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ABSTRACT

An automated procedure is defined to derive modal damping values in
constrained-layer damping problems. The procedure uses the NASTRAN finite
element program with DMAP modifications to derive modal loss factors using a
Modal Strain Energy (MSE) approach. The frequency-dependent properties of the
constrained viscoelastic layer are taken into account in an iterative
solution. The Ritz procedure, a specialized Lanczos method for eigenvalue
extraction, is used in the procedure together with standard NASTRAN super-
element techniques to increase eigenvalue solution efficiency. Sample
problems are discussed to illustrate the accuracy and efficiency of the

method.
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INTRODUCTION

Vibration reduction in structures has been a subject of investigation for
many years. One of the most weight-effective means of reducing vibration is
to incorporate a viscoelastic material in the form of a constrained layer in a
built-up structure. In this method, an elastomer is sandwiched between two
metallic sheets and is bonded to both. Flexural vibration causes shearing
strain in the core, which dissipates energy and thereby reduces vibration.

An additional advantage of constrained-layer damping is that analytical
methods and modeling techniques exist to predict structural behavior of the

damped system. Using these analytical techniques, studies can be performed to
gauge the adequacy of different damping treatments in eliminating unwanted
responses.

It is generally felt that the Modal Strain Energy (MSE) approach using
commercially available finite element programs is the most computationally
efficient for use in analyzing constrained-layer damping problems. One of the
major problems confronting MSE, however, is the frequency-dependent material
properties of the viscoelastic layer. An automated procedure to derive modal
loss factors using the undamped mode shapes and the material loss factors of
the frequency-dependent material is presented in this paper. The same concept
can then be extended to solve the forced-response problem by evaluating modal
stiffness and modal mass matrices from the resulting mode shapes and
frequency-dependent system stiffness.

The Ritz procedure, first described by Wilson, et al. [1], has also been
taken advantage of in this application to constrained layer damping problems.
The Ritz procedure provides a means to reduce the number of eigenvectors used
in a forced response analysis without reducing solution accuracy. It can also
provide significant savings over other eigenvalue solution techniques.,

OVERVIEW OF MODAL STRAIN ENERGY METHOD

In this approach, first suggested by Johnson, et al. [2], it is assumed
that a standard mode superposition approach can be used to uncouple the
equations of motion: :

Mx + Cx + Kx = p(t) (1)
where
M,C,K

rhysical coordinate mass, damping and
stiffness matrices (all real and constant)

XsXysX = vectors of nodal displacements
velocities, and accelerations
P = vector of applied nodal loads
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The damped structure can be represented in terms of the real normal modes
of the associated undamped system if appropriate damping terms are inserted

into the uncoupled modal equations of motion:

o +n™ wa +wa =p (t) (2)
x = 2¢(r) ar(t) r = 1,2,3... (3)
vhere
@, = rth modal coordinate
w, = natural radian frequency of the rth mode
¢(r) = rth mode shape vector of the associated
undamped system
n(r) = loss factor of the rth mode
pr = modal force vector for rth mode

It is implied that the damping matrix, C, of Eq. (1), need not be
explicitly calculated, but that it can be diagonalized by the same real modal
matrix that diagonalizes K and M.

Modal loss factors are calculated using the undamped mode shapes and the
material loss factor for each material [3]. For a structure damped with a
viscoelastic layer, the material loss factor of the metal sheet is very small
compared with that of the viscoelastic layer. Hence, the modal loss factor is
found from:

N LA (1)

v

where nu is the material loss factor of the viscoelastic core evaluated at the

rth calculated resonant frequency and V(r) / V(r) is the fraction of elastic
strain energy attributable to the sandwYch core when the structure deforms in
the rth mode shape.

Eq. (4) implies that damping of a structure can be described by
associating a single number, the modal loss factor, with each undamped natural

mode shape and frequency. The composite loss factor for each mode is taken to
be proportional to the material loss factor for the viscoelastic portion of
the structure. This approximation has been shown to be accurate for practical

applications.
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A basic difficulty with the modal strain energy method is that the modal
properties are obtained from system matrices that are assumed to be constant.
Viscoelastic materials, however, have storage moduli that vary significantly
with frequency. To resolve this contradiction, a simple correction is made to
the modal loss factor described in Eq. (4). The corrected value of modal loss
factor is given as:

