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FOREWORD

The Advisory Board on Simulation has concluded a three-year research
program in air weapon system dynamics sponsored by Wright Air Development
Center, with P, W, Nosker/WCRR as project engineer, This volume is one of
the following 16 comprising the final report, WADC TR 54-250, entitled Dynamic
Systemn Studies:

Part No. Subtitle Editing Agency
1 Conclusion and Recommendations University of Chicago
2 The Design of a Facility ) il " I
3 The Mission of a Facility (Confidential}) H n "
4 Technical Staff Requirements " " "
5 Analog Computation Naval Ordnance Lab,
6 Operation & Maintenance Procedures University of Chicago

for Analog Computers

7 Digital Computers " " "
Recorders " n "
Flight Tables (Confidential) " " "

10 Performance Requirements for Flight Mass, Inst, of Tech,
Tables

11 Load Simulators (Confidential) ' Cook Research Lab,

12 Guidance Simulation (Secret) Naval Ordnance Lab,

13 Error Studies University of Chicago

14 Error Analysis for Differential Analy- " n "
zers (written by F, J, Murray, Columbia
U., and K, S, Miller, N,Y.U.,)

15 Air Vehicle Characteristics (Secret) " n "

16 Aerodynamic Studies " " "

(written by M, Z, Krzywoblocki, U, of Ill,}
The history of the project and a complete bibliography may be found in Part 1,

All reports may be obtained through the project engineer.

This report represents the culmination of the assignment to determine
the proper mission, equipmentation, operating procedures, and personnel for

an engineering facility in the field of air weapon systems dynamics. The
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subdivision of the report correspond to these four basic objectives and the

subsidiary work in their support, and reflect the role of simulation as a

dominant technique.

them are indicated in the technical summary, Part 2.

The functions of each part and the relations among

The following organizations have participated directly in the program:

Organization

University of Chicago

J. B, Rea Company

Cook Research Laboratories
RCA Laboratories

Armour Res, Foundation
of 111, Inst., of Technology

Northwestern University,
Aerial Meas. Lab.

Mass, Inst, of Technology,
Flight Control Lab.

Mass, Inst, of Technology,
Dynamic Analysis &
Control Laboratory

Mass, Inst, of Tech,,
D.A,C.L,

Nat, Bur., of Standards
Corona, which became

Naval Ordnance Lab,,
Corona

Contract No,

AF33(038)-15068
Supplements 2 and 11

AF33(038)-15068
Subcontract 2

AF33(038)-15068
Subcontracts 3 and 9

AF33(038)-15068
Subcontract 4

AF33(038)-15068
Subcontract 5

AF33(038)-15068
Subcontract 8

AF33(038)-15068
Purchase Order A2086

AF339038)-15068
Purchase Order AZ3883

AF33(616)-2263
Task Statement 2
(33-038)-51-4345-E

MIPR(33-616)54-154

Time of Performance

1 Feb, '51-31 Aug. '54
1 Feb, '51-31 Oct, '52
1 Feb., '51-31 May '54
1 Feb, '51-1 Mar, '53
1 Feb, '52-30 Nov, '52
17 July '52-22 Aug, '52
20 Apr '54-31 Aug. '54

2Z July '53-30 Nov. '53

1 Dec, '53-30 Sept. '54
25 Feb., '51-5ept, '53

20 Nov, '53-31 Dec. ‘55

This is a record of formal participation only; the program was aided im-

measurably by the splendid cooperation of all governmental, industrial and

educational organizations {particularly the simulation laboratories) contacted,

Although it is impractical to mention them all here, the extent of their assist-

ance is evident throughout the reports and is hereby gratefully acknowledged,

Details of these affiliations, including statements of work, may be found through-
out the 21 Bimonthly Progress Reports issued by the University of Chicago during
the course of the work, (All formal participation in the program is recorded

above; missing supplement and subcontract numbers do not pertain to this project,)
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The University of Chicago was assigned prime responsibility for inte-

gration of the program,

This has been effected by a full time staff at the

University, and by periodic meetings of the following advisory committee,

selected by the Air Force:

Dean Walter Bartky, Chairman University of Chicago

Prof, C, S, Draper

Mr, Donald McDonald
Prof, F, J. Murray

Dr. J, B, Rea

Prof, R, C. Seamans, Jr,
Mr, R, J. Shank

Dr. H, K, Skramstad

Mass, Inst, of Tech,
Cook Research Lab,
Columbia University
J. B.Rea Company
Mass, Inst, of Tech,
Hughes Aircraft Co.
NBS-NOLC

Feb,'51-31 Aug,'54
Feb,'51-28 Feb,'53
Feb,'51-31 Aug,'54
Apr.'52-31 Aug.'54
Feb.'51-28 Feb.*53
Sept.'53-31 Aug,'54
July'51-31 Aug,.'54

Feb.'51-31 Aug,'54

ot el el e fed ek feed et e

Mr, A, W, Vance

ex officio:
Mr, P. W, Nosker, Project Eng.

Dr. B, E, Howard, Secretary

RCA Laboratories Feb,'51-31 Aug.'54

WADC 1
University of Chicago 1

Feb.'51-31 Aug,'54
Feb.'51-31 Aug, 154

The meetings have been recorded in the Bimonthly Progress Reports
previously mentioned. Except for Dr, Skramstad, who has participated through
direct arrangement between NBS-NOLC and WADC, members of the advisory
committee who are not connected directly with the Urﬁversity have participated
in the program through consulting agreements with the University of Chicago.
In addition, similar consulting agreements with the University have provided

for the participation of:

Dr, R. R. Bennett
Mr, J, P, Corbett

Hughes Aircraft Co,

Libertyville, Iil
(formerly with the
University

1 Jan.'52-31 Jan, 54
11 May'54-31 Aug.'54

Dr, Thornton Page John Hopkins Univ,
(formerly with the
University, and Sec-
retary to the Board

until 1 Aug,'51)
Univ, of Illinois
New York Univ,

Riverside, N, Y,
(formerly consultant
to Project Cyclone)

7 Aug.'51-1 Mar,'53

Prof, M, Z,Krzywoblocki
Prof, K, S, Miller

Dr, J, Winson

15 Jan.'52-31 Aug.'54
2 Nov,'53-31 Aug.'54
1 Mar,.'53-30 June'54
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Many others have contributed significantly to the progress of the work, Among
those from other organizations in regular attendance at most of the meetings of
the committee have been Mr, Charles F, West, Air Force Missile Test Center;
Prof, L, L., Rauch, University of Michigan, representing Arnold Engineering
Development Center; Col. A, I. Lingard, WADC; and Dr, F, W, Bubb, WADC,

Coordination of the program and administration of the prime contract at
the University of Chicago has been under the charge of Dr., Walter Bartky, Dean
of the Division of Physical Sciences and Director of the Institute for Air Weapons
Research; Dr. B, E, Howard, Assistant to the Director; and Messrs. William
R. Allen and William J, Riordan, Group Leaders, The work at the cooperating
institutions has been directed by the appropriate member of the advisory com-
mittee and his assistants: Dr., H, K, Skramstad and Mr. Gerald L, Landsman
at the National Bureau of Standards-Naval Ordnance Laboratory, Corona;
Messrs, Donald McDonald and Jay Warshawsky at Cook Research Laboratories;
Messrs., A, W, Vance, J., Lehman, and Dr. E, C, Hutter at RCA Laboratories;
Dr. J, B, Rea at J, B, Rea Company; Prof. R, C, Seamans at the Flight Con-
trol Laboratory and Dr., W. W, Seifert and Mr. H, E, Blanton at the Dynamic
Analysis and Control Laboratory, Mass, Inst, of Technology. V, H, Disney,
S. Hori, and G, F, Warnke at Armour Research Foundation and J, C, MacAnulty
and George Geolz at Northwestern University, Aerial Measurements Laboratory
have directed the contributory studies at their respective organizations, More
explicit credit is found in appropriate places throughout the reports; biographical
sketches are in Part 1. Space does not allow full credit that is due to all the
workers on the combined project, but special mention is certainly due the project
engineer for his conception of the project and for his cooperation during its

execution,

The original investigation upon which the present volume is based was devel-
oped by K, S, Miller and F, J, Murray, as a regular academic research project
assisted by the Office of Naval Research under ONR contract 266-06, The present
treatise, prepared for publication by Mr. E. R, Spangler of the University of
Chicago, is fundamental to the error investigations of the basic program. An
adequate error theory is a necessary adjunct to this program as an aid in (1) speci-
fying the problems which can be handles, (2) determining allowable tolerance on

the design specifications of equipment, and (3) providing methods for determining
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bounds on the accuracy of solutions of practical problems.

This volume contains a complete treatment of the error theory as developed
by the authors to date, Introductory summaries have appeared in the Advisory

Board on Simulation's Summary Progress Report for the Year Ending 1 February

1953, Volume V, Error Studies, edited by G. Weiss and R, Farrell, and in the

report Project Cyclone Symposium II on Simulation and Computing Techniques,

Reeves Instrument Corporation, under sponsorship of the U, S, Navy Bureau of
Aeronautics, April 28 - May 2, 1952, New York, pp. 139-146, Certain mathe-
matical aspects of the subject are treated in the paper by Miller and Murray,

'""A Mathematical Basis for the Error Analysis of Differential Analyzers,' Journal
of Mathematics and Physics, xxxii (July-Oct, 1953), 136-163.

WADC TR 54-250, Part 14 v



ABSTRACT

An analog computer does not realize exactly the equations whose solution
is desired. Rather it realizes a different system whose solutions are to be
used as approximations to the solutions of the first system. Since, in genera.'l,
the new system will be of higher order (the '\ error' effect), novel methods
are developed to justify the assumptions made concerning the solutions of the
two systems and to give a theoretical basis for stability analysis of machine
setup. The basic theory also includes the ''linearization' process and the treat-

ment of inaccuracies and perturbations (f§ and a errors).

PUBLICATION REVIEW

The publication of this report does not constitute approval by the Air Force
of the findings or the conclusions contained therein. It is published only for the
exchange and stimulation of ideas.

FOR THE COMMANDER:

-

ALDRO LINGARD

Colonel, USAF

Chief, Aeronautical Research Laboratory
Directorate of Research
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1, PRELIMINARY DISCUSSION

1.1 Purpose and Literature

The purpose of this paper is to present a mathematical basis for a general
error analysis of the solution of systems of ordinary differential equations by
machine methods. Specifically, we shall concern ourselves with the effect of
errors on the machine solutions, We show that the study of these effects for
general non-linear systems can be referred to the solution of linear systems of
ordinary differential equations; but we do this without ""linearizing' or simplify-

ing the given system.

Since we permit perturbations in the solution as given by the machine, our
discussion is applicable to both continucus computers and digital machines using
step by step methods, However, stability discussions for such a digital process
are most conveniently given in terms of difference equations rather than differ-

ential equations and are not given here,

There is an extensive literature on digital solutions dealing with truncation
and rounding errors: Brock and Murray (1), Chadaja {8), Duncan (11), (12), {13),
Forsythe (14), Fricke (15), Gill {17), Huskey (19), Kirby (20), Loud (27), Miller
(30), Murray (3]), Papoulis (33), Rademacher {34), Todd {37), Turton (39). But
an intensive analysis of this work is not appropriate here. One of ocur major ob-
jectives is to avoid the "linearization'" which appears in these; in this sense our

results can be regarded as supplementing this work,

The effect of errors on solutions obtained by means of continuous computers
has been studied in the case in which the given problem involves a system of
linear equations with constant coefficients, notably by Raymond (35) and Macnee -
{28), (29).

QOur discussion is based to a certain extent on well known theories for the
dependence of systems of ordinary differential equations on parameters, How-
ever,' it was necessary to extend this theory in order to properly consider those
errors which affect the order of the system. Order variations in systems of
equations have been considered from other points of view by Coddington and Levin-
son (9), Friedrichs and Wasow (16), Gradstein {18), and Levinson (26).

We have also listed in our bibliography certain papers in Russian of which we
have considered only reviews: Bruevil (3), Byhovski¥ (5), (6), (7), Tihonov (38),
Vasil’eva (41), {42). These papers may contain material relevant to our present

discussion.

Manuscript released by the author in May 195) for publication as a WADC
Technical Report,

WADC TR 54~250, Part 14 1



BIBLIOGRAPHY

(1) Brock, P., and F. J. Murray. Planning and error analysis for the numerical

solution of a test system of differential equations on the IBM sequence calculator,

Project Cyclone, Reeves Instrument Corp., N. Y., 2 Oct. 1950,

(2) Brock, P., and F. J. Murray, '"The use of exponential sums in step-by-step
integration", Math. Tables and Other Aids to Comp., VI {1952), 63-78, 138-150,

(3) Bruevig, N. G., "On the accuracy of the fundamental formula of the theory
of errors of a mechanism', Bull, Acad. Sci, USSR, Cl. Sci. Tech. (Izvestiya
Akad. Nauk SSSR), 1944, 545-558., (Russian).

(4) Bush, V., "The differential analyzer. A new machine for solving differen-
tial equations', J. Franklin Inst., CCXII (1931), 447-488.

(5) Byhovskil, M. L., "The accuracy of mechanisms controlled by differential
equations'', Ilzvestiva Akad. Nauk SSSR, Otd. Tehn. Mauk, 1947, 1455-1512.

(Russian).

(6) Byhovskif, M. L., "The accuracy of electric networks intended for the so-
lution of Laplace's equation”, Izvestiva Akad. Nauk SSSR. Otd. Tehn. Nauk, 1950,
489-526. (Russian).

(7) Byhovskif, M. L., "The accuracy of electrical circuits for calculation",
Izvestiya Akad, Nauk SSSR., Otd. Tehn. Nauk, 1948, 1239-1278, (Russian).

{8) Chadaja, F. G., "On the error in the numerical integration of ordinary dif-
ferential equations by the method of finite differences", Trav, Inst. Math, Tbilissi
{Trudy Tbhiliss. Mat, Inst.) XI {1942}, 97-108,

(9) Coddington, E. A., and N. Levinson, '"A boundary value problem for a
non-linear differential equation with small parameter', Proc., A, M,S., III {1952),
73-81,

{10) Collatz, L., and R. Zurmuhl, "Beitrige zu den Interpolationsverfahren der
numerischen Integration von Differentialgleichungen 1. und 2. Ordnung', Z. Ang.
Math. Mech., XXII{1942), 42-55,

{11) Duncan, W, J., Assessment of errors in approximate solutions of differ-

ential equations, Coll, Aeronaut. Cranfield, Rep. XIII (1947), 9 pp.

{12) Duncan, W. J., "Assessment of errors in approximate solutions of differ-
ential equations', Quart, J. Mech, Appl, Math,, 1{1948), 470-476.

(13} Duncan, W. J., "Technique of the step-by-step integration of ordinary dif-
ferential equations', Phil, Mag. [7), XXXIX (1948), 493-509.

WADC TR 54-250, Part 14 2



(14) Forsythe, G. E., "Note on rounding-off errors'’, National Bureau of Stan-
dards, Los Angeles, Calif., 1950, 3 pp.

(15) Fricke, A., "Uber die Fehlerabschidtzung des Adamsschen Verfahrens zur
Integration gewdhnlicher Differentialgleichungen 1. Qrdung", Z. Ang. Math.
Mech, , XXIX {(1949), 165-178,

(16) Friedrichs, K. O., and W. R. Wasow, "Singular perturbations of non-linear
oscillations", Duke Math. J., XIII (1946), 367-381,

(17} Gill, S., "A process for the step-by-step integration of differential equa-
tions in an automatic digital computing machine", Proc. Cambridge Phil. Soc.,
XLVII (1951), 96-108.

(18) GradEtefn, I. S., "Linear equations with variable coefficients and small

parameters in the highest derivatives', Mat. Sbornik, N. S. XXVII (1950), 47-68.

(19) Huskey, H. D., "On the precision of a certain procedure of numerical in-

tegration’, J. Research, Nat. Bur, Standards, XLII (1949), 57-62.

(20) Kirby, S., The relative accuracy of quadrature formulae of the Cotes'
closed type, Coll. Aeronaut. Cranfield,, Rep. XVII {1948), 6 pp.

(21) Kobrinskif, N. E., and L. A. Lyusternik, '"Mathematical Technics",
Uspehi Matem. Nauk, N,S. I (1946), 3-26.

(22) Korn, G. A,, "The difference analyzer: A simple differential equation
solver', Math. Tables and Other Aids to Comput,, VI (1952), 1-8,

(23) Korn, G. A., "Elements of D. C. analog computers', Electronics, XXI
(1948), 124-127.

(24) Korn, G. A., "Design of D. C. electronic integrators', Electronics, XXI
{1948), 124-126,

(25) Lahaye, E., '"Une méthode de résolution des équations différentielles’,
Bull. Acad. Roy. Belgique Cl. Sci., (5) XXXIV (1948), 851-862.

