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ABSTRACT

The subdomain or Biezeno-Koch method is employed to obtain approximate solutions to the
bending of a uniformly loaded, simply supported circular plate, The details of arriving at a
trial function are discussed and the feasibility of automating this method by means of the
digital computer is demonstrated. The effect of varying the limits of integration for the
residual integral, including a weighting function, and employing a least squares solution
technique are investigated.

This abstract is subject to special export controls and each transmittal to foreign govern-
ments or foreign nationals may be made only with prior approval of the Theoretical Mechanics
Branch, Structures Division, Air Force Flight Dynamics Laboratory, Wright-Patierson Air
Force Base, Chio 45433,
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SECTION I

APPLICATION OF THE SUBDOMAIN (BIEZENQO-KOCH) METHOD
TO CIRCULAR PLATE BENDING

INTRODUCTION

Considerable interest has been generated in the applicability of the subdomain or Biezeno-
Koch method to the solution of boundary value problems. Much of this interest is due to the
satisfactory results obtained from this method as compared to other approximate methods
such as: Ritz, Galerkin, collocation, point-matching, and Mikklin (Reference 1,), Although the
subdomain method originated in 1923 (References 2, 3, 4) no widespread application of this
technique has been noted in the technical literature during the intervening years up to the
present time.

For the purpose of this study, the bending of the simply supported circular plate subjected
to a uniformly distributed load was analyzed. This particular problem was selected since its
gsolution is well known and is presented in Theory of Plates and Shells by Timoshenko and
Woinowsky-Krieger (Reference 5), Therefore, there is a ready check for the accuracy of the
solution obtained by the subdomain method. Inadditionthe circular plate problem is somewhat
easier to treat by approximate methods than is the rectangular or saquare plate since there is
only one independent parameter, the radius, that is encountered in the expression for the
deflection of a circular plate,
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SECTION II
THE SUBDOMAIN (BIEZENO-KOCH) METHOD

The general method is described with reference to a finite, two-dimensional, elastic body
in which the domain can be expressed as V {X, y) in cartesian coordinates or as V (r, G ) for
polar coordinates. The solution of all plate bending problems involves the satisfaction of a
governing differential equation of equilibrium (or a set of differential equations) within the
domain of the body. Thus:

Lw (r,8)=¢(r,8) inv {n

where L is a linear differential operator and w (r,8) or w (x, y) are the deflections of the
plate as a.function of the coordinates of any point on the domain, In addition, a set of boundary
conditions must also be satisfied for all points falling on the boundary of the domain, These
conditions may be expressed as:

Bw (rp 'Bb ) =glry ,8,, ) on the boundary (2)

where (r, , 8 i) = coordinates of points on the boundary
B = a linear differential operator

According to the subdomain method a trial displacement function, W is assumed that
satisfies all boundary conditions as expressed by Equation 2,

This approximation to w frequently is cast in the form:
n
w, =Ag Y (r,8) + 2 ALy, (r,8) (3)
k=|

In general the functions lllk are linearly independent known functions within the domain, V,
while q;o is selected in some suitable manner depending upon the form of the differential
equation of equilibrium, (Equation 1). AO and the Ak’s are the undetermined constants which

are independent of the coordinates, (r, &), but nevertheless they are ,variable parameters of
the solution.

A residual function is defined on the basis of Equation 1:
R(r,8) =Lw, =f(r,8)inV (4)

The domain V ig divided into subdomains Vi according to some simple pattern and then the

residual function is integrated over each subdomain and is set equal to zero. This process
will yield n+11linear equations which maybe solved for the n+l parameters AO, Al' Az, P An’

thus:
j:/f RdS=0 (5)
|

i =0,1,2 = n
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where dS = subdomain differential, (dx dy) or (rd &, dr)

An alternate approach may be applied to the method of subdomains by evaluating the
integral of the residual function at more subdomains than there are undetermined constants,
Then the constants are evaluated by the least squares approximation technigue described in
References 6 and 7,
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SECTION III
APPLICATIONS OF THE METHOD

