recommended in
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ANC-1 (Ref. 31). She expressesQ, 5/7 6 and -*%?3?—* by Fourier

series so that §/n7& cancels out of the equation, and also results in more
rapid convergence. A modification by Multhopp (Ref. 18) further simpli-
fied the numerical procedure.

The integral in Eq.(IV-71) becomes infinite in the case of a swept
wing, hence the Weissinger procedure, and others, were introduced to
circumvent this difficulty. In the Weissinger method, the boundary condition
is applied on the 3/ 4 chord line instead of on the lifting vortex so that a
bent lifting line does not result in infinite downwash. Various other such
devices have been proposed; a few examples will be described.

Truckenbrodt (Ref. 32) presents a theory very similar to
Weissinger's, but in his analysis the boundary conditions may be applied
at arbitrary locations on the wing. Then, if the two-dimensional section
lift coefficient is ¢y = £ @ , the downwash at a distance 4 X from a vortex

of strength I” is

/ ¢
L 24 _ 7
W= Zndx T T zZmdx T “zmax (wr-78)

In order that the downwash angle, - —-3;, match the angle of attack

Ax _ k.
c T K

The theoretical value of lift curve slope, & , is 2 77 , which leads

Weissinger to apply his boundary condition at the 3/4 chord, where the
Ax 1

distance € =7 For smaller values of section lift coefficient

Ax

(obtained experimentally), < <'§_L-- Truckenbrodt can thus incorporate

a correction for the difference between theoretical and experimental

section lift coefficient. In the Weissinger procedure, such a correction
would be accomplished by multiplying the calculated pressure distri-
bution by the ratio of experimental to theoretical section lift. Trucken-
brodt presents a graphical method of finding the downwash at any point
on (or off of) the wing. Hence the boundary conditions may be applied

at any stations.
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A more versatile procedure is proposed by Kuchemann in
Ref. 33. By separating the contributions of chordwise and spanwise
vortices, he obtains directly a solution for the pressure distribution
over the wing similar to that given for the Weissinger procedure.
However, he then introduces the parameter, 7 , such that the

vorticity distribution due to a uniform angle of attack is written:

rm)=<:P§iY7 (I7-80)

where, by comparison with Eq.(IV-60), €=2{,,& and n2 =-2£- . By empiri-
cally adjusting these constants, correction for the experimental two-

dimensional lift coefficient can be incorporated:

. Umsinrn ¢y
C = =2 _ .. -
— 5 (IV-81)

and also an adjustment made which accounts for the fact that n+/ gs AR~0:

n=1/- — ! ' (IZ-82)

2 [I +(]%-)z] ¥

These modifications (and others introduced by Klichemann) produce a

theory of great versatility. In the present report, two simpler methods
are proposed instead; namely those of Weissinger for high aspect ratio
wings, and Lawrence (Ref.l4) for low aspect ratios. Since both theories
work well at intermediate aspect ratios, Klichemann' s refinements
appear to be unnecessary. The Lawrence method will be discussed in
Section IVC.

Various lifting surface methods have been proposed, all based
essentially on the two-dimensional vortex system leading to Eq.(IV-16).
All procedures for solving this two-dimensional integral equation make
use of some assumed form for the variation of vorticity in one direction,,
in order to reduce the problem to a one-dimensional integral equation.
The Weissinger method and the Lawrence method thus constitute
particular choices of vorticity variation in the chordwise and spanwise
directions respectively. Other choices may give superior accuracy for
certain planforms or angle of attack distributions, but might then be
less accurate in other cases. Where the boundary conditions are satis-
fied at 15 points on the wing surface, the Weissinger procedure seems

to give as accurate a prediction of spanwise loading on a high aspect
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ratio wing as any other. A comparison made by Schneider (Ref. 28)

of calculationse of span loading by Weissinger's lifting line method and
the lifting surface methods of Falkner (Ref. 34) and Multhopp (Ref. 35),
show equally good agreement with experiment. Falkner's method,
however, required a larger number of control points to achieve the
accuracy of the Weissinger method. The comparison, it should be
noted, was for a 45° swept wing of AR = 8.02 and a taper ratio of . 45.
The airfoil section (NACA 63, A012) was 12% thick and uncambered.

A brief description of these lifting surface theories will be given
in which the method of distributing the chordwise vorticity will be identi-
fied but not the numerical procedure for solving the resulting integral
equations.

In Falkner's model, six concentrated vortices are placed on

lines C ,5C, 9C, 13C, 17C, and 21C. Boundary conditions are

2

satisfied at several spanwise locations along the three chordwise
lines 15G, 19C, and 23C . Multhopp uses a distributed vorticity of the
form aozc,:g;a/iz\:here 33-—: constant and ¢as €= 1'255 . Control points are
selected along the 3/4 chord line. In a higher order approximation,
the vorticity is assumed to vary as a, cot ?s-f-a, S/n e . In this
case, boundary conditions are satisfied along lines at . 3455C and
.9045C.

Weissinger and Truckenbrodt also describe lifting surface
theories in Refs. 13 and 36, respectively. The Weissinger method,
described earlier, uses the chordwise distribution of vorticity
dictated by the solution of the corresponding two-dimensional airfoil
problem. Truckenbrodt uses the same chordwise distribution but adds
another distribution which gives no lift but a pitching moment about the
quarter chord. Thus, if the two-dimensional lift and pitching moment
are known for the prescribed wing section, approximate proportions
of the two distributions of vorticity may be incorporated.

In these methods the chordwise distribution of vorticity is always
assumed, and the spanwise variation determined by solving an integral
equation relating the vorticity to the wing slope. The chordwise
vorticity and boundary conditions are so chosen that the results should

approach the proper limits in the case of a flat wing of infinite or
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vanishingly small aspect ratio. However, since the chordwise distri-
bution of vorticity is prescribed, the methods may not accurately predict
the load distribution on cambered low aspect ratio wings. Therefore, in
such cases, a desirable procedure would be to prescribe the spanwise
variation of vorticity and solve for the chordwise function by matching

the local wing slopes. Such a procedure is described in the next section.
C. LOW ASPECT RATIO SUBSONIC WINGS

1. The Lawrence Method

In Weissinger's procedure, the chordwise variation of vorticity
is prescribed, and the spanwise distribution is determined by solution
of the appropriate integral equation. Lawrence, {(Ref. 14), on the other
hand, prescribes the spanwise distribution and sclves a chordwise
integral equation which satisfies a boundary condition on local wing slope.
Both methods approach the correct limits for flat wings at infinite and
zero aspect ratio. But for low aspect-ratio wings,

Lawrence's method would be expected to account more accurately for
arbitrary camber distribution. As in the presentation of the Weissinger
method, the incompressible case will be treated first, then a correction
for compressibility will be given.

Lawrence uses the pressure distribution rather than the vorticity
as his elementary solution. These are related, as indicated by Eqs.{IV-9)
and (IV-19). From Eq.(IV-2l), then, the integral equation expressing the
local upwash velocity in terms of the streamwise velocity perturbation

{which is proportional to the pressure). is, for a wing with spanwise symmetry

2 du | _I N-E)2+(y-9)?

Using an integration by parts, this equation may also be written

(E) ( _xr2 )2
_ -3 2 utg,p) |, N +(9-7) (I7-83
winyl= 5 a—f j'f"ﬂ V-7 1+ - dpydé )

This is the form which Lawrence generally uses. It is an integral equation

for the two-dimensional unknownu(§,9)in terms of a prescribed vertical
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velocity wox,y) = -l X (xy) As in the procedure of Weissinger and others,
the solution is effected by expressing «(f,y)as a given function of one
variable multiplied by an unknown function of the other variable. Un-
like the techniques primarily derived for high aspect ratio application,
however, Lawrence chooses the spanwise variation as the one which is
prescribed. The appropriate spanwise function is the elliptic distri-
bution of lift experienced by a flat rectangular wing. It is incorporated
mathematically by multiplying both sides of Eq.(IV-83) by the elliptical

spanwise variation and integrating over the wing span.

f mx,wa*z “f'y dy=35 f
-§0

fo),
P sl STty aron

ﬂ')

After integrating by parts with respect to ¥ and interchanging the

order of integration

) - ft’l) - }w
(r-os5)

The integration with respect to ¥ can, in principle, be evaluated.
Lawrence approximates it in the following way. First, the integral is

written in the form

$ow $
J. fwﬁwj -.v’( )( 0x- ;;, : d"" J y-7. .;:” vt (“ Jf?)dy

b vyt - Ix-ﬂ] dy (Oree)

f,,,,]?rﬂ' 2 (x-E)y-p)
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The first term then yields

2w
Jr-£] - Ix—fl) )
-r by (y-'wf(x))’- (H )dy ” G* X-& (I7-87)

while introducing the low-aspect ratioc approximation

Vx-E) 2+ (y-m2 ~ Yr-g)2+ (3 m)? (r-88)

makes the second term become

) by
f W) 1y -7)° =€l 4 I] f g
J‘ 440 E(x)i _y? [ (x-E)(y-7) ,,,fx-fz{fw)‘-y [ x-£) +(y-?1'+IX-E|J v

$o0 ¥
J o0 ™) &m)‘-y I_,kx-;ﬁ(«}w)‘ |x-;’|]

_M[ /

T 2008 | x-E)+ 2"+ ]x—;|] (r-89)

Then, combining the two terms

£oo
L\ ( N [ m] [ 4—(m*+b=] _
f (,,J&O") ( )G+ v E )dy /4 I+ pour (IF-50)

This result is then inserted into Eq.(IV-85) giving

bon & LYY
- f * w(xy)‘/(gtx))-y dy = ygm+4 f g'e) [H = ’;;&‘” ]df (I7-5/)

b

T
where g/tx) =f ulx,p)dp {r-s2)
-fw
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2. Pressure Distribution

Equation {IV-91) is an integral equation for the one-dimensional
unknown function § (x). Since«(x,) is proportional to the pressure
coefficient, g'(x} is proportional to a chordwise load distribution, and

g(x) =f§7"(xldx is proportional to the total load on the wing back to the
o

x-station. More precisely, the relation between chordwise load, g—%v
and g would be :
b b (x)
FALY Zx p
g’ -'-f ucx, p)dy= Z—‘” Acytx,pidy = %e 4 X.:?J
o B

2}3’0‘@ dx

By analogy with the Weissinger procedure in which the chordwise
loading is determined by the distribution for an infinite airfoil, in the
Lawrence method the required spanwise loading is that of a wing of
infinitesimal span. For this case, —é’-(x) is negligible compared with

x- £, and hence Eq.{IV-91) reduces to

-‘b(x)
Gipee™ = —If wix,y) 1/%—(x,ﬂz-y‘ dy (Iv-9%)

?(Jt)

In general, {from Eq.{IV-93},

$e0 4g%x)
Acplxydy = U
-$) @

while in the special case of extremely small aspect ratio, using Eq. {IV-94)

to express g(x),

-_ 4% 8 JE - y?
ACPAR-—O = " T Bx [w(x,y) —2—(x)) y}
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Now representing the general case by

[ =
4 ACPAR--O x Fex)

from the preceding relations, it is apparent that

f
€.9]
fx) = 5 g
fz " 3 b 2_ .2
b, 3¢ WOonyZw) -y
)

and hence

4g'm 2 |we b o) - y2
ACP _ g (x) Bx [W X,y) (2 ()()) N4 ]_ (3;95')

£00
Yo | ) o% [wu, yZw) -yz] dy

- -2‘(4'}

The procedure is not strictly applicable for wings with swept
trailing edges. For such wings, the spanwise integration should include
the velocity perturbations in the downwash field as illustrated below.
Such an operation is assumed when the order of integration is changed
to give Equation (IV-85). Here, the left side of Equation IV-91 will be
assumed to be zero behind the section of maximum width of the wing.
This assumption gives reasonable results if the wing trailing edge is not

greatly swept.
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dx 2 Spanwise Strip

------- o TP S S s e R B AT

Trailing Vortices
3. Solution of Integral Equation
To find the chordwise load parameter, g'(x), a solution of the

integral equation (IV-91) is required. Lawrence begins by rewriting

the equation as follows

¢ T
$kn = 2900t g +£ —9—@—-—+vr g’(f)ll:i";’z*&‘g) f-m] df (-9
X =

where
(x} Z 3
k)= -f wix,y) J:a—‘*’) -y? dy (IF-97)
- %)

Then making the transformations

c
=5 (cos @ +1)

4
$k(6) = 2g(8)+ g(o)+ be) a,%@c‘:;fe +fg’(t)H(6,Z’)dz' (IF-93)
(-] o
where
_ sz _ bL6) _ b(6)
H(8,7) = 1/( cos T-€05 8 Txr - (17100)

CoOsST-cos &

Equation (IV-99) is solved by expanding ¢(8) in a Fourier series
and determining the coefficients by satisfying the equation for each har-

monic. Lawrence gives the following result which satisfies a Kutta
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condition and makes g{@) = 0 at the leading edge.

N-7

G(B) = (17-8) (A, + Ay} +Z (A, ,=A,,) ‘g’”r—’a (Ix-/07)
rel
where, by definition, AN-.l: AN = 0.
Then
4 N-2
7 h(0) = [F8)FoN A5+ [Fryy@-Fr (@] 4, (27-102)
r={
where
F 0 = 2241 (0.6 - 3
] 77 ¢ »
_ 28inré b(B)sinré
Frie) === ] tHL(8,608) r=/,2... ([7-103)
and
”
H,.(6,b06)) = —;,—f cos(r ) H{6,b6(6),z)dr {p-10%)
[

By matching coefficients of the various harmonics of the Fourier

series, the following set of simultaneous equations is obtained.

4 N-2

7*0 = (F’n-F"n) Ao f-Z/ (Frﬂ,ﬂ - ‘F"-/, ﬂ) Ar 7262 .0 MY (r-108)
r=

where

o <A (5F) and Fry = Fr (5)

The most difficult part of the procedure is the evaluation of Hr
’

using Equation {IV-104) at each value of n. By the trapezoidal rule

T
H,,,, (bpt®) = ﬂ—’f cosSrt) H (6, ,6,(0,7)dT
o

2

M-
1
=_A.4L.[”(9mbﬂm"a)”” H (B s bp (8),77) Co,_@dzc”(gmb,,(a),%”}

(or-10¢)
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where M is the number of subdivisions of the interval of integration.
Lawrence gives plots of Hr,n forr=0,1, 2, 3 and n= 1, 2, 3 as
functions of b (8)/ c. If more values are required (and according to

Lawrence such is the case) then the procedure would be tedious for a

hand calculation, but the numerical evaluation of the integrals for Hr n

would present no difficulty for a high-speed computer.

4., Effects of Compressibility

As ih the Weissinger method, the Prandtl-Glauert transformation
is applied to correct for compressibility. The procedure is described

in Section IV B 4.

In the transonic speed range, [ = N/-M,% —= 0. Consequently,
the transformed wing becomes one of vanishingly small aspect ratio.
The pressures on the transformed wing, as calculated by the Lawrence
method, will also approach zero with the aspect ratio. When converted

back to the physical plane, however, the local pressure is obtained by

. , . / .
1tipl th 11 calculated b —— hich
multiplying is small calculated pressure by Narerracs which can
be a large number as Mp—+/. The pressure distribution on a wing thus

approaches a finite limit as Mgu—=+/ . This limit is given by slender

wing theory which will be discussed further in Section IV D.

5. Summary of Computational Procedure

The pressure distribution may be obtained by the following procedure

{a) Subdivide the chord of the wing into mspanwise strips whose

. . - nrsr -
centers lie at the stations 6, =& (505 W'H) , 7=0,2,3, ..., m

(b) At each strip find an effective span load parameter

b
/ - 5 (8n)
B " Tl [, o T o

2
£(6,)
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Here w(8,,))=-UyQ (6n,y) is obtained from the spanwise distribution

of wing slope at the chordwise station &,. w(€,,)y) is assumed to be

zero off of the wing.

{c} Solve the integral equation (IV-99). A FORTRAN program for
carrying out this solution is given in Appendix B for wings of the general

shape sketched below.

-y

le— vr2 -t bs2 -l
x Y

The program incorporates the compressibility correction, and its

output gives g’/{x).

{(d) Find the local pressure coefficients from Equation (IV-95).
Thus

/ b ,.1)2
#g'tx) %_[“’("’*J” JE ) —yZJ
3
z b F3
d{,f: 5% [w(x,y) %?(x)) —y*] dy
-E(X)

ACP=

6. Comparison With Experiment

The initial slope of the lift coefficient predicted by Lawrence is
compared with experiments on a number of flat wings in Figures 25 to
28. The agreement is satisfactory although the data tends to scatter

somewhat. The lift as a function of angle of attack is quite nonlinear in
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some of these cases, making it difficult to determine the initial slope of
the curve. This effect, rather than shortcomings of the theory, is be-
lieved to be responsible for the scatter in the data. The experimental
information was found in Reference 37.

The chordwise center of pressure predictions are compared with
experiment in Figures 29 to 32. There again, the agreement is satis-
factory, but, as in the case of the lift, the data scatters a little, probably
due to the difficulty in reading the initial slopes of the nonlinear lift and
moment curves.

The nonlinearity of the variation of lift with angle of attack is
illustrated on Figures 21 and 22. Here lift coefficient is plotted against
angle of attack for two different wings. The predicted initial slopes are
also shown according to the Lawrence theory and the Weissinger theory.
Since the nonlinearity is partly caused by vortex separation from the wing
side edges, the effects are more pronounced at the lower aspect ratios.

Figures 23 and 24 show the variations of center of pressure with
angle of attack for the same two wings. Again the Weissinger and Lawrence
theories are indicated. The trailing edges of these wings were swept back

somewhat in excess of the limits of validity of the Lawrence theory.

7. Limitations of the Lawrence Method

The Lawrence method might be expected to fail when applied to
cambered wings of high aspect ratio although it approaches the correct
limit as AR —» o for a flat wing. In addition, the assumption of zero
load on parts of the wing lying in its own downwash field is only a crude
approximation. Hence, the formulas are valid only for wings with nearly
zero sweep of the trailing edge.

The following Table summarizes the range of geometrical and
flight parameters over which the method gives load distributions of ac-
ceptable accuracy. The limitations are estimated from comparisons

between theory and experiment.
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Table 2
Range of Applicability of Lawrence Theory

Parameter Range of Validity Comrments

/GAR 0<ﬁ,4;? <2 At 3—+0 the Lawrence theory ap-
proaches the limit given by Jones'
theory. (Ref.12)

AZ.[. 0<AL£_<85’
A TE. —/0"/1[{" /a°
7R O<T7TRSE/
# ¢ The data shows no consistent effect
-3 O<¢ < .2 of thickness.
" For AR up to about 5, the range of
4 O%|a|<3°4AR linearity increases with AR.
At AR < 25 Jones' theory gives a
Moo O< Mxp<.95 simpler result of adequate accuracy.
-g— 0= {.’— = o/

8. Comparison With Other Theories

The position of the Lawrence method with respect to other lifting
line and lifting surface theories was described in Section IVB 8. Unlike
most of the other theories, Lawrence prescribes the spanwise variation
of load in order to reduce his two-dimensional integral equation to a
function of only the chordwise direction. Thus, his theory should be
more accurate than the others for low aspect ratio cambered wings.
Kuchemann (Ref. 33), develops an empirical bridge between the Lawrence
method and the Weissinger approach. Since both methods give accurate
load distributions on flat wings over the entire range of aspect ratios,
the necessity for Kiichemann' s complication is difficult to establish with-

out systematic pressure measurements on cambered and twisted wings.
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Consequently, for present purposes the Lawrence theory replaces the
Weissinger method at a reduced aspect ratio of two (ﬁAR-?,z) an
empirical choice.

At extremely low aspect or at My, -/ (B AR < .25) the
Lawrence method approaches the finite limit given by the Jones theory
(Ref. 12), which has the advantage of being simpler than any of the
other procedures. Since it is the limiting form when sonic speed is ap-
proached from either direction, Jones' theory is valid at transonic
speeds above or below the speed of sound. The Jones method is described

in the next Section.

D. TRANSONIC WINGS
1. The Jones Theory

The transonic theory of R. T. Jones (Ref.12) is based on the
assumptions of slender wing theory mentioned previously in Section
IVA7. In non-dimensional form, the linearized equation for velocity

potential may be written

t{BAR)? Pgx * ¢’J-,J-, + P35 =0 (IT-107)
The equation represents a subsonic flow when /3= 4// Mo ® and
the first term is accompanied by a positive sign. In supersonic flow,
ﬂ= ,\/sz—/ and the negative sign is used. X = -g— where
¢ ise the mean chord. ¥ = —g— where b is the wing span. In either

case, for ﬁAR <</, the first term becomes neglibibly small, and the

equation reduces to the two-dimensional Laplace equation. In solving

the equation, the boundary conditions are satisfied in each cross plane

(¥, Z - plane) and the x-location of the plane appears only as a parameter.
Although Jones derives solutions of Eq. (IV-107) in a different

manner, it will be simplest here to determine the low aspect ratio limit

of the Lawrence theory since almost all of the needed results are available

in Section IVC. The Jones result then becomes a special case of
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Lawrence' s theory, where instead of the approximation

N (x-E)2+y-2)2 ~ N (x-F)2 + ()2

(See Eq.(IV-88), Jones uses

NCx-E)2 +(y-p)%  ~ |x-E| (I7-108)
Then the integral equation (IV-91) would become

b
5 (X}
gx) = -fz wix,y 1/(*2'(40)2-)/2 afy (I7-109)

£ x)
As before

- { A
9’()() = 2pUn dx (I7-1/0)

In this case, then (as shown on page 60),

Acy =~y g‘i— [W (X,¥) \/(-3 m)z-y‘] (I7-111)

Jones gives the solution for constant angle of attack & =- Uw—
L)

which is

2a & (x) db

Yol TS e

This equation indicates that a negative lift will appear when the
span is decreasing. As Jones points ocut, however, sections of the
wing behind its maximum span will lie in a downwash field which is not
considered by the theory. Application of a Kutta condition to swept

trailing edges leads to the approximation that the wing carries no lift

behind its maximum section,
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2. Effect of Compressibility

Applying the Prandtl - Glauert transformation at subsonic speeds
or the corresponding Ackert transformation in the supersonic case
does not effect Eq. (IV-1ll) since both sides would be multiplied by

B = 4 II -M,,,"’ Here the relation is independent of Mach
number. This result is not surprising since the original assumption

thatﬁAR<</ eliminates the Mach number from the linearized partial dif-

ferential equation for velocity potential.

3. Summary of Computational Procedure

For wings in which SAR <</, Eq. (IV-1ll) gives the pressure

distribution directly. The formula is

=% 9 L IPPALI b

bep= -2 [W(x,,yJ G m)?-y ] os xs x(% Mx)
b

4cp= 0 x> X (2 )

where (_g_max) is the location of the maximum span station.

No compressibility correction is required.

4. Comparison with Experiment

The curves comparing the Lawrence theory with experiment
{Figs. 25 to 32) show that Jones' theory for a flat wing becomes
identical to Lawrence' 8 when the aspect ratio has been reduced to
about 1.5. Since the data happens to be transonic, the reduced aspect
ratio corresponding to 1.5 would be §AR~.3 . At low aspect ratio,
then, the agreement exhibited between Lawrence' s theory and ex-

perimental data on flat winga would alsc apply to Jones' theory.

At supersonic speeds Jones gives a comparison of his theory
with measurements on a flat triangular wing of aspect ratio = .75 at
M, = 1.75. The theoretical and experimental lift curve slope and

pitching mornent agree near (¢ =() within the accuracy of the experiment.
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Additional comparisons are given in Figs. 33 to 37 which are described

in Section IV-E. The lift data were obtained from Refs. 38-47.

5. Limitations of Jones' Theory
The following Table gives the range of geometrical and flight
parameters over which the method appears to give load distributions of
acceptable accuracy.
Table 3

Range of Applicability of Jones Theory

Parameter Range of Validity Comrments
AR 0-.25 Although the theory is probably ac-
m=m) curate over a wider range, the Law-

rence theory or Evvard's method may
be better for cambered wings.

){3 tan AL ‘ >10 This criterion is consistent with
o PARE 25 0On unswept wings, the Jones
theory concentrates all of the lift
on the leading edge.

|Ar.el 0 - 10°

TR 0-.2 Jones theory does not give reliable
pressure distribution information if
db/fdx £ O or discontinuous.

t/c 0-.12

ol 0®* - 3* AR The lift on slender wings becomes non-
linear at quite low angles of attack.

Ma .8-1.2 ProvidedﬁAR§.25

h/c 0-.1

6. Comparison With Other Theories

The Jones theory was derived here as a special case of the
Lawrence theory. It is possible also to show that it represents the low
aspect ratio or transonic limit of linearized supersonic wing theory.

For example, the lift curve slope of a low aspect ratio triangular
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wing in coefficient form is (See page 199 of Ref. 3.)

dC, 2m cotl,x TAR

= = T = WAL
da E(‘W-@ cot A,z )?) 2E ¥ /-ET) )
where E is the complete elliptic integral of the second kind. The

Jones theory applies when AR <<[. Then
E( - -—,;'-’5)") — () =],

Hence .g_z.é. —_— _él. AR

This result is identical to that obtained by integrating the pressure co-

efficient given by Eq. (IV-112) for the case of a triangular wing.

Section IV E gives a more complete description of linear
supersonic wing theory. The Jones result is equivalent to a low aspect

ratio limit of the general theory.

E. SUPERSONIC WINGS

1. ILinear Wing Theory

Linear theory (Ref. 48) is the basis of most calculations of
pressure distribution on wings in supersonic flow. In this method, the
partial differential equation for velocity potential is linearized by as-
suming perturbations in velocity are small compared with the flight
speed (and also with the speed of sound). As in the subsonic case,
solutions are determined by applying boundary conditions in the plane
of the wing, and the pressure distribution is given by a simple
linearized relation. By virtue of the linearity of the theory with flow
deflection angle, the calculated pressure difference between top and
bottom surfaces is assumed to be independent of wing thickness. The
lift load computation, therefore, is carried out for a thin plate lying

midway between upper and lower wing surfaces.
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The linearized equation for velocity potential, @, is (see

Ref. 48):

a2 g 9%
- (Mu? =) axf tosTt g = O (IZ-113)

The wing, moving in the negative x-direction at velocity gy
{(Mach No. Mg ) is represented by the surface z=#(X,y) It is assumed

to lie nearly in the Z=0 plane as sketched below:

Tz

U Mo

The boundary condition on the wing requires that the flow be
deflected to become tangent to the wing surface. In the linearized

analysis then, the following condition is applied in the plane of the

wing (2=0 ¥

- 9% _ B,y
Vz"a—g‘ 2 " g (Ir-114)

Off of the wing inthe 2 =0 plane, the pressure must be continuous;

hence, since the pressure perturbation is proportional to %xi :

—g-f- continuous in the plane z=¢ outside of the wing. (IF~/5)

A Kutta condition {finite velocity) must be satisfied at a trailing edge.
Ahead of the Mach lines issuing back from the wing, the free

stream is undisturbed by the presence of the wing. In addition, all
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disturbances must dieout as Z-+e0 0r y-—+o

Asg indicated above, the linearized pressure difference is pro-
portional to the perturbation of the streamwise component of velocity

on the upper surface of the wing.

ifi = 4 28 :
Specifically Acp Us 3K lupper surface r-116)

where c’o = PP

£ou

The linear theory provides a basic method for computing lift dis-
tribution which can be modified or corrected, if necessary, to account
for nonlinear effects. Therefore, a good deal of effort has been expended
to produce tractable mathematical solutions for many general classes of
wings. The solution to be described here is based on a method first
proposed by Evvard. His procedure, derived in Ref. (10), takes advan-
tage of the fact that the distribution of source sclutions of the wave equa-
tion (IV-113) may be expressed in terms of the local flow inclinations in
the plane 2=0. On the wing surface, of course, the flow inclination is
known. Evvard succeeds in expressing the integrated effect of the un-
known sources off of the wing in terms of the known distribution on the
wing surface. An equivalent derivation is given in Ref. 48 by a dif-
ferent mathematical process.

The source solution of the wave equation in the plane 2=0for a
source of unit strength at the point x=, y=p,6 z=0 1is a special case

of the general source solution given by Eq. IV-23. Here

{

(I7-117)
Y(x-E)2 -B3y-7)*

s x,y) =

where ﬁ = JM“I-'/

The velocity potential at the point x, y due to an integration of infini-

tesimal sources of strength £ (§ K ») will then be
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- £(E,7)dEdp _
@) = ff By (w-418)

If the strengths of the sources are taken proportional to the local flow
inclinations, and the area of integration includes all sources in the Mach
forecone from the point X,y (where the denominator of the integrand
is real) then the velocity potential will satisfy the boundary conditions

as well as the differential equation. Then

Voo A, p)didy
¢ (x,y) = 7fj (I7-119)
) N(x

-£)2 -Brey-p?

is the velocity potential on the top surface of a lifting wing with a local
distribution of flow inclination equal to @ (E,p), The area of integration

is shaded in the sketch below

lMoo

Wing Leading Edge ol N

%

G

4(,;’
. \|~°———L
il

When the area of integration includes a region not on the wing,
so that the flow inclination is not known, then Evvard demonstrates that
the proper result is obtained by omitting the integration over the regions

S$, and s, shown on the following page:
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If more than one side edge is involved, such as on a triangular wing swept
behind the Mach line, then the region of integration becomes a set of
parallelograms, A; , A, ... as indicated on the next sketch. The set
terminates when a reflected Mach line would lie outside of the wing; or

continues indefinitely to a pointed leading edge

fus

Equation IV-119 when integrated with alternating signs over the indicated

regions is then capable of giving the velocity potential distribution for
wings of general planform.

"Subsonic" trailing edges {swept behind the Mach lines) require
special treatment to insure that a Kutta condition is satisfied. The
necessary extension of the procedure for this case is given in Ref. 10.
The complicated equations which result will not be repeated here;
hence this procedure does not provide a means of calculating pressures
in regions influenced by the wing's own wake.

Although the numerical solution of Eq. (IV-119) may become quite

tedious when the wing is warped and twisted in some prescribed manner,
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the process is usually a straightforward one requiring only a numerical
integration to obtain ¢ ¢x,y) , and a subsequent differentiation to
obtain the pressure coefficient. A computer program of considerable
versatility is under development by Ralph Carmichael of the Ames
Laboratory, NASA.

In the cagse of wings with continuously interacting side edges,
such as the triangular wing sketched above, the region of integration
becomes an infinite set of parallelograms. It is then necessary,in
practice, to terminate the numerical process after including some
finite number of such regions. Etkin and Woodward {Ref. 49} have
demonstrated that the use of two regions gives a decided improvement
over the result of using just one, and is usually sufficiently close to the
exact linear theory result. Using this approximation, the velocity

potential at the point x, y on the triangular wing in question would be

@ (x,y) = &J’I Qg p)dEd 7 _ﬁﬂ AL, P)IESy
m s V(X—E)z 'ﬁz (y- ?)z T ’ Wx.g)l _ﬂz (y_l?)z
! 2

(IF-120)

2. Summary of Computational Procedure

Since the calculation of pressure distribution on a2 supersonic wing
by Evvard'smethod deces not require the inversion of an integral equation,
the computational procedure is quite simple, although sometimes very
tedious. The following steps outline the process.

(2) Determine the areas of integration for each point x, y, by
forming the forward Mach lines reflecting from side edges where neces-
sary. Usually it is convenient to subdivide the wing plan form into
regions requiring 0, 1, 2, .., side-edge reflections.

(b} For a given wing slope distribution, @ (Z,p)calculate the
velocity potential distribution from Eq. (IV-119). Where multiple
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side edge reflections are encountered, the approximation given by
Eq. {IV-120) may be used. For simple functions & (§,») the integration
can usually be carried out analytically. Otherwise a numerical in-~
tegration is required.