(26) Levinson, N., "Perturbations of discontinuous solutions of non-linear

systems of differential equations', Acta Mathematica, LXXXII (1947), 71-76.

(27) Loud, W. S., "On the long-run error in the numerical solution of certain
differential equations', J. Math. Phys.,, XXVIII (1949), 45-49,

(28) Macnee, A. B., "An electronic differential analyzer"”, Proc. I,R,E.,
XXXVII (1949), 1315-1324,

{29) Macnee, A. B., '"Some limitations on the accuracy of electronic differen-
tial analyzers'", Proc., I,R.E., XL (1952), 303-308.

WADC TR 54-250, Part 14 3



(30) Miller, J. C. P., "Checking by differences I", Math. Tables and Other Aids
to Computation, IV (1950), 3-11.

(31 Murray, F. J., "Planning and error considerations for the numerical solu-
tion of a system of differential equations on a sequence calculator', Math.
Tables and Other Aids to Comput., IV (1950), 133-144,

(32) Murray, F. J., "Error analysis for mathematical machines', Trans.,, N, Y.
Acad, Sci., XIII (1951), 168-174.

(33) Papoulis, A., '"On the accumulation of errors in the numerical solution of
differential equations', J, Appl. Phys., XXIII (1952), 173-176.

(34) Rademacher, H. A., "On the accumulation of errors in processes of inte-
gration on high-speed calculating machines", Proc., Symposium on large scale
digital calculating machinery. The Annals of the Computation Laboratory of
Harvard University, XVI1 (1948), 176-187,

(35) Raymond, F. H., "Sur un type général de machines mathematiques alge-
briques', Ann. Telecommun., V (1950), 2-20,

(36) Rice, S. O., "Mathematical analysis of random noise'’, Bell Sys, Tech,J.,
XXII1 {1944}, 282-332,

(37) Todd, J., "Notes on modern numerical analysis I", Math. Tables and Other
Aids to Comput., IV (1950), 39-44,

(38) Tihonov, A. N., "On systems of differential equations containing para-
meters', Mat. Sbornik, N, S. XXVII {1950), 147-156. (Russian}.

(39) Turton, F. J., ""The errors in the numerical solution of differential equa-
tions", Phil. Mag. XXVIII (1939), 359-363.

(40) Turton, F. J., '"Two notes on the numerical solution of differential equa-
tions", Phil. Mag. XXVIII (1939), 381-384.

(41) Vasil’eva, A. B,, 'On differentiation of solutions of systems of differential
equations containing a small parameter", Doklady Akad. Nauk SSSR, N.S. LXXV
(1950), 483-486. (Russian).

(42) Vasil“eva, A. B., "On the differentiation of solutions of differential equa-
tions containing a small parameter", Doklady Akad, Nauk SSSR, N. S. LXI
(1948), 597-599. (Russian).

WADC TR 54-250, Part 14 4



1.2 Objectives

A mathematical theory of errors should provide a framework within which
errors can be studied and their effects evaluated. The study of errors of indi-
vidual components should be oriented to such a framework so that one can esti-
mate their effects on the solution. Error studies for components are highlf de-
sirable, but their value depends upon a knowledge of how the solution will be
affected by them.

The effect of component or other individual errors on the solution depends
on the problem considered. One can readily verify that certain problems are
much more sensitive to errors than others. Consequently, it is very desirable
to understand and specify this sensitivity. This can only be done by methods
having the generality of the present paper. Few conclusions can be drawn from
specific examples, even when a reference solution of undoubted correctness is

available.

Another and very important reason for such an error study is that it gives
an insight into the mathematical or theoretical structure of the system of dif-
ferential equations considered. One should appreciate the great technical ad-
vance represented by the differential analyzer. Without machine computations
one is practically limited to linear systems with constant coefficients. How-
ever, it is also true that the structure of the latter is well known. To obtain
the equivalent information for the general problems handled on differential
analyzers, one needs additional theoretical structure, part of which is indi-
cated by this error analysis. Computation by itself cannot furnish this struc-
ture, and many problems involving errors of statistical nature are better con-
sidered by means of the theoretical structure given here than by mass compu-

tation.

1.3 The a, 8 and A Errors

We suppose that the system to be solved is given to us in the form of a sys-

tem of n first order differential equations

(1.1)

Fi(xl....,xn,xl,...,xn,t)

il
o
=]
1
F—
-
-
]
H

The precise conditions on the Fi will be stated in § 2.1, but we may indicate the

situation assumed as follows. Equations (1.1) are to be considered on a region

WADC TR 54-250, Part 14 5



R in n+] dimensional space of the variables L STRRRTE t. We suppose that R
can be divided into subregions on each of which we can solve for the ii in terms

of Xyveenn Xy and t:

:'ci = fi(xl""'xn't) i=1,...,n (1.2)
where f.i is analytic in E STEERTE N and continuous in XysoeesX s t for the sub-
region. A rule is given for continuing a solution from one subregion to another

when a boundary point is reached.

A system such as Eqgs. {1.1) will be realized on the machine in the form

G, =0 i=1,...,n {(1.3)

where the Gi's differ from the Fi's due to our inability to realize the original

gystem accurately on the machine,

The variations from Fi to Gi may affect the order of the system, i.e.,
they may introduce higher derivatives of the x.. Errors of this type we calil
A errors. Variations which do not affect the order will be called a errors.
For each type of error we introduce parameters, A and al' - ,d-.N, {inde -
pendent of time) respectively, into the system of Eq. (1.3) so that if all the para-
meters are zero, Eq. (1.3) becomes Eq. {1.1), while if they assume certain other
non-zero valuéa we obtain Eq. (1.3) as realized on the machine. In particular if

there are no A errors Eq. {(1.3) becomes

Gi(icl,...,xn,xl,....xn,t.a1....,¢N) =0 i=1,...,n, (1.4)

Equations (1.1) and (1. 3) are both special cases of Egq. {1.4) for certain values of

the parameters.

We illustrate the introduction of these parameters by a simple example. Sup-

pose we try to solve the system

X = -x (1.5)

Because of backlash, we actually set up our machine to realize, say
x = -x + .001(sign %). {1.6)
We would write Eq. {1.6) as

% = -x + a sign %, : (1.7)
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In addition to e and X errors the machine solution may be affected by
another type of error which we will term B errors, Berrors arise in the course of
a machine computation as the result of instantaneous disturbances of the solution.
These are disturbances which appear in the solution but which do not appear in
the differential equations of motion, Eq. (1.3), for the machine. For example,
suppose we have a solution of the machine equations, but at a certain point in the
solution process the variable x is arbitrarily disturbed and instantaneously
changed by an amount B8 ., After the change, the machine continues on a solution
of the original system of equations, as it did before., But the effect of this instan-
taneous perturbation is to jar the machine from one solution to another. We may
also consider as B errors the errors made in setting up the initial conditions. of
a given solution. Furthermore, in general, when a machine passes from one
region of analyticity to another in the course of the solution, it will not follow out
Precisely the rule given for this change. This discrepancy can be described in
terms of a B error. Still another example is given by integrating amplifier out-
put noise, Such noise can be described in terms of a "shot" effect, that isy in
terms of disturbances of the above sort in the solution which occur in time ac-
cording to a certain probability distribution and whose magnitudes are governed

by another probability distribution.

l1.4 The a , 8 Error Theory

Our plan of attack on the general error theory involves first a discussion of
the case in which no A errors occur, The results obtained in this case are used
to show that the case in which A errors appear can be referred to a problem
involving linear systems with constant coefficients. The latter problem can be
solved. (Cf. Chapter 4, also Macnee [29]). In the remainder of this chapter, we
outline the above procedure with emphasis on formulae and discuss its gignifi-

cance for sensitivity.

We begin by considering a situation in which we have only ¢ and B errors,
i.e., no A errors. Suppose, then, that we have N &« errors a},...,aN
and M B8 errors, ﬁl re ey BM' In this case it is possible to apply a generaliza-
tion of the usual existence theorems for systems of ordinary differential equations
which depend on parameters. (Cf. Chapter 2, ) As a consequence one can show

that the functions given by the machine

X, = xi(t,al,...,a

i N’ﬁll""BM) (1'8)

depend analytically on the parameters I TRRRPR S !31 yess ﬁM. (We suppose the

initial conditions are fixed. Any error in realizing them willbe a 8 error.)
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Equation {1, 8} reduces to the correct solution when we set the a's and B's
equal to zero, and corresponds to the inaccurate machine solution for certain
values of these parameters. We can use the analytic dependence of our solution

in this case to express the solutions xj as power series in the a's and B's,

ox . ax .
xj :xj_(t,O,...,0,0,...,O) + i——-—-’—aak a, + 2;——3-651 N
62'x. azx
J
+570 = a,_a + (3 3 a B
2! k.l,k aak 3ak k] kz k., aka]‘] k'l. ]_] (17.9)
2 1 2 1 1
2
d x
+ [2 -cﬂej_ﬁlﬁll + ...
11,1 1 1 172
2 1 2

We must, of course, assume that the errors « and B are not so large that
the series diverges., One might even advance the argument that if our error
analysis requires that we go further than, say, the third degree terms in the
above expansion, then the solution is so far off as to be of little value. However,
theoretically, as long as the series converges wWe may use the above expression
to obtain estimates for the effect of errors. Thus, we see that our error analysis

" can be reduced, in the case considered, to a study of the partial derivatives,

ox, gx, c?zx. azx. azx.
J J s J J ) etc. ( 1.1 0)
da B P dadB  ag% '

evaluated at e =0,8 =0.

L.et Y stand for either an a or a B parameter. In view of the fact that
xl(t, cervsVYresedsenes xn(t, ©v.,7,...) satisfies Eq. (1.4), we may substitute
these functions in Eq. (!.4) and take partial derivatives of each of Egs. (1.4) with

respect to ¥ and obtain

Z. 3G, Ix, . 2 aci &xi R 9G, _ 0, (1.1
i 3’.‘3' dy j axj dy dy

(if ¥ isa B , then 3Gi/6y = 0.)
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Now let

%,
Yj =__J - {(1.12)
dy
Then
. 2 .
4 x = 9 x = 93y, =Y, (1.13)
a}' a;,at at J J
and we see then that the partials xj = Yj satisfy the linear system of dif-
ferential equations dy
G, - G, dG,
T iy, + = ¥y, + i
] a).cj i 3 ij j &y = O. (1. 14)
Setting ¢ = B = 0 yields
aFi 7. + d v, + aG
=03 T 2 i T =0 (1.15)
LES i w1,

We can, therefore, find the y's for either an a parameter or a B para-
meter if we know their initial conditions. Now, one can show that the following

initial conditions are appropriate. Suppose our computation begins at the time

t = 0, and Y isan a . At this time the ¢ errors have had no effect and the
solution is still equal to its initial value. Consequently, Yj = 0 for all

j = 1,...,mn at t = 0. On the other hand, for y =8, Y; < 1 at t = ¢
if the perturbation £ occurs in the variable x, at t = t' and Yi = 0 for

j # i. There is a certain amount of compensation in these conditions since for
a . .
Y =a , the term _._G..J. has to be considered in Eq. (1. 15), but we have zero

a
initial conditions while, on the other hand, aGi = 0 fora B error,

a8

Let us return now to Eq. (1. 14) and suppose we indicate by Y5 the para-

meter previously considered. Let us now differentiate this with respect to

another parameter V¥,. If welet =z, = axj and w, indicate d 2x. » we obtain
2 '—a— J S
)’2 6)/] ayz
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3G, 3G, %G,
2 " wJ + ZTWR + . 2' ; . j zj
j ax, k jisd, Ox, 9OX, 192

J 1’72 j

1 J2
22G ] BZGi
i (y. 2z, +2z,vy, )+ X Yy

> 3y K&y VRO Rk 9% 0T TRy Ky

a%a s%G ata, . a%G
+ z, +——— z + X + L
1| “ay9%; 117 dyexy Ul By, 0%, 71 3y,9%) y
2%G,
—— =0, (1.16)
Iy 9y

Now it should be appreciated that before we calculate the second partials we will
have found all first partials by solving the linear system of Eq. {1.15). Conse-
quently, the y's and 2z's in this system are to be considered as known func-

tions of t, so we can abbreviate the expression in the form

BGi aGi $
% w, + S—=— w_+ T = 0, (1.17)
jox, Ik X K n: vz
Here again, we set a = 0 and obtain
aF‘i 5 aFi i
s w, + T=—w,_ + T =0. {1.18)
i a:':j J x P K v1r ¥y

This, of course, is a linear system on the w's with precisely the same
homogeneous part as Eqs. (1.15) on the y's. By well known theorems on linear

differential systems, we see that our problem of evaluating the second partial
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derivatives reduces to one in which one has to find n linearly independent so-

lutions of the system

E_i\%.+2iw=0 (1.19)

and then perform certain integrations,

1.5 Sensitivity

It is now apparent that if we were to try to evaluate the higher partial deriva-
tives, we would come upon exactly this same linear homogeneous system of ordi-
nary differential equations, Eq. (1.19). Consequently, the question of sensitivity
to error of our solutions can be referred back to the study of this system of linear
homogeneous differential equations. We will refer to Eqs. {1.19) as the sensi-

tivity equations.

When one has obtained n linearly independent solutions of Eqs. (1.-19)', well
known elementary procedures permit one to evaluate all the partial derivatives
which appear in the expansion of Eq. (1.9). These procedures are referred to as
the method of variation of parameters, and in general the partials can be ex-
pressed in terms of these n solutions explicitly by quadratures. Consequently,
the growth and general characteristics of these n solutions indicate the sensi-

tivity of the solution to various errors,

One can study the n linearly independent solutions of Eqs. (1. 19) either by
general theoretical methods or, in case one has a machine in which initial condi-
tions can be entered accurately, by means of the machine itself. The latter
process is based on the fact that a perturbation of the initial condition is a B8
error and the linear terms of the latter satisfy the homogeneous system of Eq.
(1.19). For instance, suppose one has set up the given problem on the machine
and has obtained a solution for a particular set of initial conditions. Now, take
one of the dependent variables X; and change its initial value, leaving the
others unchanged. Suppose one can find the difference between this second so-
lution and the first. In general, one is justified in regarding the set of n dif-
ferences for the two solutions as yielding a solution of the variational Eqgs. {(1.19)
and one can get n linearly independent solutions by successively applying the

above process for each dependent variable x e

1"
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On the other hand it is highly desirable to supplement such purely computa-
tional procedures by theoretical investigations., For instance, it is possible even
in the case the sensitivity equations do not have constant coefficients to specify
the notion of stability and introduce a measure for the amount of damping present.
(cf. §3.3.) In addition to such stability phenomena, another phenomenon is pres-
ent in these sensitivity considerations which we will call resonance. ''Resonance'
for the constant coefficient case is discussed in §5.4. However, even in the
case of non-constant coefficients, the equivalent of resonance appears in the inte-
grals obtained by the method of variation of parameters. We plan to discuss

these questions in a future paper.

Thus, in the case in which there are no A errors, we have succeeded in re-
ferring our problem to the solution of a system of linear differential equations

without any unjustified linearization -of the given problem.

1.6 The A* Errors

In Chapter 3, the discussion of the case in which no A errors appear is
carried further than indicated by the above discussion. Thus, when the B errors
have a statistical character, one may express the linear and quadratic B terms
in Eqs. {1.9) as chance variables and study their behavior as such. In regard to
the a errors, one should normally use as few a parameters as is consistent
with one's objectives. If the error is all of a determinate nature one might be
wise to use only one e , as is done in § 3.5. On the other hand, independent

chance e errors require a plurality of parameters.

We now return to a discussion of the A errors. For the moment we ignore
a and B errors. Furthermore, suppose here for simplicity that the order is
raised at most one, and that a rise occurs in every equation. We then can write

the disturbed system of equations in the form

.

Gi( Axl,..., AX Xy eea X X e .xn,t) = 0. {1.20)
Equation (1. 20) is now the equation of motion for the machine. A parameter A
is introduced as a multiplier of the second derivatives so that one can make them
all vanish from the equations simultaneously. One thinks of A as small, while
the dependence on A x. is to be of reasonable size. Let x;, .o ,x;l be the

solution of Eq. (}.1) corresponding to the given initial conditions and let Xypeens X
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be the machine solution which satisfies Eq. (1.20). Suppose we define u, by
the equations
I B (1.21)

and substitute this into Eq. (1. 20).
We then obtain '

Gi()txi+)\u], e ,)txh+:\un,x'1+u]. . ,x;1+un,xi+u], e .x;1+un. t) = 0. {1.22)

We can expand this in powers of )l'ﬁj. {lj and uj, j=1,...,n,
i

G. =Gi(l;t’{,...,A;C.Ill,gci,...,;:ﬁ,x',...,lel, t)

3G, G, G,
+ 3 AU, + 3 u, + %

- u.