1. SIMPLY SUPPORTED CIRCULAR PLATE WITH A UNIFORM LOAD

Since the load acting on the circular plate iz symmetrically distributed ahout the axis per-
pendicular to the plate through its center, the deflection function, w, of the plate will also be
symmetrical. | Therefore the vertical deflection, w, will be independent of 8 (see below) and

the subdomain differential becomes dr.
Equations governing this problem are (Reference 5):

a. The differential equation of equilibrium:

R R B N N L
YT e r dr? r2 dr D
or
d I d dw _Q b
_a..;. (T P (r ir )) = TD_—' within V

{6a)

(6b)

where Q = the shearing force per unitlength of cylindrical section of radius, r. For a uniform

_loading, g, Q = qr/2
D = the flexural rigidity of a plate.

EDGE

SIMPLY SUPPORTED

At this stage it is convenient to introduce the residual equation (Equation 4) for this problem

in terms of the trial function, LAY thus:

dswn | dawn l dwy qr

ar3 r dr2 ré dr 2D

R =
b, The boundary conditions:

w=0 at r=o

S daw v dw
M =0=-D ( w2 T Tar ) at r=c
dw ‘ a
P O at r=0 (condition of symmetry)

{71

(8)

(9)

(10}
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where Mr = the bending moment per unit length along circumferential sections
v = Poisson’s ratio, is taken as 0.30

The most crucial step in the method is the selection of an admissible trial function, W

which is not overly restrictive. For example, no point within the domain should be limited to
a constant value of deflection regardless of the number of terms assumed in the trial function
unless, of course, the point is on a fixed boundary. Selection of a trial function is based
largely upon intuition and experience 8o considerations of the type mentioned below will be
referred to as intuitive conditions for lack of a better designation. The following intuitive
conditions should be considered in connection with this problem.

wn # 0 at r=0 (i1}
de - . .

I # O at r=a (Boundary condition resulting in a ciamped edge) (12)
M, #0 at r=0 (13}

The residual, R should remains finiteatr =10

The above conditions represent some of the pitfalls the analyst may encounter and they
should serve merely as a guide in selecting a suitable trial function.

The trial function employed in this analysis can initially be written in the form

3 n
w, = Ag (a® —r2 ) + M W ir) + (a® =r2) ¥ A e {14}
k=1
where Y(r) is yet to be defined. An examination of Equation 14 shows that the first term and
the series terms all satisfy Equation 8 and that all terms satisfy Equation 10 if the series
terms begin at k= 2 and m2 2, The first term in the trial function was selected since itisa
homogeneous solution of Equation 6 and there wouldbe no residual arising fromw it. In addition
it satisfies Equations 11, 12, and 13.

With regard to the moment boundary condition (Equation 9), the series terms satisfy the

condition because the terms of the series are multiplied by (a2 - r2)3 thus enabling the first
and second derivatives of w, to equal zero at r = a, The first term of the trial function does

not satisfy Equation 9 so that a moment exists at r = a. Therefore, the second term must be
defined so that it not only satisfies Equation 8 but that the moment computed from it at r = a
cancels the moment from the first term. Thus according to Equation 8:

[y -y (o) =0 (15)
arid from Equation 9 r=e
2
d w v dw
[ dr? * dr r=a =0
2
d - d
._2£\c,(l+u)+c(am \I; Hem+v) a7 L4 )=0
dr r=a ar r=q
2
d” v (2m+v) dy |  2AgU+w) (16)
Clr2 r=a a dr r=a UmC

5



AFFDL-TR-66-215

A function that satisfies Equations 15 and 16 is

A B ir-o0)

- m-
where Ca

2+

(Z2m + v )
therefore the trial function becomes:
3 N
wn=Ao[(ua—-rzl+u—£_i—- (r-a)e™ ]+ (a®=¢®) k};l Ay Tt (17)

The calculation of the residual from Equation 7 gives:

A B
R=—;—°m—_|—[(m+l) (m?-1) ¢

m-2 —urn2 {m-2) rm—s ]