(¢) Compute the lift distribution from Eq. (IV-116) Any numer-
ical computations in step b should provide accurate results at small

a¢

intervals to avoid large errors in determining the derivative, Bx

A FORTRAN program is given in Appendix C for calculating the pres-
sure distribution on a wing of the following geometry with arbitrary

angle of attack variation in the spanwise direction only.

|

Y .,
Aie

'AT.E

n 1

The program is limited to subsonic leading edges (zanA, . >23)

and supersonic trailing edges (Itan A IE.I < ﬂ)

3. Comparison With Experiment

Figures 33 to 37 show comparisons of computed lift curve slope

with experimental data for a number of flat wings of different plan forms.
The agreement between theory and experiment is generally satisfactory

except for geometries in which the wing leading edge is nearly sonic
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(Mep cos A,z ~ /). Ulmann and Bertram (Ref. 50) attribute the dis-
crepancy to an effect of wing thickness and propose a sermi-empirical
correction procedure. Since the application of such a correction has
not been studied in the case of wings of arbitrary camber, it is not
incorporated here. However, it is significant to note that this thickness
effect was treated with apparent success by applying a two-dimensional
analysis to highly-swept wings.

Comparisons of theoretical and experimental chordwise and
spanwise centers of pressure shown in Figs,.38 to 42 also show agree-
ment except when the wing leading edges are nearly sonic, The stream-
wise center ‘of pressure data for rectangular wings scatter badly. The
theory seems to predict a position somewhat too far back (by about 4
percent)., Wing thickness will cause a forward shift which probably
accounts for the major discrepancy between theory and experiment,.

In some cases forces on model support stings may cause the experi-
mental center of pressure to shift rearward.

Plots of lift and centers of pressure against angle of attack,
for a delta and a rectangular wing are shown in Figs. 43 to 46. The
region of linearity seems to be greater on supersonic wings than in the
subsonic case. The same type of increase of lift with angle of attack,
probably due to vortex separation, again occurs on the low-aspect-ratio
wing. The theoretical lift curve slope is in error in this case of a wing
with nearby sonic leading edge.

Direct comparisons of theoretical and experimental pressure
distributions are available for certain flat and warped rectangular and
triangular wings.

Data were obtained in Ref. 51 on the flat rectangular and triangular
semi-span models shown in Figs. 47 and 48. Figs. 49 and 50 show
comparisons taken from Ref. 52 between linear theory and measured
load distributions on these two wings ata=5%and M, = 2 . The agree-
ment is generally good. Application of shock-expansion theory (see,
for example, Ref.7) indicates that the discrepancies near the leading
and trailing edges on the inboard section of the rectangular wing are

due to thickness effects.
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Cambered models of these wings were also tested. Tables 4 and
5 show the angle of attack distributions on the cambered rectangular and

triangular wings.

Table 4

Midplane Angle of Attack Distribution for Reetangular Wing

\/c 0.000 0.071 0.214 0.286 0.429 0571 0.714 0.786 0.929  1.000
Degrees

0.000 0.00 0.00 ¢.00 0.00 0.00 0.00 0.00 ¢.00 0.00 0.00
0.266 -092Z =-0.77 ~0.49 -0.33 - 0.03 0.30 0.64 0.82 1.12 1.20
0486 -1.60 -1.38 -~-0.89 -0.63 ~0.11 G.44 1.02 1.30 1.66 1.78
0.629 -208 -1.79 -1.,19 -0.87 -0.23 0.43 1.11 1.43 2.02 2.25
0.771 -249 -2,18 -1.50 -1.13 -0.36 0.39 1.13 1.48 2.11 2.39
D.829 -2.59 -2.27 -1.58 -1.22 -045  0.35 1.13 150  2.23 2.52
0914 =-285 -248 ~1.73 - 1.35 - 0.54 0.26 1.03 1.42 2.19 2.58
0.971 - 287 -252 =-1.79 =142 -0.62 017 095 1.33 2.13 252
1.000 -2.89 =~2.55 =-1.83 =145 =-0.67 0.11 090 1.29 2.09 2.48
Table 5
Midplane Angle of Attack Distribution for Triangular Wing
x/e 077 154 .231 .269 .35 500 615 .731  .769  .827  .8B5 942
Degrees
.05 3.07  3.03 2.4 289 2.69 242 2.08 1.63 146 1.4 0.68 0.3
.20 296 2.90 2.78  2.73 250 2.2l 1.87  1.43  1.24 0.89 050 0.1
.35 2,75 2.64 251 245 220 191 159 1.8 0.99 0.73  0.37 0.0
.50 240 228 214 206 179 152 1.26 0.93 0798 0.58 0.34 0.05
65 1.94 1.83 1.70  1.61  1.31  1.14 091 0.66 0.61 046 0.37 0.23
85 1,18 1.18 1.09 1.01 0.79 ©0.71 0.63 0.57 0.56 0.55 0.54 0.54
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The cambered wing test data is compared with experiment in
Figs. 51 and 52. In both the rectangular and triangular wings, the
agreement between theory and experiment is about as good for cambered
wings as for flat wings. As may be seen from Tables 4 and 5, how-
ever, the range of angle of attack on the cambered wings is a little less

than the 5° on the flat wings.

4. Limitations of the Method

On the basis of comparison with experiment and examination of
higher order terms in Mach number and angle of attack, the estimated

limitations on the linear theory are given in the following table.
Table 6

Range of Applicability of Linear Supersonic Wing Theory

Parameter Range of Validity Comments

ﬁf‘m 25 <ﬁAR<ao At transonic speedsf+0the Jones
(B=4M_%-7) theory becomes more convenient

A . Vortex separation on highly swept
o 0= A;z85 wings introduces nonlinearities

/ tondl Method does not apply to wings with

L tonll - orllre. PPy g

B TE. /< </ subsonic trailing edge

The center of pressure is sensitive
o A o< L <./ to wing thickness. To keep the wave
¢ drag low, the thickness ratio will
generally be small on supersonic

wings.
ja| 0<|a|<5°AR At high AR--stall causes nonlinear
effects beginning at about 20*
Mo L2<M._<4.5 Approaches the Jones limit at
% transonic speeds
-é’— 0= %’“ = ./
TR O=TRs /

81



5. Comparison With Other Theories

Since, as explained in Section II, this report is concerned
only with linear operations on the local angle of attack, an appropriate
basis for calculations of load distribution is the linear supersonic wing
theory. For certain planforms and angle of attack distributions (delta
wings at uniform «Q for example) this theory, results in simple
solutions of the load calculation problem. However,Evvard's method,
as suggested here, gives a solution for arbitrary plan form and angle
of attack distribution which, if not simple, is at least straightforward
except possibly for wings with subsonic trailing edges.

Evvard actually writes his solution in terms of the slopes of the
upper and lower wing surfaces, so that wing thickness effects are
partially taken into account. However, on a thick wing, the local Mach
number will differ from the free stream Mach number even at zero
angle of attack, thereby modifying the lift distribution at small angles
of attack. This effect of thickness, which would still lead to a linear
aerodynamic load distribution, might, with further development, be
incorporated in the analysis of supersonic wings.

At transonic speeds, or for low aspect ratio wings (8AR<</)
linear supersonic theory approaches the simpler Jones result given

previously.

F. EFFECT OF BODY INTERFERENCE ON WING LIFT DISTRIBUTION

1. The Procedure of Gray and Schenk

The calculation of the load distribution on a wing-body combina-
tion requires a solution of the appropriate partial differential equation
for the flow field which satisfies the boundary condition of no flow through
the surfaces of the configuration. A superposition of the separate so-
lutions for wing and body will not be correct because the wing solution
will produce a flow through the body and vice versa. Since a complete
solution of the wing-boedy problem is obtainable only in rare special cases,
such as a conical wing on a conical body, the following approximation is

employed.
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The load distribution and flow fields are calculated for wing and
body separately. Then the flow about the body in the presence of the wing
is applied to the wing, giving a load distribution which must be added to
the wing-alone value. The force on the body due to the wing is obtained
by immersing the body in the wing flow field. In principle, improved results
might be obtained by repeating the process using the revised load distri-
butions to compute the required flow fields, but such a refinement is not
justified in view of other approximations in the procedure.

The wing-body interference problem is thus divided into two parts.
The procedure for calculating the interference pressures produced on the
wing due to the presence of the body will be specified using the method of
Gray and Schenk (Ref. 2). The calculation of the influence of the wing on
the body loads will be discussed in the section of the report dealing with
loads on bodies {Section V}.

The procedure of Gray and Schenk is based on the work of Lennertz
{Ref.53). It assumes that the spanwise loading on the wing alone is known
along with the corresponding center of pressure distribution. The wing

alone is defined to be the " exposed! wing as shown in the sketch below:

Body ¢

§ of "Exposed” Wing

Center of Pressure
Distribution

——
—
 ——
—
-_—
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The following sketch shows typical plots of a wing spanwise loading and

center of pressure.

Lift per Unit Span

The calculation of wing load due to fuselage interference is
carried out in six steps.
a. Subdivide the spanwise load distribution on the wing alone into a
number of load increments.
b. Replace these step increases in load by lifting horseshoe vortices.
c. Locate the image vortices within the body.
d. Calculate the upwash distribution at control points on the wing

due to these image vortices.
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Add the upwash due to fuselage angle of attack (if any)

Compute the wing load due to the total distribution of upwash at
the control points on the wing.

2. Calculation Of Upwash Distribution On The Wing

In the first step, the spanwise loading may be subdivided

arbitrarily as illustrated below. The number of subdivisions must be

sufficient to obtain a good representation of the image vortex system.

Stepwise Approximotion

i
..._‘... 7 6 Actual Loading
3 Curve
- Body» \ e
| i

Now, in step two, each increment in spanwise loading is replaced

by a horseshoe vortex. The bound portion of the horseshoe is taken

parallel to the spanwise coordinate and located approximately on the

center of pressure curve. The trailing portions extend to infinity in the

streamwise direction (see sketch).
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Center of Pressure

Curve ith Increment

The strength of each vortex I'i , is proportional to the corresponding

value of the spanwise loading
e 1 (dL (oZ-12/¢)
Fi= = (dy)

where O, = free stream density

Voo

i

free stream velocity

Note that an inboard trailing vortex lying adjacent to the body is canceled
by its immage and is omitted from the computation.
The next step is to locate image vortices within the body =0 as

to satisfy the boundary condition of no flow normal to the body surface.
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For a circular body of radius a, the image is a vortex of equal strength
and opposite sign located on a line joining the vortex to the center of the
circular body. The image is at a distance »; from the center of the

body.

Body Cross Section ‘DVortex of Strength [’

r. = 2% (I7-122)

The image vortex is assumed to begin at the same axial station as the
external wing vortex. The image of a complete horseshoe vortex is
assumed to consist of the images of the two trailing vortices whose
starting points are joined by a straight vortex segment approximating
the image of the bound lifting vortex.

Step 4 requires the calculation of upwash distribution over the
wing due to the image vortex system. The following sketch shows the
geometrical relation between a high wing and a typical image horseshoe

vortex.
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The upwash at the control point (x', y') due to the trailing vortex

through ¢ is (from Ref. 2).

I x! /
W, = [ — ~-H cos (I7-123)
7 4na? ( Vix24 A2 ) CV ¢ )’)

The trailing vortex through b induces an upwash

- [" ?

while the image of the bound vortex joining ¢ and b induces the upwash

Wab =

- x'cos/ VBE 2 __YA*-f£2 (125
¥m  f2rx'? \WBI+(x)T AT+ (x9%

The fuselage angle of attack induces an upwash on the wing of magnitude

2
Wi = U@ 57 COS 26 (I7-126)

where R and & are defined by the following sketch

/—Control Station

N el ]
AT
By

Body Cross Section
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3. Calculation of Wing Load Due to Wing-Body Interference

The control points (x' , y') are chosen along a line which is
one half of the local chord behind the center of pressure at each span-
wise station. The local flow angles are then determined by adding
the contributions of all image vortices from equations (IV-123) -
(IV-125) plus the body upwash from Eq. (IV-126). The spanwise angle
distribution, resulting from the downwash divided by the free stream
velocity, is assumed to be uniform in the chordwise direction. Hence,
the additional distribution of wing load due to wing body interference .is
obtained by applying one of the previously determined procedures
(Section IV B, Section IV C, Section IV D, or Section IV E) to this ef-
fectively twisted wing.

4, Effects of Compressibility

Compressibility effects would be incorporated in the wing-alone
loading before it is subdivided to initiate the computation of wing body
interference and also in the computation of load due to the body-induced
angle distribution. However, it should be noted that the incompressible
vortex solution has been used to determine th e angle of attack distribution.
Placing the control points at one-half chord length behind the center of
pressure line is also justifiable only for subsonic wings. In the super-
sonic case, the point at which a bound lifting vortex induces a downwash
angle matching the local wing slope will depend on Mach number and
wing geometry. Since the effects of the image of the lifting vortex will
not be large, the extension of the subsonic rule to the supersonic case

should not introduce a significant error.
5. Summary of Computational Procedure

The steps in the computation may now be rewritten including
reference to the appropriate equations.

(a) Calculate the spanwise load distribution for the wing alone
(by the methods of Section IVB, IVC, IVD, or IVE depending on Mach
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number and aspect ratic), and subdivide the load into a number of
increments .

(b) Replace these step increases in load by lifting horseshoe
vortices whose strength is given by Eq. (IV-121). The vortices are
placed with spanwise elermnent located at the local center of pressure,
and spanning the width of the load step, and with the arms of the
" horseshoe" trailing back in the plane of the wing . The trailing element
at the body junction is omitted.

{c) Locate image vortices inside of the body at positions given by
Equation {IV-122).

{(d} Calculate the upwash distribution due to the image vortices,
at control points on the wing (one-half of the local chord behind the
center of pressure line.) The total upwash is the sum of the contributions
of Equations (IV-123), (IV-124) and (IV-125).

(e} Add the upwash due to fuselage angle of attack from Equation
{(IV-126). The total upwash is assumed to be constant in the chordwise
direction.

(f) Compute the wing load due to this spanwise upwash distri-
bution.

For high-aspect ratio subsonic wings, the Weissinger procedure
may be used as outlined in Section IVB 5. For low-aspect-ratio subsonic
wings, the Lawrence method, summarized in Section IV C5, applies.
Transonic wings may be treated by Jones' theory which reduces to
FEquation (IV-112) where [a =Q(y) =~ —%ixz—] . Supersonic wings
require application of the method given in Section IVE 2,

The load calculated by these methods is that due to the effect of
the body interference. To obtain the total load on the wing, the inter-
ference load is added to that of the wing alone. Appendix D gives a
FORTRAN program for calculating the pressure distribution on a twisted
subsonic wing by the Weissinger procedure including the effect of body
interference. Another FORTRAN program is listed for calculating the
pressure distribution on a twisted supersonic wing with subsonic leading
edges using Etkin's method. Again the pressure includes the effects of

wing alone as well as the wing-body interference.
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6. Comparison With Experiment

Systematic experiments on effects of wing-body interference are
rare. Considering the number of possible variations of wing, body, and
flight parameters, a comprehensive experimental program could be an
ambitious undertaking. Furthermore, in model breakdown force tests,
it is not possible to separate the interference of the body on the wing from
the force on the body due to wing interference. It is necessary, therefore,
to obtain interference data from pressure measurements or from force
measurements on an individual wing panel.

Figure 53 shows a wing body configuration on which extensive Mach
number 2 pressure dataarereported in Ref.54. Figure 54 shows theoreti-
cal and experimental wing load distributions for the model at 4° angle of
attack. The theory seems to account correctly for the effect of the body
on the wing pressure. The pressure differences on the front of the wing
are higher than theory, while the rear stations are low. The discrepancies
appear to be explainable by the effect of wing thickness {t/c = .1). The
data appears to be sufficiently linear with angle of attack up to at least 10°.

Other experimental data are discussed in Section V, where, after
including the effect of the wing on the body, force data can be used as a

basis of comparison.

7. Limitations of the Theory

Several restrictive assumptions have been explicitly or implicitly
incorporated in the derivation of this procedure. These include:

(a) The body is approximated by an infinite circular cylinder.

{(b) The plane of the wing (in which the boundary conditions are
applied) is parallel to the body axis.

(¢} The downwash induced on the wing by its image vortices has
only a spanwise variation and is constant in the chordwise direction.

(d) The vortex image model is assumed to represent adequately
the boundary condition at the body surface. Actually, the model is exact

only at the plane of the lifting line and at infinity. At other stations a
small cross flow will exist at the body surface.

(e} The alteration of wing spanwise loading due to the presence of

the body is not taken into account when finding the image vortex system.
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{(f} The trailing vortices are parallel to the body axis.

{g) Although compressibility effects are included in the wing-
alone loading and when computing the load distribution in the interference
downwash field, it should be noted that the incompressible vortex solution
has been used to determine the angle of attack distribution.

Because of these assumptions, and by comparison with the small
amount of available test data, application of the theory is approximately

limited to the range of parameters given in the following Table:
Table 7

Range of Applicability of Image Vortex Theory for Calculating
the Effect of the Body on the Wing lLoad Distribution

Parameter Range of Validity Comments
body cross Body must be nearly a circular cylin-
section circular der from the wing leading edge to about

one chord length behind the trailing edge.

£/ d(body fineness é >5

ratio)
d _ b-odz diam. 0s & =0
b ~ wing span b
Since chordwise variations in downwash
AR /< AR<co are neglected, theory may be inadequate
at low AR.
M, 0 <M,<# May be less accurate at high Mach
numbers
Ae O<A, f<75° Since chordwise variations in downwash
o are neglected, theory may be inadequate
at low AR.
TR O«<TR=<|
t/ ¢ 0< c‘i"'! Tl_neory may be .satlsfactory for thicker
wings at subsonic speeds.
|| linear range for wing alone
i = wing incidence |@+il in linear range
angle for wing alone
h h
. 0< = <.l
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8. Comparisons With Other Theories

The simplest methods for handling wing-body interference are
probably those based on slender body (and slender wing) theory. In
such theories, as given for example in Ref. 55, the flow in each cross
section is treated locally as a solution of the two-dimensional laplace
equation. Then conformal mapping may be used to transform the wing-
body combination into a more convenient geometry for which solutions
are known. Although much of the wing-body interference phenomenon
takes place near the wing-body juncture where slender -body theory should
be valid, such a theory gives an inadequate approximation of the pressure
on a high-aspect-ratio wing.

Pitts, Nielsen, and Kaattari (Ref. 56) have achieved considerable
success by using slender body theory to find a factor representing the
ratio of the lift of a wing in the presence of a body to that of the wing alone.
This factor is then multiplied by the wing-alone lift - obtained by any ap-
propriate method--to account for the effect of the body interference. While
this procedure gives a satisfactory representation of the total lift on the
wing, it does not directly indicate how the lift is to be distributed; hence
the image vortex theory is recommended here. Other studies, Refs. 57 and
58 , for example, invoke reverse flow relationships to calculate the total
force on supersonic wing-body configurations. Additional methods are re-
viewed in Ref. 59.

The present result is limited to circular bodies of revolution for
which the proper vortex image location is known. It may be possible to
generalize these results to nearly circular ellipses by finding approximate
image vortex positions for such a body. Or a generalization of the slender
body theory, which is given in Ref. 60 for elliptical bodies, might be de-
veloped. ‘At present, no method satisfactorily gives complete load dis-

‘tributions for a combination of general body shape and wing aspect ratio.
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SECTION V

BODY LOAD DISTRIBUTIONS

A. GENERAL THEORETICAL BACKGROUND
1. Description of the Problem

A body of general shape in a stream of velocity {, is represented
in Figure 55. The body is assumed to be symmetric about the x,z plane
and to lie approximately in the x,yplane where the free stream velocity
is in the x- direction. The centroids of the cross sections form a "mean
camber line" which makes a local angleaiwith the x-axis.

In the present study, it will be assumed that the body behaves
structurally as a beam bending in the x,z plane, so that the distribution

of normal aerodynamic load, -g?‘('* is required. The angular distribution

of pressure around the body cross sections is not needed except possibly
as an intermediate step toward determining the lift on the cross section.
A few of the basic mathematical tools used to analyze the lift distribution

will be summarized first.

2. Slender Body Theory

As in the slender wing theory discussed in Chapter IV, the slender
body theory assumes that the two-dimensional cross flow satisfied the

Laplace equation for the velocity potential.

2 2
EL L A

dy¢ = 9z* (¥-1)
The assumption is valid when Z/d) <</ where ﬁ =V|l-m ] and (#/d) =
fineness ratio of the body. A simple example will illustrate the physical
principles involved.

Consider first the flow about a cambered body of revolution as

sketched on the following page.

95



The flow pattern in the cross-sectional plane A-A would then appear as

4

r {y,z})
Um sin a (x)
The velocity potential for the flow around the cylinder would be
- ; La 0] ;
¢-Umsma(x22 (/'f'w— (E-2)
with velocities
. 99 _a’yz
vV = ay —_2(/@ S/77 & ( z+zz)2 (F-3)
a?zt
w = _g_;i = Uy SIN @ (’*—2?7) 2, $in@ 75 Sy (7-4)

The total energy in the cross flow stream is then

> a0
ff_gz (v*+wddydz =ff£}0,‘5m‘adya/z+%-y; sinam’
-00

]
That is, the total energy consists of the undisturbed free stream energy

(Z-5)
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plus that associated with the disturbance caused by the flow about the
cylinder, The cylinder energy is then represented by an "apparently
mass", m' per unit length multiplied by f*U,,‘.ffn'a . The momentum
associated with the cylinder disturbance can be readily calculated when
the apparent mass has been determined. The energy due to the pressure

of the cylinder is

o0 27 p A
a o

where
y = rcosé
Z=rsiné
Evaluating the integral gives the energy as
Ec‘y/. = “Jz_%ﬁazuwz'fiﬂza = _2%0@25’.”20”?! (¥-7)

It is evident that
I 2
m = QIra (7-8)

The steady potential flow produces no force on the cylinder, but
as the flow changes from cross-section to cross-section of a body the
motion imparted to the apparent mass of air will result in a reaction on

the body.

The downward momentum over an axial element 4 x of the body

will be

Uny SINA P Ax = pITUn sina m [am]’ax (7-9)

The lift force on the element will be equal to the rate of change of momentum:

AL = ?di‘" {P.”U“ sina o [am]? } Ax

= Uy COS @ % {)%;7 e S/ Q (x) [a(x)]z} Ax (2-10)
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For small angles of attack, then,the streamwise distribution of lift will

W = fl”aw‘ d'i:— [a(X) a‘(xJ] _(Y'H)

Although this derivation is given here for the case of a body of
revolution, slender bodies of more general cross-section including
thin wings, may be similarly analyzed. This was, in fact, the procedure

followed by Jones in his low-aspect-ratio wing theory (Ref. 12).

3. Exact Solutions for Supersonic Potential Flow

Because of its simplicity, the slender body theory can be applied
to bodies of very general shape. However, the approximations in the
theory sometimes produce results of questionable accuracy. In certain
special cases, it is possible to obtain more exact solutions of the load
distribution problem. These solutions may then be used to check the
range of validity of the slender body theory, and also form.a basis for
other approximate methods. Two exact solutions of the nonlinear equation
for supersonic potential flow will be discussed since they prove useful for
these purposes.

The governing partial differential equation for velocity potential in

steady irrotational supersonic flow is given on page 124 of Ref. 48 as
2y
Bex (0285 2) + Gyy (0%-By2) + Pz (0* - $,%) = 28,8, 0,

12 ¢xz ¢x ¢z + 2¢xy ¢x ¢y (¥-/2)

where a is the local speed of sound. Special solutions in two and three -
dimensione of particular interest will be cited here.

In two dimensions {x and z), the equation becomes

Bux (020,204 P72 (O*B,%) = 2,7 Bu By = (By Py, ) By b, (7-13)
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The " Prandtl-Meyer" soclution of this equation results by considering
the consequences of the assumption that the total velocity, V, is a
function only of the flow direction &, Then, by definition, V = §yUuZ+w?

and @=ton’ X where w = x -component of velocity = 2¢ , and
u ¢ ox
W = z-component of velocity = 3z ° In terms of ¥V and & ,

-

Prex = % = 5% (V cos 6) = (d-d_el cost?-Vs:‘n9)a—f—
a aV . 28
¢XZ= a:‘ =(d9 COSG—VSIﬁe)—a—Z-
" (Y1)

daV_ . 88
¢zx—a—;"-= s sfﬂ9+Vcose)-5}—-
=8w _ (aV ; 28

P12= o (da sm9+Vcost9) . )

Then Eq. (V-13) becomes

QU

(a‘- 4 ‘casze)(fg cos @ —Vsma) f + (az—V‘si”‘G')(j%,S"”af V“”@g_g

o)

-V2sinBcosé (;‘,(—g o056 - V.sme)-gf - V‘.smecasa(% sin 6+Vc059)§ =0
(7-i5)
or
[G-Mz) cos6 Lk -V sin 9].‘3—3 +[(/-M‘)5in€‘%’- Veos a]g—f =0 (F-16)
and, since ¢, =@ 5y
[5/09£+ Vcose]—g—f - [cosegg-vsma] _gza =0 (V-17)

where M = ...:’,_: local Mach number.
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These two equations in 28 and 26 have the trivial solution

adz

-g—f = —g—‘—?‘ = @ everywhere unless the determinant of the coefficients

is zero. This latter condition requires
2
5] 0w v o

Hence

dJV _ v (M>1) (¥-18)

The one-dimensional isentropic flow relations provide an expression for

V in terms of M:

v: m? (¥-20)
0, * {1+ Iz-_;LM"

where g, is the velocity of sound at stagnation conditions, and ¥ is the

ratio of specific heats. It is then possible to integrate Eq. (V-19) giving

& = constant + [,‘/}{f—j tan~! 1/—%’-{’- (M2-1) =tan~! M -I} (r-21)

Thus, a relation between local Mach number and flow angle is established.

The one-dimensional isentropic flow relations, given, for example, in Ref.
61 may be used to determine other properties in terms of the local Mach
number.

By a similar procedure, an exact solution to the three-dimensional
equation is also attainable. However, in that case, the resulting ordinary
differential equation does not have a closed form solution. Numerical re-

sults are tabulated in Ref. 62, and elsewhere.

4. Method of Characteristics

The Prandtl-Meyer solution may be applied directly to the determina-
tion of the flow around a corner; while the three-dimensional analog solves
the cone problem. In addition these solutions form the basis of the numer-

ical * method of characteristics" which may be applied to a wide class of
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flows. The two-dimensional method of characteristics is described in
Ref. 61. A more complete treatment, including the three-dimensional
analysis is given in Ref. 63.

The two-dimensional proceéure is indicated in the following sketch

If, at the point P in an irrotational flow field, the properties are known
in regions 1, 2, and 3, then the properties in. region 4 can be determined
by turning the flows from regions 2 and 3 in such a way that each arrives
at the same flow direction and velocity in region 4. The boundaries of
the regions are the characteristic lines (local Mach lines) which divide
the flow field into a mesh of constant-property cells. By increasing the
fineness of the mesh, the numerical solution thus obtained comes closer
to an exact solution of Eq. (V-13}. Other numerical procedures are also
possible; all becoming identical in the limit of infinitesimal mesh size.

The three-dimensional method of characteristics is in many re-
spects analogous to the two-dimensional case; but differs fundamentally in
that properties immediately behind a straight characteristic line will be
the same everywhere in a two-dimensional flow but in general will vary
in the three-dimensional flow.

A shock wave in the flow may be treated by the normal or oblique

shock relations given in Ref. 61 or 64.

5. Effects of Boundary Layer and Flow Separation

The nonviscous theories, such as slender body theory, can be
improved by assuming that the potential flow field surrounds the body plus
its boundary layer displacement thickness. This modification is particularly

important in boattailed bodies . Slender body theory predicts zero lift on
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an inclined body which is pointed at both ends. The growth and separation
of the axial boundary layer, however, will cause an outward displacement
of the potential flow over the aft end of the body, which then behaves as
though it had a finite base area. This refinement will not be incorporated
in the present report.

Of greater significance is the effect of vortex separation. As the
angle of attack increases, a pair of vortices separate from the lee side of
the body in a manner similar to the separation from side edges of low-
aspect-ratio wings. On bodies, however, the separation causes such a
rapid increase in lift that at about 5* angle of attack the actual lift may
already be twice the linear value. In fact it is sometimes difficult to
measure the initial slope of the lift curve since the nonlinear contribution
increases so quickly.

In Ref. 65, Allen proposed a cross-flow drag theory to account for
the nonlinear variation of lift with angle of attack. Since then, several im-
provements in his concept have been proposed, but all rely to some extent
on empirically determined parameters. In keeping with the scope of the

present report, the nonlinear theories will not be incorporated here.

B. SLENDER BODY THEORY
1. Review of the Theory

The slender body theory described in the first section of this
chapter was first proposed by Munk (Ref. 66) as a means of calculating the
lift on airships. Tsien later showed that this incompressible theory
might also be applied at supersonic speeds (Ref. 67). Here it will be
recommended for use primarily at subsonic and transonic speeds since
a more accurate supersonic method is available. However, since the
improved supersonic theory applies only to bodies of revolution, the
slender body method is also useful for noncircular bodies throughout the
speed range from subsonic to supersonic.

The extension to elliptic bodies is given in Ref. 68, where the ap-

parent mass associated with an ellipse is given as
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m' = p ”(Eb_)z (Z-22)

Here b is the horizontal axis of the ellipse (normal to the cross-flow).

Then the streamwise distribution of lift becomes, by analogy to Eq.(V-11)

oL ., 2 d { b 2} .
2= = pr U, *-<L {aw (2w (¥-23)
d"empse Sa7 Y= gx (2 )

Of course, for a wing, which is the limiting case of a flat ellipse,
Eq. (V-23) is equivalent to Eq. (IV-1ll) given by Jones' theory for slender
wings. Also, for bodies of revolution, the expression reduces to that

given by Eq. {V-1I).

2. Summary of Computational Procedure

The calculation of the lift distribution on a body of general shape
is carried out by the use of Eq. (V-23) although the derivation is strictly

valid only for elliptical cross sections. Thus,

dl
o /277 6/,,2 j;:— {a x (%(x))z}

According to this formula there will be no lift on cylindrical portions of
the body. A force will appear only where the shape is changing, such as
over the nose region; or where the angle of attack is changing as on a

cambered body.

3. Comparison with Experiment

Figure 56 shows a comparison of theoretical and experimental

lift curve slopes for circular ogive-cylinders. The slope, %ﬁ“ at a=0,

is plotted against Mach number for bodies of various fineness ratio. In

the subsonic case the nose of the body is a two-caliber secant ogive
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followed by a cylindrical afterbody. The supersonic bodies have tangent-
ogive noses of varying lengths. The data are taken from Ref. 69. The
theory gives % = 2 (per radian) for all cases as may be easily seen
from integration of Eq. (V-1I}). The coefficient is defined in terms of the
area of the body cross section at the base. The centers of pressure are
plotted in Fig. 57.

Although the agreement between theory and experiment is reason-
ably good for short bodies, the data show a rearward movement of
center of pressure with increasing fineness ratio which is not predicted
by the theory. The growth of boundary layer displacement thickness
would explain the presence of a force on the cylindrical portion of the body.

The variation of lift coefficient with angle of attack is shown in
Fig.58 for a few cases. The nonlinearity of the experimental data is

evident on the figure.