2 " %
JB(ij)J Jaij g

Ry (1.23)

where Ri' of course, depends on higher powers of z\'ﬁj, &j’ and u,, The

aG, G, G,
partial derivatives I g and S now depend only on the variable ¢t
a( ij) , OxX, , axj

and the parameter ‘A since the other variables -’Ei' ;(i’ and x. have been
replaced by the functions 3(1, :'r.i', and x! of t, These partials are supposed
to be continuous in the variable t. Consequently, if we divide our region into
small enough pieces we can suppose that on each piece these partials are constants,

Thus, we write

_ T . . '
Gi Gi (Axl,...,)\xn, X}ooeey X1y X],..., Xi, t)

+ L A..Au, + £ B..u + I C,.u.
. 1] J N P |

1,24
3 PR ; 1l ( )
8Gi . aGi . 8Gi
+ 2 - A)Au. 4+ - B.u, + 3{ - C..Ju, + R,.
j 3("%) 1] h] ; axj 1777 F axj. ij’ 7 i
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Now, this equation differs from the equation with constant coefficients on the

subregions by small terms. So, we can introduce into this expression a para-

meter 7
G(...,....t, 7))
= nGl( Axi...., X“,. ’ x]: ) t)
+ 2 Ai' Au, + 2 B:.J : + = CijuJ
J ] J
a.G' ']
7 [3(— - A;) Au, (1.25)
ja(raxy) M)
J
9G. . aGi
+ E{—(—- Bi.)u. + X ax. Ci.)u.]+ ﬂRi.
j axj J ) j j J )

We now compare Eq. {1.20) with the system

SA. A, +2B.u, +XC.u, =0 (1.26)
j 1y ] i 3 )

where, of course, the Aij' Bij and Cij vary with the subdivision., We can
pass from Egs. (1l.26) to our original problem Eqs. (1.20} by introducing the
parameter 7 as in Eq. (1.25). Consequently, the analytic behavior of the solution
of Eq. {1.22) must be the same as that of Eq. {1.26). This means, then, that we
can use our a techniques to reduce the study of time delay errors to the linear
case, [For 7 = 0, Eq. (l.25) reduces to Eq. (1.26) and for 7 = 1, Eq. (1.25)
reduces to Eq. (1,23).]

We can regard Eq. (1.26) as the machine equation for the system

SB,u, +3C,u, =0 1.27
; i 7 5 ij" (1.27)

and pass from Eq. {1.26) to Eq. {1.20) by supposing u to depend on a parameter
7 asin Eq. {1.25).

The above is the basic principle upon which Chapter 4 rests, The formulae
above have been simplified by assuming a uniform rise in the order. This as-

sumption is not made in Chapter 4.
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The discussion of Chapter 4 proceeds to consider the effect of A errors on
the system of Eq. (1.27). One can show that, in general, the roots of the indicial

equation of Eq. (1.26), which would be a polynomial of degree 2n, can be divided

into two sets Blseses #, and v]/A,...,Vn/A. Both the Bpseves By and

Vyreess v, are, in general, analyticin A at A = 0, The corresponding

solutions of Eq. (1.26) have exponential factors

w.t { vi/ At
e and e

The ¢ ; terms corre spond to what one would normally consider to be the long
range effect of errors. On the other hand, the vi/}\ exponentials are not analytic
in A at A = 0 and either destroy the solution completely when the real part

of v, ig positive or if the real part of vy is negative they become very small

in a brief t interval. The total error u when ) is present can be expressed
in two sets of terms one of which has the above mentioned ¢ properties, the other

the above mentioned » properties.

In §4.8, the combined effectof @, 8 and A errors are considered. Let
us consider again the machine Eq. {1.20) with, however, « errors added and with
.8 errors permitted in the solution. . We may again introduce the parameter g
to yield .the equivalent of Eqs. (1,25}, # isan a parameter. Thus we may ob-
tain for the machine solution an expansion about the point where e =0, B =0in

the form
x(t,A,a,8) = x(t,4,0,0) + X xy(t,A.OJU)Y + oo (1.28)
Y

Here, x{t,A,0,0) is the solution obtained under the assumptionofno 2 or g8
errors, while the partials of x with respect to the various ¥'s are obtained
by an argument similar to that for the a, B8 error, using, however, Eqgs. (1, 26)

as sensitivity equations,
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2. BASIC THEORY FOR g AND B ERRORS

2.1 The Given Mathematical Problem

The purpose of the present section is to describe precisely the types of
problems to which the present error analysis is applicable. This description is
given at the end of this section. Before the precise statement is given, however,
it seems desirable to give an introductory discussion which is not stated in
mathematically precise language but which will indicate certain necessary con-

giderations.

A differential analyzer presents the solution of a system of differential
eguations,

‘Fj(x],...,xn,x],...,xn,t) = 0, j=1,...,n

where t is the independent variable, Xjse..,X 2are m unknown functions

of t and ;ci stands for the derivatives of x; with respect to t. In addition
to Eq. (2.1), initial values for the =n variables Xyswoer X at to are given,
It is always possible to express a differential equation problem in a form in which

only first derivatives appear and we will suppose that this has been done,

In 2 number of cases, it may be necessary to expand the original differential
equation system by the introduction of new variables and new equations in order
to obtain a system which is of the first order and capable of being realized on a
specific machine. In our discussion, we will suppose that this expansion has al-

ready taken place.

In many applications of interest one is not justified in considering equations
F. = 0 as given by a single analytic expression defined by a region in n+l
dimensional space of variables XyreseaX, t. Instead, it is frequently necessary
to consider the region of interest R as broken up into smaller regions on each
of which Eq. (2. 1) can be solved for the X,

xi = fi(x-l,- LY sxnl t)r

where fi is analytic on each subregionin x,,...,% for t fixed and is
Riemann integrable in t when continuous functions xI(t), eeey xn(t) are sub-
stituted for  STRRRFE S The boundaries between these regions are analytic man-
ifolds of not more than n dimensions. We are justified in including a boundary
point in one of the subregions if the functions fi satisfy the above mentioned

criteria at such a boundary point.
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We will suppose that the operation of the machine indicated the existence of a
solution, In general we will be interested in solutions which extend through one or
more of the boundary surfaces between regions of analyticity. If a point on such a
solution is on the boundary between two regions and the £'s associated with both
regions are analytic at this boundary point, then the continuation of the solution
through the boundary point is determined by the uniqueness theorem for ordinary
differential equations, Furthermore, the analytic character of the dependence of
the solution on its initial conditions remains after passing a boundary point in this
fashion. Omn the other hand, we require this analytic dependence on the initial con-
ditions in our discussion below and we shall take this as our hypothesis rather than
specifications concerning the behavior of { on the boundary. For simplicity,
the possibility of a trajectory passing through a multiple corner or being reflected
at a boundary is rejected. We now give a precise statement of the hypotheses

needed in the discussion below,

Let
Fj(;isxnt) = 0, i=1L..., n (2. 1)

denote a system of n first order ordinary differential equations in which t is

the independent variable; x stands for n dependent variables Xipeoe s X and

- .

% stands for the n derivatives  STERRRE of XipeoosX with respect to t.

A solution of this system consisting of n functions xl(t), ces ,xn(t) is desired

which at t = to assumes specified values Xy greerX :  e.g. xi(to) = X
bl . =5

n,o i,O‘

The Eqs. {2.1) are to be considered on a region R in the =n+l dimensional

space of the variables Xysenes X, t. This region R is subdivided into subregions

R], RZ’ ... which do not have interior points in common. On Rk it is possible
to solve Eqs. (2.1) for XypeeenX in terms of Xiseon X, t;

« = _k

x; fi (x],...,xn,t) {(2.2)
where:

. . k
t 1 1 ]
| (A) If xi,...,xrnl,t is a point of Rk then for t' fixed, fi (xl,...,xn,t)
is analyticin x.,...,X at x!,...,x' and:
1 n — 1 n

{B) If x](t), “ee ,xn(t) are n continuous functions of t defined for an

interval a<t<b and such that for every t in this interval, the point

L. k . . .
xl(t)’ R ,xn(t), t is in R'k' then fi (xl(t)’ S ,xn(t), t} is a Riemann integrable
function of t for a<t<b,
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le v 2

Let Bkl dencte the intersection of the boundary of Rk

pose that if Bkl -is not null it can be specified by a finite number of analytic

and Rl' We sup-

equations and inequalities., If the addition of By, to Ry does not destroy the

properties (A} and (B} above, we shall consider B to be in R, . Similarly

kl ———— Tk
for Rl' Thus, Rk and R1 may have boundary points in common.

Let Xy ottt Xy o’t be an interior point of a subregion which we suppose
== s .

has been denoted R]. Since f] satisfies conditions (A) and (B) on R1,

there is a unique solution, x](t), . xn(t), of Eq. (2.2) which passes through

xl,o""’xn,o'to' Suppose that as t——'t],

x“,...,xn],t1 is a point of BIZ’ but not of Blj for j #£ 2. A continuation

to_<_ t <t], xj(t)-)xj] where

a

1 =

and

rule is a rule which associates with every such solution defined for tstst

unique solution of Eq. (2.2) defined for a t interval with lower endpoint t,
with x](t), caeey xn(t), t _12 R2 f_oE t >t]. We suppose that such a continuation

rule exists for every non-null boundary Bjk‘

and R2 then there is only one continuation

If B belongs to both R

12 1
rule possible., This is a consequence of the usual uniqueness theorem.

We will say that the above mentioned solution penetrates the boundary analyt-

ically, if we can finda &>0 and a 870 such that if xJ! = xj(t1 - &), then

there exists a neighborhood of =x!

EREREE such that:

{1) Each point x $X of this neighborhood is such that Xpsre s X, t] -5

17

is in R] .
{2) Each point, LIRS N of this neighborhood determines a solution

xl(t), Ceey xn(t), t which can be continued by the continuation rule through B,
into R

2

2!
(3) The values of the continuation xl(t

p t 8 ),...,xn(t1 + 5"),1:1 + 5 are

in R‘Z for every such point and

{4) Each such xJ.(t + ") is an analytic function of x e in the

10

neighborhood.

Again, it may be stated that if B12 belongs to both R, and RZ' then
every continued solution penetrates the boundary analytically, provided the point
1 and -Rz. If

may remain in B1

of penetration is not a boundary point of a region other than R

B12 is in RZ' the continuation x](t), e .xn(t),t, t >t

1 2°

2.2 The Machine Realization

The effort to obtain a solution of the system of differential equations, Eq.

{2.1), with given initial conditions Xy grerea X o to is beset with two major
Hd 1
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difficulties. In the first place, the system of equations 'F'i‘ = 0 cannot be ac-

curately realized on the machine, Instead, we actually realize another system

Gi(Jc, x,t) = 0

which in the present chapter is assumed to be of the same order as the original
Fi equations. We suppose that the difference between the two systems can be
described as follows., The Gi's are dependent on certain parameters
Gyseess Oy such that at aj = 0; the equations Gi = 0 reduce to the
system Fi = 0.

In addition, however, the process of solution on the machine may also be
subject to perturbations during the course of the solution. Normally, we expect
that the solution given by the machine, xl(t). cres xn(t), consists of n con-
tinuous differentiable functions xj(t), defined for a specified t interval and
satisfying Gj = 0 on this interval and at t = t, the given initial conditions.
However, in actual practice, it may turn out that at some specific time t' the
variable X; may have a jump or "saltus' by the amount B'i while there exist
two t intervals, one with t' as an upper end point, the other with t' as the
lower end point on which the functions x](t), v ,xn(t) are continuous and dif-
ferentiable and satisfy G, = 0, One would ordinarily describe this situation by
saying that the machine jumps from one solution of Gj = 0 to another at

t = t'. Ata given t', a number of B; may be zero.

These perturbations normally arise in three ways., One source may be the
error made in realizing the initial conditions which we can handle as a perturba-
tion at t = to. Also, when the solution.passes through a boundary point between
two regions, the continued solution may differ somewhat from the desired one,
and this also can be treated as a perturbation. In general, it is desirable to as-
sume that this latter perturbation occurs at t'b + 8, 8> 0, interior to the new

region, R This can be done as follows., Suppose that at tb + & , the correct

X
continuation assumes values x'l, e XL but the machine solution due to the per-
turbation at the boundary actually assumes values x) + B‘, R S Bn. The
uniqueness of the solution of Gj =0 in R, assuresus that we may assume

that for an interval with lower end point tb + & , the machine solution coincides
with the result of perturbing the correct continuation by an amount /Ei1 seves ﬁn
in the corresponding variables at tb + & . It will be convenient to assume that
such equivalent perturbations may always be used to replace the inaccuracies in-

volved in realizing the continuation conditions,
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The third source of perturbations is ''noise'’. If we assume that the noise pres-
ent in the system arises from a noise generator analogous to the ''shot effect,’ it
may be described as a series of perturbations whose occurrence and magnitude are

a matter of chance.

We now describe the equations Gi which govern the action of the machine,

We assume that the motion of the machine is described by n functions

x](t), Caas xn(t) of the time t which satisfy a system of differential equations
GJ.(;C,X,t,G.I,..., ‘IN) = 0 (2'3)

dependent on N parameters aj. When every a = 0, the system of Eq. (2. 3)

reduces to a system of equations F, = 0, [Eq. (2.1) ].

The Eqs. (2.3) are to be considered on a region R in n+1+N dimensional

space of the variables x; t, a. This region is to be subdivided into subregions
RyvRypens
to solve Egs. (2.3) for x

which do not have interior points in common. On Rk it is possible

kn in terms of the other variables.

1’-~-l

xl = gi (x],.--, xnl tl a'Il"'l a‘N) (2'4)

where:

(A) If x',t', o' is a point of Rk then for t' f{fixed, gik is analytic in

¥ ] ] ’
Xpseees Xp Grheney By at Rioweer Xy G1yeee, Gy and
(B) If xl(t), ce ,xn(t) are n continuous functions of t defined for an
interval a< t £b and TR o aN 2are fixed values of a such that for every
t in the given interval, x](t), v ey xn(t), t, L TRERE aN is in Rk' then

gik(x](t), ceny xn(t), t, @iheen, aN) is Riemann integrable in t for ax<tcg<hb.

The boundary Bkl between the regions R, and R, is subject to the

same description word for word as Bkl in the previous section and for a fixed

set of values @psevns Gypp the definition of a continuation rule given in the
previous section applies here.

Suppose that for a fixed set of values, ai, ceey aI:T of the parameters, a so-

lution of Eq. (2.3) is given with initial conditions Xy grrrer Fpoo t such that
' ¥ i 3 . ’ -—
x],o,..., xn'o, to’ @lseens aN is in R]. Sup?ose that as ¢t t], to£t<t1»
- . Lo .
xj(t) le where Xyqreeer Xoqo tl' aysee-s g d8 a point of B12 but not of
B]j for j# 2, For t > t, let xj(t) denote the continuation of this solution

into the region RZ' We say that this solution penetrated the boundary analytically,
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ifwecanfinda §>0 anda 35> such thatif xj = xj(t] - &), then, there

exists a nei_ghborhood of x% P ,xr'l. a ; P ali\T such that:

{1) Each point of this neighborhood KipeenaXy @yiin, N is such that
xl,...,xn, tl- s, a1,..., aN is in R],

{(2) Each point e STRERY x . al, v, @ N determines a sclution which can be

continued by the continuation rule through B

into R

12 2’

(3) The values of the continuation at t+ 8" determine a point x](t+ 8) ...,
xn(t-!- 8°), t+ &%, ‘1]; ceea By which is in RZ for every such point in the
neighborhood and, ‘

{4) Each such xj(t+ 5§’} is analytic in XisoooaXy @500y, ang in this
neighborhood.

Let the initial conditions x 1eee, X at t and a.,..,., a be

1,0 n,o -— 0o 1 N —

fixed. A set of functions x](t), cens xn(t) will be said to deacribe a perturbed

motion of the machine if a set of values t1 b ey tM of t are given such that:
{i) For 1:i <t <t

41 x](t), fe ,xn(t) is a solution of Eqs. {2.3) except

possibly for a finite number of values of t where this solution analytically

penetrates a boundary and:

(i} At each tj we have parameters Bij such that xi(tj+) = xi(tj) + 'Bij'
[The form of the last equation permits us to assume that xi(to) =X, » even

3
when to is a point of perturbation, t], i,e. xi(to—f-) = xi,o + Bil . ]

2.3 The Nature of the Machine Solution

The actual running of the machine will permit us to infer that a solution of
Egs. {2.3) exists for certain values of the parameter « and we could proceed
to build a theory based on the assumption of the existence of such a solution.
However, normally one would prefer to come to a conclusion concerning the
existence of a solution of Eqs. (2.1) or use as an assumption the existence of a
solution of Eqs. {2.1). Also, one might want to perform an analysis prior to
the running of the machine. For these reasons, then, it is convenient to base

our discussion on the existence of a solution to Eqs. (2. 1).