(r)® (r)
= G G
n n 4 2(fr)/ 2, ref (5)
where
]
n(r) = adjusted modal damping ratio for the
rth mode
n(r) = modal damping ratio for the rth mode
obtained by iteration
N G2 ref = core shear modulus used in final normal
;]

modes calculation to obtain modal
frequencies, shapes, and masses

G2(fr) = core shear modulus at f = f., vhere
f 1is the rth mode frequency calculated

with Gy = Gy Lop

To design a damping treatment, one begins by making several normal mode
runs for a range of different core shear moduli., A set of natural frequencies
and damping ratios is obtained for each value of the core shear modulus.
Curves are drawn for each mode, and the intersections with the material
property curve are found as shown in Figure 1, taken from [2]. Each inter-
section represents the shear modulus value which is appropriate for calcu-
lating the damping ratio of the associated mode. An intermediate value of the
core shear modulus within the frequency range of interest is then selected as
a source for the final values of modal stiffness, mass and mode shape which
are used in subsequent forced response calculations. Additionally, modal
?a?ping ratios obtained by the iterative scheme are corrected according to Eq.

5)e

OVERVIEW OF THE RITZ PROCEDURE

The Ritz procedure, first described by Wilson, et al. [1], provides an
efficient way of solving large eigenvalue problems. The procedure has been
implemented in both COSMIC and MSC/NASTRAN [L,5]. The algorithm is
illustrated in Figure 2,

To start the procedure, a Krylov sequence is used to compute a set of
mass-orthogonal starting vectors. A static load is used to derive the initial
vector of the set. Note that cases involving singular stiffness matrices are
also easily handled. Given this set of starting vectors, an eigenvalue
problem of order L is solved (where L is the size of the starting vector set,
or number of desired eigenvalues) to derive both the structure eigenvalues and
the generalized eigenvectors, Z. These eigenvectors are then applied as a
transformation matrix to the starting vector set to produce the final set of
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Figure 1 Design method for sandwich beam with viscoelastic
core (frequency-dependent material properties).
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¢ Given mass matrix M, stiffness matrix K and load vector p

¢ Triangularize K such that
K =LTDL
o Solve for starting vector Z}
Kzil=p
ITMZ; =1
e Solve for additional vectors ¢ = 2,..., L, orthonormalizing with respect to M
Kz} = M#_, |

¢; =ZMZ;_,, for j=1,...,i —~1

e Form M"* and K*
X=[%,--,%]
M* = XTMX
K*'=XTKX
e Solve the L by L eigenvalue problem
[K* - wiM*]Z; =0
Z= [213“'12&]
¢ Compute final Ritz vectors by orthogonalizing X with respect to K
0X =XZ

Figure 2 The Ritz Procedure

CCB-6

Confirmed public via DTIC Online 01/09/2015
|




From ADA309668 Downloaded from Digitized 01/09/2015

Ritz vectors which are both mass and stiffness orthogonal. The resulting Ritz
vectors and eigenvalues contain no components which are orthogonal to the
applied static displacement used as the initial starting vector. This is an
important property of the Ritz procedure -- unwanted eigenvectors which would
be recovered in a standard normal modes analysis, but which would show no
participation in subsequent forced-response analysis, are eliminated in the
Ritz procedure.

Studies using the Ritz procedure [4,6] have indicated that for normal
modes analysis, it provides a reduction by a factor of three to ten in the
eigenvalue extraction procedure when compared to the FEER method used in
COSMIC/NASTRAN for the same number of modes. In addition, because the static
load vector can eliminate recovery of unwanted modes in the eigenvalue solu-
tion, fewer Ritz modes can be used to obtain the same level of accuracy for
subsequent forced-response analysis. Use of the static load vector also
eliminates any need for a static correction factor in forced-response
analysis,

Following Wilson's original publication of the Ritz procedure, it has
been demonstrated that the procedure is identical to the Lanczos method with
full reorthogonalization. In fact, the Lanczos method has recently been
implemented in MSC/NASTRAN [7], and its efficiency is comparable to the Ritz
procedure for general eigenvalue extraction problems. Still, the Ritz proce-
dure offers some advantages for applications in which the dynamic loading
imposed in subsequent forced-response analysis is spatially invariant and well
defined. Such may be the case for evaluation of constrained-layer damping
concepts. In these cases, the numerical efficiency of the Lanczos procedure
is obtained in solving the eigenvalue problem, while at the same time, the
number of modes recovered is limited only to those that participate in the
forced-response problem by dictating the starting vector used in the sequence.

The NASTRAN implementation of the Lanczos method will be used in this
paper as an efficient means to derive true natural mode shapes and frequen-
cies. The Ritz procedure is used to derive Ritz modes and frequencies which
may or may not correlate directly with the true natural modes. Both proce-
dures simply provide a set of normal modes and frequencies which can be used
for efficient forced-response analysis, as well as to predict values of modal
damping for constrained-layer problems.