4, Limitations of the Method

The theory produces erroneous results due to the approximations
in its representation of the potential flow and also due to the effects of
viscosity and flow separation. The slender body approximation limits
the range of applicability of the result to smooth bodies of high fineness
ratio. The angle of attack must also be small. Further, as in the
slender wing theory, the slenderness assumption may be relaxed some-
what at transonic speeds, while at high Mach numbers the approximation
will be poorer.

Boundary layer growth will introduce significant errors on long
cylindrical or boattailed bodies. Vortex separation will alsc become
important on long bodies and will cause a nonlinear increase of lift with
angle of attack.

The following table summarizes the limitations of slender body

theory
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Table 8

Range of Validity of Slender Body Theory

Parameter Range of Validity Comments

A 5 <« Loy Lower fineness ratio is accept-

d d able if M,+/. May be applied to
higher fineness ratio if nose is
long.

A base _ base area >.8 Boundary layer separation causes

A max. max, cross sect. errors on boattailed bodies.

Q (X) < 3° Vortex separation causes errors
at higher angles of attack.

60 _ semi-vertex < 15*

“angle of nose

M 0< Mp < 2 Acc_uracy is poorer at high super-~
sonic speeds.

5. Comparison with other Theories

The slender body theory can obviously be improved in two
directions. First, a more accurate solution of the potential flow prob-
lem may be employed; and second,boundary layer growth and vortex
separation may be included in the analysis. More accurate potential
flow theories are indicated in Ref. 70 based on linear and higher order
equations. However, these extensions have not been developed for bodies
of general cross section at angle of attack. It is possible, in principle,
to resort to the three-dimensional method of characteristics (see Ref. 63)
in the supersonic range but the numerical labor is enormous, particularly
since a bow shock must appear in the flow.

Since these more complicated theories do not take into account
vortex separation or boundary layer growth their use is not recommended.
The latter effects will usually cause greater errors than the approxima-
tions to the potential flow. Vortex separation introduces a force distri-
bution which is nonlinear in angle of attack as explained in Section VAS,

Such nonlinear forces are excluded from the present investigation. The
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effect of boundary layer growth is not difficult to estimate in the case of
cylindrical body sections, but the correction does not seem to have been
generally mentioned in the literature. A procedure is given in Ref. 71.
An improved potential flow analysis has been proposed by
Syvertson and Dennis (Ref. 72). This procedure, which will be described
in the next Section, is particularly useful.in the speed range around M, ~ 3

where the slender body theory is often inadequate.

C. SUPERSONIC BODIES OF REVOLUTION

1. Shock Expansion Theory

Syvertson and Dennis (Ref. 72) assume that at very small angles
of attack the streamlines next to a body of revolution lie along meridians.
They then calculate the pressure perturbation on each meridian due to
angle of attack,

The procedure begins by simulating the contour of the axisym-

metric body by tangent conical frustrums as indicated below:

Actual Body chfoury__}_;__ ———o
|
1 8o t [ )
H |
|
! |

Straight Line [ ) - -

¥
Approximaotion e §i

e
— o
If the pressure is known everywhere on the surface of the zero-

angle-of-attack body, then the normal force coefficient generated by a

small angle at station x would be

d¢,
T = 2L 4, (F-24)

where A is the reference area (generally the base area of the body), and
A is the nondimensional loading on a thin disk of unit radius normal
to the body axis and at angle of attacka. A is defined by the following
equation:

T
A = ,,gmf 22 cos ¢ dp (7-25)
o
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where ¢ is an azimuthal angle measured from the bottom element of the
body crose section.

The next step in the process, then, is the evaluation of —fl

This quantity is obtained by differentiating the pressure distribution on
the axisymmetric (zero-angle-of-attack) body. Syvertson and Dennis

assume that this pressure distribution is of the form

L=Lc =P -ple 7 (¥-2¢)
where
- ELQ) X-X;
= (¥-27)
(4 (35 i (,oc-,o,-) cosd;

Here jp, is the pressure on a cone (at zero angle of attack) of semi-
vertex angle J'. P is the pressure just past the corner at X, ob -
tained by a Prandtl-Meyer expansion of the flow from the condition just
upstream of the corner through the angle (J,-_, ~d;). The distance along
an element of the conical frustrum is designated by §. Equation {V-26)
has been chosen to give the correct change in pressure at each corner
where the flow is locally equivalent to a two~dimensional Prandtl-Meyer
expansion. At large distance from the corner the pressure must ap-
proach the value for a cone of semi-vertex angle d“, . The particular
form of Eq. {V-26) results from the fact that the rate of change of
pressure with distance along the conical frustrum is proportional to
the pressure; hence an exponential appears when the differential vari-
ation is integrated.

Differentiation with respect to angle of attack would give

d -y d
28 - 9 (1 e-?)s e Ly (pc-p;)e? ?} (7-28)
However, at 7= 0 (x=x;}, :: = Z:' ; hence the last term must

be zero. The rate of change of P; with angle is obtained from the
Prandtl -Meyer equation. For example Eq. (V-21) gives the variation

of Mach number with flow angle. Then, the one-dimensional isentropic
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flow relations can be applied to give the variation of pressure with Mach
number. The flow angle varies from a compression angle @ at ¢=0
{(bottom of body) to an expansion at the top surface. Then
8= -a cos ¢ (r-29)
Finally, the integral of cone pressure must be evaluated in order
to compute the first term of Eq. (V-28). The normal force on a cone is
the normal component of the integral of the pressure over the area.

Thus, in coefficient form, the slope of the normal force is

4
(7 { deg )
= cos 30
da leone Qg 7 Ta76; J; da pdé (7-30)
where d',- = cone semi-vertex angle and the coefficient is normalized

by the base area of the cone.
When these results are introduced into Eq. (V-25), the nondimen-

sional loading becomes
qac, a ”det
= NP JPaid. -?f i -
A= atand; (/-€ ) Ja cone+rrq., e | Ja cospdd (7-31)

Syverteon and Dennis note that from the Prandtl-Meyer relations

dp; _ ;M M- (7-32)

da Ty M M7=

where P and Mi_ refer to the pressure and Mach number on the non-

lifting body at the point just upstream of the corner ;. Furthermore,

from the definition of 4,

r
e de;. -3
A, rrq,j; a2.- cos ¢ I (7-33)
Hence,
- M. MR-t
A= atané; (1-€ 7) Su 20 % V2, A;. (V-34)

+
dd Ca”e pf"Ml'- ‘JM'_E*’
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To evaluate this expression, it is necessary to determine(—gf),
/

in order to obtain 7 from Eq.(V-27). The function is derived in
Ref. 72 by calculating the change of pressure along a general streamline
in a Prandtl-Meyer flow and then determining the limit as the stream-

line approaches the surface of the body, The result is approximately

(3p\ _ _bpi MP (JZ;- e ) LiMEME-1) N, (BP) (7-35)
(as),- 2r;(m;2-1) \N; sindj - sind;) + Li M A0 \ds/,.

L4

where Y4/
b 1t —)—;?-’ m* | 200
= |—F7— (7-36)
and y = ratio of specific heats = 1. 4 for air at ordinary temperatures.

2. Summary of Computational Procedure

The necessary tools have now been assembled by means of which
the load distribution is to be constructed. The procedure may be carried
out in the following manner:

(a) The calculation begins with the determination of the pressures
on the non-lifting segmented body starting from the conical tip. The
pressure, p,_ and Mach number, Ml- , on the surface of the nonlifting
cone are constant and are tabulated (Ref. 64, for example}.

(b} The next step is to compute the pressure Py and Mach number
Ml on the nonlifting body at the point X just past the first turn of the
segmented body. The Prandtl-Meyer relations are employed (tabulated
in Ref. 64) to calculate the new pressure and Mach number obtained by

expanding from Pi- and Ml' (on the cone) through the angle d}_ -4,
to the new values Py and Ml'

{c) The pressure gradient just past the corner is also needed

and can be obtained from Eq.(V-35) where (gsﬂ)’_ is the gradient of
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pressure on the cone and is zero.

(d) The pressures along the conical frustrum joining station x)
and x, are found from Eq. (V-26) where % is given as a function of
x by Eq.{V~-27). In particular, Ps. {at the end of the frustrum where

x = x,_) is needed.

{(e) The Mach number corresponding to this pressure is obtained

from one-dimensional flow tables (Ref. 64}, or by the equation

r-i
Pa- _ A (F-37)
P f+£iMz_

(fy The gradient (gf) is obtained by differentiating Eq.(V-26).
z_

( )- = p, - (’gsﬁ), (7-38)

Here P. is the surface pressure on the cone of semi-vertex angle J,- .

(—'Lgs )’ has been found in step (c); Py in step (d); and Py in step (b).

Thus

{g) Now step (b) is repeated to find P, and M2 by turning the flow,
through the angle §,-§,. Also step (c) is repeated to give -e_).?.' But

this time (%z- used in Eq. (V-35) is not zero but is the value found in
step (f). Continuing along the body, the pressure (and Mach number )}
are determined at all points on the nonlifting body.

(h) The normal force distribution is also calculated by proceeding
rearward from the conical nose. First, the slope of the normal force on
the conical tip is obtained from available nurmnerical solutions of the exact
three-dirmnensional potential flow equations. These numerical results
are tabulated in Ref. 73.

(i) The loading parameter Ao can now be found, where, on the

cone,

dCy
= Z-3
A, = atand, 55 cona -4, (Z-39)

110



Then the normal force distribution is given by Eq.(V-24)., The angle
of attack may be a function of x in this expression for /.
(j) On the first conical frustrum, having angle d, » the loading

Cw

parameter is obtained from Eq.(V-34) where :"T is the slope

cone
of the normal force for a cone of semi-vertex angle J,. A [- is the
loading parameter at the end of the conical tip. All other gquantities are
available from the nonlifting solution.

(k) The normal force distribution in the region from x,<x<x,

is now obtained from Eq.(V-24)
{t) The process is continued for the remaining conical frustrums.
Forces on the external surfaces of ducted bodies may be computed
in a similar manner, assuming that the internal flow is " swallowed" with
no spill-over. In this case the initial flow consists of a cylinder of the
free stream, and the first section of the body will compress the flow by
turning it through a concave corner. The compression may be treated
by oblique shock theory or, unless the turning angle is large {more than

20*%), it may be approximated by an isentropic (Prandtl-Meyer)analysis.

3. Comparison With Experiment

Extensive checks presented in Ref. 72 show very good agreement
between theory and experiment on cone-cylinder and ogive-cylinder bodies.
Some of the lift data are reproduced in Figs. 59 and 60. Corresponding
centers of pressure are shown in Figs. 61 and 62. Slender body theory
would predict -s—g—” = 2 for all cases. The data show that the slender
body theory fails to account for the lift on the cylindrical after body;

while the shock-expansion method predicts this extra lift quite accurately.

4. Limitations of the Theory

The shock-expansion method was developed for application to

bodies for which TM:- ~ 1 where fn is the nose fineness ratio. It

appears to be accurate at least through the range .# = %’ =2,
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As presented here, the Prandtl-Meyer solution is used to find
the changes in properties as the flow is turned around segments of the
body contour. In the case of a concave corner, oblique shock relations
should, in principle, be used instead. Equations corresponding to such
cases are included in Ref. 72. However, the flow will often separate in
the neighborhood of a concave corner, therefore, the solution may then
be seriously in error. Consequently, if the shock wave is so strong that
the Prandtl-Meyer relations are inapplicable, the oblique shock formulas
are probably equally erroneous.

Although the shock-expansion method seems to predict accurately
the lift distribution on cylindrical portions of the body, it still does not
account for possible effects of boundary layer growth or separation.
Therefore, unless a correction to body shape is made to account for the
growth of the boundary layer displacement thickness, the method will be
inaccurate when such effects are important, as, for example, on boat-
tailed bodies. Vortex separation will also limit the applicable angle of
attack range.

The following table shows estimated ranges of validity of the

method.
Table 9
Range of Validity of Shock-Expansion Theory
Parameter Range of Validity Comments
Moo 4 < Mo ., Probably applies
Fn "t = TfEgp = over an even wider
range
ra 15 <20
Subject to the limits
< m
Moo 2 = o 5 6 on Ma/¥n
a (x) < 3®

6‘0 = semi-vertex

< shock detachment angle
angle of nose

A
base > .75
A max.
body cross circular

section
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5. Comparison With Other Theories

The data plotted in Figs. 59-62 indicate that the slender body
theory gives reasonably accurate load distributions over the expanding
body nose. On cylindrical sections, where the slender body theory pre-
dicts no lift, the shock expansion method gives much better results. If
boundary layer growth is significant, then neither theory will be correct,
but, in the data shown here, the lift on the cylindrical portion of the
body was explainable by an entirely nonviscous analysis.

On the other hand, besides being more cumbersome to use, the
shock~expansion theory applies only to circular bodies; therefore it would
be desirable to somehow extend or improve the slender body theory. One
such extension has been proposed by Beverly Beane in Ref. 74. She adds
the loading due to camber computed by slender body theory to an ex-
perimentally determined load distribution on an uncambered lifting body.
The perturbation in load due to body camber is successfully predicted
by slender body theory. In view of this success, it may be possible to
develop a theory which would account for non-circular cross section as
well as camber by perturbations of a more accurate basic theory.

In some respects this procedure is related to the " hybrid" theory
of Van Dyke (Ref. 75). After deriving a second order theory for bodies
of revolution, he finds that the determination of lift distribution is
practical only for a cone. He then suggests that the axial pressure dis-
tribution be determined to second order or by some other accurate method
and then be combined with a linear cross flow analysis. Syvertson and
Dennis show by comparisons with experiment that their shock-expansion
theory is generally more accurate than the hybrid analysis.

The method of characteristics would give greater accuracy than
the shock-expansion procedure, but requires very lengthy calculations.
On a cone, since the shock-expansion procedure uses the exact solutions,
the results would be identical. Improvements on other body shapes are
expected to be too small to warrant the additional labor especially when
boundary layer growth and vortex separation will limit the applicability

of both procedures.

113



D. EFFECT OF WING INTERFERENCE ON BODY LOAD

1. Slender Body Theory

The addition of a wing tends to block the flow of high pressure
air from the windward side of a body to the leeward surface; hence the
body carries more lift in the vicinity of the wing. This increment in
lift has been calculated by Spreiter (Ref. 55) using slender body theory.
In spite of its limitations, slender body theory appears tobe a reason-
able method of calculating the body carry-over. effect for the following
reasons.

(a) The theory is simple and versatile.

(b} The interference effects of interest lie near the x - axis
where slender body theory should be valid.

(c} Experimental data in which the interference of the body on
the wing is separated from that of the wing on the body is rarely avail-
able. Consequently, it is difficult to compare the accuracy of different
theories.

In this method, each cross section of the flow is analyzed as
though it were independent of all other cross sections. Consequently a
midwing mounted on a circular body would appear at some axial station

‘iz

(x-coordinate) as shown below

X-Plane
a
—F = ———- = }—>y
bo—— S
a? .
The conformal transformation § = X - —— maps the wing-

body in the X-plane, where X =y + iz,into a straight horizontal line of

width o = 2 (5"'3") in the § plane. The flow about this line may be
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calculated from known potential solutions (Ref. 76, for example). Then
the pressure distribution on the body may be determined when the solu-
tion is transformed back to the X-plane. The chordwise load distribu-
tion on the body in the presence of the wing is given by Spreiter for a

configuration at uniform angle of attack.

2
Qi. gﬁ - 403{6 ) fl:( ) 21( 5T )dx T (H' )ﬁ] sin”t ,’_Z_iz" }

(Y-41)

An angle of attack variation will produce an additional lift distribution.
For the case where the angle of attack varies with x but at each station

is the same for both wing and body, the carryover lift would be given by

g:, dL_ffczs{( —§)§f-+[0—5£;)gxi+zs (t+5, dx* (H-—;) ]my( %)}
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The last term represents the lift on the body alone as given by Eq.(V-23).
Lift is developed until the station of maximum wing span is reached.
Beyond this point, Eq.(V-42) would indicate a negative contribution where
ds/dx < 0, but the effect of the downwash field from the wing on more
rearward areas tends to invalidate the theory beyond the station of maxi-
mum span. Spreiter gives an approximate method of estimating the force
distribution induced on the body behind the maximum span station, but
this relatively small correction will not be included here. Instead, the
interference load on the wing is assumed to be negligible behind the section

at which €& = ¢ by analogy with Jones' argument for slender wings.

dax

The derivation given by Spreiter covers only the case of a hori-

zontal mid-wing on a circular body. By making other conformal trans-
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formations, more general configurations might be handled (elliptical
bodies, for example). However, in view of the inherent limitations of
slender-body theory, the additional complication is not introduced here.
In application, the cross sections of noncircular bodies might be ap-
proximated either by circles or by vertical or horizontal lines. Certain
generalizations are given in Refs. 59 and 60.

Pitts, Nielsen, and Kaattari (Ref. 56) have integrated Eq{V -41)
to give the total lift carryover on a cylindrical body. They propose a
method in which all component forces are normalized by the wing-alone
lift coefficient. Therefore, although the ratio of interference lift to wing
lift is calculated by slender -body theory, a more accurate determination
of wing-alone lift can be incorporated. Their method does not give the

load distribution however.

2. Summary of Computational Procedure

For a mid-wing on a circular body the additional load on the body
due to the presence of the wing is given by Eq.(V-42). This result holds
only if both wing and body have the same angle of attack at each station.
Although no general method is available for calculating the effect of wing
incidence, Pitts, Nielsen, and Kaattari suggest an approximate procedure.
They would multiply the load on the body given by Eq. (V-42) by the ratio
of wing lift due to body interference for a wing at incidence to that for

a wing at angle of attack. Then

(4). - (e8) ((ﬁ)w{an

) (I-43)
dx/w(B)a

Here (?dé)a is obtained from Eq.(V-42); while the load on a wing at

dai

incidence in the presence of a body (_J}—) and the interference load

w8l
for wing and body at angle of attack (%)wrs)a are obtained by the

procedures given in Section IVF. The expression approximates
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reciprocity relations derived in Ref. 77 where, by slender body theory,
the lift on the body due to wing incidence is equal to the lift on the wing
due to the body on a configuration at angle of attack minus the lift on

the wing due to body incidence.

3. Comparison with Experiment

In order to measure the force on a body due to wing interference,
either separate balances may be used on each component of a model or
a pressure distribution model may be tested. Either experiment is
difficult and such data are rare. Figure 63 shows a comparison of theoreti-
cal and experimental streamwise distribution of body carryover lift. The
data are obtained by integrating the lift component of pressure measured
around the circumference of the body. The pressure distributions are
given in Ref. 54. Since the model had from three to eight pressure taps
at each axial station, the integration of circumferential pressures is
inaccurate.

The discrepancy between theory and experiment is typical of the
supergonic case. Disturbances cannot propagate forward of character-
istic Yines, hence the effect of the wing appears on aft stations of the
body. The slender body theory, on the other hand, applies the wing
carryover at the wing stations. In the present case, a small wing ona
long body, the error is not as great as might occur on large-winged
configurations.

Figures 64 to 67 show comparisons between experimental and
theoretical lift curve slopes and centers of pressure on wing-body com-
binations. Since the interference between wing and body is not a large
percentage of the total force, this comparison is not a sensitive test of
the accuracy of the theoretical calculation of interference effects.. How-
ever, the agreement between theory and experiment indicates that the
combined methods satisfactorily predict the overall structural loads,
The difference between theoretical and experimental lift on Fig. 64 is
primarily due to the inaccuracy of slender body theory which predicts

zero lift on the doubly pointed body. The data were obtained from Refs. 56
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and 78; while the theoretical methods are indicated on Figs. 64 and 66.

4., Limitations of the Method

Slender body theory gives a reasonable approximation of the
carryover lift induced by a wing on a body; but the distribution of the
lift is not accurately predicted. In subsonic configurations, the body
begins to pick up a load ahead of the wing leading edge because the
circulation around a lifting wing results in an upwash in the oncoming
flow field. In the supersonic case, on the other hand, discrepancies
can still occur since the effect of the wing appears on aft body stations.
Wings with unswept leading edges present difficulties in the slender body

o's

theory, since in such cases or T The prediction of total load is
not necessarily inaccurate, however, since the integral is finite.

It is difficult to accurately assess the quantitative effect of these
errors since systematic experimental data are unavailable. The following
table gives a general indication of the limitations of slender body theory

for the prediction of body carryover lift.

Table 10

Range of Validity of Slender Body Theory
for Prediction of Body Carryover Force

Parameter Range of Validity Comments

Moo 0 SMy=< 2 Predicts force too far forward at
supersonic speeds

£ <t < Th t iti bod

= £=—= 20 eory not sensitive to body

d 3 =9 2 fineness ratio

s <« § At subsonic and transonic speeds

@ /8583 a wider wing span might be
acceptable.

|a) < 3° Vortex separation can lead to large

errors at higher angles of attack
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5. Comparison With Other Theories

No other method can match the simplicity and versatility of the
slender-body-theory. It is possible to extend it to wing-body combina-
tione of any cross-sectional shape for which the transformation to a
straight horizontal line is known (for example, see Ref. 60 and pages
323-324 of Ref. 79). However, as illustrated by the comparison with
experiment shown in Fig. 63 the prediction of load distribution may leave
something to be desired.

Surveys of the wing-body interference problem have been present-
ed in Refs. 59 and 79. Some of the available methods which might be
superior to slender-body theory do not give load distributions (Trefftz
plane solutions, for example). Others have been carried through only
for uniform angle of attack. Two promising methods will be described
here, however, since they may be useful in cases in which slender-body
theory is inadequate. The {first method, an extension of the Lawrence
procedure discussed in Section IV C is appropriate for subsonic speeds.
The second procedure, based on a supersonic theory by Ferrari has been
derived only for certain special geometries.

If the Lawrence theory, presented in Ref. 14, is regarded as an
extension of the Jones slender-wing theory; then an analogous result
might be derived for subsonic slender wing-body combinations. In Ref, 59
Lawrence and Flax show that in fact an integral equation of form similar

to Eq. (IV-91) results

TE. _y2 b 0 2
ke = T,f—gm-r,,% glENI+ Jo-p*+ (£ ) d& (7-%4)
L.E. x-§
‘ _ ! di
where g = ZPU,, v

chordwise load parameter for the wing-

body combination.
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The only differences between this expression and Eq.(IV-91} is
in the definition of k(x). Here ki{x) is the chordwise loading parameter
for the wing-body combination obtained from slender body theory. That
is

k) = -277,(7; (% slender body theory

b
Fix)
Ko = f [@xy+agfiy) JEw)-52  dy (7-46)

£

(F-#5)

where —?— (x¥) is the semi-span of the transformed wing, which results
from a transformation of the wing-body combination into a horizontal
wing plus vertical line body. § is the transformed spanwise coordinate.
agfy)is the vertical velocity induced along the wings by an isolated body
in two-dimensional flow at an angle ag- The body is omitted from the
region of integration. This integral equation can be solved by methods
similar to those used in Section IVC.

In the supersonic regime, Ferrari proposes an iterative solution
of the linearized equations of motion without invoking the slender -body
assumption. His procedure, given in Ref. 79, begins with the following

definition of a velocity potential:

P = U }é{;*(¢6),+aw [(¢b)z‘;+¢w+¢(w* ¢(6)]} (7-47)
where

R

;=

b

U,—g(:-af,,;) s free stream velocity potential

i

tip-to-tip wing span {including body)

U”% [(¢5)i+ a,, (¢b)z] = perturbation of potential produced by
body alone.
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perturbation of potential produced by wing

g
LS
2

¥
B
L 4

]

alone (wing extends through body)

perturbation representing the interference of

b )
Uoz v ?
the body on the wing.

U,g Q,, ¢“’) perturbation representing interference of the

wing on the body.

Ferrari proceeds to establish boundary conditions and find integral
relations for the interference potentials. By expanding in Fourier series,
he is able to obtain solutions and corresponding forces for certain wing
plan forms. Numerical results have been obtained only for rectangular
wings at uniform angle of attack.

A modification of Ferrari's procedure introduced by Rae in Ref. 80
gives a simple solution for the carryover lift on a body due to a rectangu-
lar wing of infinite aspect ratio at uniform angle of attack. Lawrence
and Flax suggest that this procedure might be extended to finite aspect
ratio wings by calculating a correction term by slender body theory.

On the whole, the problem of calculating the load distributions
due to wing-body interference is not yet satisfactorily resolved; par-
ticularly to the degree of generality required for aeroelastic analysis.
Solutions in the supersonic range especially are inadequate. Some sug-
gestiong by Lagerstrom and Van Dyke (Ref. 81} for reducing the wing-body
to a planar problem might help in development of a more accurate procedure.

Suggestions for further investigation in this area, and other recom-

mendations are discussed in the next session.

121



Espinadls

Approved for Public Release



SECTION VI

RECOMMENDATIONS FOR IMPROVEMENTS AND EXTENSIONS

A. GENERAL CONSIDERATIONS

The present investigation attempts to select, from available
methods, theoretical procedures for calculating the aerodynamic loads
required for structural design. Since the aerodynamic forces are
eventually to be incorporated in an aeroelastic computation, the methods
must be versatile enough to provide loads on wings and bodies with
arbitrary angle of attack distributions. The program is restricted at
present to the linear range, since the results are intended for use in a
linear aerocelastic analysis. Procedures have been described for cal-
culating loads on wings and bodies and for mutual interference between
the two components. Where necessary, different theoretical methods
have been prescribed for different ranges of Mach number or geometri-
cal parameters.

In some categories the available methods for treating the linear
wing-body problem are inadeguate ¢r may be simplified or improved by
further development. Desgirable improvements of this type are described
in the next section. Where possible,suggestions are advanced for pur-
suing such development. Also experimental programs are recommended
where data are needed to aid in the promulgation or verification of
analytical procedures.

In Section VIC possible developments are indicated which would
extend the scope of the investigation beyond the simple airplane type of
wing-body configurations considered here. Such geometric extensions
as unsymmetric loads, wing-tail interference, and affects of engine
nacelles and other external mountings are discussed. In addition,
mention is made of the special problems involved in determining the

loads on missiles, helicopters, and other unconventional configurations.
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Extensions to nonlinear aerodynamic forces are projected in
Section VID. In order to apply a nonlinear theory for predicting load
distributions, it is first necessary to establish a suitable framework of
nonlinear aeroelasticity. After a discussion of possible procedures for
treating the nonlinear aeroelastic problem, three sources of nonlinear
aerodynamic loads are discussed.

Sections VIE and VIF briefly indicate aerodynamic load problems
which involve flow regimes entirely excluded from the present work. In
one case, dynamic problems are discussed; while in the latter section

hypersonic phenomena are described,

B. IMPROVEMENTS IN LINEAR ANALYSES

1. Specialization of Aeroelastic Problems

In Section II, typical matrix formulations of the aeroelastic problem
are presented. In the present investigation, loads are given, where avail-
able for arbitrary angle of attack distribution. In this way the required
aerodynamic information is made available for input to any linear aero-
elastic operation. If, however, a particular form is chosen for the solu-
tion of the aeroelastic problem, then the load distribution theories might
be simplified by carrying out the indicated operations for the correspond-
ing specialized angle of attack distributions. Two examples may be cited
to illustrate this point .

Consider first a typical " box" method in which a wing planform is
subdivided into a number of small boxes. The aeroelastic problem, as
outlined in Section II, may then be reduced to a matrix equation in which
the elements of an aerodynamic matrix represent the pressure at the
center of the ith box due to a unit angle of attack of box j. In this case, the
computation of load distribution may be specialized to the particular case
of a unit angle of attack of the ith box with zero angle elsewhere. The
theories can then be applied to this case instead of being written in more
general form. If the box size approaches zero then particularly simple

solutions will sometimes result. This procedure, unfortunately, may re-
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quire the use of hundreds of boxes. The resulting large matrices can be
handled only by high speed computing machines, and can even tax the
capacity of big machines. An alternative procedure would be to make
use of a series of smooth angle distributions.

A geries of normal mode shapes of a flexible wing, for example,
would provide a basis on which to formulate an aeroelastic analysis .

The elastic deformations and aerodynamic forces may still be related by
a matrix equation (see for example, Ref. 82 which includes dynamic terms).
The advantages of this representation are

(2) Compared to box methods, a very small matrix will give a
good approximation of the loads. _

{(b) The use of made shapes facilitates extension to dynamic
problems.

However, since the mode shapes depend on structural as well as
geometric properties of the wing, the required angle of attack distributions
cannot be prescribed. Even if some general form such as a Fourier series
is established, the corresponding load distributions may be difficult to cal-
culate.

Regardless of the choice of method of aercelastic analysis, con-~
siderable progress can be made in unifying and extending the procedures
for calculating aerodynamic loads if the form in which they are to be used
is established. If possible, the aeroelastic analysis should be designed to

include the entire wing-body combination.

2. Generalization of Weissinger Lifting Surface Solution

Within the framework of a specified linear aerocelastic theory,
several improvements might be developed in the procedures recommended
in this report. One such improvement would be the further development
of the Weissinger lifting surface method. In this solution of the subsonic
wing load problem, Weissinger reduces his two-dimensional integral
equation for vorticity distribution by assuming that the chordwise vorticity

is distributed in accordance with the result of a two-dimensional analysis.
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The solution of the resulting one-dimensional integral equation for
general plan form and camber is somewhat more complicated than the
Weissinger lifting line method which is presented in Section IVB.
Although by comparison with flat wing data, the Weissinger ® L"
method seems to give adequate load predictions, it may be less reliable
when applied to cambered wings. Therefore, further development of
the lifting surface or " F" method might be useful. If a particular angle
of attack distribution is prescribed by the previously-mentioned special-
ization of the aeroelastic problem, then generalization of the " F* method

may be significantly simplified.

3. Modifications Due to Wing Thickness

Another way in which the calculation of wing loads might be im-
proved is by allowing for the effect of wing thickness. If the variation of
load with angle of attack were everywhere truly linear, then wing thick~-
ness would not affect the difference in pressure between upper and
lower surfaces. However, although arising from a nonlinear phenomenon,
the effect of thickness can be included in a linear theory by examining
the perturbations of the flow about the thick wing with zero load instead of
perturbations of the free stream flow.

One possible approach to the calculation of thickness effects would
begin with known nonlinear solutions for the two-dimensional pressure
distributions. For example, in supersonic flow, shock -expansion methods
{combining oblique shock and Prandtl-Meyer solutions)can be used to ob-
tain exact nonviscous solutions for the flow over two-dimensional airfoils.
The problem remains, however, of extending the analysis to three-dimen-
sional problems. Some success has been achieved (Ref. 83), in the super-
sonic case, by solving the three-dimensional wing problem in the usual
manner, but using in the linear formulas the local value of Mach number
determined by the two-dimensional exact solution rather than the free
stream value. It may be possible to develop an analogous procedure for

subsonic wings.
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4, Improvements in Slender Body Theory

The attractions {simplicity and versatility} of slender body theory
are somewhat offset by its limited range of applicability. Van Dyke has
pointed out, however {Ref. 75), that in the prediction of load distributions
the accuracy of the longitudinal flow is more important than that of the
cross flow. This principle ia the basis of his " hybrid" theory, and might
be further exploited. Then, if the pressure distribution can be accurately
predicted for a non-lifting body of general shape, the variation around
the cross-section may be adequately represented by the sectional cross
flow. Further development along this line requires accurate solutions
for bodies of general shape aligned with the free stream flow. The shock-
expansion method, given for bodies of revolution in Section VC, is based
on an accurate solution of the zero-lift problem. An extension of this method
to more general body shapes would improve the situation in the supersonic
speed range. Simple subsonic methods of comparable accuracy do not
appear to be available.

For smooth bodies, the local ratio of body height to width seems
to adequately characterize the shape of the cross section. Consequently
extension of theories to elliptic cross sections would represent a very

valuable generalization of currently available methods.