THEOREM 2.1. Let the systems of Eqs. (2. 1) and (2. 3) be described as above.

Let ag<t<b determine an interval t on which a set of n functions

x](.t), vees xn(t') is given which for t in this interval are such that

x}(t), . ,xn(t), 0,...,0,t 1is in the region R of the previous section,

xI(t), Ces ,xn(t) either satisfies Eqs. (2.1) at t, or for a finite set of values of

t  analytically penetrates a boundary le- in the sense of the preceding section.

Suppose b is not a boundary penetration point. Except at points of boundary
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penetration, x](t), can ,xn(t) is interior to an R,. At t= a,xj(a) = xj,o

where xj o is a given set of initial conditions. Let a set of values t,,...,ty,

of t be given at which perturbations Bij are to be permitted. As explained

above these perturbed t's are notto coincide with a point of boundary pene-

tration.

Then there exists a neighborhood in n+N+nM dimensional space of

: ) .
0,...,0,0,...,0, such that if x],...,x;1 Gyreens z

is a point in this neighborhood we can find a perturbed motion of

X ce e X
1.08 t]

Byveeer Bam

n,o

the machine, Furthermore, xj for this perturbed motion at b, i.e. xj(b),

are analytic functions of xi""’xﬁ’ Tyseens aN. ‘BH""’ BnM on this

neighborhood.

We prove this theorem by the use of various subintervals a'g t <b'. In this

preee tM are to be fixed and such as occur

in the subinterval constitute the perturbation points for the subinterval.

discussion the perturbation points t

LEMMA 2.1. Let a'<t<b' and a'"<tg<b'" betwo subintervals of a<t<hb

with b' = a'" and b" not points of boundary penetration. Then if the theorem

holds for these two subintervals it holds for the interval a'<t <b",

Proof. Our hypothesis yields a neighborhood in n+N+nM spaceat t=a'
for which the values of xj at b' are analytic. We also have a neighborhood
of xl(b'), e ,xn(b'),O, ...,0,0,...,0 at t=a"=Db" for which the values of
the continuation at b' are analytic. Now, the continuity of the values at b’
as functions defined in the a' neighborhood insures that we can find a subneigh-
borhood of the a' mneighborhood such that on it x](b'), . xn(b'), L ERRRY
ane Bl preree BnM is in the b' neighborhood mentioned above. Since an
analytic function of analytic functions is analytic, the values at b" are analytic

functions of Kysooer Xy Byoeens a in this subneighborhood

N Bt Bam
for t=a'. This yields the result for the interval a'<t <b",

Lemma ] obviously generalizes to any finite number of adjacent subintervals.

LEMMA 2.2 Let t' be any point in the interval a<t <b not a point of

boundary penetration. We can find an 7 > 0 such that for every a' and b’

with t'-n7n < a'<t<b'gt'+n, b' isnota point of boundary penetration and

the theorem holds for the interval a'<t <b'.

Proof. Since t' is not a point of boundary penetration xl(t'), Ve xn(t'),

0,...,0,0,...,0,t" is an interior point of some Rk' Consequently, the usual

existence theorem gives us an interval % such that for a' and b' as
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specified, a unique solution of Eq. (2.3) exists whose values at b' are analytic
functions of the values at a' and of the «a's in an appropriate neighborhood.
Now if t' 1is not a perturbation point, this interval 7 can be chosen so small
that no perturbation point appears in t'-np<t<t'+ 7 and our result holds. If

t' is a perturbation point, ti’ we can choose 7% 30 small that t' is the
only perturbation point in this interval. Our perturbed motion is, for a'< t<t’,
that given by a solution of Eq. {2.3) on this interval and for which the values

xi(t') clearly have the correct analytic character; while for t'<t<¢b', the per-
turbed motion is a solution of Eq. (2. 3) with initial values at t' = t. of

xj(t')+ Bji' This also will yield the desired result,

We can now establish the theorem as follows. Around each point tT  of

boundary penetration, we take a neighborhood t' - 8T =a' and t'+ 8T = b' for
which the theorem holds by the hypothesis of analytic penetration. Now if t*

and trH are successive boundary penetration points, we suppose that

t 4+ 8T <t <_tr+] - 8r+] is a non-null interval of positive length. For every point

t'  of this interval, Lemma 2.2 is applicable and thus is associated with an
interval of length 27 ., The Heine-Borel theorem then applies, and states that a

finite number of these intervals will cover the interval from tr+ 8t to

trH- STH . Within these finite intervals we can choose non-overlapping adjacent

tT+ 8% to tr+1- 8r+] and for which
the theorem holds. Lemma 2.1 then tells us that the theorem holds for

tr+ BrgtgtrH- 81'+1

intervals a'<t <b' which stretch from

and a final application of L.emma 2.1 will yield the theorem.

The solution postulated in the theorem is not permitted to remain on a boundary
for a t interval. The hypothesis thatif t is not a point of boundary penetra-
tion, then the corresponding point on the solution xl(t), ey xn(t), t, 0,...,0,
0,...,0 must be an interior point of Rk is made necessary by the hypothesis
of the usual existence theorem which requires a region of analyticity or at least
of c’ontinuity around the initial point. This condition in turn results from the
necessity in the usual proof of repeatedly substituting the Picard iterants into the
various functions g.k(x] ERETE t, ...). Now, in practice when a point t not
of boundary penetration is on a boundary which is part of an R’k region, we may
usually substitute the iterants into the g.'s and still stay in the region Rk'
Then, the usual argument goes through and under these circumstances, our initial

solution can be permitted to run along a boundary Bjk'
Let us note the following corollary to the theorem of this section.
COROLLARY 2.1. In the above theorem, if in the description of the G 's we

replace " gjk is analytic in Kisrees X

k
v @iy aN” by gj has lst

n

WADC TR 54-250, Part 14 23



order continuous partial derivatives in x.,..., X, @, ,..., @4, " andif
P ] n 1 N

'"analytic penetration of the boundary' is replaced by a corresponding property

obtained by making a similar substitution in property (4) of the definition of

analytic penetration, then the theorem holds provided that in the conclusion of the

theorem we substitute for ''are analytic in = s eesX Y S -
l,o0 n, o 1 N
se sy '"" the expression '"have 1 th order continuous partials in
11 BnM P
T
Xy 000 Xp, o @iyeens Eap Bll""‘ BnM'

Since the corresponding basic existence theorems held, a corresponding

proof can be given.
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3. THEEFFECT OF « AND B8 ERRORS

3.1 The Analytic Expansion for the Error

In the case in which the xi's are analytic in the « 's and B's, we can

expand

i 8 X preees Sap Brpeees By (3.1)

in a Taylor series about the point (t,0,...,0,0,...,0),

2% ;
—.-.-—....—1_ o B_
r,k,j aak BBJ-r k ]r (3. 2.)

js + higher powers,

Since we suppose that the o and £ are not too large, a few terms of this
expansion (say one, two or three) should be adequate to determine the error.

Hence, the next problem to be considered is the determination of the partial de-

rivatives.

Jd a ] 2
x s k.
0a * B dadf ’ '

Now, Proeees Py satisfy the system of equations

Ga_xp

iat' cPl t.l a]l_-~-s aN)--O’ 1=1,...,n (3.3)

except at a finite number of points of perturbation and at a finite number of points

at which the boundary is penetrated. Let Y stand for eitheran a« ora g
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Let

d
Y; ¢ 3y .
Since
2 = ey =y,
gy 9t at  dy

we obtain on differentiating Eq. (3. 3) with respect to ¥ ,

aGi . aGi 3G,
3, —~ y., + T2y, +— = 0. (3.4)
ioax, 1 9% d
J
Since we are interested in the values of vy at e = 0, this equation becomes
IF, | G-Fi aci
2 {——y. ¢ ¥ + = 0. (3.5)
i ok joooaxm Tl dy

(f ¥ isa B, the last term is zero.}

This system of linear differential equations will specify LATRERE Yn if we

know the initial conditions for these y's. If ¥y is an a , thenat t= to’
Cpi(to, @ laeaes @pp 3”, e ﬁnM) =% and consequently, at t = t,
¥, T do i/ay = 0. (This also applies to higher partials of €y relative to the
a's,) If v = Bij is a perturbation of x, at t = tj, then

xi(tj+) = xi(tj) + Bij
and for k # i

xk(tj+) = xk(t.?)
Consequently, at t = tj. Y = aik and one might add that the higher deriva-

tives of Py relative to Bij are zero at t = tj, as well as the higher cross

derivatives relative to other parameters.

Thus Eqs. (3.4) with these initial values determine the ¥y = do i/ay in
every case, Suppose, then, that the first derivatives y; Bare known. Let
74 and YZ be two parzizmeters, got necesgsarily distinct. We denote the
corresponding y's by vy and vy respectively,
Y.uzaq’i' Y_z=a°Pi

1 a 1 a
7 Y2
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and the second derivative by zj,
2q .
3P j
J
¥y dry

If now we differentiate Eq. {3.4) relative to

equation:
aG; . 9G, 1,2 2°g
z .ZJ+Eaxzj+Ti'+———=0
i axj J ) aY] 37'2
where
2 2
3 G -G
1,2 1 2 i -1 |
T, = X i % v OE O (Yj e *t Y ¥;)
Jhk ax, axk ik axj é‘xk
2
3°G.
t O3 ey sz
7S A T S
+ yj + 3 Yj
j : J
5')’2 ij 6)’2“ ax.
azGi .2 o',
+ 2 ‘—"“‘Yj + £ " v..
j : J
5)’1 6xj 6‘y] axj
If we set aj = 0, Eq. (3.6) becomes
oF, oF,; - aZGi
Sz gy nl b T b ——— =0
J c?xj j , 3}/1 a”z
o
1,2

where Ti has the expected definition.

3

Y, {letting ¥ = y1) we obtain the

(3.6)

(3.7)

Equation (3.7) is a system of linear differential equations of the first order

in the zj- whose homogeneous part is identical with the homogeneous part of Eq.

(3.5). If we consider ourselves to have found the first partials, the problem of
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finding the second partials is essentially the same as solving a linear system with

the same homogeneous part. Similarly, the problem of finding the third partials

3
acpk

94 arz 3v3

involves the solution of a system

oF, . 9, 1,2,3 2°G,

T L w, + w. 1+ T.” "7 4+ ————M — = 0 (3.8)
. ] ax 3 i, o

j 6xj j ’ &)f] aYZ 8y3

o
whose homogeneous part is again identical with the homogeneous part of the partial

derivatives of lower order. It is clear that a similar situation holds for partials

of any order.

3.2 The Sensitivity Equations

Thus the evaluation of the Taylor expansion of the error in a differential

analyzer reduces to the problem of solving a system of linear differential equations

BFi , 6Fi
> Yj + =
i 9%, | ox,
T . j

y Q=0 izl...n (3.9)

for various functions Qi and various initial conditions. This applies even in the
general nonlinear case and we are justified in referring to Eqs. (3.9} as the

sensitivity equations. The error in each application of such a device depends on

the equipment and the problem to be solved. Eqs. {3.9) with the appropriate
boundary conditions determine the manner in which the individual problem affects

the total error. The present section is concerned with the solution of Egs. (3.9},

The determinant of the coefficients of the Yj in Eq. {3.9) is the Jacobian
for the system F. = 0, and the fact that we can solve the F, system of equa-
tions for the >';j uniquely and analytically means that the Jacobian J is not
zero. Let us solve then for the y Let K.k denote the determinant obtained
from J by repla.ci.ng the column of elements aFi/ I x, by the column

aFi/ 9 X, - Let le denote the algebraic complement of BFi/ 63'{j in J.
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Then Eqs. {3.9) are equivalent to

. k i

Jy. + £ K. +37J.Q. =0, j = 1,...,n, 3. 10
vyt By ? i ] { )
We now make the further assumption that for the given solution of the system

Fi = 0, the first partials of Fi relative to x., are continuous in t and J

is bounded away from zero when the solution is substituted.

The existence theory for:linear differential equations, which is not confined to

the small, then shows that for each 1, | = 1,... ,n, there exists a vector so-
Iution
Y1= Yl,Y ]L,...,Y'1 such that
1 2 n
1 |
Y. (t = &,
J ( 0) J
and
vy s kEv D - o (3.11)
j k )k
If the dependence of the Y.1 on t is to be indicated explicitly we shall write
le = le(t,to) and we can, of course, find solutions le(t, r} of Eq. (3.11)}
with the property that le(t, r) = le for any value of s in the t inter-

val. The theory also tells us that the le(t, r) are linear combinations of the

ij(t, to) with constant coefficients, that is,

1

1 y k
YJ. {t, r) = i Ay Yj (t,to). {(3.12)

This relationship can be written in matrix form as

Yit, r) = A r,to) Y(t, to) (3.13)
where A(r,t.) = 1A '(r, )]
t} 0 k H] o .
The initial conditions for which we wish to solve Eq. {3.10) are, for some
t = r in the given interval, either in the form
k
1 . = &
(1) Y5 i
or
2 .= 0.
(2) Y;
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The Condition (1) applies to- 3¢ j/a‘B and for these, Qi is zero and the
le(t, r) are the desired solutions. For Condition (2) which would apply, for
example, to  dg j/aa we look for a solution of Eq. {3.10) by the method of

variation of parameters. We consider, then, solutions of Eq. {3.10) in the form

1
.= W (¢, Y.o(t, t
Y5 : (7)Y t)

for t3 7, and yj = 0 for t< r . For such a solution of Eq., {3.10), we have

. 1 21
JI ? Wl(t, r) Yj (t,to)] + J( % Wl(t,f) Yj (t,to)]

k 1 i
+ kzl KJ. Wl(t,r)Yk(t,tO) + EiJJ.Qi = 0

and Eq. (3.10) implies, by virtue of Eq. (3. 11),

- 1 i
Ji% Wit 7 ) Yot t )] o+ ?Jj Q = O (3. 14)

Now, if we substitute 7 = t in the matrix Eq. (3.13), we see that A(t, to) is
the inverse matrix for Y(t, to). If we multiply Eq. {3. 14) by AkJ(t, to) and sum

over J,

; 1 j igad -
Ji 12j Wl(t,r) Yj (t,to) A.k(t,to)] + iZj JJ. QiAk = 0

or

X i i -
JW (t, 1) + izj IO Qi At = 0.

Thus for tz r ,

t
- . L1
vl = [f Sowyg,nadl Yt

t .
= x5 N B Qo) ALY gal
P S IR ¥ K(t,¢ )a 3
A EA TSNP A TS LTS (3.15)
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3.3 A Remark on Stability

The above formulas can be supplemented in practical cases by using the

stability of the system. If we multiply Eq. (3.11) by le and sum over j

ssyryl + s vlkEyl! - oo (3.16)
PR 5k 471 Tk

The second term is a quadratic form with which is associated a symmetric matrix

Lok j
2K+ K

whose characteristic roots are all real. If they all have the same signas J on
the given t interval we shall say that the system is unconditionally stable. Sup-
pose that X (t) is the least characteristic root in absolute value and let p be

the ratio A /J, which of course, is posgitive. Then

ey = arlsyl? o Vs le Kjk vl
i i | ik
Thus if
L= 2(YHY
j J
Eq. {3.16) implies
%—ﬂ = Vs ylgk Ykl < -pp
e
and consequently,
d
= < .
It log p < 2p .
Thus, if p' is the value of o at t = r |
t
“ = - ‘ < -
log(+4) log log o' < 2 [ pt¢d¢

or
p< owexpl-2 § ()¢ 1.
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With the initial conditions le(r,r) = Sjl,
p'= op lr) = §[Yj1('.')]2 = 1, and
j
1 2 t
SIS 1) ] s exp [ -2 J L)t
i
Thus,
1 t (t-r)p*
Y o) 5 expl - Joetzadry e

where p* 1is the greatest lower bound for p{t ) in the interval {r,t). This
can be used in the obvious way in the unconditionally stable case to obtain over-

estimates for 7y, based on Eq. (3.15).
J

3.4 The B Errors

Let us first consider the linear terms in the perturbation error, that is,

e.1 = pX _._6_9?‘]_

. (3.17)
wv OBay Puv

where Buv is a perturbation on X occurring at the time t,. For this our

earlier results show that

{3.18)

uv’

u
e. = ij (t,t) B

u,v
(Cf. § 3.2, in particular the discussion following Eq. (3.13).)

Certain of these B's are chance variables (''noise''), others are not and are
generated by non-chance phenomena. At the level of generality of the present
discussion, we can do nothing further with these latter except to point out that in
the unconditionally stable case, the inequality obtained on the v." in §3.3 may
permit a convenient overestimate. It also is possible to introduce the adjoint
system for the system of Eq. (3. 11) and express the Yju(t, tv) in terms of the
solution of the adjoint system. If this is done, however, one finds it rather dif-

ficult to utilize the stability that may be present.