3 n - A
LACHE T I D N S Lo T AL R S [Py
k=3 r
4 k-l 2z 2, &
[ 3 exak+21a, ! —30a ] +0@®-r%) T 24(3k+4a)a, T
k=2 k=1
d k+3 q
- 48 Y A v —_ — (—l—) {18)
k=l D 2

At all values of r (including r = 0), the residual R must be finite, This will be true only if
m > 3 and k 2 2, Including these restrictions, Equation 17 becomes:

n
3
wn=Ao[(az—r2)+£2-(r—u)r3]+(az—rzl 2 Akfk (19)
a k=2
where
2t + )
B ——1
6+ v
and the residual changes to:
Ay, B 2 23 o 2 k-3
R= —%~—(32r -9a) +{a” —r") T Kk (k—2)4,r
a k=3
2 0 n
— (- T ek (3k#2)A, K 4 (o®-r%) T 24(3k+4) A et
k=2 k=2
N :
— k+3 _ 3 (¢
48 uz~a AT = (=) (20)
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Integrating Eguation 20 over a radial subdomain between limits r. and Ty and setting the

resulting equation equal to zero (Equation 5) gives: 1
f
[ rar=o0 (21
"
3 k-2 2 22
A B N2 @2-v%) v 6(a —r%) r
o 2
- k -2} A —+
{ 2 (16r 90r}+k§3 (k-2) k[ — =20 (0
2 .2, k+2 k+ 4 n a2-r2)% K
24(a -r}r (48)r ]_ » 6k(3k+2)Ak[ .
{k=2}{k){k+2) {k-2){k){k+2 Xk+ 4 )" =2
k+ 2
2_ 2, ktz gkt n (a2 —r?%) ¢
o -rde 3T ] + 3 2asctara |
k(k+2) (k) (k+2}k+4) 42 k+2
k+4 n k+a 2 Iz
2r r ar
|- A _——— =0
(k+2)(k+4) ] 435_2 K " ra = a }r (22)
= i

In order to obtain a solution there must be at least as many subdomains as there are ‘‘A”’
constants to evaluate. Hence Equation 22 was evaluated for each subdomain requiring that only
the limits of integration be changed, These limits were chosen to correspond to either equal
increments of radius or to equal annular areas., The digital computer was programmed to
evaluate Equation 22 and to solve for the ‘“A’’ constants. Both a simultaneous equation solver
and a least squares equation solver are included in a subroutine. The results of this analysis

are included the figures, The computer program may be obtained from the Air Force Flight
Dynamics Laboratory upon request.

Other approaches to obiaining solutions to this problem are discussed in Appendix IL

The equation for integrating the residual over the subdomain, (Equation 20) can be written
to include some weighting function y(r). Thus it becomes:

r

2
[ Ry tryar =0 (23)
r
I

For the purpose of this analysis ¥y (r) = r and the same residual (Equation 20) was used.
Equation 23 becomes:

r2
f Rrdr = 0 (24)

"

In addition different spacings of the subdomain were used; one set of spacings for eqgual
radial subdivisions and another set based on equal areas. A computer program similar to the
one described previously was used and the results are included in the figures.
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SECTION IV
DISCUSSION
1. COMPARISON OF APPROXIMATE SOLUTION WITH THE TIMOSHENKO
SOLUTION OF THIS PROBLEM
For purposes of comparison the errors in deflection and moment, and the residual defined

by Equation 20 were plotted versus the radius of the plate, The errors were defined by the
following equation:

_ Xplr)—X(r]}
€x 7 Xyl 1)

where

Xpn = the quantity whose accuracy is under evaluation
X = the exact value at the same r (from Timoshenko solution)
XMS the maximum value of the exact solution