5. Improvement and Extension of Wing-Body Interference Analysis

Perhaps the most significant inadequacy of available methods of
predicting load distributions is in the calculation of wing-body interference
effects. Slender body theory often gives insufficient accuracy; while more
elaborate representations of the flow, such as the vortex model described
in Section IVF, have been developed only for bodies of revolution.

An extension of the vortex model to bodies of elliptic cross section
would require a derivation of the two-dimensional flow about an ellipse
in the presence of a vortex. A solution to this problem, although not ex-
plicitly available in the literature, can be obtained by a conformal mapping

of the flow about a vertical plate in the presence of a symmetrical pair of
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vortices. Although such a flow field is quite complicated, only the normal
velocities in its own plane are required to establish the interference forces
on the wing.

The extension of the Lawrence theory to the wing-body combina-
tion appears to offer the most likely prospect for improving the prediction
of body load due to wing interference. Such a procedure would not be
valid behind the wing-body junction. On the aft sections of the body, the
wing influence would be manifested by an angle of attack distribution in-
duced by the wing downwash field. The vertical velocities in the vicinity
of the body can be estimated by assuming that the flow field behind the wing
is represented by a pair of concentrated lifting vortices. The force dis-
tribution on the aft part of the body is then calculated by the best available

theory for a cambered body.

6. Effects of Viscosity

On the whole, viscosity has little effect on the lift distribution. In
the Reynolds number range in which boundary layer theory is valid
(Reynolds No. > 10,000 for example), the displacement thickness creates
the effect of an increase in thickness of wing or body. Since, in the linear
theory, thickness has little influence on lift distribution (but, see Section
VI B-3), it is usually unnecessary to apply a correction for viscosity.
However, in some situations boundary layer growth and separation can
cause noticeable alterations in the load within the linear range of angles
of attack.

One such condition arises in the case of cylindrical lifting bodies
where slender body theory predicts no load. Even the more accurate shock
expansion method predicts only a small force on long cylindrical sections
of the body. The growth of the boundary layer displacement thickness
can then result in a normal force and pitching moment of sighificant pro-
portions compared to the nonviscous result.

Separation of the flow from the rear of boattailed models can also

invalidate a nonviscous analysis.
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If the flow does not follow the body contour, then the loads will
not follow the nonviscous theoretical analysis. It is, at present, dif-
ficult to estimate the possible influence of boundary layer separation in
such cases. Supersonic experiments reported in Refs. 84, 85 and 86
indicate a negative lift over the converging part of a boattailed body but
not as much as indicated by theory. On subsonic bodies, due to the un-
favorable pressure gradient, the boundary layer is even more likely to
separate over a boattail. The pitching moment data reported in Ref. 87
indicate that the predicted download on the aft end of such bodies is not
fully realized.

Another situation in which viscosity affects the linear load distri-
bution arises in connection with boundary layer separation at a wing trailing
edge'. Because of this separation the full circulation does not develop
around subsonic airfoils. The effect is often taken into account by em-
pirically approximating the section lift coefficient by 6 instead of the
theoretical value of 27 . The overestimate of lift curve slope given by
the Weissinger theory for rectangular wings (see Fig. 5) would be reduced
by this correction.

Other types of separation result in side edge vortices and stall.

These produce nonlinear forces and will be discussed in Section VID,

7. Empirical Corrections

In the present study, empirical methods, such as the correction
mentioned above, have been avoided. After all, an empirical relation,
even when based on a large amount of accumulated experience, may fail
when applied in a new situation. However, when the physical conditions
are understood qualitatively if not quantitatively, then an empirical formula
may provide a simple and reliable result. Therefore improved methods
of computing load distributions may incorporate empirical relations or
correction terms.

The thickness correction proposed by Ulmann and Bertram (Ref. 50)

for supersonic wings with leading edges lying nearly along Mach lines is
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an example of an empirical correction bagsed on a qualitative assessment

of the physical situation.

8. Recommendations for Experimental Investigations

Data are available against which almost any load prediction theory
may be tested. However, the range of validity of a theoretical procedure
cannot be established by comparison with a scattered sampling of ex-
perimental information. A systematic program is needed, in which the
important parameters are varied over the range of interest. It is some-
times possible to assemble a systematic set of data collected from a
variety of sources. The lift curves of flat wings, for example, are avail-
able over wide ranges of geometric and flight conditions. In several other
categories, however, only isolated data are available. Such categories will
be enumerated together with suggested test programs.

(a) Effect of twist and camber on load distribution.

The subsonic theories, in particular, favor flat wings. Hence,
teats employing a systematic variation of twist and camber might reveal
unexpected limitations of the methods. Wind tunnel tests on models with
linear symmetric twist and with varying amounts of circular arc camber
are recommended, although other parameters, such as camber shape
and distribution might also be added. The following Table illustrates a

suggested range of parameters:
Table 11

Study of Effects of Twist and Camber on Wing L.oad Distributions

Parameter Range of Interest
Twist of wing tip 0 -~ 15*
Camber = r}:l- o0-.2

AR .5 -6

TR 0-1

A 0 - 60°
Mg 0 -4

a -20°to +30°
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In spite of the large number of variables, a satisfactory program
would require fewer than 50 models. The effect of aspect ratio, for
example, could be demonstrated by testing a low aspect ratio model and
a high agpect ratio model at each value of taper ratio, sweep, etc.

Then at one condition, two extra models could be added to fill in the in-
termediate points.

At a minimum,measurements of lift, and chordwise and spanwise
center of pressure positions would be needed, hence sidewall mounted
half-wing models, or equivalent, would be required. One or two pressure
distributions would also be desirable to aid in determining the cause of
any discrepancies between theory and experiment.

The suggested program is quite extensive, particularly in its
investment in wind tunnel models. The model size should thus be
selected for minimum construction cost, probably resulting in maximum
dimensions on the order of 6" - 12". The wind tunnel (or tunnels) should
then be selected to efficiently accommodate such models.

(b) Loads on non-circular and cambered bodies

Forces have been measured on a large variety of bodies of revolu-
tion under various flight conditions, but experimental data on noncircular
or cambered bodies tends to be fragmentary. Consequently, a systematic
series of wind tunnel tests on bodies of elliptic cross section--straight as
well as cambered--would help in the evaluation of theories predicting
the loads on such configurations.

Of fundamental importance is the onset and development of vortex
separation resulting in nonlinear lift loads on bodies. Any program
embodying measurements of body loads should include investigation of
vortex separation. This point is again mentioned in SectionVIDS5.

{c} Investigation of wing-body interference

Ref. 54 reports one part of an extensive experimental investigation
by Cornell Aero. Lab. of effects of wing~body interference. Wind tunnel
tests at subsonic and supersonic speeds include many measurements of
pressure distributione on wings and bodies for a variety of configurations.

However, for many conditions of interest, experimental information is
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unavailable. In particular, the effects of noncircular bodies and of wing
locations above and below the body midplane seem worthy of further
study. Accepting the Cornell data as providing intensive information on
relatively few representative configurations, its value could be enhanced
by the addition of force data expanding the range of the test variables to
include additional geometric parameters. The following table suggests

such a supplementary program

Table 12

Experiments on Wing-Body Combinations

Parameter Range of Interest
body width (elliptical cross sections) 1/2to 2
body height
position of wing junction above body mid plane - 1/2to + 1/2
body height
wing plan form delta and rectangular
wing span 1 to 5
ody widt
M w0 0 to 4
a -20°to +30°
iw = wing incidence - 10°to +10°

To separate effects of wing on body from the interference of the
body on the wing, separate balances would measure the forces and
moments on the entire configuration and on a single wing panel. It will
also be necessary to have data on the body alone and on a sidewall mounted
wing panel. The program represented in Table 12 would require about
four wing models and four or five bodies with provision for mounting the
wing at several different heights on the body and at various incidence
angles.

Models on the order of 12" long should be satisfactory, although
larger dimensions might simplify the design of the balance needed for
measuring wing panel loads. Wind tunnels of appropriate dimensions

to accommeodate such models should cover subsonic and supersonic speeds.
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To keep the force levels within the range of balance sensitivity, it may
be desirable to omit low speed tests. Compressibility effects are not

large below M, ~.5 and can be estimated analytically when necessary.

C. GEOMETRIC EXTENSIONS OF THE LINEAR ANALYSIS

1. Cruciform and other Non-Planar Lifting Surfaces

In supersonic flow, where cruciform wings are more likely to
be encountered, the linear theory (Ref. 88)may be applied to the deriva-
tion of load distributions. Recent extensions of Evvard' s method (see
Ref. 89} may be applied to end plates and other non-planar geometries.

At subsonic or transonic speeds, solutions to flows about inter-~
fering surfaces may often be obtained by slender body theory. For more
accurate results, the general flow field due to a nonplanar vortex dis-
tribution might first be determined, then, by matching the appropriate
boundary conditions, forces on the various surfaces could be calculated.
Such an extension of the Weissinger procedure is included in the computer

program of Ref. 19,

2. Ring Wings

A particular non-planar configuration which has received some
attention because of its ability to cancel wave drag is the ring-wing-body
combination. The linear theory of supersonic ring-wing configurations-
including full and partial rings--is quite thoroughly discussed in Ref. 90.
Linear theory, in fact, does not give a sufficiently accurate description of
the mutual interference between wing and central body to give reliable de-
signs of drag-cancelling configurations; however, the lift load is more
satisfactorily predicted.

Since wave drag is not a problem, the ring wing would not often be
encountered in subsonic flow. Annular stabilizing surfaces are sometimes
used on bombs or torpedoes, however. The wing load can perhaps be
adequately estimated by considering each séction as a part of a two-dimen-

sional airfoil with angle of attack varying sinusoidally around the cir-
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cumference. The body then would be responsible primarily for producing
a radial load on the wing which can be estimated on the basis of an induced

camber computed by slender body theory.

3. Ducted Bodies

Removing the central body from a ring-wing-body configuration
leaves a ducted body. The force distribution on such a body might be
computed, then, by the same principles as the ring wing. However, when
the body is of high fineness ratio, perturbations of the internal flow
undergo many internal reflections in the length of the body. Ref.91 gives
a review and development of theories for the force distribution on
axisymmetric ducted bodies. The linear theory for supersonic ducted
bodies is given in Ref.92.

In most instances, ducted bodies serve as engine inlets and hence
the internal pressures are intimately dependent on heat addition and engine
performance. The internal structure then becomes a part of the engine.
As mentioned previously (Section VC2), the external pressures on a super-
sonic engine inlet operating in its supercritical regime may be calculated
by an extension of shock-expansion theory.

Development of theories for other operating regimes could proceed
as for a solid body, if the dividing streamtube between internal and external
flow can be identified. This streamline is then treated as a part of the

body surface but, by definition, carries no load.

4. Unsymmetric Loads

The methods described in the present report have been gpecialized
to the case of configurations which are symmetric about the x, z plane.
If it becomes necessary to calculate structural loads in unsymmetric con-
ditions, such as yawed flight, then considerable additional labor is re-
quired. Any of the procedures presented here can be extended to unsym-
metrical situations. For example, Evvard's method of calculating pres-

sures on supersonic wings remains unchanged when applied to an un-
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symmetrical plan form or angle of attack distribution, but changes in the
regions of integration introduce additional numerical complication. In
other procedures, such as the Weissinger method, terms have been
simplified or cancelled completely by the symmetry condition. The basic

concept is not so limited, however.

5. Wing-Tail Interference

Wing-tail interference computations require, first, a representa-
tion of the wing downwash field in the region of the tail, followed by a
calculation of the force on the tail in this downwash field. In most cases,
the wing can be represented by a large horseshoe vortex whose strength
and location are determined by the span load distribution on the wing.

In subsonic configurations, the wing lifting line may lie close to
the tail and account for most of the downwash. In the supersonic case
where the wing span is likely to be smaller, the trailing tip vortices may be
more important.

Since methods are available, and already presented in Section IV,
for computing the load distribution on lifting surfaces in an arbitrary
downwash (or angle of attack) field, extensions to cover wing and tail inter-
ference can proceed in a straightforward manner.

The effect of the wing on the tail is inherently nonlinear, even when
linearized theories are used in the calculation. The motion of the wing
tip vortices with respect to the plane of the tail, as the vehicle angle of
attack changes, introduces nonlinear variations of tail load with angle
of attack of the configuration. The problem becomes geometrically more
complicated when the tail does not lie in the plane of the wing or if yaw
angles or unsymmetric control deflections are introduced. Some of these
problemes are considered in Ref. 93, for example. Although other solutions
of this problem are available, for the most part they are intended to pro-
vide integrated forces and moments for performance calculations and

do not emphasize the load distribution.
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6. Effects of Engine Nacelles

Engine nacelles and external stores alter the load distribution on
nearby lifting surfaces. Such effects seem to be treated primarily by
correlations of experimental data and previous experience. Refs.94 and
95, for example, show the measured effect of store and nacelle location
on wing lift but do not attempt a quantitative analysis.

Development of a theoretical treatment of wing-store interference
would thus be desirable, and might be regarded as an extension of wing-
body interference theories. Most successful analytical treatments of
wing-body interference treat the body as an infinite cylinder {slender-body-
theory is the major exception). It might be pos sible, however, to derive a
vortex theory in which the image vortex in the body is curved to better
match the boundary condition on the surface of a short nacelle-type of

body with changing diameter.

7. Slipstream Effects

Besides the geometric interference of nacelles, another disturbance
is created by jet engine or propeller slipstreams. The higher velocity
exhaust air can produce local changes in the condition of the "free stream"
impinging on a lifting surface. In addition the expanding or contracting
geometry of the streamtube separating exhaust air from free stream in-
duces local angle of attack variations.

An extensive treatment of slipstream interference is included in
Ref. 79. Further development is required, however, to adapt this analysis

to the solution of structural load problems.

8. Axial Loads

The present report treats only load distributions in the lift (or
"normal force" ) direction. Even when the structural problem can be
separated into normal and tangential components, the drag may sometimes
contribute to the aeroelastic lift load. For example the drag on a high

horizontal tail will apply a bending moment to the fuselage. In addition,
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of course, the complete structural analysis must include all components
of aerodynamic load.

A substantial body of literature is available concerning the calcula-
tion of drag. However, the review and evaluation of the drag calculation

procedures constitutes a project in itself.

9, Extension to " Unconventional" Aircraft

The concept of a " conventional® airplane is becoming increasingly
elusive; but, for example, missiles, helicopters, ground effects machines,
and vertical take-off configurations have been neglected in the present
treatment. Most of the procedures included here are applicable to missiles,
and, when in level flight, a vertical take-off airplane is not much different
from any other. However, in its own peculiar flight regime each specialized
vehicle encounters aerodynamic loads which require specialized methods
of analysis.

Procedures for calculating loads have been developed as needed for
each type of aircraft, and improvements are continually forthcoming. It
may be desirable, at some future time, to combine these separate results

into a unified treatment of the structural loads problem.

10. Experimental Investigations

In most of the areas in which geometrical extensions have been sug-
gested, a substantial body of experimental data is already available. Although
information is not usually complete on the detailed effect of variation of
every possible parameter, in most cases the data would be sufficient to
judge the validity of a proposed extension, For example low speed measure-
ments of unsymmetric forces are reported in Refs. 21 and 29 and the re-
sults of an extensive investigation of wing-tail interference are available in
Refs. 96 and 97.

On the other hand, where the development of new techniques or ap-
plications involves assumptions of unsubstantiated validity, supplementary

data may be required. The areas most likely to suffer from insufficient
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experimental information are expected to be in the interference effects of

engine nacelles and other stores; and the influence of jet engine slipstream.
No specific experimental programs are recommended at this time

since, unlike the situation covered in Section VIB, the limitations of present

theories and available data have not been evaluated.

D. NONLINEAR EFFECTS
1. Nonlinear Aeroelasticity

The aeroelastic analysis presented in Section Il assumes linear
relations between pressure and angle of attack and between load and de-
flection.

In order to make use of a nonlinear relation between angle of attack
and resulting aerodynamic load, it is first necessary to revise the aero-
elastic analysis so as to accommeodate such a nonlinear function.

If Eq.{1I-12) is replaced by the relation

] o 0
dp; | = @A, 1t Ay | |a-a (ez-1)

where @’ = some constant average angle of attack and P:l = matrix
giving the corresponding pressure distribution, then the new aerodynamic
maftrix [Af:i] gives a relation between pressure distribution and perturbation
in angle of attack linearized about the average angle &®. In this case the
final load distribution becomes

-

ap,| = I |-| 4 A, | +a’ A:. (E7-2)

| i i
In addition to this approach, more general iterative methods might
also be investigated.
Assuming that a suitable expression, such as Eq.(VI-2), is found
to take account of the aeroelastic effects of nonlinear aerodynamic forces,

it then becomes necessary to determine the elements of the new aero-
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dynamic matrices. In Eq.(VI-2) [ﬂ:] is a column matrix which gives the
pressure distribution due to the uniform angle of attack @ °. For example,
if the following sketch represents the variation of pressure at station /

with angle of attack, then the element A‘; = A,bf/a" .

-]

Dpj F——————

I
Apj :
|
I

a a®

For wings, the nonlinearities at moderate angles of attack appear
to be due primarily to vortex separation from side edges. The values of
A; may then be determined by methods such as those given in Refs. 98 and
99. The elements of the aerodynamic matrix Aij require a knowledge of
the lift distribution on arbitrarily cambered and twisted wings in the presence
of vortex separation. Such information ia not currently available and must
be developed. It appears possible to solve this problem by extensions of
linear wing theory, provided the camber distribution does not effect the

location of vortex separation.

2. Nonlinear Unseparated Flow

The equation for velocity potential in compressible flow is nonlinear
(see Eq.(V-12). Exact solutions indicate a nonlinear dependence of pres-
sure coefficient on flow angie.. Although the pressure difference between
top and bottom surfaces of an airfoil remaing linear to second order in
angle, eventually higher order terms affect the lift and, to a greater ex-
tent, the pitching moment. Correction for this nonlinearity is possible in
some cases based on approximate extensions of known exact solutions.
However, the need for such corrections is practically nonexistent.

A correction for the effect of wing thickness only, as suggested

in Section VIB 3, does not result in a nonlinear aeroelastic problem,
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When, on the other hand, the angle of attack becomes so large that the
lift would become nonlinear with angle of attack, flow separation effects
predominate, and the entire analytical problem must be revised. The
separation, from bodies as well as wings, takes two forms. Vortex
separation from side edges usually produces an increase in lift. The
nature and present status of this phenomenon will be discussed in the
next section (Section VID 3).

Stall is manifested by a forward movement of boundary layer
separation from the trailing edge of a wing {or body) until a large part
of the surface is in the separated region (although, in some cases, the
leading edge separates first). A reduction of lift below the linear value
accompanies the onset of stall. The problem of determining load distri-

butions under such conditions is briefly discussed in Section VID 4.

3. Effects of Vortex Separation

Concentrated vortices separate from side edges of thin lifting
wings and result in local increases in lift. Figure 22 shows a noticeable
departure from linearity beginning at about 8° angle of attack on a swept
wing of AR = 2. An analytical treatment of this problem is given by
Brown and Michael in Ref. 98 for triangular wings and by Cheng in Ref. 99
for rectangular plan forms. Although other procedures have been developed,
the method advanced in these reports seems to be based on the simplest
physical representation of the important observed features of the flow.

In this model a pair of separated vortices appears on the lee side
of the wing connected to the side edges by vortex sheets of infinitesirnal
strength.

An analogous treatment of conical and cylindrical bodies of revolu-
tion has been proposed by Bryson in Ref. 100. However, unlike the wing
problem ia which the equivalent of a Kutta condition requires that the feed-
ing sheets separate from the side edges, the separation points on circular
bodies are established empirically. In addition, the axial station at which

the vortex pair first leaves the surface of the body cannot always be pre-
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dicted. Further studies of this problem (now in progress) are directed
at deriving analytical methods of determining separation points and ex-
tending the solutions to bodies of more general shape.

Even if conditions can be found for completely specifying the
two-vortex model of the flow, the calculation of load distributions may
depend on a more refined physical model. The prediction of lift by
Brown and Michael, for example, agrees with experiment, but they cal-
culate negative pressures over some areas of low-aspect-ratio wings.

The wing or body with vortex separation would thus be treated
by the best and most general available analysis for flat wings or un-
cambered bodies. Aeroelastic {or initial) deformations are then to be

analyzed by linear perturbations of this result.

4. Effects of Stall

The problem of stall has been treated primarily by correlation of
experimental data (see, for example, Ref.10l). For swept wings,accord-
ing to a recent survey by Harper and Maki (Ref. 102), the state of knowledge
is even worse since two-dimensional data on the onset of stall does not
apply to the three-dimensional swept wing. Since the maximum load under
some flight conditions will occur at maximum lift, it is important to be
able to estimate, at least qualitatively, the change in load distribution ac~-
companying the onset of stall.

While an empirical approach appears at present to offer the most
attractive short-range solution to the problem, some benefit would be de-
rived from a physical model of the flow, leaving a few parameters to be
experimentally determined.. According to the description given by Harper
and Maki, wing stall is accompanied by a separation of the flow from the
leading edge or forward of the trailing edge, or both, and a vortex separation
from side edges. It may be possible, therefore, to correlate experimental

data on the basis of the location and extent of separated areas.

5. Experimental Investigations

Data are available for comparison with nonlinear theories, but is
probably inadequate for illustrating the phenomena on the basis of which a
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new theory is to be developed. Therefore, the type of experiment most
needed at present would show details of flow field and preassure dis-
tribution rather than totalforce and moment. Such information is being
obtained in the course of other investigations of nonlinear forces. An
example is. the pressure and flow studies reported in Ref, 103.

Data on noncircular and cambered bodies would, however, be im-
mediately useful. Although measurements of load distribution would
meet some requirements, flow visualization techniques showing vortex
locations and separation points on the body would be of even greater sig-
nificance. With the aid of such data, present methods of predicting non-
linear forces on circular bodies might be extended to more general shapes.
Tests on two families of bodies would be desirable: - a group of about
three circular bodies of varying camber, and an equal number of uncam-
bered bodies of elliptical cross section. Data of the type obtained in
Ref. 103 would be desirable, but to repeat such a program on six different
bodies is perhaps unwarranted. Pressure distributions on all bodies with

only a few flow field studies might be adequate.

E. DYNAMIC PROBLEMS

1. Maneuver Loads

The calculation of load distribution during a maneuver requires
solution of the partial differential equation for unsteady flow. General
methods of approach and some particular solutions are given in Ref. 48.
Further investigation is required to obtain the results appropriate to par-
ticular maneuvers and configurations.

In Ref. 1, the lift during maneuver is claimed to be proportional to
angle of attack up to values well above the steady-state maximum. An in-
vestigation of this point, which cannot be settled purely on the basis of a

linear analysis, would also appear important.
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2. Gust Loads

A particular type of maneuver is the response to a gust. A
maneuver might be defined by prescribing a distribution of angle of
attack as a function of time. A gust load, on the other hand, fundamentally,
results from the response of an airplane to a particular upwash distribu-
tion in the " free stream. " Since the airplane's flight path will be altered
by the gust load, the variation with time of the relative angle of attack
will not exactly duplicate the imposed upwash distribution. An integral
equation for the gust load on a two-dimensional non-pitching airfoil is
given on page 294 of Ref. 48. Further discussions are contained in Refs.
104 and 105. However, results for general plan form and flight conditions

do not appear to be available.

3. Flutter

Some success has been achieved recently {Refs.106-109) in attempts
to reduce the dynamic problem of high speed wing flutter to the determina-
tion of a combination of static loadings. Calculations by this method re-
quire the load distributions associated with several normal deflection modes
of the structure. Hence the procedure is simplified if these distributions
have been made available in the static aeroelastic analysis. However, the
loads induced by the waving motion of the wing are also required in the
analysis so that a solution for the normal modes is not sufficient for the
flutter calculation .

The results of a wind tunnel test reported in Ref. 109 show good
agreement between predicted and measured flutter speed on a wing where
the prediction is based on direct measurement of the load distributions on
wings deflected to simulate normal and induced mode shapes. Further de-
velopment may provide a reliable procedure for calculating flutter speed

on an entirely theoretical basis.
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F. CONSIDERATIONS AT HYPERSONIC SPEEDS

1. Effects of Entropy Layer

The procedures for calculating load distributions on supersonic
vehicles cannot be applied to indefinitely high Mach numbers. At hyper-
sonic speeds (#M, > J ) new physical phenomena violate the assumptions
underlying the derivation of the supersonic equations of motion as well
as the mathematical processes involved in their linearization. The
relation of some of these new physical conditions to the aerodynamic load
problemn will be briefly mentioned here with little or no indication of
the procedures available for their treatment. Details may be found in
texts such as Ref. 110. Reference 111 is directed more particularly to
aeroelastic problems.

One phenomenon not predicted by supersonic linear theory,
which assumes isentropic flow, is the entropy layer appearing behind a
strong shock wave. In this region the temperature of the air increases
above the isentropic value and other properties change also. However, the
pressure on a wedge behind a strong oblique shock is not much different
from the value that would be calculated by isentropic theory, as may be

inferred from the chart on page 385 ot Ref. 70.

2. Real Gas Effects

The rapid heating of air by passage through a strong shock wave
can cause excitation of new degrees of freedom of the molecules in the
air and eventually cause dissociation, ionization and other chemical reactions,
These changes in the properties of air, which in general will not be in
equilibrium everywhere over a hypersonic body, directly effect the tem-
perature and internal energy. The pressure is influenced to a lesser

extent.
3. Effects of Aerodynamic Heating

Aerodynamic heating, especially severe at high Mach numbers,

introduces its own structural problems. The coupling of aerodynamic
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and thermal loads, sometimes termed " aerothermoelasticity, " has
been extensively investigated over the past fifteen years. An extensive

treatment of the subject may be found in Ref. 112,

4. Effects of Viscosity

Viscous effects are, of course, always present to some degree;
but they have increased significance in some areas of hypersonic flight.
In reentry, or other high-altitude vehicles, the flight regime includes
regions of extremely low density (and hence low Reynolds number) where

viscous forces can predominate.

5. Noncontinuum Effects

Other low density phenomena, depending on the Knudsen number,
appear when the air acts more like a collection of molecules than like a
continuous medium. At the extreme of free molecule flow, so-called
" Newtonian impact® theory provides a simple basis for calculating loads.
At intermediatt Knudsen number, more complicated modifications may

be required. The flow regimes were first defined by Tsien in Ref, 113.
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Figure 1. Wing coordinate system
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Figure 60, Initial lift curve slopes for cone-cylinder and ogive~
cylinder bodies at Mz 4.24. Comparison of theory and
experiment for various values of nose fineness ratio,
fn' and afterbody fineness ratio, f,.
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APPENDIX A
(By Christopher J. Borland)

" WEISSINGER'S PROCEDURE" AS PROGRAMMED FOR THE
IBM 709/ 7094 IN FORTRAN II

1. DESCRIPTION OF PROGRAM
a. SUBSONIC LOAD DISTRIBUTIONS

This executive program receives the geometrical parameters
(sweep angle, aspect ratio, taper ratio, angle of attack, and spanwise
twist distribution) as input data, controls the calculation of the spanwise
loading, and prints the total lift coefficient, lift curve slope, root bending
moment curve slope, spanwise center of pressure, section lift coefficient,
spanwise loading parameter, chordwise center of pressure, and spanwise

angle of attack distribution as output data.

b. WEISS
This subroutine calculates the locations of the spanwise stations,

and sets up Eq. {IV-52) for solution.

Eq.(IV-52) may be written as

where
0y,= 2byy+ 2 G for n=1v
vn »w' T, vy
-28,, +-2 3 for ntv
vantc, un

or, in matrix notation,
[@ = [e] [d
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c. AMAT

This subroutine generates the elements aij of the square matrix.

d. B
This FORTRAN Function generates the value of b:m for use in

AMAT, from Eq.{(IV-52).

e. GBAR
This FORTRAN Function generates the value of §vn for use in

AMAT, from Eq. (IV-52).

f. FBAR

This FORTRAN Function generates the value of fﬂ/.t for use in
GBAR, from Eq. {IV-53).

g. ELSTAR

This FORTRAN Function generates the value of L;u for use in
GBAR, where

L given by Eq. (IV-55).

* —
zu Lz,fa'Lz/ M# -

h. MATINV

This subroutine solves the matrix equation set up by WEISS. It is
an IBM SHARE routine, No. 664.

i. Library and Machine Requirements

The program may be used with any IBM 709, 7090, or 7094 32K
system with a standard FORTRAN Il compiler, and a library tape including
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SINF, COSF, ATANF, ASINF, ACOSF, SQRTF, and Input/ Qutput
routines. The LIST8, LABEIL, and SYMBOL TABLE cards shown in
the listings are for use with FMS, the FORTRAN Monitor system, and

may be replaced by appropriatée system control cards.

2. INSTRUCTIONS FOR USE
a. Definition of Input Variables

M Number of control points on the span.

Ml Number of intervals in the numerical integration.
ALAM Sweep angle of the quarter-chord line, in degrees.
AR Aspect Ratio

TR Taper Ratio

ALPH Root chord angle of attack, in radians.

ITW Program input key:

1 for twisted and/or cambered wing.

0 for flat wing.
ALPHTW Section angle of twist in radians.

b. Order of Data Deck

Columns Variable

Card 1

1-5 M

6 - 10 Ml
Card 2

1-10 ALAM

11 - 20 AR

21 - 30 TR

31 - 40 ALPH

50 ITW
Card 3,4,5,..etc.

1-10 ALPHTW

221



c. Data Values

Both M and Ml must be odd, and they must be different. The

values 15 and 25 have been used, respectively, with success. With these

values, approximately 1. 08 minutes of computation time on the IBM 709
are required to calculate the loading distribution on one wing.

If ITW is given as I, there must be (M + 1)}/2 + 1 cards following
Card 2 with the values of the twist angle, ALPHTW, atthe (M +1)/2 +1
stations on the semi-span, outboard stations first. The stations are

located on the semi-span according to a Multhopp distribution,

__'yﬂ...- _ﬂ = —@ﬂ
/2 = COS e/ n=a,/,,2... 2

If ITW is given as 0, these cards may be omitted.

The variables M and M1 must be right justified in their fields,
and punched without a decimal point. The variables ALAM, AR, TR,
ALPH, and ALPHTW must be punched with the decimal point, but need
not be right justified. Up to four places after the decimal point are per-
mitted.

If calculations are desired for more than one planform or twist
distribution, the data deck may be repeated from Card 2 with the new

values.

d. Input and Output Samples

A sample input deck is shown following the listing of the programs.

The input values for the three cases tested are as follows:

Case A AR TR o Twist
1 60* 4 .5 1.0 No
2 30° 1.5 .25 1.0 Yes
3 o* 6 1.0 l.0 No

Note that the twist distribution for Case 2 is given following the geomet-
rical planform parameters.
The output for these cases is also shown. A description of the

output follows:
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Line 1:

Line 2:

Line 3-14

Line 15;

Values of AR, TR, A

Values of IC, /dd , dC,, /da, and

Fea here C, = root bending moment
b/2 + ¥ my coeffi%ient.

Values of Tb%‘ » C¢ ——A‘CS_L s

c¢Cy and @across the semi-span,

where CI is the section lift coefficient,

where x_, is the section center of pressure,

y 3

and ¢ 1is the local chord.

Value of CL
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1
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LISTA
LABEL
SUBSONIC LOAD DISTRIBUTIONS
PROGRAM TO CALCULATE LOADING DISTRIBUTIONS ON SUBSONIC
WINGS BY WEISSINGER'S METHOD,.
LIFT CURVE SLOPE IS CALCULATED BY TRAPEZOIDAL INTEGRATION.