1f we suppose a specific method of generating the chance variable g, our

procedure permits us to go further. It is reasonable to assume that for each
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variable X, the expected number n_ of noise perturbations per unit interval
of time is independent of the time and that when such a perturbation occurs, the
amplitude distribution is also independent of the time with mean zero. Let 7y
denote the variance of this last distribution. Both ™ and ¢, may depend on
u, in which case we write no. and aou' However, the chance variables in-
volved are independent for different values of u. In the usual noise theory (see,
for example, [36]) one shows that under these circumstances one can divide
the interval from to to t into subintervals in such a way that the possibility
of more than one perturbation occurring in an interval may be neglected. In the
ith interval, say, a perturbation occurred at t:!L. This will choose a time ts
in the i th interval. If no perturbation occurred, t! may be chosen arbitrar-
ily in the interval and 3u(t{) = 0. For a given interval, the probability of an
occurrence may be taken as noAt (where of course, At is so small that
noAt << 1}, Actually, the probability of precisely k occurrences in an interval
to <t gt is

(gt -t )1 on(t,-t)

k! €

, (3.19)

according to certain results in noise theory; cf. Rice, loc. cit. In particular, the
occurrence of a perturbation at time t{ is independent of previous or successive
occurrences. (Consequently, the variance of ’eu(ti) is readily seen to be

7, nouAt . (3.20)

{We shall assume s is independent of u.) The linear noise effect is then a

chance variable nejl (the presuperscript n refers to '"noise'!),

u
n = 2. Yj (t'ti)B{li

; i (3.21)

where the ’Bﬁi! is that subset of the ‘Buv which are chance variables.
Since the Bl; are now considered to be independent and large in number, we
may apply the Central Limit Theorem and obtain the result that ne.] is a

normally distributed chance variable with mean zero and variance T

t
e % - iaoz n,, { [Yj“(t,c; i 2ac¢ . (3.22)

(o}
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(Again, in the unconditionally stable case, we can obtain upper bounds for this

expression.)

In the case of noise, it may also be necessary to consider, in addition to the

linear term whose expected value is usually zero, the second degree terms

n 2 ] . azCP .
- —
e. = = . 3.23
J u,v,u',v’ aﬁuv Byry Buv Burvt ( )
(We are again considering only those B's which are chance variables.)
Hence, zj,
aqu .
z, = J (3. 24)
J Buv Byt
satisfies the differential equation
Jz, + T KRSz +313lThB = o (3. 25)
J k J k i 1,0
(cf. Egs. (3.6) and (3.10) ) where
azF Sou o u
TB!Q"‘ z . » YI‘ YS
1, 0 r,s dx_ 9%
8
aZFi oou u' - u' u
+ = .—‘(Yr Y + Y Y ) (3.26)
r,s dx_ dx 8 r s
s
2
a F.
i u u'
* 2 ax_ dx Yr Ys
r,s B
Now, from Eq. (3.11)
¥ . =k ty®
r 1 T 1
(3.27)
' - 1
v ¥ o s ok Dy
r 1 r 1
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and consequently

2
d"F.
Bl - u u! 1
T%o 1?11 Yl (t’tv) Yk (t'tv‘) dx, axk
2 2
-1 aF; IF ok
-J X K=+ — K_ 1 (3.28)
r ox 6xk axr axl
2
d°F,
vty — LgikE
r,s ox_ dJx ros
r s
We shall write this as
' ' 1,k
e W= = Y RS . (3. 29)
1
This is a quadratic form or bilinear form in the Ylquu . Our previous formulas,
Eqg. {3.15), show that
SN - k
z, =~ 2 J 35Ny B gy Y., ¢)de (3. 30)
] ik 7 k i,o j
where r = max{(t_,t ,).
v v

Now e.z may be considered as a quadratic form in independent normally
distributed variables Buv and hence as such is subject to well known statis-
tical methods. However, the quantity of immediate practical interest is the ex-
pected value of ne.z. Since the ﬁuv are independent with mean zero, the

cross terms have expected value zero. Thus

2% .
EPe? =L 5 —F1 mrgl
J 2 u,v aBiv uv
1 2 - i u’ u
=-3 S ELBS T 1 379 3,00) 2 Y, (4.0 )Y, (4,t)
u, v t, Lh
o e e (3.31)
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Now E I[8 tzw 1= 002 n uAt. If we pass to the limit as At— 0, the summa-

o
tion relative to v becomes an integral and

E [Pl =
i 2 ;b " 1 i u
- = b n_ o f I (W ()Y, (¢, )
2 4,i,k,1,h % ° ¢ T k 1
o]
R A A TR IILIE RS (3.32)
This second degree noise term does in general not have expected value zero.
Another important quantity that could be computed is the variance of nejz.
Similar expressions can be obtained for higher order perturbation errors
nejr similar to those for nej1 and nejZ‘

3.5 The a Errors

In the previous section we treated the first and second order perturbation
terms explicitly and indicated how higher 8 errors could be handled. We shall
now consider the "forcing" errors or a terms., From our treatment of the
2 -terms it will also be clear how mixed terms such as ach j/6a6,8 can he
treated. We note that the a -terms may or may not be chance variables., If
some of them are, they may be treated as the 8 's were, thatis, we can
compute their variance. While this method will not be considered in treating the
partials of ¢ with respect to the «a's alone, it should be kept in mind when

dealing with the mixed partials.

The first degree forcing errors we denote by ¢ jl ,

9P,
€ ,1 = 2 ~_...J—

a 3,33
; s (3.33)

and we have seen that Yj (=799 3 /32 ) satisfies the differential equation

aF aF, IG;
Sy, + y.) o+ = 0 (3. 34)
j ij J axj J da
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with the boundary conditions
yi(to) = 0.

The solution to this equation is {cf, Eq. (3.15)}

t i aG. K
yt) = -2 J (LN (L) 5 Y (t, ) dY (3.35)
. i,k t /
! o
where "Gi is a function of ¢ and hence
da
t . 3G,
1 -
ego=- 3 1 rhanke —a, vNt ) a¢ (3. 36)
J i,k,u t da J
o u
(since the ®, are independent of time).
If we let
i Gy
8 Gi = G @y {3.37)
u u
then Eq. (3. 36) becomes
1 t -1 i 1 k
e, = % f 7 (E)I (L) 3G, Y (L, )d ¢ (3. 38)
J ; S
i,k t
o
Hence we have an explicit representation of the linear forcing errors.
Consider now the second degree effects, 4 2‘? j/ da a da If we let
92,
z, = @ —d (3.39)
J aau aﬂ.v
then the zj satisfy the linear differential equation
. 2
aFi : aFi d Gi u, v
e TR + T = 0 (3.40)
j axj J j J da,; das, o 1 O
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(cf. Eq. {3.7)) whose solution is

(3. 42)

(3. 43)

(3. 44)

(3. 45)

(3. 46)

) = - T 1IN0 2’6, s TV v e, )L (3.41)
! ikt k day day hoj 3
Now the second order forcing error is
2
g ¢
p ‘2 1 s J .. @
J 2! u,v da, da, "WV
and hence
* 2
t . 9 G.
2 1 -1 1 i k 2
e 2.1 2 TN T ay e, Y (6 4)AEF S
- u,v,i,k t k da, da, UV ) J
where
s -.4 2 sty v 5t, ¢ ya ¢
i T°7F . (O (OTY ey ey Yyl '
u,v,i,k t
o
If we let
SZG -1 3 aZGi a
S a
1 2 u,v &Iu 6av L S A
then
' t
-1 j
e2 .. 5 1 rionlicrsie YL@ ¢+ S5
] i,k t k i
! o

The total error due to the forcing errors alone is clearly

and the total disturbance of the original equations is AGi'

- a9 ay _ 1 2
A Gi = Gl(--a—-Ej ¢, t, L P aN) - Fi (-E—t-, P t) = E> Gl + 8 G1 +...
Hence,
t i k % _n
ety = 2 [ T ({)Jk({)Y. (t,{) AG, d{ + 35,7,
J i,k to J b n=2 7
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Here we have the total « error. The first term in this expression cor-

responds to the direct effect of errors on the solution,
correspond to iterated results of errors.

the total error AG-i

The remaining terms
While the first term depends only on
in the various equations, the other terms cannot be ex-

pressed integrally in this way. What one can do is illustrated by the following.
Note that sz depends on

i u, v azGi L u s v
T = X Ti:o a, a, = g - (Zyl au) (Eyk av)
u,v 1,k dx, 9x u v
1 k
620 «u v
+ T —— (¥ a)(Zy )+ (Ey, e )2y e )]
1 k %v 1 "u k v
1L,k 6x axk u u v
2%,
+ X (s a )(EY Ve o)
l,k ¢9x ax.k ( y-]. v k 3 (3.50)
aZGi aZGi v
+3(2 —'—,-a)(Eyla) +E2{ ——— au)(zyl av)
lu 2d dx 1 u Qe dx v
u 1 u 1
azGi ! aZGi u
IR e )@y e ) 33 e ) (e )
1 v 9e dx u 1 v v 1 u
v 1
The partials of G are to be evaluatedat « = 0,
Now let d, denote the operation of taking the 2 differential. Then
_ e u N _ ' u
4?1 = Iy ey diey = Zypa (3.51)
u u
and
i dei . . 6‘2Gi .
0¥ P ' 1 %k
2%G a{ s G.)
v R o, ax, e davy 22 . dg ¢ (3.52)
1,k 1 %k 1 3%, :
1
+ axl d‘lcpl

. . i, .
This is as far as we can go in expressing T  in "integral' form.
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3.6 Numerical Integration

The B8 discussion {§3.4) yields a very natural method of treating the growth
of error in numerical integration. It is customary to utilize a difference equation
approach both for stability considerations and for a study of the growth of error.
Now one does not have in general the basic existence results for difference equa-
tions which are known for differential equations. Consequently, the use of dif-
ference equations in error growth leads either to some form of "linearization' or

to gross overestimates.

The numerical integration of a system of differential equations

¥i

=fi(y.|,...,yn,t) i =.1...,n (3.53)

will yield tabulated values for the y's, ¥y}, ... ,¥2 atintervals of h in the in-
dependent variable. These also yield tabulated values for the fi, say fc.). At
each value of t for which the computation is performed, we can suppose that an
error B.(t) is made in s This error .8 can be regarded as the sum of two
errors .8' and B B; is the truncation error, which results from the fact

that there is no prec1se way of numerically integrating Eq. (3.53); various
“numerical integration' procedures must be used. B;‘ is the "round off'' error
due to the fact that even these numerical procedures can not be precisely carried
out since the number of places available in the registers of the machine is finite.

11}
B can be regarded either as a chance variable or a periodic function of t.

It should be obvious from the above discus sion that the total effects of the B
error can be evaluated by the above theory provided we know both B and B
For instance Eq. (3.22) will permit us to evaluate the linear effect of these
errors, and Eqs. {3.23), (3.31) and (3.32) will express the quadratic effects Of
course we must express each B as the sum of two errors, ,8' and B

Thus one must evaluate B' and B8 ". ,3“ must be obtained by a specific
investigation of the numerical procedure used, It is customary to consider §B8 ‘
as a chance variable with known expected value and variance. It is clear from
the above that in general this is adequate to determine the distribution of the cor-

responding effect on the solution.

'
It remains therefore to compute B8 . There area number of ways in which

the f's can be regarded as functions of t defined for the intermediate values
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and then the integration error fi(h) made in y; at the k th step can be

defined as

tk+}

it ) = Yilg ) - v - £9dt (3.54)

where te = +kh. Let Yi(tk+l) denote the values of the solution of Eq.
(3.53), which at t, has the values yf(tk). Then

t
) = vy +

"

and the truncation error pg' is given by

1
Viltiyy £ dt (3.55)

Bilt ) = Yilte, ) - vyt ) (3. 56)

In general one can find ¢ i (Cf. Brock and Murray [2] ) and we must obtain
the relation between €3 and Bi' The precise relation is Eq. (3.57) below; but

in many practical instances Eq. (3.58), which is very easy to use, is adequate,

Assuming y(; to be defined for intermediate values of t we can use Eqs.
H !
(3.54) and (3.56) to define ¢ i and Bi for t Dbetween t and 1'.1(_|_1 by

replacing t by t in these equations, yielding

k+1

i

8l - £S5 .. t) - £0yS + BY,...,0] at . (3.57)

t
=7
i

The relation of Eq. (3.57) can be differentiated to yield a differential system for
B '. The solution of this system by Picard's method is obtained by substituting a
given approximation B' in the right hand integral and using the resulting ex-
pression for B' as an improved approximation. Normally this can be carried
out to any degree of accuracy. Usually -« i itself will do for a good first ap-

proximation to B i

However, for the accuracy needed for most purposes, the following is effec-
tive. In most methods, ¢ i(f:) is effectively linear in t (even when the interval
h appears to a relatively high power}, Now if we assume that this is also true of
B; and that the A . =.;?i_ are constant over the range from yc; to y? + Bi',

J
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then Eq. (3.57) becomes

1+ v
ﬁi ;h AljB_} = €., {3.58)

i
J

™=

(Note that if - 8'(t) = bt, then dthjdt -+ B h.) Equation (3.58) can be applied

directly; give ¢ and one obtains f '1 to the first order in ¢ ; by this formula.
While one can obtain more precise formulas than Eq. (3. 58), the accuracy obtained
is seldom worth the effort. On the other hand, the improvement obtained by using

the ,B'i .of Eq. (3.58) instead of ¢ : in error analysis is frequently significant.
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4. THE :a  ERRORS

4.1 Introduction

The theory of the previous chapters is not applicable to the case in which the
G's are of higher order than the F's, Time delays and imperfections in the
response of integrators can easily result in a system of equations G = 0 for

the device which are of higher order than the given system.,

The purpose of the present chapter is to introduce a method of treating the
general situation. One can by straightforward computational methods solve the
problem in the linear case with constant coefficients, It is also possible by
means of the theory established above for the a and £ errors to reduce the
study of the general nonlinear problem to a linear problem with coefficients con-

stant on intervals.

The detailed exposition of this development begins in the next section. How-
ever, in the remainder of this section, we give certain examples which indicate

the possibilities that arise when the G's are of higher order than the F's.

An error parameter A corresponding to an error which affects the order
of the system realized will not appear analytically in the machine solution. Thus

the methods of the previous chapters cannot be used directly to obtain the answer.

We give an example to show thata A or order-raising error will not appear

analytically in the machine solution.

Suppose we wish to solve the simple equation

+
X = =X,

Now, due to time lags, the best that we can realize on the machine is a system
AX + x = -x.

The general solution of this is, of course,

x(t) = a expl - ﬁiﬁ]+ b expl -ﬁ?-—— ":'4)\— t].

We cannot depend on the initial conditions to be put in so perfectly that b = o
and thus, in general, we must expect the presence of the last term which is

nonanalyticin A at A = o,

The above example illustrates how nonanalyticities arise due to time delays.

In the next example we shall show that even if arbitrarily small time delays are
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present it is possible to obtain an unstable solution for an otherwise stable

system. The example we shall use is

x + Zy = (3+
3- V17

We readily verify that for this case the Jacobian is unequal to zero and that -1
and -2 are the characteristic roots. Clearly one has a wide margin of stability.

Suppese, due to time delays, the above (F system) is modified to

x + Ax+2y-(éi——)

- V17

. . ‘e 3
x+y+ Ay = ("5 )y

(the G system). One finds in this case that the four characteridtic roots

B A) = 1 T Ak s,(A) = 2+ Ty(A)A
vida) L 5 VoA Vs
122 - s/i)t brgn) 2 e e RENPY

where Ty, Ty, Iy, T, are power seriesin A ., Hence we see that no matter

how small A>© is we have a solution of the form

r.{ait,
K V2-1)t/a N

that is, a positive exponential. As in the first example, we cannot hope that the

boundary conditions can be put in so perfectly as to eliminate this solution.

4.2 The Order of the Machine Equations

We shall now proceed to treat the general case and describe a process where-
by the present problem may be analyzed using the results of Chapter 2. Our

original system of equations is again of the form
Fi(;'c,x,t) = 0, i = 1,2,...,n. (4. 1)
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The system as realized on the machine will be in the form

(1) . [ ]

Gi(kx],...,)\x,x ...,xn,x],...,xn.t) = 0 {4.2)

or as we prefer to write it
G(rx,x,x,t) = 0.

The parameter A has been introduced for the purpose of convenience. Thus,
when we set A = 0, we obtain again the system of Eq. (4.1). It is convenient

to think of XA as small and that '5(—‘1%)"' is of normal size. The assumption that

the order only increases by one is made in order to obtain reasonably compact
formulas. The arguments will generalize to the cases in which higher derivatives
appear. We ignore a errors since they can be treated just as readily here as

in our previous chapters and by the same methods.