AUTOMATIC EXTRACTION OF MODAL LOSS FACTORS FOR CONSTRAINED-LAYER DAMPING

An automated iterative procedure has been developed to derive modal loss
factors for constrained-layer damping problems. The key issue in deriving the
mode shapes and normal modes of the facesheet and constrained-layer assemblage
is the ability to update the stiffness matrix of the viscoelastic layer at the
beginning of each iteration.

The structure stiffness matrix of the assemblage is partitioned, as in a
standard NASTRAN superelement approach, into a frequency-independent part
(i.e., facesheets) and frequency-dependent part (L.e., viscoelastic constrained
layer). Initially, with a starting value of G, the shear modulus of the
viscoelastic layer, the stiffness matrix is formed and assembled with the rest
of the structure. The natural frequencies and mode shapes of the assembly are

CCB-17

Confirmed public via DTIC Online 01/09/2015




From ADA309668 Downloaded from Digitized 01/09/2015

then found using the Ritz procedure implemented in NASTRAN. A new estimate of
shear modulus of the viscoelastic layer for the next iteration is found from
the frequency vs. G table for the first natural frequency. With this new
value of G, the stiffness matrix of the constrained layer is updated and
assembled with that of the frequency-independent part, and the eigenvalue
extraction proceeds again. The iterative operation for this mode is continued
until the current estimate of the natural frequency is acceptably close to the
previous estimate. This process is repeated for all modes requested by the
user. The converged values for frequencies, eigenvectors, and corresponding
shear moduli of the core are saved for each mode to determine the modal loss
factors according to Eq. (4). Additionally, these values can be utilized for
subsequent forced-response analysis of the candidate structure. Figure 3
shows the flow chart of the procedure described here.

A basic assumption in this method is that the mode shapes of the
assemblage do not vary significantly with the change in core shear modulus.
Fach mode shape is derived using e different value for the shear modulus of
the constrained layer. If there is no significant change in mode shape with
shear modulus, then the diagonal terms of the generalized stiffness matrix,

Rb, will remain large in comparison to the off-diagonal terms:

g=ﬂ%o (6)

where

¢ = [¢1,¢2 ces ]

¢i = mode shape i, derived using stiffness matrix Ki

o™
"

stiffness matrix assembled using intermediate
value of core shear modulus

For truly normal modes, of course, 5% contains only diagonal terms. This
assumption is implicit in any MSE epproach, since the modal damping values
which are derived are generally used in subsequent linear forced-response
analysis.

FINITE ELEMENT MODELING METHOD

The method used for finite element modeling of a viscoelastic constrained
layer is described in [2]. Briefly, the viscoelastic core is modeled with
three-dimensional isoparametric solid elements called HEXA elements in
NASTRAN. Each element has three translational degrees of freedom defined at
each node. The face sheets are modeled with quadrilateral shell elements,
QUAD4's, which have three translations and two rotational degrees of freedom
at each corner node. Since the plate nodes are offset to one surface of the
plate and coincident with the corner nodes of the adjoining solid elements,
there exists a coupling between stretching and bending deformations of the
plate elements. This membrane-bending coupling is defined via the property
card of QUADL's. After the model is assembled, a standard superelement normal
mode extraction with the user-specified DMAP is performed. Specifically, the
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. facesheet elements are placed in an upstream superelement, whereas the solid
elements making up the core are placed in the residual structure. This allows
partitioning of the stiffness matrix into frequency-dependent and frequency-
independent parts. The user is required to input a table defining the shear
modulus, G, and the material loss factor, n, of the core as functions of
frequency. Additionally, it is most convenient to set the initial value of G
of the core to 1.0.

Calculation of elastic strain energy is performed using a standard option
in MSC/NASTRAN. The fraction of total strain energy within a group of ele-

ments corresponding to the viscoelastic core for each normal mode will be

output. Multiplying this value for each mode by the viscoelastic material
loss factor yields the modal loss factor for that mode. The modal loss
factors are output as a matrix print option in NASTRAN,

EXAMPLE PROBLEM

A cantilever beam similar to the one in [2] is analyzed using four
different approaches to show the validation and advantages of the proposed
solution method. The 7 inch long cantilever beam has identical aluminum face
sheets 0.060 inch thick and a viscoelastic core 0.005 inch thick, as shown in
Figure 4. The finite element model consists of 20 elements in the lengthwise
direction and one element widthwise. All nodes are at element corners.
Poisson's ratio of the core elements is taken to be 0.49. The viscoelastic
material loss factor is assumed to be a constant (1.35) with respect to
frequency. The tip of the cantilever beam is subjected to a random loading
function as shown in Figure 5. The objective is to determine response
functions which are accurate, in a cost-effective manner.