DIMENSION THETA(301»TAUI30)sBOC{30) »TAUBAR{30)»ALPHAI30}»Y130)CL

(30} eXCP130)+SLOADI30)sCLI(30) +ALPHTW(30!
COMMON TAUTAUBAR»THETAsAMs AM1 s ALAMB »BDC
FORMAT (215}

FORMAT (4F10445110)

FORMAT (F10.s4)

FORMAT (16H1ASPECT RATIO = sF1044210Xs14HTAPER RATIO = »F5,2+10X1

18He 25 CHORD SWEEP = »F542)

FORMAT (1HO+9HDCL/DA = +F10s445Xs10HDCMY/DA = +F10.495Xs9HYBAR/B

= yF10e44)
FORMAT (S5(F1044s5X))

FORMAT {1HO,24X+30HSPANWISE LOADING (WING ALONE)//
TR 3HY /B 11X 42HCL 312X e 4HX=CP+7Xs 10HLOAD COEFF»8%»5HALPHA)
FORMAT {1ZHOCL-TOTAL = +F10+4)

READ 100 MMl

READ 101+ ALAMsARSTROALPH1TW

IF [AR) 114+10+11

ALAMB=ALAM/ 574295779

LIMIT=(IM+1)/2)+1

IF (ITW) 53645

DO 9 J=1sLIMITY

READ 102 ALPHTWI D

ALPHALJY=ALPH+ALPHTW( J)

GO TO 7

DO 1 J=1sLIMIT

ALPHA(J)=ALPH

AM=M

AM1=M1

CALL WEISS(ARSTRIALPHASYsCL 2+ XCP)

PRINT 2015AR+TRIALAM

LIM={M+1)/2

LIMP=L1M+1

DO 8 I=1sL1MP
CLI{I)=CLIT)®*2,%(1a=(Y (1) % {1e=TRII)/(14+TR)}

SUM=0,

DO 3 I=lsLIM
TERM=(Y{I)=Y(I+1))#.5%(CLI(TI+1)4+CLILI})
SUM=SUM+TERM

DCLDA=SUM/ALPH

CLTOT=SUM

SUM = O,

DO 13 I=1,LIM

TERM= (Y (I)=Y(I+1})# 458 (CLLITI4+1)4CLICI ISR (Y{I}+Y(TI+1))
SUM=SUM+TERM

DCMYDA=SUM/ALPH

YCP=DCMYDA/DCLDA

DO &4 l=1sLIMIT

SLOAD(I ) mCLU I I #4a%(a=(Y(I1%#(14=TRII}/[(1+TR)*AR)
PRINT 202+ DCLDASDCMYDASYCP

PRINT 20%

PRINT 203y (Y(IJoCLUT)sXCPLIY»SLOADITI 1 2ALPHALIY s Ix=]sLIMIT)
PRINT 207, CLTOT

G0 TO 2
END
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LISTE

LABEL

SUBROUTINE WE1SS (ARsTRsALFHAsYsCLXCP)
DIMENSION THETA(30)»TAUC30)sB0CI30) s TAUBAR(A0) sALPHA(2A0} Y (30}
CLU30) o XCP{3D)+Af30430)»G(30),ALPHAL{30}
COMMON TAU+TAUBARTHETAsAMsAM] 9ALAMB)»BOC
M=AM

PI=n3,14159265358979323846

LIM={AM+1,)/2,

DO & N=1lsM

EN=N

THETAIN)=(EN*PI)/(AM+1,)

DO 1 N=1sLIM

EN=N

TAUIN)=COSF{ IEN#PI)/(AM+]e 1))

ALPHAL (N)=ALPHAIN)

BOCINI e (AR*{1o4TR)}/ (2% {14-TAUINI*{]1.=TR) })
LIM2={AM1+1.)/2,

DO 5 NulsllIM2

EN=N

TAUBARIN)Y=COSF{{EN*PI)/AM1+1,.))

CALL AMAT {A)

CALL MATINV (ASLIMSALPHALs1+DET)

DG 2 N=lsLIM

GIN)=ALPHA1(N)

I=N+1

CL{I)=2,%GIN)*BOCIN)

XCPI1)=,25

YUl1)sTAULN)

CL(1)=0,

XCPi1)my25

Y(1}=1.0

RETURN
END
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LISTH

LABEL

SUBROUTINE AMAT (A}

DIMENSION THETA(30}sTAUIL30),B0CI30) +TAUBARIZ0YsAt30430)
COMMON TAUsTAUBAR»THETAsAMs AM1ALAMBBOC
M= AM

LIM=(AM+1 41720

DO 1 NU=1,LIM

DO 7 NalslLIM

IF (NU=N) 24342

IF (N=LIM) 4+594

ARG2=M+1-N

ANU=aNU

AN=N

BIGB=B(ANU»AN)+B{ANUJARG2)

G0 TD &

ANU=NU

AN=N

BIGB=B{ ANUsAN)

GO TO &

ANU=NU

ATNUsSNI=2 ,#B8 { ANU » ANU I +BOCINU I *#GBAR T ANU+ ANU)
60 TO 7
AINUsN)==2,#BIGB+BOCINUIY*GBAR(ANU+ AN
CONTINUE

CONTINUE

RETURN
END

LISTH

LABEL

FUNCTION BIANUAN)

DIMENSION THETAT30)+sTAUI301sBOCI301 »TAUBARI30}
COMMON TAU»TAUBAR»THETAsAMeAM1 yALAMB »BOC
NU=ANU

N=AN

IF (N=RU) 1421

Be{AM+14) /{4 +*SINF{THETAINUY )}

RETURN

B={SINF{THETAIN)) /({COSFITHETAI(N) )~COSFI{THETA(NU)})%#%2))
Blla~{ =Y )®R{N-NU))/{Z2.%[AM+1,)]

RETURN

END
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LISTS
LABEL
FUNCTION GBAR(ANU+AN)
DIMENSION THETA(30)TAU(30)sB0OCI30) »TAUBAR{ 3D}
COMMON TAUsTAUBARTHETA»AM»AM1sALAMB»BOC
SUM=0,
L!M’(AMI‘I.]/Z.
LIMP=_TM+]
DO 1 L=1sLIMP
LM=L-1
TERM=FBAR[{ANLM}IRELSTARTANU» LM}
SUM=SUM+TERM
1 CONTINUE
GBAR=([=14)} /(2% [AM1+]1.)))%S5UM
RETURN
END

LISTS
LABEL
FUNCTION FBAR{ANsLM)
DIMENSION THETA{30}+TAU{30)+BOC(30) » TAUBAR{3D)
COMMON TAUSTAUBARs THETAAMsAMY yAL AMB »BOC
N=AN
M=AM
SUM=0,
DO 1 MUl=13Ms2
AMU1=MU]
IF (LM) 23342
1 TERM=AMUI*SINFIAMUI*THETAINY)
GO TO 1
2 ELM=LM
THETBR=IELM*3,141591/(AM1+1.)
TERM=AMUI#SINF{AMUI*THETA(N} Y*COSFIAMULI*THETRR)
1 SUM=SUM+TERM
Fal{2e/ AM+1,) ) ¥5UM
IF (LM} 44544

5 IF (AN=({AM+14)/241) 69746
7 FBAR=F /24
GO TO 8
& FBAR=aF
GO TO 8
4 IF (AN={{AM+14)/2119+10+9
10 FBAR=F
GO 7O 8
9 FBAR=2 4 #F
8 RETURN
END
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L1578

LABEL

FUNCTION ELSTAR (ANUsLMI]

DIMENSION THETA{30)sTAU{30)sBOC(30}) + TAUBARI(30)

COMMON TAU»TAUBAR»THETAsAMyAML »ALAMB»BOC
TANF{X1=SINF(X)/COSF{X)

NU=ANU

IF (LM} 14241

ETAMU=1,

GO TO 3

ETAMU=TAUBARILM)

ETANU=TAUINU)

DIF=ETANU-ETAMU

SUM=ETANU+ETAMU

BOCN=BOC{NU}
TERMI={]1./{BOCN*DIF) )*{SQRTF I {{1++BOCN*DIF*TANF{ALAMB))**2)+
{{BOCN*DIFI1#%2)1-1,)

TERM2u (14 /(BOCN*¥SUMII# ({SARTF{((1«+BOCN®DIF2TANF (ALAMB) J#5%2 )+

( (BOCN*SUMI*%2) 1 }1/114+2¢%BOCN*ETANUSTANF(ALAMB) 1 ~14)

TERM3= {2+ #TANF (ALAMBI#SQRTF I { {1+ +BOCN*¥ETANU*TANF (ALAMB) 1 %#2)

+({BOCN*ETANU)*#2) 1) /114424 *BOCN*E TANU¥TANF { ALAMB) )
ELSTAR=TERM1-TERMZ2-TERM3

RETURN
END
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(aNalatalatnlalal

170
200
205
210
220
230
250
260
270
310
320
330
340
350
355
360
370
380
390
400
420
430
450
455
460
500

LISTS
LABEL
SUBROUTINE MATINV (AsNsBsMyDETERM)

SUBROUTINE TO SOLVE THE MATRIX EQUATION AX=B,» WHERE A 15
AN N X N SQUARE MATRIX, B I5 A KNOWN M X N MATRIXs AND X 15
AN UNKNOWN M X N MATRIX. UPON RETURN THE INVERSE OF A 15 PLACED
IN Ar AND X IS PLACED IN Be. BY SETTING M=0 THE SUBROUTINE MAY
BE USED FOR MATRIX INVERSION ALONEe. FOR FURTHER DETAILS SEE
IBM SHARE NOs 864

DIMENSION IPIVOT{30}s Al30+30)s BU30sl)s INDEX(30e2)» PIVOTI3IO)
EQUIVALENCE (IROWsJROW) s (ICOLUMsJCOLUM] s LAMAX» T 2 SWAP)
DETERM=1.0

DO 20 Js1N

IPIVOT(J}=0

DO 550 1=1sN

AMAXY=0,0

DO 10% J=1sN

IF (IPIVOTLJ)-1) 604105450

DO 100 K=%aN

1F (IPIVOTIK}~1) 80,100,740

IF (ABSF{AMAXI—ABSFIA(JsK})IB5,100+100
TROW=

1COLUM=K

AMAX=zA( UK

CONTINUE

CONTINUE
IPIVOTLICOLUMI=IPIVOT({ICOLUM)+1]
IF {IROW~ICOLUM) 140,26045140
DETERM=-DETERM

DO 200 L=1sN

SWAP=A{[ROW» L)
A(TROWsL 1 =A( TCOLUML }
A{ICOLUMsL ) =SWAP

IF (M} 260,260,210

DO 250 L=1.M

SWAP=B(IROW.L1

BUIROWsL)=B{ ICOLUMsL}
BOICOLUMsL)=5WAP

INDEX(T+1)=1ROW
INDEX{1+2)=1COLUM
PIVOTII)=ALTICOLUM JCOLUM)
DETERM=DETERM#PIVOTI ]}

AUICOLUMs ICOLUMYI =1 4,0

DO 350 L=1sN
ACTCOLUMS L) =ATICOLUMSL) 7PIVOTI(IY
IF (M} 380423804360

DO 370 L=14sM
BUICOLUMsL)I=BLICOLUMSL) /PIVOTLI}
DO 550 Ll=1sN

IF (L1-ICOLUM} 40045504400
T=A{L1sICOLUM}

A(LYsICOLUM)=0,0

DO 4%0 L=1sN

ALY+ d=A(LY1sL)=ACICOLUMSL)*T

IF (M) 5804,5504460

DO 500 L=]1sM
BIL1sL)=BI{LY1L)-BIICOLUMyL }®T

230



550
600
610
620
630
640
650
660
670
700
105
710
740

CONTINUE

D0 710 I=).N

LeN+1-1

IF {INDEX{Le¢1)~INDEX(Le2}) 630,710+630
JROW= INDEX(Ls1})
JCOLUM=INDEX{L+2}

DO 705 K=1sN
SWAP=A{K s JROW}

AlKs JROW)=A{K» JCOLUM)
A{Ks JCOLUM) =SWAP
CONTINUE

CONTINUE

RETURN

END

»

DATA

15 25

60.0 4.0 «50 1«0
30.0 1.5 25 1.0

+08
«07

..«06

«05
« 08
«03
«02
+01
200
0,0

640 1.0 1.0

-0
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Y/R
1.000C
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ASFECT wA
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2.C55¢E

cL

r.

P.27%
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L EAL
7.4k12
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Fal2S
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= 7eC56GE

P = [ e
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CL
C.
l.7¢17
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L3P
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HoTETA
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L LY

- taleng

4 TAPER RATLL = (.50
LCFY/LA = 1.111% YHAR/D
SPANWISE LUAPINT (WING ALY NEDY

x-CP Lian CLUFFF
C.7?5L0C o.
C.2%L0 0.4390
(.2500 Q.PL T4
L.25C0 1.07413
L2500 t.2201
C.2600 1.1240
€.2900 1.37490
C.2HL0 143594
£.2500 1.724%1
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LR LI AR CUCFF
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2500 1.2
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C.25%0C EFT L]
L7500 2.572124
L2500 V.R0A
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APPENDIX B
(By Christopher J. Borland)

" LAWRENCE'S METHOD" AS PROGRAMMED FOR
THE IBM709/7094 IN FORTRAN II

1. DESCRIPTION OF PROGRAM
a. TRANSONIC LOAD DISTRIBUTIONS

This executive program receives as inpuf data the geometrical
parameters of the wing planform and the Machno., performs the
Prandtl-Glauert transformation, and sets up the calculation for the

Lawrence method.

b. LAWRNC

This subroutine performs the calculation of the chordwise load
distribution on the transformed wing, performs the inverse transformation,
and prints the aspect ratio, lift curve slope, chordwise and spanwise
location of the center of pressure, and chordwise load distribution as out-

put data.

c. MATINV

This subroutine, used for solving the set of simultaneous equations
{IV - 105), is identical to the subrontine of the same name listed in Ap-
pendix A, with the exception that the DIMENSION statement must be changed
so that the maximum dimension of the arrays IPIVOT, A, B, INDEX, and
PIVOT matches the maximum dimension of the arrays in LAWRNC,; in

this case, 50. The listing may be found in Appendix A.

d. Library and Machine Requirements

The Library and Machine requirements for this program are iden-

tical to those listed in Appendix A,
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INSTRUCTIONS FOR USE

a. Definition of Input Variables

MBIG
NBIG
ALAMI
ALAM2
AOC

X10C

EM

KEY

FUNC

Number of intervals in the trapezoidal integration.
Number of stations on the chord.

Leading edge sweep angle in degrees.

Tip sweep angle in degrees (See sketch on Page 236)
Value of a/c (See sketch on Page 236)

Value of x, /c (See sketch on Page 236)

Mach Number

Program Input Key:

1 for twisted and/ or cambered wing.

1

0 for flat wing.

Values of f(B8,) (See Section 2-c.)

b. Order of Data Deck

Card 1

Card 2

Columns Variable
1-5 MRBIG
6-10 NBIG
1-10 ALLAMI

11-20 ALAM?2

21-30 AQC

31-40 X10C

41-50 EM
60 KEY

Cards 3,4,5, etc.

1-10 FUNC
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c. Data Values

The maximum size of both MBIG and NBIG is 50, but it has not
been necessary, for the cases tested, to use values this large. It has
been found that the solution is relatively insensitive to changes in MBIG
above a value of about 12, and to changes in NBIG above values of about
20. Since MBIG and NBIG must be different, and may not be multiples
of each other, values of 13 and 24 have been used, respectively, with
success. With these values, approximately l.54 minutes of computation
time on the IBM 709 are required to calculate the complete chordwise
load distribution on one wing at one Mach Number.

If KEY is given as 1, there must be NBIG-1 cards following Card 2
with the values of the function £ (6,) at the NBIG-1 stations on the wing
(excluding the leading edge). If KEY is given as 0, these cards may be
omitted.

The function f{en) is given by
$18y)

¥(6,) = £ WI:— a (6,,5%) féb(_:'i)z' %)z d(ﬁ_Z)

L k(8 (—g’i’l'l)

If there is no spanwise variation in effective angle of attack, i.e.

as,,y) = a (6,) , then

‘F(G,,) = (9”)

given in radians. For the case of an uncambered, untwisted wing at unit
angle of attack

F(6,) = /

Chordwise load distributions for this case are found by letting
KEY be zero.

The variables MBIG and NBIG must be right-justified in their
fields and punched without the decimal point. The variables ALAMI,
ALAM2, AOC, X10C, EM, and FUNC must be punched with the decimal
peint, but need not be right justified. Up to two places after the decimal
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point are permitted for ALAM], ALAM2, AOC, X10(, and EM, and
up to four places for FUNC.

If calculations are desired for more than one planform, Mach
number, or set of values of £ (8,) , the data deck may be repeated
from Card 2 with the new values.

The following should be noted, with reference to the sketch below.
If a rectangular planform is to be solved, A, must be set equal to zero,
A, to 90.0, and xl/c to 0. If a triangular wing is to be solved,

a/c must be set equal to 0, A ; to the leading edge sweep angle, Az
to 90.0, and xl/c to 1.0

fa— @ —
! !
o
A
\
: .

d. Input and Output Samples

A sample input deck is shown following the listing of the program.

The input value for the three cases tested are as follows:

Case A A a/c x,/c M Key
1 0.0 90.0 4.0 0.0 .85 0
2 45.0 30.0 0.0 1.0 .98
3 63.0 90.0 0.0 .6 1.10
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Note: that as " Key" is 0 in all cases, none of these wings is considered
to have a twist or camber distribution.
The output for these cases is also shown. A description of the

output follows:

Line 1: Values of 4, , Az .

Line 2: Values of a/c, xl/c, M

Line 3: Value of AR

Line 4: Values of dCL/da’. , and xcp/ C. oot

Line 5 - 29: Values of x/c, g' (x)-

Line 30: Value of ycp/b/z
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aNaNaNaNaNalhk I 3%

101
102
103
201

10

1w N

o

L1STA
LABEL
SYMBOL TABLE
TRANSONIC LOAD DISTRIBUTIONS

PROGRAM TO CALCULATE CHORDWISE LOAD DISTRIBUTIONS» CENTER OF

PRESSURE» AND LIFT CURVE SLOPE ON TRANSONIC WINGS» USING LAWRENCE'S

METHOD WITH THE PRANDTL-GLAUERT CORRECTION.

DIMENSION FUNC(50)

FORMAT (215)

FORMAT (5F10.,2+110)

FORMAT (F10.41

FORMAT (13HILAMBDA(1) = sF10+495Xs 1ZHLAMBDALZ]) = »F10e4s5X//
TH A/C =2 oF 1044 95XsTHX1/C 3 sF1l04645X+11HMACH NQs = 3F5.2)
TANFI{X)1=SINFIX)/COSF(X)

PI=23,14159265358

READ 101s MBIGINBIG

READ 102s ALAM1»ALAM2AQCX10CsEMSKEY
PRINT 201 +ALAMIZALAMZAQ0CYX10CHEM

IF {(KEY) 1041048

LIM2=NBIG~1

DO 9 I=1sLIM2

READ 103s FUNCII}

GO 10 2

LIM2=NBIG-1

DO 11 I=1,L]IM2

FUNCI(I)=1,0

IF (EM=140) 29344

BETA=SQRTF (14 -EM#EM)

GO TO %

BETA=SQRTF (EM¥EM~1,}

AODCT=BETA®AQCRZ,

X10C=X10C*2,

ALAMBl1=ALAMY /574295779
ALAMT1=ATANF{TANF(ALAMB1)/BETA)*#57,295779
[F (ALAM2=90,01 6+7s6

ALAMB2=ALAMZ /574295779

ALAMT 2= ATANF{ TANFLALAMBZ ) /BETAI®5T 295779
CALL LAWRNC (MBIGYNBIG+ALAMT I +ALAMTZ sAOCT o X10CsCLALPHIARIBETA
FUNC}

GO TO 1
END
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LISTH
LABEL
SYMBOL TABLE
SUBROUTINE LAWRNC (MBIGyNBIGsALAMLsALAMZ2 yAQC+X10CsCLALPHyAR
1 BETALFUNC)
DIMENSION BETAQCUB0)s HIBO0»S0) s FUG0s50) s HOUISO)FOIS0)s
1 BETAQBISO)s C(50+50)s ALS50)s BISOIs XOC1(50)s DGOX{S0)}»FUNC{50)
TANF(X)=SINFI{X)/COSF(X)
COTF(X)=COSF(X)/SINF{X}
GARBF{X)={ (SQRTF(ICOSFIX)-COSF(THETA )} **24+{BTASBN)*##2)-BTASBN)
1 /UCOSFIXI~COSFITHETA )
10% FORMAT (20HOLIFT CURVE SLOPE = +F1044s10Xs21HCENTER OF PRESSURE =
1 +F10e4)
1086 FORMAT (16HOASPECT RATIO = sF10.4)
107 FORMAT (1HO.25Xs27HCHORDWISE LOAD DISTRIBUTION//1HOs25X»3HX/Cs
1 14X»5HDG/DX)
108 FORMAT (23XsFB843s10X+F10,5)
109 FORMAT (31HOSPANWISE CENTER OF PRESSURE = +F1044)
LIM=MB1G-1
LIM2=NBIG=]1
ENBIG=NBIG
EMBIG=MBIG
PI=9,4141592651358
ALAMB]=ALAM1/57.295779
ALAMBZ2=AL AMZ2 /574295779
[F (ALAML1Y 393,42
2 COB=140/1AQC+{X10C*COTFLALAMBLI) ) +{2+=-X10C)I*COTFtALAMB2))
ARZ4 ¢ # [ (AQCHX10CHCOTFLALAMBL 14124 =X10CI*COTF(ALAMB2 ) ) #%#2) /(4%
1 AQC+UUX10C)# %2 ) RCOTF{ALAMBL )} 42 #X10CRCOTFIALAMBLI*(2.~X10C}
2 +U12,=-X10C)#%2)%COTF{ALAMBZ))
GO TO &
3 COB=1.,0/1A0C+2.,%COTF (ALAMB2 1)
AR=4 o ¥ [LADCH2+*COTFIALAMBZ) 1 #%#2) /{4 4 %AOC+4 4 %COTF{ALAMB2 )
4 DO 5 N=1sLIM2
EN = N
THETA= (EN®PT 1 /ENBIG
X0C=COSF(THETA)
IF {X0C+140-X10C) 64627
b BETAQCIN}sAQC+IXOC+1 «OYRCOTF(ALAMBL !
BTASBN=BETAQC(N)
GO T0 8
7 IF (X10C) 9459410
9 BETAOCIN)I(XOC+1-Ol*COTF(ALAMBZI+A0C
BTASBN=RETAOC (N}
GO TO 8
10 BETAOC(N)=X10C*COTF{ALAMBL)+{X0C+]1+0~-X10CI*#COTFIALAMB2)+ADC
BTASBN=BETAOC (N}
8 DO 11 L=1sLIM2
EL=L
SUMsG,
DO 12 M=1,,L1IM
EM=M
TERM=COSF{{EM®PI *EL ) /EMBIG)*GARBF{ (EM#PI } /EMBIG)
12 SUM=SUM+TERM
HILsN)=(14/EMBIG)* ([ { {GARBF(0.0)+({ =1, ) %% ) %GARBF(P1})/24)+5UM)
11 FILsN) ={24*SINFIELXTHETA)/(EL*P1})+{BETAOC(NI*SINF{EL#*THETA)
1 Z(SINFITHETA)))+HIL N}
SUM=0,
DO 13 M=1,L1IM
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13

14
15
23

16
20

22

21

30

EM =M

TERM=GARBF [ (EM#P] ) /EMBIG)

SUM= SUM+TERM

HOIN)® (1o /EMBIGY*{ {{GARBFIO0)+GARBF(P11)/24}+SUM}
FO(N)={(2.%THETA)/PI}+HO(N)=3,0
BETAOB(N)=BETAQCINI*COB

BINI={ (BETAOBI(N) ) #*2 ) #FUNC{N}
DO 14 I[=mlsLIM2
Cllsl)=F(1411~FOITI}
Clles2)mF{2+1)=FOL(])}

DO 23 I=1sLIM2

DO 15 JUs3sLIM2
ClIsd)=Fidel)=FlJ=241}

CONTINUE

CALL MATINVICsLIM2+Bs1+DETERM}
DO 20 I=1.LIM2

Atl)i=RI])

A(NBIG)=0,0
CLALPH=2 . #PI®AR® (A{1)1+A12))
CLALPH=CLALPH/BETA

XCP=o80={ 426#( (A{1)=A(3) )/ (AI1)+AL2)) )}
AR=AR/BETA

PRINT 106+ AR

PRINT 1054 CLALPHsXCP

PRINT 107

DO 21 N=1lsLIM2

EN=N

TYHETA= (EN¥#PI)/ENBI1G
XOC1IN)=COSFI{THETA)
XOC1IN)=XOC]1 (NI #R,5+,5

SUM=0,

DO 22 L=2sLIM2

EL=L
TERM=A{L)*SINFL(EL=-14)*THETA)
SUM= SUM+TERM
DGDX{N)=A{1)1#TANFITHETA/24)+2%5UM
DGDXIN}=DGDXIN)/BETA

PRINT 108y XOC1(N)» DGDX{N)
SUM1=0,

S5UM2=0,

DO 30. Nm2sLIM2
BETAOCIN)=BETAQCIN}/BETA
DXeXOC1INI=-XOCI{N-1)
TERM1=BETAOCIN)I®DGDX (N)*DX
TERM2=DGDX (N)*#DX
SUM1=SUM1+TERM]

SUMZ=SUM2+TERM?2
SUMI=SUMI+BETAQC(1)%DGDX(1)#X0C111)
SUM2=SUM2+DGDX {1 )1#X0C11{ 1)}
YBAR={SUMY1/{SUM2#(P[/2.)))%COB*BETA
PRINT 109, YBAR

RETURN

END

241



® DATA

13 24

0,0 900 440 04,0 185 0
45,0 2040 040 1.0 98 0
630 90.0 UeD b 110 0
LAMBDAC(L) = 0. LAMBDAL2) = 90, C000
A/C = 4,0000 XL/C = 0. MACH NiJ. = 0.45
ASPECT RATIO = B. 000
LIFT CURVE SLOPE = 7.0185% CENTER Nf PRESSURE = N.2318

CHORDWISE LOAD DISTRIBUTION

X/C NG/DX

0.996 0.01518

0.983 0.03041

0.962 0.04587

0.233 0.06172

0.897 0.07819

0.854% 0.09554

0.804 0.11410

0.750 0.13423

0.691 0. 15641

0.629 0.18170

0.565 0.,20933

0.500 0.24174

0.43% 0.27968

C.371 D,.,32483

0.309 0.37961

0.25C 0.44757

U.1986 0.53423

0.146 0.64867

0.103 0.80718

0.067 1.04203

0.038 1.42844

g.0117 2.19097

C.004 4.4%230
SPANMISE CENTER OF PRESSURE = Caba 74
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LAMBDA{L1) = 45.000Q LAMBDAL2) = 50.0000

A/C = O. Xi/C = 1.0000 MACH NUO. = 0.91
ASPECT RATID = 4.C000
LIFT CURVE SLOPE = 5.2629 CENTER OF PRESSURF = J.6138

CHORDWISE LOAD DISTRIBUTION

X/C DG/DX

U.336 0.633049
0.983 1.174971
0.962 le 66653
0.9313 2.04579
0.897 2+3333)
0.854 2.51070C
0.R04 2.59903
0.75¢C 2.59333
0.691 2.5%20%4
0.629 2.381%4
0.565 2.20602
0.500 1.9R922
0.435 1.76475
0.371 1.514722
G.309 l1.28651
C.25¢C 1.0372%
0.196 0.B83472
0.l46 0.61995
0.1013 0.4481H
0.067 0.30768
C.038 O.14161
0.017 0.11834
0.004 -0.14497

SPANWISE CENTER OF PRESSURE = 0.5494
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LAMBDALL) = £3.0000 LAMBDAL2) = 90,0000

AJC = 0. Xt/C = 0.6000 MACH NO. = 1.10
ASPECT RATI(O = 0.8735
LIFT CURVE 5LOPE = 1.3534 CENTER OF PRESSURE = C.alln

CHORDWISE LOAD DISTRIBUTION

X/C DG/ DX
0.996 -0.00947
0,983 0.02326
0.962 0.0264 3
0.933 0.04945
0.897 0.05962
0.854 0.0958%
0.804 0.12719
C.750 0.22148
0.691 0.33824
0.629 0.BO%7B
0.565 1.60481
€.500 1.91882
0.435 1.86707
0.371 1.70774
0.309 1.48952
0.250 1.23472
0.196 0.99816
0.146 0475060
0.103 0.54601
0.067 0.36689
0.038 0.18746
c.017 0.13089
0.004 -0.11683
SPANWISE CENTER OF PRESSURE = 0.4184
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APPENDIX C

"ETKIN'S PROCEDURE" AS PROGRAMMED FOR THE
IBM 709/7094 IN FORTRAN II

1. DESCRIPTIONS OF PROGRAM
a. SUPERSONIC LOAD DISTRIBUTIONS

This executive program receives the Mach number and geomet-~
rical parameters (aweep angle, aspect ratio, taper ratio, angle of
attack, and spanwise twist distribution) as input data; controls the cal-
culation of spanwise loading; and prints the total lift coefficient, lift curve
slope, root bending moment curve slope, spanwise and chordwise loca-
tion of the center of pressure, section lift coefficient, section center of
pressure, spanwise loading parameter,spanwise angle of attack distri-

bution, and complete pressure distribution as output data.

b. EVVARD

This subroutine checks to see that the leading edge is sonic or
subsonic, and that the trailing edge is supersonic. If these conditions
are fulfilled, the calculation continues. If not, an error message, in-

dicating the actual conditions, is given, and another case is attempted.

c. SUBSLE

This subroutine calculates the pressure distribution over the en-
tire wing by Etkin's procedure, and calculates the section lift coefficient

and center of pressure by integration of the pressure distribution,

d. Library and Machine Requirements

Library and machine requirements are identical to those listed in

Appendix A.
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2.

INSTRUCTION FOR USE

a.

Definition of Input Variables

M

N

MG
NG
KPG
KQG
EM
ALAM

AR
TR
ALPH

ITW

ALPHTW

Order of Data Deck

Card 1

Card 2

Number of station on the semi-
span, including root and tip.

Number of stations on the chord,
not including the leading edge.

Parameters M, N, P, and Q
defined in Etkin's procedure
(Ref. 49)

Mach number

Leading edge sweep angle in
degrees.

Aspect ratio
Taper ratio

Root chord angle of attack, in
radians,

Program input key:
= | for twisted wing
= 0 for flat wing

Section angle of twist in radians.

Columns Variable
1.5 M
6-10 N

11-15 MG
16-20 NG

21-25 KPG

26-30 KQG
1.10 EM

11-20 ALAM

21-30 AR
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Columns Variable

31-40 TR
41-50 ALPH
60 ITW

Cards 3,4,5,etc. (If ITW =1)
1-10 ALPHTW

c. Data Values

The values of M, N, MG, NG, KPG, and KQG are dependent only
on the desired accuracy. Values of 10,5,20,20,5, and 5 respectively,
have been used successfully, with little sensitivity shown in the solution.
With these values, approximately 4.65 minutes of computation time on
the IBM 709 are required to calculate the complete pressure distribution
and spanwise loading on one wing.