We shall say that the G system of Eq. (2.3) (§2.2, Chapter 2) is satis-
factory if it satisfies the conditions imposed upon the Gi in that section., The
system of Eq. (4.2) above can be expanded into a first order system by intro-
ducing new equations and new variables., We shall say that Eq. {4.2) is A

- satisfactory if for X # 0 this expanded system is satisfactory.

We must first, however, specify the extent to which Eqs. (4.2) are actually
of the second degree. Suppose the Eqs. (4. 2) imply exactly n-r independent

functional relations

Gi(i""";{ . X

n ],...,xn,t) = 0, j=r+l,...,n (4.3)

which do not involve the second derivatives. Now one can readily see that if Eq.

{4.2) is such that we can explicitly solve for s of the expressions .\521 Ve A':Es

in terms of A% _,...,);35,i,...,;c,x,...,x,t, then when we substitute
s+1 n’"1 n'1 n

these in the remaining n-s equations of Eq. (4.2) either the ,\555+1, R S:n

appear, and we can solve for another A x or they disappear from the remaining
equations and we have n-s relations of the type Eq. (4.2). Since there are

exactly n-r relations in Eq. (4.3), we can carry out the above elimination

process for 8 = 1,...,r. Suppose then that the first r equations
* . L] []
Gi(Ax.-ljt--, Axn’x]’-o-,xn'x1, -u,xnlt) = 0 (4.4)
io= 1,...,r
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can be used for solving for A 521 s ey .\551_ and that Eqs. {4.4) and {4.3) form a
system equivalent to Eq. (4.2).

.
’

I
T+’ n

Now suppose the system of Eq. (4.3) is adequate to specify x
in terms of 5(] e ;{r’ TP M2 This means that a certain Jacobian is not

zero. Thus, if we differentiate Eq. {4.3) with respect to t,

aG: . aG: | 3G ;
s—J % ¢+ =—Jx +—2L1 = 0, j=r+,...,n, (4.5)
. . 1 j dx. 1 at
1 gx. i 1
1
and these equations can be used to eliminate A ;r+l yoaees )&';:n from Eqs. (4. 4).

In order to present the following discussion with a reasonable economy we will
suppose that this latter elimination has been carried out. Otherwise the requisite

discussions of A -satisfaction would be quite complex.

HYPOTHESIS 4.1. The system of Eq. (4.2) can be written

GHUAX,, ..., A%, x
i 1 r

G'i(;c],...,xn, Xypeeas%x ,t) = 0, i=r+l,...,n (4.6)

where the first r equations can be used to solve for A;E] v e s A‘;cr in terms

- .

of x,...,%¥ ,%X.,...,%x_,t and the remaining equations can be used to solve for
- 1 1 n .
xr_l_],...,xn in terms of XpseeesX 5 Xy uea, X o Hypothesis 4.1 is to be under-

stood as stating that certain Jacobians are not zero plus the existence of certain

values satisfying the equations. We suppose then that the equations of motion of

the machine can be written in the form of Eq. {4.6) and that at A = 0, these be-

come equivalent to Eq. (4. 1).

In the following discussion r will be considered to be fixed for the given
problem. One can generalize the discussion to a case in which r changes a

number of times during the run.

Such a system is readily seen to be x-satisfactory since we can solve for

e ' * . . . . -
)lx1,...,)\xr,xr+1,...,xn in terms of xl,...,xr,x],...,xn. Now we intro-
duce r new unknowns and r equations,

X. = zZ, j=1,...,r, (4.7)
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The result will be an n+r first order system which we can solve explicitly for
the derivatives if A # 0. {The A ;Ej become, of course, A 'zj after the above

substitution. )

4.3 The Linearization

i

Now let x! s X
I

170

scribed set of initial conditions x; ol :!cr'1 o We shall write the scolution of

Eq. (4. 6) obtained when one tries to solve Eq. {4.1) on the machine in the form

be a given solution of Eq. (4. 1) corresponding to a pre-

X, = x; + u,. (4. 8)

Clearly the initial values of XpsoonsX and ;(1 e ).:r are determined
L] L)

by corresponding initial values of UpseeenU Uy, 00,0 We may consider Eq.

(4. 6) then as determining a system of equations for the u,

. ue ark - * .
Gf(A'x'Jr)tu-,...,A'x +Au,x'+u,...,...,xi+u,t)=0
i 1 1 r r’ 1
i=1, , T
GUx' + u x'+u,x' +u x! +u_,t) =0 (4.9)
i i 120 n n: 1 ]!---: n n: .
i=r+l,...,n
»
We distinguish between A as a coefficient of W and A' as a coefficient of

%, The latter A' can be conveniently regarded as an a parameter from now on.

Normally one is justified in regarding the initial values of the ui's as small,
This means that the xi's have been entered into the machine with approximately
the correct values. However, we do not have any assurance that the values of the
u.'s are small, We shall give a discussion which will clearly have a t interval
o.} validity if u  is small and this will certainly happen if the initial value of u
is small. On the other hand, in general this discussion will have an adequate
range of validity, but this cannot be presupposed if I.J‘i is arbitrary. We shall

make this matter precise later,
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We may write Eq. {4.9) in the form

Gi()\x,x,x,t)+2—?(,\u.)+2 Framl M, p - uj+Ri=0
=1 alax) S B R T L
i=1,...,r {(4.10)
. n 4G! | n 8G;
' t = '
Gi(x yxMt) + 51 o3 u.j + E] Py u.j + Ri 0 {4.10")
J X J i
i = r+1, ,n .

A' as a coefficient of X' is to be regarded as a constant, Consequently,

IG; 9G] aG|
a(‘\ij) , 55‘3' and axj are now functions of t independentof A and

u. R, contains the higher powers of Aw, u and u.

The time interval 0< t < t* 1is now to be subdivided into intervals
0=t <t <
o 1

. < tm = t* and in each of these subintervals a point t'l-l(’

tk-l < tl'l( < t.k is chosen at which we evaluate the coefficients

aG!
i

——— = Ay Li=loor (4.11)
9 AXx.
( J)

2G!
i

sesesll (4.11")

(4.11")

These permit us to rewrite Eqs. (4. 10) and 4. 10') in the form
= ' Bl Lt et by -
0 Gi(Ax,x,x,t)+?Aija\uj+2j.Biju. +§.Ciju.
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9G] aG;

. 1 [ ]
+ i3 — - A )Au, + 3 - B,.)u,
i gl A% Wy ax, )
J J
c?Gi
+ Ibgx, - Cylyy + Ry 1= 1or
J J
= OVl gt o
0 = Gi(x , X', t) + 2 Bijuj + 2 cijuj
J J
aGi ] 8(3!1
Fon | - Byus + By - Cijhy + R;
Joax, b 77
J
i=r+1,...,n {4.12)
where g5 is an « -like parameter which we introduce. For n =1 Eq. (4.12)
is equivalent to the original system, Eqs. (4.6), and for 7 = 0, the system of

Eq. (4.12) is a system with piecewise constant coefficients,

LEMMA 4.1. If Hypothesis 4.1 above is satisfied for the given problem
originally, it is also satisfied by the system of Eq. (4.12) at 7 = 0.

Proof. The conditions of Hypothesis 4.1 are to be interpreted as the state-

ment that certain Jacobians are not zero and certain additional statements. If
we set 7 = 0, the corresponding Jacobians are readily seen to coincide with

certain values of the former set of Jacobians and hence are not zero. Since at

7 = 0 we have a linear system in the u's, the existence of solutions at

specific points is readily established. This establishes the Lemma.

The fact that Hypothesis 4.1 is satisfied for 7 = 0 and the fact that Eq.

(4.12) for » = 0 is a linear system insures that given any initial condition
G, ,...,u

1.0 sesll we can find a solution corresponding to  =0.

u .
r,o 1,0’ n, o

Furthermore, since under these circumstances the hypothesis of § 2.1 of

Chapter 2 applies to this system and this solution, the 1'1] PR ,ﬁr and LT
are analytic functions of 7 which, for a given value of t = t*, are analytic for

WADC TR 54-250, Part 14 49



some 7 neighborhood around zero. If this 5 neighborhood includes 1 we

A u R is in case 1,
1,0’ *“r,o’ 1,0’ '“n,o

shall say the set of initial conditions u
We suppose now we are dealing with a set of initial conditions in case 1. For

such a case the ui's can be written as

1 2
it A) = wlt,0,0) +uy  (80,2)y 4z (50,00, (4.13)

+ ...

The ui(t, 0, 1) satisfy the system of equations

1 M " ’ :
= = 1
0] Gi(/\x’,x',x',t) +§‘.Aij)lu. + ?Bijuj + :;.:cijuj’ i A

= (I 1 :
0-Gi(xl,x,t)+§,Bijuj+?Cijuj i=r4l,....n (4. 14)

which is obtained from Eq. {4.12) by setting 5 = 0, Corresponding equations
for the higher derivatives are obtained by differentiating Eq. (4. 12) with respect
to n and setting. 5 = 0 in the result, We abbreviate the coefficients of 73

in Eq. (4.12):

Gy . 9G] ) 3G}
S, =3[———— - A,) Au, +3b————- B, ,)u, + - C..Ju, + R,
! ?(a(.\;i.) i) M 2J ax. i) ﬁ( 9%, it

J J
i=,...,r {4.15)

3G} . 9G}

Si =§( n - Bij)uj +2J:,( axj - Cij)uj + Ri' i=r41,...,n.
j .

In this expression u, 1.1, u are to be regarded as functions of 5 . If the
superscript is to denote differentiating with respect to 7 then differentiating
Eq. (4.12) k times with respectto 5 and setting 5 = 0 in the result
vields

k) , kg (k-1 i=1,...,r (4. 16)
i'i i

0=3sA, s ™ 4scu
Pl A i ARt

+ 2C .0 4 ks (k-1 i=r+l,...,n
. 1", h | i

J J
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This, of course, is again a system which can be solved successively for the

various values of k. To do so we must first solve the homogeneous system

0=xa, M ysp a5 W 5oy (4.17)
it VRN it L et
j j j

0 =3B, 6K + 3¢, ul® i=r+l,...,0
i ) j 1] ]

This system is not one with constant coefficients but one in which the coefficients
are constant over successive time intervals, Nevertheless we can construct
n+r linearly independent solutions and use these in turn to solve the non-homo-

geneous systems of Eqs. {4.14) and(4. 16).

4,4 The Sensitivity Characteristics

We first consider the system of Eq. (4.17) for a fixed interval, Since this is
a system with constant coefficients, we consider the indicial equation which can
be written in determinantal form as
2
l

| A;; Am® + Bim + Gy = 0. (4.18)

{Welet A.. =0 for i= r+l1,...,n.)

1)
If we set A = 0 in the above, we obtain an n th order polynomial

[Bijm + c:ij I = o, (4. 19)
The matrix B =] | Bij | | corresponds to the Jacobian of the original system of
Eq. (4.1) although it is not precisely equal to it as long as A ' 1is not zero. In
view of this though, it is reasonable to assume that || Bij |1 is not singular. If
we multiply the determinant of Eq. {4. 19) by the determinant of the inverse matrix
B-] we have a characteristic equation

-1
lmI+ B 'Ccl = 0

which clearly is of the n th degreein m. (C | Icijl l.}

ASSUMPTION 4.1. B = |] Bij |l is not singular,

ASSUMPTION 4.2. Equation (4. 19) does not have multiple roots,
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LEMMA 4.2. Assumption 4, ] implies that Eq. (4.19) is an equation of the

n _ti degree,

LEMMA 4.3, There isa A neighborhood of A = 0 such that corresponding
to each root m of Eq. (4.19) which is not a multiple root of Eq. (4. 19) there

exists a root (A} of Eq. (4.18) such that ,{0) = m and F()\) is

analytic in ) at A = 0.

Proof. Consider

2
I{x,m}) = | Aij Am” 4+ Bijm + ciji {4.20)
and consider Eq. (4.18), i.e., L = 0 as an equation intended to determine m
as a functionof A . Ifweset % =0, m isavalue of m satisfying

L(O.mo) = 0 and we may apply the usual implicit function theorem to this situa-

tion and cobtain the desired result provided %FLA # 0 at ) =0, m = m_.
But L reduces to Eq. {4.19) for A = 0 and the statement g; # 0 isim-

mediately equivalent to the statement that m_ is not a double root of Eq. (4.19).

(Multiple roots m lead to expansions in fractional powers of A rather
than a simple power series. Otherwise the results are analogous, but it should
be appreciated that small variations in A yield far larger variations in, say,
the square root of A . Consequently, in the multiple root case, the root ,{A)
depends much more sensitively on A than in the analytic case for small values
of A .)

Under Assumptions 4.1 and 4.2, then, we have n roots g 1( Asenns '"n( A}
of Eq. (4.18) associated with corresponding roots of Eq. {4.19). (One might well
point out here that in the case of no A errors we could still apply the process
of the previous section in order to obtain a system of equations with piecewise
constant coefficients. The result would be Eq. (4.19). For these we would have
the n roots my,...,m and correspondingly n solutions., The introduc-
tion of the X errors has affected these only slightly under Assumptions 4.1 and
4.2, We have n analytic functions of A , ”1( N J “n( ») each of which

reduces toan m at A = 0. The same holds for the corresponding solutions.)

Thus these n solutions correspond to relatively minor variations of the

basic situation introduced by the A error.

However, there are other solutions which must be investigated.
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LEMMA 4.4. Egquation (4.18) is of degree n+r in m.

Proof., Consider first the determinant of the first r rows and r columns
of Eq. (4.18)

2 R
=1
lAij  m *+ Bijm + cij | i, yevesT (4.21)

This determinant is a polynomial in m of degree at most 2r. Since the co-
efficient of er is precisely the determinant ! Ai' Y 2r and the last is not
zero by Hypothesis 4.1, we see that this polynomial is of the 2r degree. Now
one can also readily show that any other rth row determinant from the first r

rows is of degree £ 2r-1 since only the first r columns are of the second

degree in m,

In the last n-r rows we take the last n-r columns and consider the cor-

responding minor

'.Bijm + cijl i,j = n-r+l,...,n. (4.22)

This is of degree £ n-r with !Bijl as the coefficient of m'

Hypothesis
4.1 states that this determinant is not zero and consequently Eq. (4.22) is of

degree n-r. Any other minor from the last n-r rows is of degree < n-r.

Apply then the Laplace expansion of L for the first 'r rows. This ex-
pansion contains the product of Eqs. (4.21) and (4. 22) which is of the n+r
degree. Since the degree of the other minors of the first r rows is less than
2r and the degree of the minors of the last n-r rows does not exceed n-r,

the degree of any other product in this expansion is less than n+r. Hence L

is of degree mn+tr.

Thus there are r solutions of Eq. (4. 18) which we must still obtain.
Multiply Eq. (4.18) by A B This will permit us to multiply each element in the

determinant by X ,

2
1 Aij()tm) + Bij()\m) + c:ij A = 0. (4.23)

let v =X m. Then Eq. {(4.23) becomes

| A..v2 + B..* +C..x| = o0. (4.24)
ij ij ij
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Equation (4. 24) is, of course, of the same degree in v as Eq. (4.13) was in

m, i.e., of degree n+r. Letus now consider Eq. {4.24) for A = 0, obtaining

|A,.v 2 . B.v|
ij ij

1
o

(4.25)

We can factor a v from each column of this determinant which can then be

written as
v oO|ALLY + B..l =o0. (4.26)
Now

IAij” + Bij i =0 (4.27)

v are the r

is an equation of degree r in v . Suppose Vit Ve o
3 3™

roots of Eq. {4.27).

ASSUMPTION 4.3, Equation (4.27) does not have multiple roots,

Assumption 4,1 implies that no v X. o is zero.

LEMMA 4.5. Under Assumptions 4.1 and 4.3, there exists a A neighborhood

of A = 0 such that for each root v K. o of Eq. (4.27), there exists an analytic
golution v (X)) of Eq. (4.24).

Proof, The proof of this is similar to that of Lemma 4.3. If we retrace the
steps from Eq. (4.24) to Eq. {4. 27} in reverse order we find that each of the solu-
tions of Eq. (4.27) yields a solution of Eq. (4.24) for A = 0. Assumption 4.1

shows that v = 0 1is not one of the v K o and by Assumption 4.3, the v k. o
are distinct, Consequently, no v k.o is a multiple root of Eq. (4.24) at
A= 0, and %‘* ‘# 0 at each of the values A = 0, v = Vk,o' The implicit

function theorem can now be applied to obtain the result specified.

Corresponding to the r solutions v (A) of Eq. (4.24) there are r =so-
lutions m = v (A )/Ax of Eq. (4.23) and consequently, r solutions of Eq.
(4.18).

The situation for any multiple root of Eq. (4.27) is analogous to that for any

multiple root of Eq. {(4.22). We summarize our results in the following theorem.