For the case where the residual is integrated over equal increments of radius (no weighting
function, Equation 21), Figures 1 - 11 show similar curves for the deflection error, The
deflection errors at the center of the plate improve progressively with an increase in the
number of undetermined constants, A ’s, up to an eight parameter trial function, Here
the deflection error at the center seeris to converge to an error of about 2.15 percent, A
further increase in constants causes the error to diverge; however, a minimum central de~
flection error of 1.65 percent occurs for a trial function with 30 constants. In like manner the
moment error at the center decreases to a value of approximately 1.57 percent for an eight
constant solution and then diverges; however, the maximum error (in the outer portion of
the plate) increases progressively from 24 percent for three constants fo 119 percent for
30 constants, Although these maximum moment errors are high they occur in that portion of
the plate where the moments are relatively small (M/D < 0.074). The behavior of the re-
giduals shows a flattening effect in the central regions of the plate with an increase in the
number of constants in the solution up to four. With a further increase in constants the re-
sidual tends to increase in magnitude at both ends. It is interesting to note that the best
solution obtained for the deflection occurs when the residual curve is flatiest throughout the
largest portion of the plate, This occurs for the case when 30 constants are used.

Results where the limits of integration for the residual integral correspond to equal areas
(all other conditions the same as above) are shown in Figures 12 - 18, A comparison of these
results with those described in the preceding paragraph show that poorer solutions were
obtained for integration limits based on equal areas rather than equal increments of radius,
This is particularly true for the central region of the plate possibly because the integration
for the innermost subdomain is over a relatively large increment of radius. In effect, this
implies that there is a greater possibility for a wide fluctuation in the value of the residual
in this subdomain,

Error curves resulting from the inclusion of a weighting function(y(r) = r, in the integral
expression Equation 24) are shown in Figures19 - 27, The limits of integration for these runs
correspond to equal increments of radius. The figures show an improvement in the deflection
accuracy compared to the runs where the weighting function was not used. Deflection errors at
the center of the plate decrease with an increase in the number of constants to about four
hefore they begin to diverge. In the case of four constants the deflection error at the center is
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-0.70 percent., A crude indicator of the most overall satisfactory solution appears to be the
degree of flatness of the corresponding residual curve. For the same case of four constants
the moment error at the center is zero percent with a maximum moment error of about
25 percent, These moment results are similar to the results obtained for a four or five con-
stant trial function without the weighting function,

The results from the least squares solutions where the residual is integrated over equal
increments of radius both with and without the weighting function, r, are shown in Fipures
28 - 32 and Figures 33 - 37, respectively. All least squares solutions are for the case of a
four constant trial function, Comparing the results for the least squares solutions with the
previous solutions (for four constants) one may conclude that, in general, the least squares
approach did not improve the accuracy of the deflections and moments, particularly at the
center of the plate, However, the extremes of variation of the residual have been reduced hy
the least squares approach. The average values of the residual for the least squares approach
appears to be greater in magnitude than that for the four constant case where this approach was
not used.

There is one disadvantage that arises from using the residual equation as shown by
Equation 7 where /D represents the load intensity divided by the flexural rigidity. For an
approximate W the residual or error that occurs at a particular radius cannot he con-

veniently expressed in terms of a hypothetical or residual load intensity, g, since the per-
tinent relationship is
r
I qr dr
0

r

Q=

In order to evaluate this expression, q must be known as a function of r; however, it is gen-
erally unknown. KB would be somewhat more satisfactory to employ the residual equation (for
symmetric stress) in the form:

R=V* w — 2 (25)
n D
where
2 2
4 _ d I d d” wy l d wy
v Wﬂ-(d.rE +r ar )( dr 2 +r dr )

In this case the resultant residual computed at a point is directly related to a hypothetical
load intensity at that point, If the solution were exact at every point within the domain, R

would equal zero everywhere within the domain ('(7‘4’wn = q/D),

A solution based on the application of Equation 25 appears to be more restrictive with re-
gard to the selection of W It has been observed that if the W used in this analysis is dif-

ferentiated further and substituted in Equation 25 there are two terms that are not finite at
every point in the domain, These terms approach infinity at r = 0. This implies that, on the
basis of Equation 25 the trial function used in this analysis is not suitable, In fact, this may
account for the lack of convergence on the part of the approximate deflection and the approxi-
mate moment to their exact values,
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2, CONCLUSIONS