If the pressure distribution on a flat wing is to be computed, ITW
is given as 0, and only Cards 1 and 2 are required. If, however, an
arbitrary spanwise variation in angle of attack is desired, ITW is given
as 1, and N cards with the values of ALPHTW, the angle of twist with
respect to the root chord at the N stations on the semi~-span must follow

Cards 1l and 2. The locations of the stations are given by:

W‘y"z’—zl—(-%}-f—); 7= F12,...N
It must be noted that the angle of attack is constant between stations, i.e.,
between, for example, y; and y;, the angle of attack has the value given
for y, . The variables M, N, MG, NG, KPG, KQG, and ITW must be right
justified in their fields and punched without the decimal point. The vari-
ables EM, ALAM, AR, TR, ALPH, and ALPHTW must be punched with the
decimal point, but need not be right justified. Up to four places after
the decimal point are permitted.

If calculations are desired for more than one planform, Mach
number, or twist distribution, the data deck may be repeated from Card 2
with the new values. Card 1l may not be repeated.

The value of ALPH is most conveniently given as 1.0, although

other values may be given if desired.
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d. Input and Output Samples

A sample input deck is shown following the listing of the programs.

The input values for the cases tested are as follows:

Case Mach No. AL.E. AR TR a Twist
1 1.45 63.42 2 0 3.4° 0
2 1.97 63.42 2 0 15° 0
3 1.45 63.42 2 0 17.4° 0
4 1.97 63.42 2 0 io° 0

The output for these cases is also shown:

Sheet 1:

Line l: Values of M,AR,TR,AL.E.

Line 2: Statement of leading and trailing edge conditions,

Line 3: Values of dCL/daf, deylda, ycp/b/z, xcplcroot'

Lines 4-9: Values of y/b/2, C‘, xcp/C (section center of pressure
referred to the local chord) CCI’ o,
Line 10: Values of CL'

Sheet 2.
Values of x/b/2, Y/b/Z, 1/2 A Cp (x.v).
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aNANANANEANE I 3

100
101
102
201
202

2013
204

207
301
102

303
RO

51
15
17
16

18

20

11

LISTS
LABEL
SYMBOL TABLE
SUPERSONIC LOAD OISTRIBUTIONS

PROGRAM TO CALCULATE LOAD DISTRIBUTIONS ON SUPERSONIC
WINGS WITH SUBSCONIC LEADING EDGESs SUPERSONIC TRAILING EDGESs
AND AN ARBITRARY SPANWISE DISTRIBUTION OF TWIST.

DIMENSTON ALPHA(Z25)1eY (251 aCLI25) s XCP{25)+sSLOADI25)sCL11I25Y»WOU(25

JrALPHTWI25)2CPI25425) 14X {25925}

COMMON EM»ALAMsARSTRsNs ALPHAsYsCLs XCPsFLAG» DCMDA sMsMGINGIKPG»KUG

2CPa X

FORMAT (616}

FORMAT (SF10445]110)

FORMAT (F10.4)

FORMAT (BHIMACH = #F10e495Xs5HAR = sF10e4s5Xs5HTR = sF1l0e4+5Xs

IQHLO E. SWFEP = !Floch,

FORMAT {10HODCL/DA = »F10e8e5X10HDCMY/DA = +F10a4e5Xs6HYCP =

F10a4 45X +6HXCP = #F1044)

FORMAT (5F1845)

FORMAT ({T72HG Y/B cL XCP COEF
ALPHA )

FORMAT {(12HOCL-TOTAL = sFl0.4)

FORMAT (1H14+25Xs21HPRESSURE DISTRIBUTION)

FORMAT {(72HO x/C Y/B cp X/C Y/

cp /1RO

FORMAT [(2(F7a8s3XsFT7ea493%XsE11,548X))

READ 100+ MyNsMGINGKPG+KQG

N IS THF NUMBFR OF SPANWISE STATIONS

M IS THF NUMBER OF CHORDWISE STATIONS

RFAD 1014 EMsALAMsAR»TRsALPH.ITW

IF (AR} 50250451

ALAMB=ALAM/57,295779

IF [ITW) 15s16915

DO 17 J=1sN

READ 1C2s ALPHTWI{ )

ALPHA(J)Y=ALPH+ALPHTW(J)

60 TO 18

DC 2 J=1sN

ALPHA(J)=ALPH

PRINT 2071 sEM»ARsTRoALAM

FLAG=OI

CALL FEVVARD

IF [FLAG) 2042041

LIM=N=-1

SUM=0,

DO B I=)1sN

CLUU I =CLAiT % 2% 1a={Y (1) *{]e=TRII)/{1.+TR}

DO 3 1=1sL1IM

TERM={YiT)=Y {141 ) #,6%iCL1ICI+1}4+CLITTY)

SUM=SUM+TERM

DCLDA=SUM/ALPH

CLTOT=5UM

SUM=0,

DO 13 1=1sLIM

TERM=(Y (1))=Y {T+1 )1 %45 {CLI{T+1V+CLIEI ) XS (Y{I)+Y(I41))

SUM=SUM+TERM

DCMYDA=SUM/ALPH

YCP=DCMYDA/DCLDA
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40
4l

42

*

101
102

102
104
105

(VRN

XBAR=DCMDA/DCLDA

DO 4 1=1sN

SLOAD T ) =CLUTI I ®Aa* (1~ (YT ®*(1a=TR) I/ ({1e+TR)*AR}
PRINT 202y DCLDA»DCMYDASYCP s XBAR

PRINT 204

PRINT 203y ({Y{I)sCLUTT1oXCP{T)sSLOAD(I)+ALPHALLYy I=14N)
PRINT 207y CLTOTY

PRINT 301

TOT=N/2

NUM=TOT

TOT1l=NKUM

IF (TOT1=-T0T) 40940941

NUM=NUM+ ]

PRINT 1302

DC 42 J=1+NUM

J2=J+NUM

PRINT 303y (X{IaJ)aY(J)sCPiLIadbaX{Ted2)aY{J2)sCPIT1eJ2ts I=1sM)
CONT INUF

GO TO 1
FND

LIST8

LABEL

SYMBOL TABLE

SUBRQUTINE EVVARD

DIMENSION ALPHA(Z5)+Y({25)9CLI25)»XCP(25)

COMMON EMs AL AM)AR s TRsNs ALPHA»Y»CL o XCP+FLAG »DCMDA

FORMAT (49H2TRAILING EDGE SUBSONICs PROGRAM CANNOT CONTINUE)
FORMAT (S58HZUNSWEPT SUPERSONIC LEADING EDGEs PROGRAM CANNOT CONT

1INUE)

FORMAT (49HOSUBSONIC LEADING EDGEs SUPERSONIC TRAILING EDGE)
FORMAT (46HUSONIC LEADING EDGEs SUPERSONIC TRAILING EDGE)
FORMAT {S50M2LEADING EDGE SUPERSONICy PROGRAM CONNOT CONTINUE)
TANFIX)=SINF(X)/COSFiX)

BETA=SQRTF({EM¥%2}=1,)

ALAMB=zALAM/ 574295779

ALAMTE=ATANF I TANFIALAMB) = (4 4% (1,~TR))/{AR*(1.+TR))))

1F LABSFUALAMTE ) ~ATANFIBETAY ) 19142

PRINT 101

FLAG=1,0

RETURN

IF (ALAMB) 3s3+4

PRINT 102

FLAGa],0

RETURN

IF (ABSFIBETA/TANFIALAMBI=1.0)1~,0001) &+64+8

IF ((BETA/TANF{ALAMB) ) =1401 53647

PRINT 103

CALL SUBSLE

RETURN

PRINT 104

CALL SUBSLE

RETURN

PRINT 105

FLAG'lQo

RETURN
END
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M

31
310

33
32

w N -

LISTS

LABEL

SYMBOL TABLE

SUBROUTINE SUBSLE

DIMENSION Y125)XLI25)sCi25) o XCI25025)9X (2525} TK{25925)
Cli25125)19D1 250251 0A125425) 9B 2542533Y5(25525)sDSDX{25225)»
SPQU25+25)sCP1{2502519CP212592519CP(25+25)CL{25)sCCLI25)¢SLOAD
(25) ¢ALPHAL25)XCP(25) -

DIMENSION DCP(255»25) s XARM{25)

COMMON EMsALAMIAR s TRsMsALPHA»Y s CL s XCPsFLAG»DCMDAsN» MG o NG KPGKQG
vCPe X

N IS THE NUMBER OF CHORDWISE STATIONS

M IS THE NUMBER OF SPANWISE STATIONS
TANFI{XI1=SINF{X)/COSF(X)
ALAMB=ALAM/57.295779
BETA=SQRTFI(EM®%2)=~],)
CAPPA={]le~IBETA/TANFIALAMB) ) )/ {1 «+{BETA/TANF(ALAMB}))
AK=1+/(BETA®{1./TANF(ALAMB) }}

AM=M

MM=M-1

DO 1 J=1sM

AJ=)

Y{JI=le=U1AJ-1a)/{AM=141})

XL =Y LI V*TANF{ ALAMB)
ClUI=44¥(1a=YIJIH(1a~TR))/(AR*(12+TR)}
EN=N

DO 2 J=1M

PO 3 Ic1sN

EYE=]

XCLIo JY=EYE®CIJ}/EN

X(IadyeXL (Y +XCUT )

TEKUT s J)=AKRBETARY () /X{[+.J)

CONTINUE

EMG=MG

ENG=NG

PG=KPG

QG=KQG

THETA=ATANF{BETA)

DO 4 J=1lM

DO 5 I=1eN

YLE=X{TsJ)/TANFILALAMB)}

Al=YLE-YL))

EMA=A1#SINFIALAMB) /SINFLALAMB+THETA)

IF (EMAXCOSFITHETAI+Y{J)1=1.0) 30430531
EMA={1.0=-Y{.1) ) /COSF(THETA)

AZ2=YLE+Y{})
ENB=A2%SINF{ALAMB)/SINF({ALAMB+THETA}

IF {ENB*COSF{(THETA)=Y{J)=1.0} 32,32,33
ENB=(1,04+Y1 3} )/COSFITHETA)

Al{l»J)=EMA/EMG

B{I»J)=ENB/ENG
XPP=X(T+J)-EMARSINF{THETA}-ENB*SINF(THETA)
XP=X(T1+J)~ENBRSINF(THETA)
YLEP=XP/TANF { ALAMB)

YLEPP=XPP/TANF(ALAMB)
YSTAR=YLEP-EMAXCOSFITHETA)
81=YLEPP+YSTAR

B2=YLEPP-YSTAR

PCaBI*SINF{ALAMBY /SINF(ALAMB4+THETA)
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15
1
37
186

41
40

10
11

39

14
15

11

12

17

18

QD=B2#SINF(ALAMS) /SINFLALAMB+THETA)
IF (PCHCOSFITHETA)I=-YSTAR=140) 34434435

PC=l140+YSTARI/COSFLTHFTA)

1F (QD®COSF(THFTAI+YSTAR=1,0) 3643637

OD=11,0=YSTAR)/COSFITHFTA)

Cli1r» )aPC/PG

DILy 1 =QD/OG

YS(Iy»J))=YSTAR

CONTINUE

DO B J=leM

hbo 9 I=1»N

SUM2=00

DD & MSal MG

AMS=MS

SUM1=0,

DO 7 NS=14NG

ANS=NS

Y1=AMS*AL [+ ) #COSFITHETA)=ANSHB( 1 v JI#COSFULTHETA)+Y(J)

IF {ABSFIY1)=1.0) 4024054l )

ALPH=0,

GO TO 139

DO 10 K=24M

IF (Y{KI=ABSF{Y1}) 11,11+10

CONTINUE

ALPH=ALPHA (K |+ {ALPHALK =11 =ALPHA LK} 1/ {YIK~11=-Y{KI}I#LABSF{YLI-YIK
1)

TERMzALPH® ({ SQRTF(AMS) =S5QRTF{AMS~14 ) I*IS5QRTFLANS I =SQRTFIANS=14} 1}
/SQRTFIENGH#FMG)

1F (ACLI»J)) 4244247

TERM‘O-

SUM1=SUM1+TERM

TERM=SUML

SUM2=SUM2+ TFERM

SMN=SUM2

SUM2a0,

PO 12 IP=1+KPG

pelp

SUM1=0,

DO 13 1Q=1+KQG

QelQ

Y2sPHCILL v J)RCOSFITHETA) =Q¥D (T« J)#COSFL{THETAI-YS( 1y J}

DO 14 K=1lsM

IF (Y{KI1=ABSFIY2)) 15415414

CONTINUE

ALPH=ALPHAIK I+ (ALPHA{K=1)=ALPHAIK} ) ZIYIK-1)=YIK)))*{ ABSFIY1)-Y (K
1)
TERM=ALPH/SARTF( {14+l l1e=TK{IsJ)I*CAPPARP )/ ((1a+TKI s J) }*PG) 1 *
[let({La=TK{I s ) YRCAPPARQ) /{ [1e+TKEIJ)I*QGI )

SUM1=5UM1+TERM

TERM=SUM]

SUM2=5UMZ+TERM

SPRI1+J1=5UM2/IPGHOG)

CONT INUE

DO 16 I=14N

IF (I=-1) 17417418

DSOAL 1) s{=34%#SPUL1 s ) +4 o #SPQI2 ) =SPUL Ao I )% (1 e/ [2.%XCINyJ}/
FNY)

GO TO 16

[TF{1=N) 19220420
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20 DSDXLT 91 ={SPQIN-21J)~44¥SPQIN=-1+J)+3.%SPUIN»JII*[14/12¥XCINs I}/
1 ENYY
GO TO 16
19 DSDXLT o) = =SPAULI=)1eJ)+SPAUT+1 ) I * 1] a/{2*¥XCINsJI/ENDY)
16 CONTINUE
DO 21 1I=1sN
SQT=SQRTF{ABSFI1e=(TK( Ty JI#¥*2]1})
CPL{Ty )1 =={84/(3414159%BETA*¥(1.,+AK) J)*{5MN/SQT)
CPZ2U19d)=(2%(AK-1a)/(BETA%314159% ({1.+AKI**3) ) I ¥ (SPQR(TsJ}
1 /75QT+SQT*#X (L JI%DSDXTY» )
CP{lsJ)=CPIL1 s JI+CP2I1sJ))
21 CONTINUE
DO 22 I=14N

22 DCP{IsJ} = 2.%CP(1sJ)
TERMI=2.#DCP {1+ I*UIXIToJ}=-XL(J))
5UM=0.

DO 23 1=2N
TERM=o6*¥ (DCPUT =2 JI+DCPIT s JI I %¥IX{TaJ)=X1T~1sJ)}
23 SUM=SUM+TFRM
SUM=5UM+TERM]
CLtJte=SUM/C ()
CCLIL)==5UM
TERMM1={24/3« J#DCP{1 s JI#(IXT Lo JI=XL{J))*%2)
SUM2=0.
DO 24 1=2sN
TERM= 6% (DCPITsJI14+DCPII-1s I 3R AXI I J)=X{I=1 o)) ¥iX( T JI+X(I=1sJ)
1 <2#XL{J1I%,5
24 SUMZ2=5UM2+TERM
SUM2=5UMZ2+TERMM
XCPUJY=SUMZ2/{SUM*C(JY)
XARM{ J}=SUM2 /SUM+XL{J)
B CONTINUE
SUM3=0,
DO 25 J=1+MM
TERM=(CCLUJ+1I+CCLAIN 1 *o8% (XARM{J+1 )+ XARMUU) Y ¥ B%{Y{J)l=Y{J+11)
25 5UM3=5UM3+TERM
ALPH=ALPHA(M]}
DCMDA=SUMI/ (ALPH*CIM]))
100 RETURN

END
* DATA
10 5 20 20 5 5
ls45 6342 240 Qa +0593 0
1,97 63442 240 0. 02617 0
1.45 63442 2.0 0. +3036 o]
1,97 63.42 2.0 Qe «5235 0
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FACH =

SUBSONIC LEADING EOGE,

1.45CQ

AR =

PRESSURE GISTRIBLTION

2.0000

CCL/DA = ?.5235 neMy /oA =
Y706 it xC
l1.qCC00 -C.
0.75000 0.25783
0.5C000 g.17012
0.250600 0.1286%
Q. C.1Ca50
CL-TOTAL = G.14498
X/C Y/B cp
1.9987 1.6000 C.76RTSE 01
1.9987 1.00C0 0. 76875€ 01
1.9987 1.0cco 0.76875E 01
1.9987 1.0000 0.T&RT5€E 01
1.9987 1.0000 0.T76875F 01
1.9987 1.0¢C0 0.74875E Q1
1.9987 1.0CG0 0. T6BTSE 01
1.9987 1-0000 0. 768758 01
1.9987 1.0000 0.74875E 01
1.9987 1.0000 0. T6B75E 0L
1.549C €.1500 0.19132€-00
1.599C C.7500 0. 13855E-0C
1.6490 C.75C0 0.115T6E-0C
1.6990 0.7500 0.10250E-00
L. 7490 C.7500 0.9386CE-01
1.799¢ 0.7500 0.87289E-01
1.8490 C.7%C0  0,82450E-01
1.8990 €.7500 0.TA63IGE-O1
1.949C C.T5C0 0. 15547E-01
1.999C C.7%00 0.72990F-01
1.0993 0.5C00 0.11576E-00
l.1993 C.5CC0 0.87289E~01
1.2993 C.5C0C0 0. 7554 7E-01
1.3993 C.5000 0.69000FE-01
1.4993 0.50090 0.64807F-C1
1.59912 C.5C00 0.61A94€-01
1.69912 C.5C00 0.59755E-01
1.7993 £.5C00 0.581316-01
1.8992 0.5C00 0. 56854E-01
1.9992 C.50C0 0.55827E-0]

254

R =

SUPERSONIC TRAJLING EDGE

t.02498

P

c.
0.35141
0.37584
C.41117
0.45606

x/C

0.6497
0.7997
0.9497
1.0997
1.2497
1.3997
1.54%7
1.4997
1.8497
1.%997
¢.2000
0. 4000
0.8000
0. 8000
1.0000
1.2000
1.4C00
1.6000
1-8000
2.0000
0-
0.
0.
0.
0.
0.
Q0.
0.
0.
0.

0. L. b, SHWEED
YCP = 0, 4065 xen
COEFF ALPHA

0. 0.05930
0.12892 0.05930
0.17012 0.0%930
0.19306 0.05930
0.21300 0.0%930

Y/B cr
0.2500 0.75545£-01
0.2500  D.61896k-01
0.2500 0.56R55L-01
0.2500  0.54292F-01
0.2500  0.52776E-0L
0.2500  0.SLT93E-01
0.2500 0.511h6t-01
0.2500  0.50A27E-D1
0.2500 0.50261E-01
0.7500  0,49979E-01
C. D.4B408F-01
0. 0.4B408E-01
0. 0.484086-01
D. 0.4840BE-01
0. 0.48408E-01
0. 0.4A408F-01
0. D.4840RE-01
0. D.%B40RE-O1
c. 0.48408E-01
0. 0.4B40BE-01
0. o.

0. 0.
0. 0.
0' ol
0. 0.
c. 0.
0. 0.
a. 0.
0. 0.
. 0.

63,4200
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MACH = L.9700 AR = 72.0000 IR = 0. Le b SHEFP = 63.4200

SUBSONIC LEADING ECGE, SUPERSONIC TRAILING EPGE

LCL/DA = 2.1144 ODCMY /LA = 0.8600 YCf = 0.4067 XCP = 0.6%04
Y/B cL xcp COEFF AL PHA
1.CCO00 -0. 0. 0. 0.26170
0.75000 0.95473 . 0.35127 D.47737 0.26110
0.5CC00 0.62939 0.37540 0.62939 0.26170
0.25G00 0.47562 C.41094 0.71344 0.26170
Us 0.319312 0.45606 0.78626 0.26L 70
CL-TOTAL = 0.5533

PRESSURE DISTRIBUTION

X{C ¥/Q ce X/C ¥/8 ce
1.9987 1.04C0 0.97TT75E 01 0.6497 0.25C0 0.27952E-00
1.9987 1.0000 J.97775F 01 0.7997 0.2500 0.22833E-00
1.9987 1.0000 0.9T7T75€E 01 0.9497 G.2500 0.21010€-00
1.9987 1.0000 0.977175E Ol 1.0997 0.2500 0.2005RE-00
1.9987 1.0Cc00 0.97%75E 01 L2497 0.23%C0 0.19494E-00
L.9987 1.0000 0.97T75E O1 1.3997 0.25Q0 0.19129E-00
1.9987 1.0000 0.97775E 01 15497 0.24500 0.1R877E-00
1.9987 L.0000 0.977TSE 01 1.6997 0.2%500 0.18699E-00
1.9987 1.C000 0.977715E 01 1.84%97 0.2500 0. L85%99E-00
1.9947 1.0000 0.97775E 01 1.9997 0.2500 0.18454L-00
E.5490 0.7500 0-TOBT&F 0C 0.2000 0. 0.17870E-00
1.5990 0.7500 0.5131&E OC 0.4000 0. 0.17T870E-00
L.6490 C.7500 0.42B66E-CC 0.6000 0. 0.17870E-0C0
1.699C C.7500 0.37949E-0Q0 0.3000 0. 0.178TO0FE-00
1.7490 C.7500 0. 346T2E-00 1.0000 ¢ G.17P70L-00
1.7990 C.7500 0.32309E-00 t.2C00 G. 0.L7870€E-00
1.8490 C.7500 0.30514%E-00 1.4C00 U. 0.17TRATCE-00
1.899¢C C.7500 0.29099E-00 L.&000 0. 0.11870F-00
1.9490 C.7500 0.27952E-00 1.8000 Q. 0.1IATOE-00
1.9990 C. 1500 0.27003E-00 2.0C00 O. 0.17870E-00
1.0993 C.5000 0.42866E-00 0. 0. .

1.1993 0.5000 0.32309E-00 0. 0. G.
1.2993 C.5000 0.27952E-00 0. % 0.
1.39913 C.5000 0.25522E-0C 0. [t 0.
1.49493 C.5000 0.23965%E-00 0. 0. 0.
1.5993 0.5000 0.,22883E-00 0. U. 0.
1.6993 C.5000 0.22090E-00 0. 0. 0.
1.7993 C.5CCO 0.21485€-0C 0. 0. 0.
1.8993 €.5000 0.210190€-0C 0. 0. Q.
1.9993 C.5000 0.2062SE-00 C. 0. 0.
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MACH =

SURSONIC LEADING EDGE.,

CCL/DA ~ 2.523% DCMY /DA =

Y/8 L

1.0C000 -0.

0. 75000 1.32C04

0.5C000 0.8709%

0.25000 0.64R87

0. D.54524
CL-TOTAL = 0.T661

x/C Y/8 |94

1.9987 1.0000 0.19758E 02
1.9987 1.0000 0.197158€ 02
1.9967 1.0000 €.39358F 02
1.9987 1.0000 0.353%8F 02
1.9987 1.0000 0.193%8E 02
1.9987 1.00C0 0. 39158C 02
1.9987 1.0060 0.33158E 02
1.99817 1.0000 U.1935BE 02
1.9987 1.0000 0.39358¢ 02
1.9987 1.0000 N.393508¢ 02
1.5490 C.1500 Q.97949€ 0C
1.599¢ €.175%00 0. 70932 00
1.6490 €.7500 D.%59264E 00
1.6990 g.7%00 0.%2475€¢ 0OC
1.7490 c.7500 0.47951E-00
1.79%C C.75C0 0. 44 489E-00
L.8490 C.7500 0.422128-00
1.8990 0.7500 0.4C260E-0C
1.9490 c.7500 0.YRATAE-QC
1.999C €.7500 0.37385E-0C
1.0992 ¢.5000 0+%59263E Q0
|019q3 O.SOOO U.ﬁ#b?DE—OC
1.2993 c.5000 0.3846THE~00
1.3993 C.5C00 0.35328E~00C
1,4993 c.5000 0.33179E-00
1.%992 C.5000 0, 31488E-00
1.69%) C.5C00 0. 30595E-Q¢C
1.7992 c.5C00 0.29761E-0QQ
1,8992 C.5C00 0.29107E~00
1.9993 €.5000 0,28542£~00

1.45C0

AR =

PRESSURE DISTRIBUTION

2.0000 Th
SUPERSONIC TRAILING EDGE

1.0248

XCP
O
035141
0.375084
Cetlll?
0.45606

%/C

0.6497
047997
0.9497
1.0997
1.2497
13997
1.5497
1.6997
1,8497
1.9997
Q.2C00
0.4600
0.6000
0.8000
1.C000
1.2000
1.4000
1.6000
1.8C00
2.0000
0.
o.
u'
0
D'
0.
D.
0.
0.
0.
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0. L. E. SKEEP
YCP = 0,406% xce
COEFF ALPHA

0. 0. 30360
0.66002 0.30360
0.8709% 0. 30360
0.98831 0. 30360
1.090449 0.30360

Y/8 ce
0.2500 0.3867T7E-00
0.2500 0.316A9E-00
012500 0!29103E‘00
0.2500 D277 E~00
C.2500 0.27020:-00
0.2500 0.26517E~00
0.2500 0.261TOE-00
0.,2500 0.25919E-00
0-2500 0-?5732&‘00
0.2500 0.25%588k-00
Q. 0.247B4E~00
0. D.24T84E~00
C. 0.24784L-00
0. 0.24TB4E-C0C
g. 0.24TR4E-0Q0
D. 0.24734£-00
0. 0.247B4E-00
Q. 0.26TR4E-DOD
O 0. 24TRLE-DD
O 0.24784C-00
0. 0.

n. OI
0. 0.
DI D.
Cs 0.
UI Ul
0. 0.
[* 1Y 0.
Qe 0.
(1 Oa

G 4200

Q.64%0 )



MACH = L.92700 AR 3 2.,C000 TR = 0. Lo E. SWEEP = 63,4200

SUBSONTIC LEADING EDGE, SUPFRSONIC TRAILING EDGE

OCL/046 = Z.ll44 DCRY /DA = 0.8600 YCP = 0.4067 Xcp = U.bbi3
Y/e cL xce COEFF ALPHA
1.CCC00 -0. C. 0. 0.52350
0.75000 1.90983 0.35127 0.95492 0.%2350
0.5C200 1.25902 0.37560 1.29902 0.52350
0.25000 0.95143 0.41094 l.42714 0.521350
T C.70641 0.45606 1.57283 0.5235%0
CL-YOTIAL = 1.1069

PRESSURE DISTRIBUTION

XIC ¥/8 cep e Y/8 ce
1.9987 1.0000 0.19559€ 02 0.6497 0.2500 0.95315E 00D
1.9987% 1.CCCO 0.19559F 02 0.7997 0.2500 0.457T5€-00
1.9987 1.0000 0.19559E 02 0.9497 0.25C0 0-47029€-00
1.9987 1.0000 0.195359E 02 1.0997 0.2500 0.40123F-00
1.9987 1.0000 0.19%%9E 02 l.2497 0.2500 0.38996E~-00
1.9987 1.0000 0.19559¢ 02 1.3997 0.25C0 0.3R265E-00
1.9987 1.0000 0.19559€ 02 1.5497 0.2500 0.37761FE-00
1.9987 1.0000 0.19559E 02 1.6997 0.2500 0.37397£-00
1.9987 1.0000 0. 1965%9E 02 1.8497 C.2500 0.371256-00
1.9987 1.0C00 0.1955%E 02 1.9997 0.25C0 0.369L6E-00
1.549¢C C.T500 0.14178F 01 0.2000 0. 0.35746E-00
1.599¢ C.7500 0.1026%E 0L 0.4000 0. 0.25746E-00
1.6490 €.7500 0.85T48E 00 0.6000 Da 0.35746E-00
1.699C C.71500 0.75913E OC 0.8000 0. 0. 35T46E-00
1.T49GC C.7500 0.69358F 00 1.0000 0. 0.35746F-00
1.7990 C.7500 0.64630E 00 1.2000 0. 0.35T46E-00
1.8490 C.75C0 0.61039E 0OC 1.4000 0. 0.35746E-00
1.R99C €.75C0 0.58208F CQ 1.6C00 0. 0.35746E-00
1.949C C.T500 0.5%915%E 00 1.8C00 C. 0.357460L-00
1.999¢ (.7500 0.5401 7 00 2.0C00 O. 0.35T46E~00
1.09%3 €.5CGC0 0.95748€ QO 0. Q. 0.

1.1993 C.5CCO 0.6463CE 00 0. O. 0a
1.2993 C.5000 0.55915F 0¢ a. C. 0.
1.3993 C.5000 0.510%94F 00 Q. [+ 0.
l.4993 C.5000 0.4793%E-0C D. D. 0.
1.59913 C.5CCO 0.45775E-CQO 0. o 0.
1.6993 €.5000 0.44188E-00 0. Ua 0.
1.7993 C.5000 0.42978F-00 0. C. 0.
1.8992 C.5CCO 0.4202SE-00 0. 0. Q.
1.99913 c.5CCO D.41266E-0C O. Ua 0.
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APPENDIX D
(By Christopher J. Borland)

" METHOD OF GREY AND SCHENK" AS PROGRAMMED
FOR THE IBM 709/7094 IN FORTRAN 1I

1. DESCRIPTIONS OF PROGRAMS
a. SUBSONIC LOAD DISTRIBUTIONS AND INTERFERENCE

This executive program is basically the same as that described
in Appendix A, but modified to receive the geometrical parameters of
the body as well as those of the wing, to control the interference calcu-
lations, and to print out the spanwise loading, lift curve slope, etc.,

with and without the effect of the body included.

b. EFBDWG

This subroutine computes an effective angle of attack distribution
over the wing due to the presence of the body, when used with the sub-

sonic load distribution and interference program.

¢. Additional Subroutines

The following subroutines, described in Appendix A, are also re-
quired for subsonic interference calculationt WEISS, AMAT, B, GBAR,
FBAR, ELSTAR, and MATINV. Listings are given for convenience. The
Library and Machine requirements are the same as those listed in Ap-

pendix A.

d. SUPERSONIC LOAD DISTRIBUTION AND INTERF ERENCE

This executive program is similar to that of Appendix C, but

modified in the manner given in Section la of this Appendix.
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e. SPEFBW

This subroutine is identical to EFBDWG, but modified for use

with the supersonic distribution and interference program.

f. Additional Subrontines

The subroutines EVVARD and SUBSLE, described in Appendix C,
are also required for the supersonic interference calculation. Listings

are given for convenience.

g. Library and Machine Requirement

Library and Machine requirements are identical to those given in

Appendix A.

2, INSTRUCTIONS FOR USE
a. Definitions of Input Variables

All of the definitions of Appendix A, Section 2-a, and Appendix C,
Section 2-a, hold, with the following additions:

Subsonic
A Body Radius / Semi-span of wing panel.

WTHET Wing attachment angle, & defined in the following
sketch, in degrees.

Sugersonic

A Same as Subsonic
THETA Same as WTHET

&
N/
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b. Order of the Data Deck
Subsonic

The order of the data deck is the same as that of Appendix A, with

the following exception:

Column Variable
Card 2
1-10 ALAM
11-20 AR
21-30 TR
31-40 ALPF
41-50 A
51-60 WTHET
70 ITW

Supersonic
The order of the data deck is the same as that of Appendix C, with

the following exception:

Column Variable
Card 2

1-10 EM
11-20 ALAM
21-30 AR
31-40 TR
41-50 ALPH
51-60 A
61-70 THETA

80 ITW

c. Data Values

Again, the remarks of Appendices A and C apply with the following

additions:
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A, WTHET, and THETA must be punched with the decimal point,
but need not be justified in their fields.

A may vary from 0.0 to &0 and WTHET and THETA may vary from
-90.0 to 90.0.

d. Input and Output Samples
Subsonic

A sample input deck is shown following the listing of the programs.

The input values are as follows:

Case A AR TR a A & Twist
1 4, 77 3. 48 . 546 1.0 . 218 0.0 No
2 4,37 3.43 . 546 1.0 222 0.0 No
3 5. 45 3.02 . 546 1.0 . 251 0.0 No

The output for these cases is also shown. The description given
in Appendix A, Section 2d, may be followed, except that now the values of
ALPHA show the sum of the geometrical angle of attack and the effective
angle of attack due to the presence of the body.