THEOREM 4.1 Under Hypothesis 4.1 of §.4.2 and Assumptions 4.1, 4.2 and

4.3 above, for each interval of constancy the indicial equation Eq. (4. 18) of the
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system Eq. (4.17) possesses n roots g, (A),..., (A1) analyticin A
q Bl 1 By aad Yy e

and r roots vl(k)/)« treny vr(A)/)L where v](.\),..., vr()\}areanalytic
in A . If Assumptions 4.1 or 4.2 do not hold, the , 's or the v 's canbe

expressed in fractional powers of A

4.5 The Solution for a Single Interval

To each solution p,j( %) of the theorem of the previous section, we can

find a solution of Eq. (4.17) in the form
A At
uilA)

u. = D,.e

; ¥ (4. 28)

on the interval of constancy. The Di' are the nontrivial solutions of the

homogeneous system

2

i(Aik.\ “j + By uJ. + cik)ij = 0, i=1,...,n (4. 29)
whose determinant is zero. {Ai. =0, i=rzr+1,...,n). Similarly for each of

the vj( A) we have solutions in the form

{vj(.\)/ At

vJ) = E..e {4.30)
i ij
where for each j
2
v -
i(Aik j + Bik Vj + Acik)Ekj 0. {4.31)
Notice that the Eq. {4.29} and (4. 31), which determine ij and Ekj when a
suitable normalization is supposed, are well definedat X = 0 and are analytic
in A at a =0,
The general solution of the system
‘i Aikhuk + i Bikuk + i Cikuk =0 {4, 32)

is a linear combination with constant coefficients of Eqs. (4. 28) and (4.30), In

the vector notation

n s r
v = sUW + TV . (4.33)
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Here uj and vk stand for vectors with elements given by Eqs. (4.28} and

(4. 30) above. Now let U stand for the vector with elements Uj' V for that
with elements V., M for the diagonal matrix with elements ;zj{ A) S i N
the r th order diagonal matrix with elements vj( A) aij' Then Eq. (4.33)

can be written

u = D{exp Mt)U + E [ exp ( (N/A)t)] V. (4. 34)

(D is the matrix ||Din, E isan n by r matrix || Eij||.)

Let D' and Er denote the matrix of the first r rowsof D and E

respectively. Then the initial conditions for the solution u can be written in
vector form as

u® = DU + EV

re® = AD"MU + ETNV. (4. 35)

U and V as vectors can also be considered as one column matrices.

. R e O .
Similarly, u and u are one column matrices. Thus,

Uu=p" - D EV

and
9 -1 -1

A(® - D'MD 1% = (ETN- AD'MD  E)V.

Now, let
-1

T = E'N - AD'MD™ E. (4.36)

Then
=1 -
v = AT '° - D'MD™ %) (4.37)

-1 o 1.0

=1 - -1
U=D u’-AD ET (° - D"'MD™ u°). (4. 38)

Notice V is zeroand U = D_luo provided

* O

=1
2° = D"MD™ «°. (4.39)

LEMMA 4.6, Equation (4. 39) is the necessary and sufficient condition that Eq.
(4. 34) depend analyticallyon A at A = 0.
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These, of course, all apply to an'interval of t on which the coefficients

A, B,
EUSIIEN
v j) and of finite size while A is small, the nonanalytic terms of Eq. (4. 34)

Cij are constant, Notice, however, that if R( vj) < 0 (real part of

are negligible for non-zero positive values of t of finite size.

Equations (4. 34), {4.37) and (4. 38) can be combined to yield

o 1

u=[Dexp(M)D '1u® + AE exp( (N/A)t) - D exp(M)D™ E] T

+ 0

=1
(u® - D'MD”™ 1% ' (4. 40)

= exp(ﬂﬁ;)uo + AE exp( (N/A)t) - exp(Mt)E] T-1(ﬁ° - DrD_1ﬁuo)

-~ =1
where M = DMD .,

4,6 The Continuation of the Solution

Equation (4. 40} applies to each interval of constancy and relates a solution of
the homogeneous system Eq. (4. 17}, u, to its initial values u° and u° for
the interval, u® is an n-dimensional vector, a° s r-dimensional. A sub-
script following a colon will indicate the interval, i,e. uj:k is the jth com-
ponent of the sclution vector on the 'k th interval., Equation (4.40) can then be

written

U, T exp [ﬁ:k(t - tk-l) ] uo:k + AT{E:kexp [ (N:k/)\) (t - tk-l)]
r -1 0

— -1 O —
-exp M, (t-t )] E:k; T a0 = D gD Mgy (4.41)

which implies

. — - o
u:k = M:kexP [M;k(t - tk-—‘” u K + {E:kN:keXp{ (N:k/A y(t - tk-l)]
- AM  exp [ M. (t-t )1E ' (@, -D" D' R u®.). (4.42)
:k -k k-1 'k k' ok 'k Tk ik :

Let H denotethe r by n dimensional matrix whose first r by r

minor matrix is the identity and the rest zero, Then

p’ = HD and D
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It is now desirable to obtain the relation between

O — o] [»]
u k-1 and u kel " HM:k-lu k-1 and u .k and

— [
HM,u° |, (cf. Eq. (4.39)). Let At . =t ., -t o

The given solution is continuous at t = t _, if

o _ — o
L exp(M:k_I Atk_])u k-1t AiE:k_lexp[(N:k_I/A)Atk_]]
— ) -1 Xe) - (4]
- exP(M:k-lAtk-l)E:k-lg T el - BMy qug ) (4.43)
The derivatives of the first r of the uj's are continuous if
w’ . = HM ex (1\-/1 A )uo
Ui = HM g qexpiMy A ) e (4., 44)
+ BB, Ny qexp Ny /a)an 10 - aM, gexp(M, At )E,
-1 "0 o O
* T k1™ kg - HM e pey)
Now Let vc'_k = uo_k - Hﬁ_kuo.k. Equation (4.43) can then be written as
o — o
T exp(M:k_] Atk_])u k-1t .\{E:k_lexp[ (N:k_]/)L)Atk_1]
M, At )E R
- exp(M, 188 :k-ll k-1Y k-1 (4. 45)
and
°© - H (ﬁ - M yex (-1\71 A ) °
Vik T k-1 AJEXPIM, A )

LB, Ny ) - aMgdexpl (N, /a)at )

-— - et -1 [s]
- MMy - Mdexp(My A8 )EG ) IT Y aker | L (4.46)

Thus, Egs. (4.45) and (4. 46) permit us to continue a solution of the homo-
geneous solution, through intervals, For suitably stable matrices, the ex-

ponential matrices should cause such a solution to decay.
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In general, the solution Eq. (4.41) consists of two parts, One part is
analytic in A , i.e.,, the term involving exp M(t - tk-l)'— Normally one would
expect this to decay slowly. On the other hand, the matrix exp(N{ A}/ A) (t - tk-l)’
_ if it is properly stable, should have very large negative real parts for
| the characteristic roots and hence should decay quickly. This is, however, non-
analytic in & . The possibility that exp ﬁ(t-tk_l) is unstable must be con-

sidered (cf. § 4, 1),

4.7 Construction of the Solution

The results of the previous section can be used to solve the system of Eq,
(4. 16) as follows: the solution desired is that for the non-homogeneous system,
Eq. (4.16), whichat t = to has zero values for Uiponn .un,ﬁl, e ’ﬁr‘ For
the first interval t, < t <t, a solution Y. will be found of Eq. (4. 16).
This will have certain values at t, which can be used as the initial values for
a solution of the homogeneous equation for the second interval and this solution
can be continued as a solution of the homogeneous solution for the remaining
intervals. In general, let Y. denote the vector solution Vi Yauk? which
is zero for the intervals preceding the k th, is a solution of Eq. (4. 16) on the
k th interval with initial values 0, andis continued continuously by the method
of the previous section as a solution of the homogeneous equation over the re-

maining intervals,

Since it is obvious that the desired solution Upseoesy is the sum of the
Yie e Ynk for all intervals I_k, it remains only to solve the problem of
finding, for a given interval Ik' the solution of the non-homogeneous system
Eq. {4.16) which at the lower end point has zero initial values. Thus again one
needs to consider only a single interval and it is not necessary to make explicit

reference to the interval,

It is desirable to solve the first r equations of Eq. (4.16) for A 'z'j, the

remaining for éj.' Thus,

n n
Az, = .zlﬁijzj + .zlyi'jzj + s'i i=1,,,.,r (4. 47)
J= J=
« n \ . . 1
zi— El }'ijzj+ Si 1= 1r4l,,,..,0
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where si is a linear combination of the original non-homogeneous terms, Itis
L]

desirable to use the last equations to eliminate Z g1 E’n from the first r

which will then become

r
Z. = .‘. -3 . o1 o= 1
S LS I I Pl
(4. 48)
Y n
= i = 1
A j‘fl yijzj + 84 1 r+i,...,n,

Referring to § 4.5, one may recall that the customary method of finding a
solution of the non-homogeneous equation, Eq., (4.48), is to consider the ex-

pression Eq. (4. 33) with the constants Uj and Vk replaced by functions

cp_j(t) and ¢k(t) of t

N
1]

n i r Kk
i p3 cpj(t)ui + kilybk(t)vi

=1

n . # .t

j T (v J/ At
= X D.. gt + 3 E.. At , 4.4
3Dy gyltle By e (4.49)
J_.
where ui'] and vi'] are given by Eqs. (4.28) and (4. 30). Since Eq. (4.48) is
of the second order in Zis i=1,...,r, one mustintroduce auxiliary con-
ditions
n o i r . K :
p AL+ = v, = 0 i=1,...,r. {4.50)
j=1 (PJ i k=1 YV

: j k : :
Since the uiJ and vy are solutions of the homogeneous system, one can

readily show that Eq. {4.48) is equivalent to

r AP n .
Ay [o= v. + = g .url] = . i = 1,..., 4,51
e ¥ Vs j=1cp %4 S; i r ( )
r . Kk n ;
3 v, + = 4 o, = s, i = r+l,...,
k=1 ¢k1 j:] ® J1 1 "
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Combining these with Eqs, {4, 28) and (4. 30), one obtains

r . (vk/A)t n , it
kf] B Yk ¥1® + jfl Dij)\ "5 j® =8, i=1,.,.,r
r n k.t
(v /Mt PRRE ;
- A e
r P | vk/,\)t n . p.t
k§1 E1k «® + z DijCPje = 85 i=r+t,...,n, {4.52)
. (v k/)«)t . Bt
Now, if one introduces l;‘k = Y Kk © . (I)J = @ ®
Eq. (4.52) becomes
T n
kE]l Eikv kP * JEI D13 A uj il)J = s, 1= 1, eeast
T n . . : '
r n .
ki] Eik ‘P k + jf,] Dij Qj = Si, i. = 1‘+], FECI < Y

This is a linear system of equations with constant coefficients on the @ k and
¥ 2s far as t is concerned, Furthermore, for A = 0, the determinant
is in the form of the product of the determinant of E° and D evaluated at

A = 0 (Cf. §4.5) and hence is not zero, Since this determinant is a con-
tinuous function of A , one may suppose the existence of a range of A around

A = 0, where this determinant is not zero.

Solving for w and ¢ expresses these also as linear combinations
g k k P

with constant coefficients of the original inhomogeneous terms.

¥y = sl"c‘(t), d)j = S.ii'(t)' (4. 54)
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The coefficients depend analytically on X “and thus,

- e-( v k/ At - u.t

k = sg(t), b, = e Js'J:(t) . ~ (4.55)

Since at the initial point t.
solution of Eq. (4.47)

1 t/ij and qu are zero one has for the desired

ss}t( r)d r (4.56)

valid in the interval I‘k
We conclude therefore:

LEMMA 4.7. The solution vy, , defined at the beginning of this section has the

form of Eq, (4.56) on the k th interval. The quantities and functions Di"

T s'j'( r), Eij' Vj, s*( r) depend analytically on A in some neighborhood
2~f_ A = 0-

For each interval then the solution u,,...,u of Eq. (4.16) is in the form
k

2 y... For j<k, the Vi are linear combinations of terms in the form

t (v./a) p it
e and e J . Normally one would expect that the terms e 1 would

decay slowly and those in the form e v j/ A would decay quickly. The above
lemma shows that Vi ™ay also be divided into two terms similar in nature to
these two types. Thus it is clear that while the A errors do introduce errors
in the solution, nonanalytic in XA , these errors decay quickly if the Vj have

negative real parts., (However, cf. § 4.1.)

4,8 Concluding Discussion

It is now possible to set up a general theory of the error, including all types

of errors, a , B8 and A ., We return now to Eqs. (4.2} of § 4.2 above and
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permit a errors to appear. We will suppose that the system of Eq. (4,2) is
equivalent to a system of Eq. (4.6) subject to Hypothesis 4,1, We now introduce
u and pass to the system with two additional a -like parameters, ) '(cf. Eq.
(4.9) ) and p(cf. Eq. (4.12) ). For A fixed, the resulting system can readily
be expanded to a first order system of the type treated in Chapter 2 and thus our
previous theory applies to this system for ¢ errors including 5 and 2 ',

and B errors,

This means that for ) fixed we can expand the error function u(t,A ,a, 8)

in termsof a and B . Thus

u(t,r ,a,8) = ult,2,0,0) + Euy(,)\, 0, 0yyp+... . (4.57)
l\=a,B

The argument of this chapter yields wu{t,A,0,0), For the various partial de-
rivatives of u relative to a« and B , the discussion of Chapter 3 above is
applicable to the extended first order system., However, the effect of the exten-

sion can be obtained simply by replacing Eq. (3.9) of Chapter 3 by

n n
A.,Au, + I B.u. + I C.,u +0Q, =0, (4.58)

Qi is the same as in Chapter 3, § 3.2, and the rest of the equation correspond-

ing to the similar terms which appeared in Eq. (4. 16) of the present chapter.

The discussion of the previous sections show that in each case there is a

favorable situation where the expression for the partial

d u
r, T,
1 e a)’u
can be expressed as a sum of two terms, one of which is analytic in A , while

the other term, based on vj( M) with negative real parts, disappears rapidly.
Consequently, we have a similar resolution for u(t,A , a,8 ) in the favorable
case in which the vj( A) have negative real parts, If the real part of vj( x)
is positive, the v.{A) terms for A small will be dominant and very large,

and normally one would expect the machine solution to be useless,
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The above discussion is based on a number of assumptions. One of these is
that relative to the parameter 7 , the solution is in case !, Another is that the
order of the system increases by no more than 1, when introduced into the
machine, However, this last assumption was introduced merely for convenience.
One can readily indicate a procedure which is applicable in the higher order case.
The essential part of this discussion is the generalization of the situation rep-
resented by Hypothesis 4,1 of § 4,2 above. The given system Fi = 0 1is sup~-
posed to be in the first order case, Let s denote the order of the highest de-
rivative which appears in the machine equations Gi = 0, If our given system
Gi = 0 implies n - T relations between the derivatives of lower order, we
suppose that we can separate out T equations involving the s-order deriva-
tives and that in these in turn we can eliminate all but L s-order derivatives,
In the remaining n - T relations, we suppose that we have n - ro-To
relations of order less than s-1, A similar procedure then permits us to

separate out r__, relations on roq derivatives of order s-1,

Thus we can obtain, after a suitable re-enumeration of the dependent var-
iables, a system equivalent to the original broken up into s sets of equations,
The first set consists of r, equations on the s-order derivatives of

Xysanar X, and do not involve any further derivatives of order s, The next
5

set consists of r equations on the s-1 derivatives of x yeass X
s-1 r +1 r +T
8 s “s-1
and contains no higher derivatives and no other derivatives of order s-1, A
similar situation holds for the remaining sets of equations., The parameter A
is most effectively introduced by writing the functions as depending on

AL SR Lol §

etc.
J J

The linearization process of § 4.2 of this chapter may now be applied. Set-
ting A = 0 will again yield n values &, o't Fno which determine
functions uj( A) analyticin A at A = 0 (cf. § 4.4 above). On the other
hand, the remaining portions of § 4,4 show that one has a total of T, + 2r3
+ ... + (s—1)rs extra v roots of the equation equivalent to Eq, (4.24) of
§ 4,4 above. From this point on, the results in the higher order case are pre-

cisely similar to those in the case in which the order is raised one,

Returning now to the case in which the order is raised one, we wish to dis-
cuss the alternative to the assumption above that our problem is in case 1,
Normally one would want the R, of Eq. (4. 10) of § 4.3 above to be small and

this requires that the {11, . e ,ﬁ_r be initially small, since it is reasonable to

WADGC TR 54-250, Part 14 64



expect that the Upyeos,u —are small, However, unless special precautions are
taken, the 1'1] s e ’{"r will not in general be small and their size can lead to

convergence difficulties or even to slow convergence in case 1,

There is a process which permits one to study the situation which arises in

the case of large 1'1] ot ,1'11_ 0! i,e,, the case where initially the machine
? ¥

solution and the true solution have different rates of change,

Consider the equations

Gi(xalptnn?hur] u'l""’un’ ul"..'un’ t)=0

Gi(u]’...'un,u]"..,un’t) = 0 i= r+‘]-.-,n

and let us change the independent variable in u - from t to a variable

* = X t and let the dot refer to differentiation relative toe r . The result is

. - 10 =1 -1,
Gi(/\- u-lgnnop A url A’ ull"'!A unl A’-):.'0

-1 ’ -]*

Gi(,\ u]’.--, A un’u],.copunp )tr)=0.