The subdomain method can be adapted conveniently to digital computer programming when
a series form of the trial function is employed. This resuits in a repetitive form of the
residual or error integral,

Results for the deflection of the uniformly loaded, simply supported plate attain engineering
accuracy as shown by Figure 38, In addition the results for the bending moment at the center
of the plate are satisfactory. However, no firm conclusions can be made regarding the
overall effect of the residual on the accuracy of the solution. This is particularly evident
when the lack of improvement in both deflection and bending moment accuracy is noted for
the least squares solutions. In spite of a reduction in the extremes of residual variation by
the least squares technique the accuracy does not improve,

10
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Figure 15. Deflection Error, Moment Error and Residual vs, Radius
for Six Equal Area Increments
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Figure 16. Deflection Error, Moment Error and Residual vs., Radius
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Figure 19. Deflection Error, Moment Error and Residual vs. Radius
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Figure 20, Deflection Error, Moment Error and Residual vs, Radius
for Five Equal Radial Increments
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for Seven Equal Radial Increments

34



AFFDL-TR-66-215

iatl(f)-2

€ 0
w RADIUS o™

| x Idz‘

2 x 10"

€ 0
M N RADIUS I.OM

-2 x I(S| L

I
R 0‘ \_/ R
2 4 6 8 1.0

RADIUS

NOTE . WEIGHTING FUNCTION y (2)=2

Figure 23. Deflection Error, Moment Error and Residual vs. Radius

for Eight Equal Radial Increments

35




AFFDL-TR-66-215

| x Idz-
Ew 0 ‘/’/40“,
RADIUS
| x 16°
2x ldl
€ 6]
M RADIUS O
-2x 10"_
I
2 4 .6 B 1.0

RADIUS

NOTE: WEIGHTING FUNCTION ¥ (4)=4

Figure 24, Deflection Error, Moment Error and Residual vs, Radius
for Nine Equal Radial Increments

36



AFFDL-TR-66-215

{ 1|62

-1 xlﬁ2
2x10"

—

-8

Figure 25. Deflection Error, Moment Error and Residual vs, Radius
for Fifteen Equal Radial Increments

RADIUS 1.0

RADIUS 1.0
ﬁ\-/\

RADIUS 1O

NOTE. WEIGHTING FUNCTION y (2)=%

37




AFFDL-TR-66-215

4 X ]O -
€y 8] w
RADIUS 1.O
4 x ICi2 —
|
RADIUS 1.0
- 1L
e
R o} —zan e R
RADIUS 1.0
NOTE: WEIGHTING FUNCTION y (2)=42
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Figure 27. Deflection Error, Moment Error and Residual vs, Radius
for Thirty Equal Radial Increments
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Figure 28. Deflection Error, Moment Error and Residual vs, Radius
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Figure 29, Deflection Error, Moment Error and Residual vs. Radius
for Six Equal Radial Increments
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Figure 31. Deflection Error, Moment Error and Residual vs, Radius
for Eight Equal Radial Increments
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Figure 32. Deflection Error, Moment Error and Residual vs. Radius
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Figure 33, Deflection Error, Moment Error and Residnal vs. Radius
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APPENDIX II
OTHER APPROACHES

1. TRANSFORMATION OF COORDINATE

By a suitable transformation of the independent coordinate, it is sometimes possible to
obtain a simplified differential equation, Thus let:

r_\/n

Determine the first, second, and third derivatives and substitute in the residual equation:

dsw 2

i d w | dw qr
= —- - —3 - = (27)
dar3 r dr2 r2 dr 2D
The transformed residual equation becomes:
3li-n} 3 3-2 - a? - 2n i-3n n
R= 2 S% =0 200 : R C EEL)
(an) dx (an} dx {an) X D

An examination of Equation 28 shows that if 0 < n < 1/3 none of the terms will have an x
coefficient with a negative exponent., Therefore an infinite residual will not exist at x = 0 (for

all powers of x in Wy x) = ka where k 2 0),

Assuming n = 1/3, Equation 26 becomes:

()