Supersonic

A sample input deck is shown following a listing of the programs.

The input values are as follows:

Case Mach No. AL.E. AR TR Qo A f Twist
1 1.08 45. 0 4.0 0.0 1.0 .50 0.0 No
2 1.25 45.0 4.0 0.0 1.0 .25 45,0 No

The output for these cases is shown, and is similar to that de~
scribed in Appendix C, except that output values are given with and witﬁout
the effect of the body. It will be noticed that a spurious pressure is
predicted at the tip of the delta wing due to the presence of the singularity
at the leading edge.
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aNala¥aRaNalk I 1

100
101
102
201
202

203
204

208

206
207

11

15

17

16

18

13

L1578
. ABEL
SUBSONIC LOAD DISTRIBUTION AND INTERFERENCE
PROGRAM TO CALCULATE LOADING DISTRIBUTIONS ON SUBSONIC

WINGS BY WETSSINGER'S METHODs INCLUDING THE EFFECT OF A BODY

OF INFINITE LENGTHs BY THE METHOD OF GRFEY AND SCHENK.
LIFT CURVE SLOPE 15 CALCULATED BY TRAPEZOIDAL INTEGRATION.

DIMENSION THETA!30)»TAUI30Y»BOC{30) + TAUBAR(30) +ALPHAL30)sY{30)sCL

{301 XCPU30) o SLOAD(3U)2CLIT30) »ALPHTWI(30}+WQUIL30)
COMMON TAU»TAUBARSTHETA+AMsAM] »ALAMB s BOC

FORMAT (215)

FORMAT (6F10s49110)

FORMAT (F10.4)

FORMAT (16H1ASPECT RATIO = sF10+4+)0Xy14HTAPER RATIO = +F542910Xs

18H« 25 CHORD SWFEP = 4F5.2)

FORMAT (l1HO+9HDCL/DA = #F10e495Xs 10HOCMY/DA = sF104.425X+SHYBAR/B

+Fi10.0)
FORMAT (5(Fi0e4s%5X))
FORMAT (1HGy 24X 29HSPANWISE LOADING  (WING-BODY)//
TXrAHY/BallXs2HCL 912X 94HX~CP s TX s 1GHLOAD COEFF+8X s 5HALPHA)
FORMAT (1HD, 24X 30HSPANWISE LOADING (WING ALONE) //
TXsAHY/Bal1Xs2HCL 212 XsaHX~CP 97X 9 10HLOAD COEFFs8X s 5SHALPHA)
FORMAT (1HOs 4HA = » F54295Xs8BHTHETA = sF1l0e4)
FORMAT (12HOCL-TOTAL = +F1044)
AD 100 MeM]
AD 101 ALAMIARSTRSALPHSAsWTHET oI TW
IF {AR) 11+10.11
ALAMB=ALAM/ 574295779
WTHET=WTHET/57.295779
LIMIT=((M+11/72)4]
IF (ITW) 1541615
DO 17 J=1sLIMIT
READ 102+« ALPHTWI D)
ALPHALJY=ALPH+ALPHTWI .
GO TO 18
DO 1 J=1.LIMIT
ALPHALJ)Y=ALPH
AM=M
AM1=M]
CALL WEISSUAR+TR+ALPHASY»CLsXCP)
PRINT 2013AR»TRIALAM
PRINT 2064+ As WTHET
LIM2{M+1)/2
LIMP=LIM+]
DO 8 l=1+LIMP
CLIGID=CLOI I %2 o4 {1a=(Y{II*t1a=~TRII)V/{1a4TR}
5UM=0.
DO 3 I=1sLIM
TERM={Y(T)=Y{1+1))}2,6%(CL1{I+1)+CLL{I))
SUM=SUM+TERM
DCLDA=SUM/ALPH
CLTOT=SUM
SUM = 0,
DO 13 I=1+LIM
TERM= Y (T ) =Y (T+1 ) )% oB%(CLICI+1I4CLIMTI ) *5% (Y (I)+Y L1411 )
SUMESUM+TERM
DCMYDA=SUM/ALPH
YCP=DCMYDA/DCLDA
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12

Y4

DO 4 I=1+LIMIT

SLOADU I =CLUI I #4 o (1a— (YL {1e=TRIII/{(1e+TR}I*AR)
PRINT 202+ DCLDA+DCMYDAYCP

PRINT 205

PRINT 203 (Y{I1eCLAT) o XCPUL) o SLOADUI YV wALPHAIT Y I=1sLIMIT}
PRINT 207s CLTOT

IF (A) 2s24%

N=LIMIT

CALL EFBDWOIALPH+AR»TReAsWTHETeNs Y+ CL o XCPoWOU)

NO 12 1=14sN

ALPHAL I 1=ALPHA{ Y =WOUL 1)

CALL WEISS(ARSTRsALPHASYsCL o XCP)

DO 9 T1=1sLIMP

CLITT ) =CLUT ) *2e% {1 e=(Y(I)R(]e=TRI}}I/{1a+TR)

SUM=0,

DO 6 I=1sL 1M

TERM= (Y[ )~Y (141 ) ) # 5% (CLIITI+Y)+CLILTI N
SUM=5UM+TERM .

NDCLDA=SUMZALPH

CETOT=SUM

SUM = 0O,

PO 14 T=1eL 1M

TERM= (YL -Y (I +1 ) 1 %8 {CLIMT+Y+CLI0T I % aBu (YLl +YI141)}
SUM=S5UM+ TERM

DCMYDA=SUM/ALPH

YCP=DCMYDA/DCLDA

DO 7 I=x1sLIMIT

SLOAD( I =CL Y ) %44 % [ a~{Y{I ) ¥ [14=TR)J}I/{({1s+TRI*AR)
PRINT 202+ DCLDASDCMYDASYCP

PRINT 204

PRINT 203y (YD) sCLID) o XCPUT )2 SLOADLIISALPHACL) Y I=lsLIMIT)
PRINT 207+ CLTOT

GO TO 2
END
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LISTS

LABEL

SUBROQUTINE AMAT (A}

DIMENSION THETA(301+TAU(30}+BOCI30) +TAUBARI30)2A13030)
COMMON TAUsTAUBAR»THETA+AMyAM1 s AL AMB +BOC
M=z AM

LIM=(AM+]14172,

DO 1 NU=14LIM

DO 7 N=1lsL1IM

IF tNU=N)Y 24342

IF (N=LIM) 4s5+4

ARG2=M+1 =N

ANU=NL

AN=N

BIGB=B{ANUsANI+B T ANUARGZ}

GO TO &

ANU=NLU

AN=N

B1GB=B{ ANUsAN)

GO TO &

ANU=NU
ATNUsNY=2#B{ANU ANUI+BOCINU T *GBAR{ ANUsANU )
GO TO 7
ATNUsN)==2,#BIGB+BOCINUY*GBARI ANU+ AN
CONTINUE

CONTINUE

RETURN
END
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LIST8
LABEL
SUBROUTINE WEISS (ARsTRsALPHA»Y+CL ¢ XCP)

DIMENSTON THETA(301»TAU(30)+BOCI30) +TAUBARIZD) »ALPHAL3D)sY130))

CL{30)+XCP1301sA130+3012G(30),ALPHALL30])
COMMON TAUSsTAUBAR3sTHETAs AMsAM] sALAMB»BOC
M=AM

PI=3,141592685358979323846

LIM={AM+1,.,1/2,

DO 6 N=1sM

EN=N -
THETAIN)=IEN®PI )/ ({AM+14)

DO 1 NelLIM

EN=N

TAUIN)=COSF I {EN*PL) 7{AM+]1.))
ALPHAL(NI=ALPHA(N)

BOCIN)={AR® (1 4+TRIV/12e*()e~TAUIN}I*{1.~TR)))
LIMZ=[AM]+1a) /26

DO 5 N=1l,LIM2

EN=N

TAUBAR(NI=COSF{(EN®PI)/(AM1+1,.])1

CALL AMAT (A)

CALL MATINV (AsLIMsALPHALS12DET)

DO 2 N=1lsLIM

GIN}=ALPHALIN)

I=N+1

CLITI=2,#G(N)¥BOCIN)

XCPUIIm,25%

Y(I)=TAUIN)

CL{1)=C,

XCPU1)=me25

Y{l)=1,0

RETURN
END

LIST8

LABEL

FUNCTICN B{ANUsAN}

DIMENSION THETA{30)TAU(30),BOCI30)sTAUBARIID)
COMMON TAUSTAUBAR» THETA+AMAMI s ALAMBBOC
NU=ANU

NwAN

IF [N=NU) 19251

Be{AM+1,) /(4 *SINFITHETAINUY )

RETURN
Be{SINFITHETAINY )/ LICOSF(THETAIN))~COSFITHETAINU)) ) #¥%2})
#{loml=la)®u(N~NU}I/{2%1AM+1,]))

RETURN
END
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LISTE

LABEL

FUNCTION GBAR({ANUsAN)

DIMENSION THETA(301»TAUI301»BOC(30) sTAUBAR{30}
COMMON TAUsTAUBAR»THETA s AMsAM1 +ALAMB»BOC
SUM=0,

LIM={AM1-14)/2

LIMP=LIM+]

PO 1 L=1sLIMP

LM=L=1

TERM=FBARIANsLM}*ELSTAR{ANULM)
SUM=SUM+TERM

CONTINUE

GRAR=({[=-14)/7124%(AML+14])1%SUM

RETURN
END

LISTS

LABEL

FUNCTION FBAR(ANsLM)

DIMENSION THETAU30)TAUI30)+BOCI30), TAUBARI3D)
COMMON TAUSTAUBARsTHETAs AM»AM1 2ALAMB »B0C
N=AN

M=AM

SUM=0,

DO 1 MUl=1»Ms2

AMUTI=MU1

IF LM} 24352
TERM=AMUI*SINF(AMUL*THETAIN))

60 TO 1

ELM={M

THETBR={(E{M#*#3,14159}/{AM1+]1.4)
TERM=AMUI#SINF(AMUI*THETAIN) ) *COSFIAMULI*THETBR)
SUM=SUM+TERM

FalZe/{AM+1, ) ) ¥SUM

IF (LM) 44544

IF (AN=(T(AM+141/24)) B9746

FBAR=F /2

60 TO 8

FBAR=F

GO TO 8

IF (AN-({AM+14)/2.))9210:49

FBAR=F

GO TO 8

FBAR=2 o #F

RETURN
END
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LISTE

LABEL

FUNCTION ELSTAR [ANUsLM]}

DIMENSION THETA(3I01«TAUL30)»BOCI3D) 2 TAUBARE2Q)

COMMON TAUSTAUBARSTHETAsAMsAMI WAL AMBBOC
TANFIX)1=S5INFIX)Y/COSFIX)

NU=ANU

IF ILM) 14241

ETAMU=1,

GO0 TO 3

ETAMU=TAUBARI{LM)

ETANU=TAU(NU}

DIF=ETANU~ETAMU

SUM=ETANU+ETAMU

BOCN=RBOCINU}
TERM)=(1e/{BOCN#DIFII*ISQRTFI( (] 4+BOCN*DIF*TANF{ALAMB} ) ®*#2} 4
{ (BOCN*#DIFI%%2))=1,4)

TERM2= {14/ (BOCN*SUMII*¥ L ISQRTF{I {14 +BOCN¥DIF*TANFIALAMB) 1 #%2 )4

{{BOCN*SUM)®%2) 1) /1 1442 *BOCN*ETANU*TANF{ALAMB) 1 =14)

TERMA= {2, #TANFIALAMBI*SQRTF{ {11+ +BOCN*ETANURTANF{ ALAMB) )##2)

+{ (BOCN*ETANUI®#22) 1) /{1 a+2+ #BOCN*ETANURTANF{ALAMBY])
ELSTAR=TERMI~TERMZ2-TERM3

RETURN
END
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10
15

30

40

45

50

&0

70

80

as

20

g5

100
105
110
130
140
150
160
170
200
205
210
220
230
250
260
270
310
320
330
340
350
355
360
370
380
190
400
420
430
450
455
460
500

L1578

LABEL
SUBROQUTINE MATINV (AsN»BsMsDETERM)

SUBROUTINE YO SOLVE THE MATRIX EQUATION AX=8+ WHERE A IS
AN N X N SQUARE MATRIXs B IS5 A KNOWN M X N MATRIXs AND X IS
AN UNKNOWN M X N MATRIX. UPON RETURN THE INVERSE OF A IS5 PLACED
IN As AND X 1S5 PLACED IN Be BY SETTING M=0 THE SUBROUTINE MAY
BE USED FOR MATRIX INVERSION ALONEe FOR FURTHER DETAILS SEE
IBM SHARE NOs 664.

DIMENSION IPIVOT{30)s A(30+30)s BI(30s1l)» INDEX{30s2)s PIVOT{30)
EQUIVALENCE (IROW»JROWI » (ICOLUMs JCOLUM) » LAMAX s T » SWAP)
DETERM=1.0

DO 20 J=1N

IPIVOTI =0

D0 550 I=1sN

AMAX=20,0

DO 105 J=1,N

IF (IPIVOT{U)=-1) 60105460

DO 100 K=1N

IF (IPIVOT(K)=11 B0s100,s740

IF (ABSF{AMAX}=ABSF(ATJsK)) 185,100,100
TROW=4

TCOLUM=aK

AMAX=ALJsK)

CONTINUE

CONTINUE
IPTVOTLICOLUM)I=IPIVOTIICOLUM) +1
1IF (IROW-TCOLUM) 140,260,140
DETERM=-DETERM

00 200 L=1N

SWAP=A{IROW,L)
A{TROWSL)}=A(ICOLUMsL)
ALTCOLUM, L ) =5WAP

[F (M) 260+260+210

DO 250 L=1M

SWAP=B{IROWsL)
B(IROW,L)=B{ICOLUMsL)
B{ICOLUMsL ) =SWAP

INDEX{191)=TROW
INDEX(1+2}=1COLUM
PIVOT{1)}=ACICOLUMsICOLUM)
DETERM=DETERM#PIVOTI(I)

ATTCOLUMs ICOLUMY =140

DO 350 L=1sN
AfLCOLUMsL)=A{ICOLUMSLY/PIVOTIT)
IF (M) 3B0+380+360

DO 370 L=1.M
BLICOLUMLI=BI{ICOLUMsL)/PIVOTI(IL)
DO 550 L1l=1,N

IF (L1-1COLUM} 400+550,400
T=A{LY1+ICOLUM)

ALLL1+ICOLUMYI=04D

DO 450 L=1sN
AlL1sL}aA(L1sL)=ACTICOLUML I*T

IF (M) 5505504460

DO 500 L=1M
BLLsL)=B(L1sLI-BUICOLUMAL)*T
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550  CONTINUE
600 DO 710 I=1.N
610  LaN+1-I
620 IF {INDEX{Ls11=INDEX(Ls2}) 630,710,630
630  JROW=INDEX(Ls1}
640  JCOLUM=INDEX(L»2)
650 DO 705 KelsN
660  SWAP=A(K»JROW)
670  A(K»JROW)=A{K s JCOLUM)
700 A{K»JCOLUM) =SWAP
705  CONTINUE
710 CONTINUE
740  RETURN
END



14

17
16

15

oW B WM

—

1

LISTE

LABEL

SUBROUTINE EFBDWG [(ALPHsAR+TReAsTHETASNsY s CL» XCP +WOU)
DIMENSION Y{30)sCL{30)»XCPUI0) »WOUIT 30 »DLBRDOY(30)sR{30)+BLAMI30}

RI{30)sHIR0)»ALP(30)sDELI30)»GAMI30 I »X0(30)+YO({301+Z0(30)sYVI30),
ZVI301»YBI30)eZBIACI+XPMI30430) s YPM{30+30)»ZPM{30»30)4+ABIG(30+30
1+BBIGI30330)»F{ 309301 XCT{30)sWATIO»A0)sWAB(30930)eWBL30+30)

WAP (304301 sWBPU20+30)»WABPL30,30)1yPHI(30)1+RBIGII0) sWF(30)»
EPS{30+30)»CAPPA(RA0»30)»APM( 30,30} +BPMI30s30)+FPM{30330)+DELTI(30)
1 TAUT30) » TAUBAR(30)»DUMI 30} +BOCI30] »C130)

COMMON TAUsTAUBAR»DUMsAMsAM] s ALAMB+BOCsAPM+BPMsFPM+ CAPPA
EPSsWAP +WBP s WABP + WAB s WR

TANF{XI1=SINF(X)/COSF(X)

ALAML=ATANF{TANF{ALAMBI +1{1e=TR)I/{AR¥{14+TRI}})

PI=3414159265358979323846

CRx4 o/ LAR*({14+TR})

DO 14 1=1sN

C{IN=b i la=YI])*{1a=TR))/(AR¥(1+TR))

NM=N-1

NM2=N~2

DO 1 I=1»N

RIT}=5QRTFILIYII)+A*COSFITHETA) J**¥2 )+ (ASINFITHETA Y ¥#2})

BLAMIT J=ATANF({A#SINF{THETA)}/{Y{[}+ARCOSF(THETA} )

RILIN={A*AY/R(])

DO 2 I=1»NM

DLBRDY (1) =B ®{CLET+1 I RCII+1I+CLITI*CITINY

HII) =eS*SQRTFCO((RITIII®RA2)+{IRI(I+L IR ) —(2¥RI(T)IRRI(I+]1 )%

COSFIBLAMIT+1)-BLAMIIYIY) )

ARG = (E{l2e®HET) IR 4L (RI{TIHL VN2 ) —1IRI(T))%%2)}/
(Ge¥HITIRRITI+1) 1))

IF (ABSF{ARG)=1.0) 1616417

ARG=1.0

ALP({1}=ACOSF{ARG)

DELIT)=ALPUTI )4+ {BLAMII+1)=BLAM(T))

GAMI 1) =DEL(TI)+BLAMI{ 1)

DO 3 (=1sNM

XOI1I=Y(Il*TANFIALAML)+XCP{I)*C(I)

YOUI)=UIRI(I)*COSFIBLAM{I})}+(RI{I+1)*COSF{BLAMII+111)1})/72.

ZOUI)=((RI(CII*SINF(BLAMII) ) )+ (RItT4+1)*SINFIBLAM(I+1)))1/2.

DO 15 1=1sN

YVIT)=RI{T)*COSF{BLAM(T})

IVIII=RI{TII*SINFIBLAMII))

DO &4 I=1sNM

DO 5 J=1sN

YR{N=Y(J)+A¥COSF{THETA)

YPMIT»J)=Y{J)+ARCOSFITHETA)=YDI(T)

2BEUY=A*SINFITHETA)

ZPMUT» JI=A#SINFITHETAY=-Z0(1}

ABIGIT s NN =SQRTFICIZBIDI=ZVITIH+T ) I*¥2 V4 [ (YBIJ)=YVII+1]))%%2)

BRIGII»JJ)=SQRTF{I{ZB(J)=ZVITI I *#2 )41 (YRBLJ)I=YVITI) I *#2))
FOTad)=YPMIT o JIHSINFIGAM{I ) =ZPM( L+ JIRCOSF{GAM(I )

XCUI)=Y{ JIRTANFLALAML)I+XCPEJIRC{JY+CLUI /2
XPMIET» ) =XCL. ) =XO0( D)
EPS(1sJ)=ACOSFl{ARSINFITHETA)=ZV{I+1))/ABIGITI s )
CAPPA(TL»J)=ACOSFU(A*SINFITHETA)=ZVII}}/BBIGI{IsJ})

APMIT o)) =SQRTFUL(24*RI(TI+1I*COSF(BLAMITI+1}))I%%2)+((ABIGIIsJ))nn2)

+{Ge*RI(I+1I®ABIG{ ]y JI*COSF{BLAMIT+1))*SINF(EPSt{TIsJ) )} }

BPMIT s )=SQRTF{ {24 *%RITI}I*COSF(BLAMI{I)) ) *%2)4((BBIGIlsJ)}%*#2)+
(4 *RI(II*BBIGII»JIRCOSFIBLAMI T I %SINF{CAPPA(L 1))}
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11

13

12

DELT{I) =2 (RI{I+1I*COSF{BLAM{T+1))~HIT}*COSFIGAM{])))
FPM{T o) =lYPMILw JI+DELT(IVIRSINFIGAMIT N I+2ZPMI Ty J)*COSF{GAMII))
CONTINUE
DO & I=21sNM2Z
DO 7 J=1N
WAlTsJl== (DLBRDY{1)/72) ¥ {1/ (Ga*PI%(ABIGITI s+l 1 %#n2) )% a+iXPMITy
1 JI/SARTFUIXPMIT s JI¥R2)+{ABIGUI s J)%%2) ) 1 )H{YPM(IsJ)~
2 HUIY*COSFIGAMITII )
WAP(IsJ)= (DLBRDY(1)/2e) ¥{1a/ (4 %PIR(APM (TeJI*#2)))#{1la+(XPMITy
1 N/S50RTFUIXPMIT»JI*%2 4 (APM (1o J)%%2)1]J)I¥L{YPMI Ty d) =~
2 H{TI®COSFIGAM{ I )42 *RI{I+1I*COSF(BLAMII+1) 1)
CONTINVE
DO 8 J=1sN
WAP (NM,J)=0,
WA (NMyJ)1=0,
DO 9 I=1+NM
DO 10 J=lN
WBUIsJl= (DLBRDY({11/24) #{le/{4o*PI*(BRBIGIIsJ)*%2)))%(Le+(XPMI(]s
1 J)Y/SQRTFI(XPMAT s J)%¥2 3+ (BBIGI T4 J)®¥2) )10 1YPMIT»JY+H( ]} *COSF(GAM
2 N
WBP{IsJi=~ (DLBRDYUI)N/24) ®{1la/[4#PI*(BPM (I J1®#21 ) )R {1 e+ {XPMI{]s
1 WV/SQRTFUIXPMUT s JI*%2140(8BPM (ToJ)%¥2 ) )Y {YPMIT s J)+H{ 1) *COSF (GAM
2 (1))+2.,#RI{T)Y*COSFIBLAMI(1})
WAB(IsJ)i= [DLBRDY(I)/24) ¥{)le/ (L *PIY)RIXPMITsJ)/TIF(]sJ)%e2)
1 +{XPMUTs ) #%2)) )% (SQRTFI{(BBIGIT+JI¥¥2)={F (1sJIn%2))1/{(BBIG{I]>»
2R L (XPMITo L) %%2) 1 1=-SQRTFIABSFICLARIGIT 2 I *#%2 ) =(FilsJ)¥#2})/
3 {{ABIGII»JI®¥2)+(XPM{1y ) %2211 ])
WABP(IsJ)i= (DLBRDYI[1)/2s) *(1a/(4o*¥P L) )R{XPMILsJ]I/ZUIFPM{T yJ)}#*2)
1 +(XPMIToJ)%n2 ) ) )R {SQRTFIABSFUI(BPM{I o J)%%2)=({FPM{I,J)%%2])/{{BPMI
2 Tadyee2 i (XRM{T9J)##2))) 1 -SQRTF{ABSFLULAPM( 12 ) %22 =(FPM(] ) %*2)
3 Y/ CLAPMLT o ) u2 4+ (XPM{T o I %%2)))))
CONTINUE
DG 11 J=1sN
PHI{J)=ATANFCIZBLJYI/7LYB{JY])
RBIGIJI=SQRTF(IYBIJI*X2 )+ ZB(J) %2}
WE{J)z=lALPH® (AR#2 ) HCOSF(2.%PHI(J}})/(RBIGIJ}%#2)
DO 12 J=1sN
SUM=0,
DO 13 I=]14NM
TERMaWAL I+ JI+WBIT s JI+WABLI»JI4WAP (T 2 JI+WBP T+ JI+WABP(I»J}
SUM=SUM+TERM
WOUt J)ysSUM+WF 1))
CONTINUE
RETURN
END

272



* T™ATA

1% p®
4el? EPE T 2546 140 «218 Dal) U
4487 ELE P 1.0 w222 Da0 0
bets5 1,07 2546 1el vl51 e o}
ASPECT RATIO = 3.4800 TAPER RATIO = 0.55 +25 CHORD SWEEP = &4,.77
A s 0,22 THETA = 0.

CCL/DA = 3.40P8 CCMY /DA = 1.4516 YBAR/B = 0.4258
SPANWISE (OADING (WING ALONE)
¥/8 cL x-CP LOAD COEFF AL PHA

1.CC00 0. 0.2500 0. 1. 0000

0.9808 1.2394 0.2500 a.5112 1.0000

0.9239 2.2963 0.2500 0.9912 1.0000

0.68315 3.0616 0.2500 L.%170 1.0000

D.7071 3.5238 0.2500 1.T7788 1.0000

0.5%%8 3.T7327 0.25C0 2.0752 1.0000

D.3827 3.T497 0.25C0 22,3035 1.0000

0.1951 3.6228 0.25C0 2.4549 1.0000

0. 3.3802 0.2%00 2.5131 1.0000
CL-TOTAL = 3.4088
CCt/pa = 3.5722 DCMY/DA = 1.5125 YBAR/B = D.46234

SPANMISE LOADING (WING-BODY)
¥/8 cL x-CcP LOAD COEFF AL PHA

1.C000 0. 0.2500 0. 1.0205%

0.9808 1.2717% 0.2%500 0.5270 1.0211

0.9239 2.3497 0.2500 1.0228 1.0228

0.831% 3.165%5 0.2500 1.4651 1.0261

0.1071 3.6540 0.2500 1.8445 1.0317

0.5556 3.8879 0.2500 2.1615 1.0612

0.3827 3.9290 0.2500 2.%138 1.0588

0.1951 J.B281 0.2%00 2.5940 l.108%

0. 3.6029 0.25C0 2.46787 l.hébh
CL-TOTAL = 3.5722
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ASPECT RATIO = 3,4300 TAPER RATIC = 0.55 +25 CHORD SWEEP = 4.87
A= 0,22 THETA = 0.
CCL/DA = 3.3839 DCMY/DA = 1.4408 YBAR/E = 0.4258

SPANWISE LOADING {WING ALONE]

¥/B cL X-Cp LOAD COEFF ALPHA

L.CL0O Q. 0.2500 0. 1.0000
0.5%808 1.2289 0.2500 0.5142 1.0000
0.9229 2.27175 0.2500 0.9974 1.0000
0.81315 3.0379 0.2500 1.4265 1.0000
0.7071 3.4978 0.2500 1.7914 1.0000
0.5556 3.7060 0.2500 2.0904 1.0000
0.3827 3.7229 c.25C0 2.3204 1.0000
0.1951 3.5967 0.2500 2.4728 1.0000
De 3.3555 0.25C0 2,%311 1.0000

CL-TOTAL = 3.3839

CCL/OA = 3.5493 DCMY/DA = 1.5026 YBAR/B = 0.4233

SPANNISE LUADING (WING-BODY)

Y/0 £L -CP LOAD COEFF ALPHA
1.0000 0. 0.2500 0. 1.0211
0.9808 1.2679 0.2500 0.5306 1.0216
0.9239 2.3521 0.2500 1.0300 L. 0234
0.8315 Ja1434 G.2500 l.4761 1.0268
0.7071 3.6300 0.2500 1.8592 1.0325
0.555¢& 3.8634 0.2500 2.1792 1.0421
0.3827 3.9048 0.2500 2.4336 1.059¢
0.1951 3.8042 0.2500 2.615%4 1.1104
0. 3.5803% 0.2500 2.7007 L. 4443

CL-T0TAL = 3.5493
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ASPECT RATIO = 3.0200 TAPER RATID = 0.55 «25 CHORD SWEEP =  5.45
A= D0.25 THETA = 0.
CCL/DA = 3.1632 DCMY/DA = 1.3454 YBAR/B = 0.4253

SPANWISE LOADING {WING ALONE)

¥/B L X-CP LOAD COEFF ALPHA
1.C000 0. 0.25C0 0. 1.0000
0.9808 1.1387 0.2500 0.5402 1.0000
0.9239 2.1123 0.2500 1.0506 1.0000
0.8315 2.8277 0.2500 1.5081 1.0000
0.7071 - 3,2662 0.25C0 1.9000 1.0000
0.555%6 3.4675 0.2500 2.2214% 1.0000
0.3827 3.4855 0.2500 2.4673 1.0000
0,1951 3.3660 0.2500 2.6283 1.0000
0. 3.1387 0.25C0 2.6890 1.0000
CL-TOTAL = 3.18632
DCL/0A = 3.3312 OCMY /DA = L4110 YBAR/B = 0.4228

SPANWISE LOADING (WING-BODY)

Y/B (AN X-CP LOAD COEFF ALPHA
1.C000 G. 0.2500 0. 1.0248
0.9808 lL.1708 0.2500 0.5602 1.0254
0.923% 2.1628 0.2500 1.0907 1.0273
0.8315 2.9414% 0.2500 1.5687 1.03L0
0,7071 3.4083 0.2500 1.9826 1.0372
0.5556 3.6354 0.2500 2.3290 1.0475
0.3827 3.4770 0.2500 2.6029 1.0668
0.1951 3.5820 0.25C0 2.7970 l-1222
0. 3.3704 0.2500 2.8875 1.4294

CL-TOTAL = 3,3372
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a¥aRaNaFaNa Ralh BN I

100
101
107
201
202

2013
204

206
207
301
102
2013
401

402
&0

51

15
17
16

18

20

LISTS
LABEL
SYMBOL TABLE
SUPERSONIC LOAD DISTRIBUTION AND INFEKRFERENCE

PROGRAM TO CALCULATE LOAD DISIRIBUTIOUNS ON SUPERSUNIC
WINGS WITH SUBSONIC LEAUDING EDGESs SUPERSUONIC TRAILING EDGESS
AND AN ARBITRARY SPANWILE DISTRIBUTION OF TWIlsT. [HE EFEECT OF
AN INFINITELY LONG BODY IS CALCULATED BY THE METHOU OF GREY AND
SCHENK «

DIMENSION ALPHAL25 1Y (25)2CLA25) o XCP{29)95L0ADI25)sCL1E25) s WOULZD

YoALPHTWIZ2D)sCP (259929 )9 X[ 25925)

COMMON EMsALAMsAR s TRaNSALFHAsY s LL o XCF o FLAGYDUMUA sMa MO e NU s KPG s KWL

sCPa X

FORMAT (615}

FORMAT (7F10e4sl1u)

FORMAT (F1U.4}

FORMAT {8HIMACH = »F1Us495Xs5HAR = sF10+499Xs9HTR = sF10e&4s9Xy

t4HLs Eeo SWEEP = »+10.4)

FORMAT (1OHODCL/DA = +FlOests5Xal0HDCMY /DA = sF 10l 5Xs6HYCP = »

FlOaZeB5X+6HXCP = 3F1Uq4)

FORMAT (5F1545}

FORMAT (72HC Y/B CL Xcp COLF
ALPHA )

FORMAT (5HOA = sF104499XsBHTHETA = sF1lUa&)

FORMAT (12HOCL-TOTAL = sF10e4)

FORMAT (1H2425X+2 1HPRESSURE DISTRIBUTION)

FORMAT (72HC X/C Y/B P X/C Y/

cP /1HO}

FORMAT (2(F7e493XoFTad4s3XsE1145s8X))

FORMAT (1HO////11HOWING ALONE)

FORMAT (Z22HIWING~BODY COMBINATICON)

READ 100y MsHIMGINGsKPGsKQG

N IS5 THE NUMBER OF SPANWISE S5TATIONS

M IS5 THE NUMBER OF CHORDWISE STATIONS

READ 101y EMoALAMSARsTRIALPH+A»THETASITW

IF LAR) 50450451}

ALAMB=ALAM/S5T7.295779

THETA=THETA/5 74295779

IF (ITW) 15416415

DO 17 J=1N .