To establish a reference set of response functions, the sandwich beam is
first analyzed using the direct frequency response (DFRS method. The visco-
elastic core shear modulus is defined as a function of frequency as shown in
Figure 6(a). The use of frequency-dependent material properties for direct
frequency response analysis is described in [7]. Results from the other three
approaches are compared with results from this method for wvalidation.

The second approach is similar to the one used in [2]. Initially, a set
of the lowest five modes and damping ratios is obtained for & range of dif-
ferent core shear moduli. For example, four shear moduli are examined in the
present case, using the Lanczos method. The normalized structural damping
factor and the first five natural frequencies are plotted versus G for each
mode, as shown in Figure 6b. The intersection of the curve for each mode with
the material property curve represents the G value which is appropriate for
calculating modal damping of the associated mode. Subsequently, an inter-
mediate value of G of 300 psi was used in the forced-response calculations to
evaluate the responses. The damping ratios used for this analysis were
adjusted with & correction factor obtained using Equation (5). The natural
frequencies, corresponding shear moduli, and damping factors (after
adjustment) used in the forced-response analysis are listed in Table 1.

In the third approach, the natural frequencies and unadjusted damping
ratios for the first five modes are automatically obtained with an iterative
procedure discribed earlier using the Lanczos method for the eigenvalue
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T = 750F

FACE SHEET THICKNESS = 0.060 in.
CORE THICKNESS = 0.005 in.
* Upper and lower face sheets are aluminum.

Figure 4 Cantilever Sandwich Beam Subjected to Random Loading.

CCe-~11

Confirmed public via DTIC Online 01/09/2015



From ADA309668

Downloaded from Digitized 01/09/2015

0.002 -
Q
&
5 =
L
§ 0.001 -~
-
=
=y
0.0 500 1000 1500 2000

. Frequency Hz

Figure 5 Random Loading Function.
Confirmed public via DTIC Online 01/09/2015



Core Shear Modulus G - (psi)

From ADA309668

Downloaded from Digitized 01/09/2015

4 Material Properties - 3M467 @75°F
10004
1001
1
) 1B 2B 1T 3B 4B
B - Bending Mode
T - Torsional Mode
10 | ¥ 1 ] 1 1 ) LR | 1 f 4 | 4 1 LS LR
10 100 1000

Frequency Hz

Figure 6(a) Material Properties vs. Frequency.
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TABLE 1

MODAL DAMPING RATIOS USING
NORMALIZED LOSS FACTORS
OBTAINED FROM A SET OF NORMAL MODE RUNS
WITH LANCZOS METHOD

Core Shear Normalized Modal*

Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi n’/n, Ratio
1 1B 64 90 0.290 0.214
2 2B 350 280 0.305 0.398
3 1T 650 450 0.095 0.157
4 3B 925 575 0.30 0.561
5 4B 1,720 920 0.30 0.709

* Used G, ref = 300 psi; refer to Eq. (5).
9
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extraction. The output eigenvalues, shear moduli, and damping ratios are as
shown in Table 2. Since the output values of Table 1 and Table 2 are
virtually identical, output from forced-response calculations will also be
similar to the one obtained from the first approach.

The fourth approach is similar to the third approach, except that the
Ritz procedure is used for eigenvalue extraction. The output from the eigen-
value extraction run is listed in Table 3. Note that the first torsion mode
at 650 Hz. is not extracted. Evidently, this is because the starting load
vector used for eigenvalue extraction does not contain any components of the
torsional mode. The forced-response analysis is then performed using modal
loss factors derived from the Ritz procedure eignenvalue extraction, which are
markedly different for higher modes compared to those obtained using the
Lanczos method.

The response at the tip of the beam obtained by forced-response analyses
using the first, second, and fourth approaches is presented in Figures T
through 9. Note that the response from all three approaches is similar up to
500 Hz., at which the peak of the forcing function occurs. Moreover, the
responses obtained from the Ritz procedure compare quite well with those from
the Lanczos method throughout the frequency spectrum.

The differences in response at higher frequencies for the Ritz and
Lanczos method compared to the DFR method can be be attributed to two factors.
First, at higher frequencies, the error due to the correction factor (Eq. (5))
increases as the difference between the true shear modulus and the reference
modulus increases. Secondly, at higher frequencies, modes six and higher
contribute more significantly to the response. However, the contribution from
higher modes is ignored in the Lanczos mode superposition analysis with just
five modes, and only approximated in the Ritz modes.