3

and the residual equation becomes:

z 3 2
_ _27x d w 63x d w 9 dw__ ax (29)
R a3 dx® M a® dx? N o® dx 2

By means of the transform Equation 29 the houndary conditions are changed to:

w=0 at x=1! or r=a (30)
and
— 2 1
Mr =D =— ——(?—z-[qu/! d :+3(2+v) x/3 -g—;i] (3n
ot x=1 or r=a
dw = = -3_ 2/3 —d' = =
ar =0 = - X ax gt x=0 or r=0 {32)
if W, = ka. Equation 32 is satisfied it k> "%‘ or =0
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In addition the intuitive conditions become:

w#0 at x=0 or r=0 (33)

W xq -3 ,Hs OW 44 4= or r=o

dr a dx

therefore;

%#0 at  x= | (34)
(35)

M, # 0 ot xz=0

The integral of the residual must be transformed to the following form:
I/3

ze _2
Rx 72 dx =0

Vs

l

Some of the relatively compact and simple expressions for W that satisfy all conditions
are as follows:

n
W, = Agx 273 & ¥ A (x=p¥
k=1

where
2(t+v)A, + 3(2+v) A +1BA, =0

in order for Equation 31 to be satisfied, for n 2 3,

n
W = Ag 2/3 + (x=1) Y Ck x¥
k=0

where

n n
2(1+v) A, + 18 ) kCy + (6+3¥) 2 C, =0
k=| k=0

in order for Equation 31 to be satisfied.
2, USE OF TRIGONOMETRIC SERIES

An investigation was made of the following trial function

L 2k+1 \ e
W, = kgo AZR-H cos (T)_ (36)
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This trial function will satisfy all conditions including the moment boundary condition,
Equation 9 if

n

T-0* @2k+0) A

=0
k=0 2k+1)

The difficulty arises when trying to evaluate the integral of the residual over a subdomain,
for example:

2
fRdr=O
r

218 @k+1) 7l 2K +1 & ek+1)2 ol °°5(2;:| )’”
f {Z 5 Agksr sin ( )m—Z 7 Aok+l r
n k=0 (20) 2a k=0 (20)
{2k -+
mr v
+§_(_2£il_)er Slﬂ( 20) lrjr—j.zi:—clr=0
k=0 2@ 2k+ 1 e ) r, 2D

The integration of the second and third terms in the above equation cannot be integrated
directly but must be either expressed as a series and integrated term by term (which con-
verges slowly) or integrated by a numerical method such as Simpson’s Rule,

3. HYBRID METHODS
a. Combination of the Subdomain and Collocation Methods

According to this concept n - ilinear equations are obtained by the subdomain technique and
i linear equations are obtained by setting the residual equal to zero at i locations {(collocation).
This system of n linear equations in terms of n constants is solved for the constanis. The
residual probably should be collocated at those points where the residual is expected to be
largest (i.e. at r = a and r = 0 for the circular plate). However, the choice of collocation
points and the effect on results should be investigated.

b. Combination of Subdomain and Point Matching Methods
The approach might involve using the subdomain method to satisfy all conditions except the
moment boundary condition {Mr = 0 at r = a), This would yield n ~ 1 linear equations in n

undetermined constants. An additional linear equation would be obtained by satisfying the
moment condition using the point matching technique. Depending upon the trial function used
this approach for the circular plate may work out to be the same as the basic subdomain
method. This approach should prove useful to problems involving irregular boundaries.

¢. A Kantorovich Approach to the Subdomain Method
The Kantorovich method is applied to the potential energy to obtain a differential equation

in terms of an unknown function (Reference 8). This equation is then solved for the function.
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The method as now proposed for the circular plate would involve assuming a trial function
W= (a - r)3 ¥ (r) where ¥ (r) is undetermined as yet. After the integral of the residual is
minimized over the entire domain a differential equation is obtained in terms of { (r}. Solu~
tion of this differential equation should yield admissible { (r) functions. With these functions
known the subdomain method can be applied in the usual manner, Hopefully, a more accurate
solution may be obtained since the functions should be closer to the solution of the equilib-
rium differential equation,
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