READ 102 ALPHTWI(U)

ALPHALJY=ALPH+ALPHTWI{.J)

GO TO 18

DO 2 JmlsN

ALPHALJ)=4LPH

PRINT 201 +EMs AR TR1ALAM

PRINT 206sAsTHETA

FLAG=0,

CALL EVVARD

IF (FLAG) 2042041

LIM=N~]

SUM‘O.

DO B l=x1sN

CLII ) =CLl I M2 % La=(Y(]}¥(]la=TRIJIZ/(1a+TR)

DG 3 I=1s+LIM

TERM= (Y (I =y (T+1 1) maS#{CLICI4+1Y+CL1ILI))

StUM=2 SUM+ TERM

DECLDA=SUM/ALPH
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CLTOT=5UM
SUM=0.
DO 13 I=1sLIM" ‘
TERM=(Y([)=YiTI+1))%eS*(CLLIT+1)+CLILT I ¥ 2Dt (YLE)+Y(14)))
SUM=5UM+ T ERM
NCMYDA=SUM/ALPH
YCP=DCMYDA/DCLDA
XBAR=DCMDA/DCLDA
DO &4 1=14N
SLOADCII=CLt T *¥4u®{1la~[Y L1} ¥(1e=TRI)I/U[]1a+TR)*A]R)
PRINT 401
PRINT 202+ DCLDA+DCMYDAYCP+XRAR
PRINT 204
PRINT 203y (Y1 Yo CLUI) o XCPUL ) »SLOADLT I ALPHALLYs I=1N)
PRINT 207s CLTOT
PRINT 201
TOT=N/2
NUM=TOT
TOT1=NUM
IF (TOT1-TOT) 40salsal
NUM=NUM+ ]
PRINT 1302
DO 42 J=1.NUM
J2=J+NUM
PRINT 303y AX(TedyeYiJbsCPIIsd)a XU aJ2)eYLJ2)eCPITaJ2)s I=1sM)
CONT INUE
[F (A) 1145
CALL SPEFBW {ALPHsAsTHETA»WOW)
PO 12 I=1sN
ALPHAT T =ALPHACTL ) =WOUIL T}
CALL EVVARD
SUM=0,
DO 11 I=1sN
CLICII=CLEI I * 2% {1a~(YIII®{]1a=-TRI))/{1s+TFR)
DO 6 I=1slIM
TERM=(Y (1 )~Y(I+1) b*0%{CLLII+1+CLLICT))
SUM=SUM+TERM
DCLDA=SUM/ALPH
CLTOT=5UM
SUM=0,
DO 14 I=14LIM
TERM=tY (I)=Y{I+1 ) %% (CLLET+1)4+CLLI0T ) ¥ a5 (YL )+YLi+]1))
StM=SUM+TERM
DCMYDA=SUM/ALPH
YCP=DCMYDA/DCLDA
XBAR=NDCMOUA/DCLDA
DO 7 [=1sN
SLOADIII=CLIL ) ¥4 e#{]le—(Y(I)*¥[1a=TRIII/{{1le+TR)IH*AR)
PRINT 402
PRINT 202» DCLDASDCMYDASYCP » XBAR
PRINT 204
PRINT 2uU3s (Y({I)sCLITY e XCPIL)sSLOADIT) sALPHALLYs I=1sN)
PRINT 207+ CLTQT
PRINT 301
PRINT 202
DO 44 J=1»NUM
2= ENIM
CPRINT, 3039 (XL1ad)a¥ )0 Lad) s X e J2)aY (423 sCP(LsJ2]s [=1sM)

GO TO 1
END
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101
102

103
104
105

i o

LIST8

LABEL

SYMBOL TABLE

SUBROUTINE EVVARD

DIMENSION ALPHA125)sY(25)2CL (250 XCP(25)

COMMON EMyALAMsARsTRaN+ALPHA»YsCLsXCPsFLAG +DCMDA

FORMAT {49H2TRAILING EDGE SUBSONIC» PROGRAM CANNOT CONTINUE)
FORMAT {SBH2UNSWEPT SUPERSONIC LEADING EDGEs PROGRAM CANNOT CONT

1INUE)

FORMAT [49HOSUBSONIC LEADING EDGEs SUPERSONIC TRAILING EDGE)
FORMAT (46HOSONIC LEADING EDGEy SUPERSONIC TRAILING EDGE)
FORMAT (50H2LEADING EDGE SUPERSONIC, PROGRAM CONNOT CONTINUE}
TANFIX1=SINFIX}/COSF(X)

BETA=SQRTF{(EM**2)=1,)

ALAMB=ALAM/57.295779

ALAMTE=ATANF{ TANFLALAMB)={ {4+ *{1.-TR)I1/{AR*{1.+TR)}})

IF {ABSF{ALAMTE]}-ATANFIBETA} )} 1s1»2

PRINT 101

FLAG=1.0

RETURN

IF TALAMB) 3+344

PRINT 102

FLAG=1,0

RETURN

IF {ABSFI(BETA/TANF(ALAMB)=1.01=40001) 6468

IF U(BETA/TANFIALAMB))-140F 5467

PRINT 102

CALL SUBSLE

RETURN

PRINT 104

CALL SUBSLE

RETURN

PRINT 105

FLAG=],0

RETURN
END
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-

3l

33
32

LS

LISTB

LABEL

SYMBOL TABLE

SUBROUTINE SUBSLE

DIMENSION YU{25)eXL(2519C{25)+XCI25025)0X125925)9TKI(25525)
C1025925) D0 254251 0A(25425)+B125s25)0Y5{25+25)DSDX{259251)
SPQU25+25)+CP1125425)9CP2(25925)sCP(25+25)sCLI25)oCCLLI25)+SLO0OAD
{251 o ALPHAI2S ) e XCPI2%)

DIMENSION DCP{25+25) s XARMI{ 25)

COMMON EMsALAM»ARTRsMiALPHA Y sCLsXCPoFLAGsDCMDA SNy MGyNGIKPGKQG
2CPeX

N IS THE NUMBER OF CHORDWISE STATIONS

M IS THE NUMBER OF SPANWISE STATIONS
TANFIX)=SINFI{X)/COSF{X)
ALAMB=ALAM/5T7,295T779
BETA=SQRTF((EM#82)~1,)
CAPPA=[1.-{RETA/TANFIALAMB)Y I /{1, +({BETA/TANFLALAMB) )}
AK=2) o /IBETA®{ 1+ /TANFLALAMB) ) )

AM=M

MM =M= 1

DO 1 JelsM

AJ=J

Y{JI=ale~((AJ=1s) /7 {AM~14))

XLUJy=Y{J)®TANF (ALAMB)

ClJUYaG4 R La=Y(J)*#[1=-TR)I/LAR*(1,+TR))
EN=N

PO 2 J=laM

DO 3 I=1N

EYE=]

XCU1+J)=EYE*CIJV/EN

X{Te )uXL{J)I4+XCLIvd)

TELD o )= AKHBETARY{ D) /X( 1)

CONT INUE

EMG=MG

ENG=NG

PG=KPG

QG=KQG

THETA=ATANF{BETA)

DO &4 J=]1.M

DO S I=1aN

YLE=X{TIs+J)/TANFIALAMB)

Al=YLE-Y(J}

EMA=ATI®SINF({ALAMB) /SINFALAMB4+THETA)

IF (EMA®COSFITHETAY+Y(J}=1e0) 30430,31
EMA=(1.0~-Y{ ) )/COSFITHETA)

A2=YLE+Y(J)
ENB=AZ*SINF{ALAMB)}/SINFIALAMB+THETA)

IF [ENB®#COSFITHETA)=-Y({J1-140) 32432433
ENB=({1.0+4Y{ )V /COSFITHETA)

Afls ) =EMA/EMG

Bl1+J1=ENB/ENG
XPP=X{1sJI-EMA#SINFITHETA)I-ENB*SINF (THETA)
XPX[1+JI-ENB*SINF{THETA}
YLEP=XP/TANF{ALAMB)

YLEPP=XPP/TANF{ALAMB)
YSTAR=YLEP-EMA*COSFITHETA)
Bl=YLEPP+YSTAR

B2=YLEPP-YSTAR

PCaBI#SINF{ALAMB) /SINF(ALAMB+THETA)

279



35
34
37
36

41
40

16
11

39

14
15

13

12

17

18

QD=B2%#SINF{ALAMB) /SINFIALAMB+THET A)

IF (PCRCOSF{THETAI=YSTAR=1.03 341934435

PC=l 10+YSTAR)/COSFITHETA)

IF (QD*COSF{THETAI+YSTAR-140) 36436937

QD=1 1.0-YSTARI/COSFITHETA) .

Cltl s+ 1=PC/PG

D{Is+J)=2QD/QG

YS(1,J)=YSTAR

CONTINUE

DO B J=1sM

PO % I=1sN

SUM2=00

DO & MS5=1+MG

AMS=MS

SUM1=0,

DO 7 NS=1NG

ANS=NS

Y1I=AMS*AT Ty JI¥COSF(THETAI~ANS*BI] +JI*COSFITHETAL+Y(J)
IF (ABSF{Y11=1.0) 40+40+41

ALPH=0,

GO TO 39

DO 10 K=24+M

IF (Y(K)=ABSFI(Y1)) 11211410

CONTINUE

ALPH=ALPHAIK ) +{ {ALPHAIK-1)~ALPHA(KI ) Z{YIK-1)=Y(K)1))®{ ABSF(Y]1}-Y (K
1)

TERM=ALPH* { {SQRTF(AMS)-SQRTF (AMS-1 1 ) * [ SQRTF{ANSI-SQRTF(ANS=1411)
/SQRTF{ENG*EMG)

IF (AT wJ})Y 4244247

TERM=0,

SUM1=SUM]1+TERM

TERM=5UM]

SUMZ2=SUM2+TERM

SMN=5UM2

sSUMz=0.

DO 12 IP=1.KPG

p=lP

SuMi=0,

DO 13 1Q=1+KQ06

Q=10

Y2=P#C1{1+J)%COSF(THETAY-Q¥D(] s JI*COSFITHETAY~YS(TsJ}

DO 14 K=1.M

IF (Y{K)~ABSF(Y2)) 1515414

CONT INUE

ALPH=ALPHA{K I+{ (ALPHALK=1) —ALPHA(K} I /IYLK=1)~Y(K) ) ®[ABSF{Y1)-Y(K
1

TERM=ALPH/SQRTF( (1441 (1a=TKII»J) I RCAPPA*P) /111 a+TK{I2J))IHPG) ¥
{1a4({1a~TK(T 2 J)IHCAPPAXQ)} /[ (1a+TK{IsJ))*QG) )}

SUM1=SUM1+TERM

TFRMa5UM]

SUM2=5UM2+TERM

SPAIT+JI=8SUMZ/IPG*QG

CONTINUE

DO 16 I=1.N

IF (I-1) 17+17+18

DSDXUT o s{=34#5PQULsJ}+4+%¥SPQI29J)I=SPQI3sJ) I {14/ (2e*XCINsJI/
EN})

GO 70 16

IFUI~N) 19520420
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20

19
16

21

22

23

24

25

100

DSOXUTaJ)={SPQIN=-24 01—t *¥SPQIN~1sJ)+3.%SPRINsJIIH{1e/(2.%XCINsJ)/
ENYY

GO TO 16

DSDXIT )= (=5SPQIT~1sJ)+SPOII+1sJ) IR { o/ {2+%NCINeJI/EN))
CONT INUE

DO 21 I=1sN

SQT=S0RTF{ABRSF{1.—-(TKIIsJ}#*2)]))

CPI(I v i==1Ba/(3,141509%BETA#{],+AK) ) I1*(SMN/SQAT)
CPZIIsJ)=(24%AK-14)/(BETA*3,14159%({1.,+AK 1 #%3) )1 ¥(SPQI{]s+J)
FSQATHSQTHX ([ JI%DSDXI T J))

CPULy N=CPIIT s )+CP2I1 s )

CONTINUE

DO 22 I=1N

DCPITsJ) = 24#CP{T+ )

TERM1=2.%DCPlYsJ)®IX{1a =X LU})

SuM=0,

DO 23 I=24N

TERM=, 5% (DCP(I=1sJ)+DCPIIyJI ) *{IX{T o J)=X11~19J})
SUM=SUM+TERM

SUM=SUM+TERM1

CLUJY==SUM/CtD)

CCL{JY=—5SUM

TERMM1=(24/3« i%¥DCPI1sJJI*{{X{1sJ)-XL{J}]*%2)

SUM2=0,

DO 24 1=2sN

TERM=o 5% (DCP T s JI+DCPIT-1aJd ) ¥ (X{T o) =X{I=1s )1 ¥(XIIsd)4X(1=1sJ)
=2« ¥XLL IV YIE,B

SUM2=5UMZ2+TERM

SUM2=5UM24+TERMM]

XCPUJ)y=5UM2/ (SUM*C (]

XARM{J)=SUM2/SUM+XL L J)

CONT INUE

SUM3=0,

DO 25 J=1MM

TERM=(CCLIJ+1)+CCLIJII* 5% (XARMIJ+1 )+ XARMUU) ) * 5% (Y(JI=Y{J+1))
SUM3=SUM3+TERM

ALPH=ALPHA(M}

DCMDA=SUMA/ L ALPH*CI(M) )

RETURN

END
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14

17
16

1%

o P W -

LIST8
LABEL
SUBROUTINE SPEFBW (ALPH+A+THETASWOU)
DIMENSION YU125)sCLI25)4XCPU25) +WOUL25)+DLBRDY{251sR{25)+BLAM(25)»
RIT251sHI25) s ALP{251+DELI{25) +GAMIZ5 ) o XO( 25} Y01 25)+Z0125)sYVI25)»
ZVIZ25)3YBI25)+2B125)+XPMI 25225 ) s YPMI25+25)92PMI 259251 0ABIGI25425
) oBBIGI25125)9F(25025) o XCI 2512 WAL25025) s WABI125425) sWB1 250250
WAP{ 25,25 )+ WBP (25325 ) s+ WABP(25+25)»PHI{25)+RBIGIL2S)sWF{25)»
EPS{25+25 )4 CAPPAI25325) s APMI 254251 sBPMI25925)+FPMI25,25) +DELT{25)
sCI25 )13 ALPHAIZ251sCPI25+25)3X(25+25)
COMMON EMsALAMsAR 2 TRoNsALPHA Y2 CL o XCPsFLAGIDCMDA sMa MG NG+ KPGaKQGs
CP+X»APM»BPMsFPMs CAPPASEPSyWAP sWBP»WABPsWABWB
TANF(X)=SINF (X} /COSF(X)
ALAMB=ALAM/5T7.295779
ALAML=AL AMB
PI1=3¢14159265358979323846
CR=4+/1AR%{]1++TR))
B0 14 I=1sN
ClI =4 % 1s=YIT)%{1e=TR))I/({AR®*(14+TR})
NM=N-1
NM2=N=-2
DO 1 l=1sN
RIIY=SQRTFI(IIY{I)+ARCOSF(THETA) | #%#2 ) +{ (A*SINFITHETA) ) *®#2)}
BLAMII)=ATANF{{A*SINFITHETAY)/IY{1)+A%COSFITHETA)))
RItIV=(A®AY/RIT)
DO 2 I=]1.NM
DLBRDY (1) =25%(CLII+2 I *CUI+TY+CLETI*CIIN)
HIiT)=oS5*%SQRTFICIRICI ) I* %2 4+ { (R]ICI+1)I®N2)—(2,#RI(IIMRI({]+]1 )%
COSFIBLAMII+1)=BLAM{TI) )]
ARG = COCE2e¥HIT))* %2 +([RITE+1Y1%%2)=((RICTI})¥%2))/
{4 ®B{T)*RI[I+11))
IF (ABSFLARG)I~1.0) 16916917
ARG=1,.,0
ALP(1}=ACOSF(ARG)
DEL{I)=ALP(I)+(BLAM{I+1)-BLAM{I) ]}
GAM{T}=DFt (I )+BLAMI1}
DO 3 [=]1sNM
XOUI) =y { [ 1#TANF LALAMLY+XCP{]I*C(])
YOUl ) ={{RI{IV®COSF{BLAMII}))+(RI{I+1)*COSFIBLAMITI+1)1))/2.
ZOUIY={{RICI)*SINFI{BLAMIT)I NI+ (RICI+1 ) %SINFIBLAMII+1))})/2.
DO 15 l=14N
YVY(1)}=RI(])*COSF(BLAM(I)}
ZVIT)=RTI1I#SINFIBLAMITI))
DO 4 I=1NM
NG 5 JalsN
YBIJ)=Y({J)+A¥®COSF{THETA)
YPM{T»Ji=Y{JV+ACOSF{THETA)--YOIL 1)
ZBIJI=A#SINF(THETA}
IPMIT s J1=A%SINF{THETA)-Z0I])
ABIGITsJ)=SQRTFUIIZBIII~ZVIT+1) 1%#2 )l IYB(JY=YVI]+1)1%#2))
BBRBIG(1+J}=SQRTF{I{ZBIJI=ZVIT ) #%2 14+ (YBII)=YVIT))%%2))
Ftled)aYPMITp JIRSINFIGAMITI)I)I=ZPM{ ] JI%COSF{GAM(]})
XCUJY=Y{JI)#TANFIALAMLI+XCP{JI*C I LI +C{J)/ 2
XPMITyJ)=XCL ) =X0Lt 1}
EPS{IsJ)=ACOSF{{A®SINFITHETA)-ZVIiI+1)i7ABIGL]sJ))
CAPPALI »J)=ACOSF(IA®SINFITHETAI~2ZVL1))/BBIGITIsJY)
APMUT s JI=SQRTFI ({2 ®¥RI(TI+1 I *COSFIBLAMILI+1 )Y )%%2)+{{ABIG(IsJ) ) %R2)
+{4a®RI(I+1)*ABIG( 2 J)*COSF{BLAMII+]1 ) I #SINF(EPSIIsJI) )
BPMIT»JI=SQRTF{ ({2« *¥*RI{II*COSFIBLAMI I ) 1% %2 4 { {BRIGII s J) 1 #%2 )+
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10

11

13
12

1 (4e*RI(CTII*BRIGITI s JI*COSFIBLAMIT))*SINFICAPPALL+J))))
DELT{I)=2+%{RI{1+1)*COSFIBLAM{I+1))~HIT)I*COSF{GAM(T1}})
FPMLI o )= (YPMUT+ NV +DELTCIY IRSINFIGAMUTI V) +ZPMIT+JI*COSF (GAMIL )]
CONTINUE
DG 6 I=11NM2
DO 7 J=1sN
WALIsJY== (DLBRDY{I1)/2+) #{1 e/ (4a®PI#(ABIGIIsJ)*%2)}) )% {1+ (XPMLI]>»
1 N /SARTFLIXPMUT»J)*%2)+(ABIGI L2 Jr®*2) ) 1) ¥ {YPM(T+J)~
2 HUI)*COSFIGAMII})}
WAP{I+J)¥= (DLBRDYI[T)1/24) *[{1e/{4a®*PIH(APM (I, J)¥%2}))%(1e+{XPMII],
1 JY/SQRTFO(XPM{IT s DI *¥%2)4(APM ([ 1 o%23 1)1 IR(YPM(T )~
2 HIIY#COSFIGAMIT 1) +2«*RILI+1I*COSF{BLAMIT+11)})
CONTINUE
DO 8 J=1N
WAP (NMs1=0.
WA {(NMsJ1=0,
DO 9 I=1+NM
DO 10 J=1sN
WB{IsJ)= (DLBRDY(I11}/24} *¥{1e/(4e¥*PIRIBBIG{ s )N*2) ) )% (Le+(XPMI]s
1 JI/SARTFU{XPMUT »J)%%2 ) +(BBIGITsJ)*%2) ) ) ) (YPMLT s JY+HI I} *COSF{GAM
2 Iy
WBPIIsJ)== (DLBRDY(I)/2¢) ¥ (1e/{4#PIH{BPM (L[2J12¥2) 1% () e+(XPM(]s
1 JY/SQRTFOIXPMUL s J)*%2)+(BPM (1+J)1%%2)1) ) ) {YPM(I»J)+H( ]I *COSF{GAM
2 (11142, %RI(T}*COSF(BLAMI{T) )]
WAB(TIsJ)= (DLBROY(I)V/2e¢] #(1a/(44%PT))*{XPMITIsJ)/IF(]sJ)®#2)
1 +(XPMUI»J)*%2 11 )% (SQRTF{{(BBIGILsJI®#2)—(F (L+J)%*%2))/((BBIGLI
2JINRD Y+ I XPMIT s J)#%#2) ) )~SQRTFIABSF(({ABIGILs )RR I~{F{IaJI#%2)}/
3 ((ABIGUI»JI* 2 4+ (XPM{T+JI#%2))))}
WABP{IsJi= (DLBRDY(I)/724) #U1la/ 4 %P ) {XPMITIs )/ ((FPMI{Isd)*2)
1 #(XPMIT»J)#%2) ) IR (SQRTFUABSF I (BPMIT o) #%2 )= (FPMI 1o J)%%2) )/ ({BPMI
2 Ta NN%a2)+(XPM{T o) #%2) 1) )=SQRTFIABSFIILAPM{T s ) #%2)={FPMI1 s )in%2)
3 J/7LTAPMIT»J)*R2)+(XPM(TsJ)%%2) 1))
CONTINUE
DO 11 J=1»N
PHITJ)=ATANF(LZBI(IV/LYBIOI )
REIGIJ)=SQRTFI(YBLJI*%2)+(Z2B(JIw%*2) ]
WFlJ)=m(ALPH® (AR )RCOSF(24#PHI{ NI ) Z(RBIGIJ)%R2)
DO 12 J=1,»N
SUM=0,
DO 13 I=1sNM
TERM=WA{T s J)+WBIT o J)+WABI I s Q) +WAP (1 s J)+WBP{I»J)+WABPLIsJ)
SUM= SUM+TERM
WOU{ J)=SUM+WF (J)
CONTINUE
RETURN
END

283



10
1.08
1425

MACH =
A=

SUBSONIC LEADING EDGE,

DATA

[ 20
4540
4540

1.0800
c.5000

v 5

Gall
G}

AR =

THETA =

PRESSURE DISTRIBUTION

4%.0000

0.

WING ALONE
0CL/0A = 5.4507 DCMY /DA =
Y/B CL
l.OtUOU -0
0.75000 9.3858%
0.5C000 6.19515
0.25000 4.68874
Q. 3.88165
CL-TOTAL = 5.4507
XrC Y78 e
1.0000 1.0000 0.31914€ 03
1.0000 1.0000 0.31914E 03
1.0000 1.0000 0.31914E 03
1.0000 1.00€0 0.31914F 03
1.0000 1.0000 0.31914F 03
L.0000 1.0000 D.31914E 03
1.0000 1.0000 0.31914E 03
1.0000 1.0000 D.31914€ 03
1.0000 1.0000 0,31914€ 03
1.0000 1.0000 0.31914€ 03
0.7750 0.7%00 0.4962% 01
0.0000 ¢.7500 0.50429E 01
0.0250 ¢.7500 0.42137E 01
0.850C €. 7500 0.37313€ 01
0.873%0 0.7500 0.34099E 01
0.900¢C 0.7500 0.31782€ 01
0.925¢C 0.7500 0.30022€ Ot
0.9500 0.7500 0.28635%E 01
¢.9730 C.7500 0.27512€ 01
1.0000 c.7500 0.26%82€ 0L

SUBSOMIC LEADING EDGE,

284

le i
le

TR

SUPERSONIC TRAILING EDGE

2.2152

xce

G.

0.35148
0.37595
0.41127
0.456086

14

0.5500
0.6000
0.6500
0.7000
0.7500
0.8000
0.85%500
0.9000
0.9500
1.0000
0.3250
0.4000
0.4750
0.5500
D.6250
0. 7G00
0.7750
0.8500
0.92%0
l.0000

SUPERSONIC TRAILING EDGE

. BU deld
«25 4540
C. L. E.
YCP = D+ 4064
COEFF ALPHA
0.
2300646
3.097157
3.5165%
3.688155
Y/ ce
0.5000 D.%42137€
0.5000 0.31782E
0.5000 0.27512E
0.5000 0.25131€
0.5000 0.23407E
0.5000 0.22548E
0.5000 0.21TTLE
0.5000 0.21179E
0.5000 0.20T15E
0.5000 0.20342E
0.2500 0.27510E
0.2500 0.22548E
0.2500 0.20T7L6E
0.2500 0.19T84E
0.2500 0.19233E
0.2500 0.18875E
0.2500 0.18829E
0.2500 D.18451E
0.2500 0.18318E
0.2500 0.18213E

SWEEP =

KCP =

1.00000
1.00000
1.00000
1.00000
1.00000

4% .0000

0.325%3



WING-80DY COMBINATION

CCL/DA

cL-1071

X/C

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.7750
0.8000
0.8250
0.8500
0.8750
0.9000
0.92%0
0.9500
0.9730
1.0000

b 5.9147 DCMY/DA = 2.4029
Y/B cL xce
1.00000 -0. 0.
0.75000 10.15721 0.35149
0.5C000 6.732%6 0.371595
0.25000 5.09558 0.41125
0. 40204540 0.45606
AL = 5.9147
PRESSURE CISTRIBUTION
Y/s8 ce x/C
1.0000 0.35624F 02 0.5500
1.0000 0.35624E 01} 0.6000
1.0000 0.354624E 03 0.6500
1.0000 0.35624E€ ©3 0.1000
1.0000 0.35624E 03 0.7500
1.0000 0.35624E 03 0.8000
1.0000 0.35624E 03 0.8500
1.0000 0.35624E 03 0.9000
1.0000 0.35624E€ D2 0.9500
1.0000 0.35624E 03 1.0000
¢.T500 0.75347€ 01 0.3250
0.7500 0.54571E 01 0.4000
0.7500 C.45598E 01 0.4750
C.7500 0.40381F 01 0.5500
C.7500 0.36906E 01 0.86250
C.7500 0.34394€ 01 0.7000
0.7500 0.32490F 01 0.77%0
C.7500 0. 30992£€ 01 0.8500
0.7500 0.297T7E 01l 0.9250
0.71500 0.287H5E 01 1.0000

285

YCP = 0.4063 XCcp =
COEFF ALPHA
0. 1.05606
2.53930 1.07311
3.340624 1.09271
3.82169 1.09698
4.20440 1.06060
Y/B cp
0.5000 0.45T92E 0Ol
0.5000 0.34539E 01
0.5000 0.29899€ 01
0.5000 0.27311€ 01
0.5000 0.25655E 01
0.5000 0.24504E 01
0.5000 0.23460E 01
0.5000 0.23016E 01
0.5000 0.22511E 01
0.5000 0.22108E 01
0.2500 0.29899E 01
0.2500 0.24506€ Ol
0.2500 0.229514E 01
0.2500 0.,21501E 01
0.2500 0.20902E 01
0.2500 0.20513€ 01
0.2500 0.,20246E 01
0.2500 0.20052E 01
0.2500 0.19905€ 01
0.2500 0.19787€ 01

0.3087



MACH =
A=

SUBSONIC LEADING EDGE,

WING ALONE

CCL/DA = 4.441) ODCHY/DA =
Y/b cL
1.00000 -0
0.75000 7.68191
0.5C000 $.05143
0.25000 3.81748)
0. 3.155611

CL-TOTAL = 4.6413

x/c v/e cp

1.0000 1.0000 Q.

1.0000 l.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

0.7750 0.7500 0.56876E 01}

0.8000 0.7500 0.411B1E 01

0.8250 0.7500 0.34400E 01

0.8500 0.7500 0.30455€ 01

0.8730 0.7500 0.27924E CI

0.9000 0.7500 0.25930€E 01

0.9250 0.7500  0,24489E 01

0.9500 C.7500 0.23354E 01

0.9750 0.7500 D.22434E 01

1.0000 0.7500 0.21673€ 01

SUBSONIC LEADING EDGE.,

1.2500
0.2%00

AR =

THETA =

PRESSURE DISTRIBUTION

4,0000 TR
0.7854

SUPERSONIC TRAILING EDGE

1.8063

xCP
.
0.35129
0.37563
C.41096
0. 45600

x/C

0.5500
0.4000
0.4500
0.7000
0.17500
0.8000
0.8500
0.9000
0.9500
1.0000
0.3250
0.4000
O.4750
0.5%500
0.6250
0.7000
0.7750
0.8500
0.9250
1.0000

SUPERSONIC TRAILING EDGE

286

Q. L. E.
YCP = 0.4067
COEFF ALPHA

0.

1.91548
2.5257h
2.86337
3.15611

Y/8 cp
0.5000 0.34400F
0.5000 0.25930€
0.5000 0.22434E
0.5000 0.2048B4&E
0.5000 0.19235€
0.5000 0.183568¢
0.5000 0.1T731E
0.5000 0.17246E
0.5000 0.16865E
0.5000 0.146559¢€
0.2500 D.22434E
0.2500 0.18368E
0.2500 0.18684%E
0.2500 0.156101E
0.2500 0.15649E
0.2500 0,15358E
0.2%00 0.1515%54E
0.2500 0.15009E
0.2500 0.14899E
0.2500 0.14815%E

SWEEP =

ACP =

1.00000
1.00000
1.00000
1.00000
1.00000

ol
ot
oL
o1
o1
01
o1
01
01
o1
ol
01
01
01
o1
o1
01
1] |
01
o1

4%.0000

0.325%3



WING-B0DY COMBINATION

PRESSURE DISTRIBUTION

OCL/DA = 4.3698 OCMY /DA =
Y/B L
1.00000 -0
0.75000 T.646165%
0.50000 5.01568
0.25000 3,73503
0. 3.0299¢6

CL-TOTAL = 4.3698

x/C Y/8 cep

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.00¢0 0.

1.0000 1.0000 0.

1.0000 1.0000 0.

1.0000 1.0000 Q.

1.0000 1.0000 0.

0.7750 0.7500 D.56BT4E 01

0.8000 0.7500 0.41180E O}

0.02%0 0.7%00 0.34399E DI

0.8500 0.7T500  0.304354EF 01

0.8730 0.7500 0.27825E 01

0.9000 0.7500 0.2%929€ 01

0.92%¢0 0.7500 C.24488E 01

0.9500 0.73%¢0 0.23353E 01

0.9750 0.7500 0.22433E 01

1.0000 0.7500 0.,21672E 01

287

1.7901

xce
0.
0.35129
0.37562
0.41098
0.45606

x/C

0.5500
0.6000
0.4500
0.7000
0. 7500
0.8000
0.8500
0.9000
0.9500
1.0000
0.32%0
0.4000
D.4750
0.5500
0.42%0
0.7000
0.7750
0.83%00
0.9250
1.0000

YLP = 0. 4097 XCe =
COEFF ALPHA
. t.01733
1.91541 1.0222%
2.50784 1.02421
2.80127 1.00165
3.02998 0.88760
y/8 ce
0.%000 0.34137E 01
0.5000 0.25748€E 01
0.3000 0.22275E oL
0.5000 0.20339E 01
0.5000 0.19099E J1
0.5000 0.18237E 01
0.5000 0.1760%E 01
0.5000 0.17123E 01
0.5000 D.156T745E 0L
0.5000 0.16441E O}
0.2500 0.21948E 01
0.2500 C.17969€ 01
0.2500 0.16499€ 01
0.2500 0,15752E€ ol
0.2500 0.15309E 01
0.2500 0.15023E Ol
0.2500 0.14823E 01
0.2500 0.14682E 01
0.2500 C.14373E 01
0.2500 0.14493E 01

G.367%
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