For a further comparision between used Ritz modes and Lanczos natural
modes, a set of mode superposition analyses (third and fourth approaches) were
performed using only the first three modes. The output from an eigenvalue
extraction run using the Ritz method is shown in Table 4, The eigenvalues and
modal loss factors from the Lanczos method, which remain the same since it
provides true natural modes, are in Table 2. The response from the forced-
response analyses is plotted with that from the original DFR analysis in
Figures 10 through 12. Note that the response from both methods, Ritz and
Lanczos, compare well with that from DFR up to 500 Hz. At higher frequencies,
however, the responses from the Lanczos method diverge considerably from DFR,
whereas the responses from the Ritz method continue to correlate well with
responses from the DFR method up to 1300 Hz.

This close correlation between the Ritz procedure results and the DFR is
due to the use of a static load vector to derive the initial Ritz vector in
the algorithm. The third Ritz mode (which is not the same as the third
natural mode) contains components of all of the higher modes that are not
orthogonal to the initial Ritz vector. Thus, the contribution to response
from higher modes is approximated when the Ritz procedure is used, in the same
manner as a static correction factor.
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TABLE 2

MODAL DAMPING RATIOS USING
OUTPUT FROM THE AUTOMATIC PROCEDURE
WITH LANCZOS METHOD

Core Shear Normalized Modal*

Mode Frequency Modulus Loss Factor Damping
No.  Type (Hz) psi n/n. Ratio
1 1B 63.3 - 88.5 0.291 0.213
2 2B 343.8 282.3 0.302 0.395
3 1T 654.6 441.7 0.0995 0.163
4 3B 920 560.2 0.311 0.574
5 4B 1,748 930.9 0.305 0.726

* Used G, ..¢ = 300 psi; refer to Eq. (5).
]
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TABLE 3

MODAL DAMPING RATIOS (FIVE MODES ONLY)
USING OUTPUT FROM THE AUTOMATIC PROCEDURE
WITH RITZ METHOD

Core Shear Normalized Modal*

Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi n’n, Ratio
1 1B 63.1 86.9 0.291 0.211
2 2B 343.1 278.8 0.302 0.393
3 3B 918.8 556.8 0.311 0.572
4 4B 1,733.8 927.4 0.303 0.719
5 - 3,763.5 1,584.5 0.287 0.890

* Used Gz,ref = 300 psi; refer to Eq. (5).
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TABLE 4

MODAL DAMPING RATIOS (THREE MODES ONLY)
USING OUTPUT FROM THE AUTOMATIC PROCEDURE
WITH RITZ METHOD

Core Shear Normalized Modal*

Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi n/n, Ratio
1 1B 63.1 86.9 0.29 0.211
2 2B 343.4 278.8 0.303 0.391
3 3B 1,182 682.2 0.33 0.672

* Used Gy of = 300 psi; refer to Eq. (5).
]
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TABLE 5

SECONDS FOR VARIOUS METHODS
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Direct
Frequency Modal Strain Energy Method
Response Automatic
(DFR) Manual Lanczos Ritz
Method Lanczos 5 Modes 3 Modes 5 Modes 3 Modes
Eigenvalue
Extraction - 2,200 5,062 3,306 3,533 2,242
Modal
Superposition - 1,199 1,199 1,054 1,070 928
TOTAL 3,838 3,399 6,261 4,360 4,603 3,170
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Table 5 shows the CPU seconds used for the analysis of the 360 DOF model
which was used with the various approaches described above. The Ritz
procedure requires 27% less CPU time compared to the Lanczos method. The
manual method with five modes requires less CPU than either the Ritz or the
Lanczos method, but the time required to submit and examine five computer
rung, and then to plot contours to obtain the modal loss factors can be
substantial. In addition, the manual method is more vulnerable to the
possibility of human error.

CONCLUSIONS

The modal strain energy method has numerous attractive features as a
means to estimate damping in structures with constrained viscoelastic layers.
The procedure presented in this report automates the extraction of modal loss
factors. Instead of making several normal modes extraction runs, the user
needs to execute the finite element model only once, thus saving costly
engineering time. Additionally, the automatic extraction of the loss factors
minimizes the introduction of human error inherent in the manual method.
Finally, a substantial savings in CPU time accrues due to the Ritz method,
making the automatic extraction of loss factors and subsequent forced-response
analysis using the Ritz procedure an attractive alternative for designs using
constrained-layer damping.
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