The effect of the )l-] is to emphasize those variables which it multiplies and

in general one can consider this system equivalent to

L T3 .l . » .
Hi(u]’.-.’ur’u].....un' A,u]’lll'unj AT )z 0 1= ].ooo’r
Hi(ﬁ,....,ﬁn,A.u1....,un, Aar ) =0 i=r4l,...,n,

in which A plays the role of a parameter., Thus, if we set A = 0 we obtain
relations
Ho-- s - - ) _ 0 P ]

i (u-ljoocgur'u].---.un - 1 = |o-c;r
H_ % %) =0 iz re! n

i u]’---’ n - - 30 0 03 -

These equations can be considered as a system of equations for {11 EERYL S

Now the favorable phenomena which is desired is that the solutions Uisens e
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of the above system should approach zero asymptotically as o and that
the solutions be near zero after not too large a r interval. Now suppose that

A is quite small. For the original variable t, this means that u. becomes
small after a small t interval and from then on one hasa situa.tioi’x correspond-
ing to small u,,... yu and small 1'11 sese ,{11_. This process of examining the
result of passing to the _va.ria.ble + is basic in any discussion of A errors and

may be effectively used in case ! as well,

In the above discussion, we have utilized only one parameter A . If we have
more than one type of integrator in the system, A will be associated with the
type which has the greatest time delay and other time delays will be represented

by a A where a is small,

4,9 The Necessity for Interval by Interval Analysis

Given the differential equation
AY + a(x)y + b{x)y = 0 | (4.59)

with A a parameter and a(x), b{x) analytic in the neighborhood of x = 0,

it was hoped that the general solution of Eq. (4.59) could be written in the form
g{x,A) = AX(x,2) + BrY(x,A)

where X and Y are analytic in x for a suitable interval and Y(x,A) is

analytic in A . Essentially this amounts to the requirement that Eq. (4. 59)

have one non-trival solution which is analytic in A . This, unfortunately, is not

the case in general, as is shown by the following example.

EXAMPLE: Consider the differential equation

Ly

v 1
AY+ v+ Y =0 (4. 60)

If there exists a solution Y(x,A ) analyticin A ,
Y(x,A ) = uO(X) + Aau(x) + Azuz(x) + ... {4.61)
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which can be differentiated with respect to x, twice, term by term, i, e.
such that

T, A ) = 400 + adlx) + A%a,0x) + ... (4. 62)

t

i;(x,)\) 'ﬁo(x) + A'l;.](x) + )\zﬁz(x) + e

and Y(0,0) = 1, thenthe A radius of convergence of Eq, (4.61) for =x >0 is

zero. (This is also true for x<0,)

Proof: Substituting Eq. (4.62) in Eq. (4, 60) we obtain the following set of

differential systems:

. 1

LA ug(0) =1 (4.63)
. 1 -

un + ._--_-—_]+x un = - un_l' un(o) = 0, n = 1,2,..- . (4.64)

By a direct calculation,

it

1

u_(x)

x4 1
2} 2
u(x) = = -
1 (]“H‘F)Z T4+x
alx) = 3. .4 2
2 (1+x)3 (Hx)z T3x
We shall now prove
n a
(a)u(x)—%" X kk
(1+x) k=1 (l4x)
2 n
(b) X a = (n+))!
k=1
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The proof is by complete induction on n., Assume (a), (b), (c). Then sub-

stituting in Eq. (4. 64):

ey tmy(meat T Kkl on
L= - .
n+ 1 1+x n+ (1+X) n+3 k:1(1+x)k+z k
Assume
n+1 a IH']
ulx) = oz " : : k -
(‘+X) k=1 (1+x)
Then
nt ! nt |
PP LI .07 )T e ST S S S
1 1 17T ! )
n+ ¥x  n+ (]+x)n+3_ - (1+x)k+ (]+x)n+3 k=1 _(1+x)k+1
1
-{nt+1)a ot (k-])akm
= + T el
(4073 7 k21 (1)

n aknk(k+ 1)

+ b
k=1 (]+x)k+2

_ - {nt1) (ny2)¢
(14x) n+3
1

Equate coefficients of K
(1+x)

-(n+1)a = -(nt+1) (n+2)!

k=2,,e0,nt1

n
k-1 k=2,3.,..,,n4!

2|33---’n+.|

n4l
1 1
Let a]n+ = a - 3 akn+ .
k=2
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Then if we show

conditions (a), (b), (c) will be satisfied, Now,

2™ ¢ (e k = 2,3,...,0¢
ng‘ n+ ! nt ! n 2 n
k=2 3K < (n+')k§2 a4 {n+ 1} { lilal )

= (n#1) (ot 1) !
2™ > a o () (1)t = (me2) - () (n) !

= {n+1}! > 0,

Now, suppose x >0, Then since akn is positive

n
u (x) = (1+:t';)"n'1 (s 1) - 2 (1+x)m"'k akn]
k=1
n
< (%) [n#l) - (4x) = a, "]
k=1 k

= ox(1+x) P (et

Thus for x > 0, un(x) is more negative than

{nt+1)!
1
(lx)™F
and the series

s u_(x) A®
n=0 *

has zero radius of convergence in A . (A similar argument holds for
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This example indicates that one cannot hope to break down the solutions of
the linear variational equation into, say, an n-dimensional set of solutions
analyticin A at A = 0 and an r-dimensional set which is nonanalytic, The

set of analytic solutions may have dimension less than n, even zero,

Thus, in order to obtain the long range part of the error, which in the more
desirable cases contains the greater part of the error, one must use some pro-
cedure in addition to solving the variational equations, for instance, the process
given above of breaking the interval into smaller intervals on which the coeffi-
cients may be considered to be constant. In addition, the latter process does
yield a clear picture of the phenomenon and even in the case when A errors

do not occur it may correspond to a desirable numerical procedure,
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5., EXAMPLES

In this chapter four illustrative examples are given, These examples indicate

many possibilities for further developments.

5.1 Example of an « Error

As an example of an o error we briefly treat the equation

y = -y (5. 1)

assuming that yz is obtained by means of a multiplier which uniortunately has
certain rather common inaccuracies. One factor ¢an be taken as the correct v.

The other factor can be described mathematically as follows,

Let 2z be a certain time delayed value of vy, i,e., 2z =y - r 3.( The
second factor is obtained from =z by means of a step-like function, i,e,, let
[x] denote as usual the largest integer not exceeding x, Then there is a large

integer N such that the remaining factor is

1

7 [zNL (5.2)
Let f£(x) be defined by

# [zN] = z + f(z). (5.3)

Thus, the equation as actually realized is

y = -[z4£(z) ]y = -[y - ry + £y - ry) 1y. (5. 4}

When one introduces a this becomes

Y= -y + alryy -y Hy - r¥) 1. (5.5)

The solution of Eq. (5.5) depends on two variables, t and &« , and will be
denoted by y(t, « ).

We take as the initial value for Eq, (5.1), y(0) = Yo and as the initial

value for Eqe« (5.5), wv{0,a) = Yoo

f{z) as defined by Eq. (5.3) is a sawtooth function with slope ~1 which
ranges from 0 to -1/N as 2z changes from k/N to justbelow (k+1)/N.
Therefore, as Eq. (5.5) stands it violates the analyticity requirements for G

as given in § 2,2 of Chapter 2, However, as a practical matter one would be
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willing to substitute f(y(t,0) - ry(t,0) ) for £(z), i.e., ignore the dependence

of z on @ inregardto f(z), Let

glt) = fy(t,0) - ry{£,00) = Hy (vt + 1N + 1y Ayt + 1)

Here one has used the fact that if y{0,0) = Yoo then

,]
v(t,0) =y ly b+ 11 .

-2

) . (5.6)

{(5.7)

Thus, the form of G to which the error analysis will be applied is

2 .
vy=-y + alryy-yg{t)l.

The solution we are concerned with is

Wt 1) = (£ 0) + ¥ (60) + 3y, (500 + ...

1
= y(t,0) + =z(t) + 7w (t)} + ...
where

2(t) = y, (£,0), w(t) = y,,(t, 0).

If we differentiate Eq. (5.8) relative to @ , we obtain

3 3 - 3y '3
L= -2y 2X+ ryy -y oelt) + alr-5L y + 1y ~5>--

Setting a = 0 yields

» : L
z = -2yZ + T Yy - Yg.

Differentiating Eq. (5.11) again and setting @ = 0 yields

w = —2yw - 22° + 2[r(zy + y2) - zg(t)] .

It is desirable that in the region of interest 2z be small

(5.8)

(5.9

{5.10}

4T g0, (5.11)

(5.12)

(5.13)

and that w be

small relative to z. The purpose of the present analysis is to determine the

range of t for which this is true, It is convenient tor this purpose to eliminate

y and 2z from Eq. {5.13) by using Egs. {(5.8) (at a =0)

w + 2yw = -—2[2'2 + (3y2'r + gz + yzr(ryz + g}l.

WADC TR 54-250, Part 14 72

and (5.72). Thus

{5.14)



To solve Eq. (5.14) and

. 3 2
z+ 2yz = -7y -yg = -y{ry + g), (5.15)

we use the integrating factor (yét + ‘)2 = yg y-z, This replaces the elaborate

Green's function which is necessary in the general case.

t
(y t + 2z = - , Y (v % 1) (ry” + gldx (5.16)

or

t
2y, fo (v.x + ) {ry” + gldx (5.17)

t

2 -1

2 -1 2
VY. 7Y (yx+ 1) dx -y

Yo-] g (v x + Ng(x)dx,

It is reasonable to replace g(x) in the last integral by its average value
-(ZN)-l. This yields

N
1

2 1 y Y2
-ry log(yot + 1)y 4 N T - - (5.18)

ar

2
= '2'1 5 _ _], 1 - Y 5.1
2 = ry log— + TN v . (5.19)

-1
Now y = y (y t+ 1) . For Y, Positive, the solution can be considered

for all positive values of t, Since vy yo/(yot + '), vy approaches zeroc as

1

t oo and z approaches the value w The first term is negative and has
. 2 -1 . 1 2 -1
maximum absolute value >7Y, € - Thus =z lies between - 51Y, © and
1 .
4N’
1 2 -t i
=77V, € S 2z Sy Yo 0. {5.20)

Presumably both bounds are small,

For Yo negative, the situation would be complicated in most cases by

scaling difficulties, The problem can extend only until -y has attained its
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maximum scale value which must be greater than Y Consequently, here

again the terms differ in sign, z can be written

1 1
Z = YZ r log ('Y—“) - —2— + _“4—N.— - (5. 21)
Yo 4Ny
If the maximum value of -y is 1 and r = -1/ Yy, We see that the final
value of 2z is
r2 1 :
z = (rlog r'"_ﬁ—)+ﬁ' {5.22)

Thus, Yo must be limited if z 1is to be kept small., The procedure is

straightforward when r and N are known.

We next consider w, the second order error eftect, and we show that it the

time interval is not very large then w is small compared with z. However, if

t is very large, w will become arbitrarily large. From Eq. {5.14) we may
write, with the aid of the integrating factor @ 2 ,
y_ 2
WS _ma z{)t ) [zz+g2+vz(3fZ+fzyz+rg)]dX-
(v t+1) Y
(5.23)
Now w can be written
Ay 2Brhy) ¢ CEN 5,24
w o= r + r(4N) + (ﬁ) (5.24)
1
when we replace g by its average value - =N By Eq. (5.18),
= - t 2.2 2 2.2, -
A2 y2y® Llogly x1)-11 % - y2y®logly x+ 1) | dx. (5. 25)
(y t+1)* 0
o
We let £ = yox+1 and integrate by parts obtaining
3 y _t+1
4 o
A——‘—Q—Z_] —~l [log & -1] Zmlogﬁ dal
(y t+') <2
o
3
=__ %Y, 2,
; [log™(y t+1) - logly t+1}] . (5.26)
(y0t+1)

WADC TR 54-250, Part 14 74



Similarly

2 2
_ _ t Y X
B = 2 I 3% logly x+1) - T+y x+ —5—1adx (5.27)
ty t+1)2 0 o o 2
o s
' y 41
= "%y ° 1,
S o [ e ¢+ et G
(y,t+1)
- 2y 1
N 2 Hog(y t+1} -““i—ygtzl .
(y t+1)
And
t y A 2
= 2
€= 2] 15 - () Ddx (5.28)
(y t+1) ' o
= 1 -1
— 2z T(yaﬂ-l)3 + (y t+1) -%ﬂ .
Yol i)
For Yo positive, | A| and B are zero initially, remain less than a

relatively small maximum, and then approach zero, On the other hand, C
is like -%‘t and we see that w will become of finite size when t is of the

3
order of 16Nz. This will presumably be adequate range.

On the other hand, for Yo negative, if we let

y . 1
Yo yott!

we must suppose that we have a range in which p<r where r 1is some
predetermined value. Thus, if we assume |yl €1 we may interpret Eq.

(5.21) as conditions that

rlog T << 1, rP<<4N. (5.29)
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The first term and Eq. (5.26) will imply that in general the term A r C will
be small, {(The t range will be limited if Yo is negative,) Similarly, if we
look at the dominant terms in B and C, we see that Eq. (5,29} is adequate
to yield that both B s /4N and (3'/(4N)2 are small.

5.2 Example of B Errors

We shall give here an example of a differential system involving B errors.
For simplicity we shall assume a first order equation in whichno a or A

errors are present. The equation we shall consider is

t

t_ t+2
t+1

2
X - 22X + t+ 1

X + 0 (5.30)

with the initial condition

x(0) = 1,

Suppose that the integrator also functions as a noise generator, A noise
generator whose output is "white' may be described by the "shot effect"
perturbations described in §$3.4, For an individual integrator we may measure

the output of this noise generator by supposing that we are integrating the equation

x = 0, (5.31)

say with x = 0,

1
Under these circumstances the output is the chance variable “e  of Eq.
. (3.21) of §3.4, This is a normally distributed variable whose variance is

given by Eq. (3.22) of §3.4. For one variable Eq, (3. 22) becomes

of =0 ng 1 ¢ Bag . (5.32)

For Eq. (5.31), ¥(t,{ ) is readily seentobe 1 for ¢ <t and consequently the
mean square value of the output is

2 2z
s {t) = o, B

St ) (5. 33)
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2
If t = to + T, i,grl = aozno; and, if the output is a voltage developed across

a pure resistive load, R, then the noise power of the output of the integrator is

2'n
%9 "o .
R
Now let us return to Eq. (5.30). The unique solution i§ x = 1 for the
initial value =x(0) = 1. On the other hand, owing to the noise present the actual

output will be given by a series

1
x =1+ T o4 TP o4, - (5. 34)

1
where Te' is givenby Eq. (3.17) or Eq. (3.21) of §3.4 and "e’® by Eq.
(3.23) of §3.4.

. nl | A : : : :
Here again e is a normally distributed variable whose variance is given

by Eq. {5.32). However, to compute Y(t,{) we must find the solution of
Y- 1Y = 0 (5.35)

which for t = { has the value 1, [Equation (5,35) is the equivalent of Eq.
(3.5) in the present case and may be obtained as follows. Suppose the solution x
of Eq. (5.30) depends on the variable £ and take the partial derivative of both
sides of Eq. (5.30) relative to 8 . The resultis

v+ (‘% -Z) vy = 0 (5. 36)

where vy =3—§'. If one sets x = ! in Eq. (5.36), one obtains Eq. (5. 35).]

From Eq. (5.35) cne readily infers that

(1)

Y(t’ g) =
(¢+1)?

. {5.37)

Thus, Eq. (5.32) and Eq. (5. 37) yield for the variance of the chance

. nl
variable e

0 2o Pz r(4n® - (4n 1. (5. 38)
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We can also use the discussion of § 3.4 to find the expected value of nez,

[Eq. {3.32) ). In the case of just one dependent variable, we may evaluate Eq.
(3.32) simply by letting u =i =k =1=h =1

t t
EPe? = - 3o % ¢ 1 3r vz, 1P o) py 0 ar . (5.39)
t r

o]

From Eqs, (3.28) and (3. 29) one has

2 2
d F d F 2
1 -1 1 - 1
[’11’] - — .23 _...._.__...1__(1(1 )y - J 2‘_—‘9.%(1(] )2. (5, 40)
axz dx dx ax

One can verify by means of the discussion given before Eq. (3. 10) that for Eq.
1

(5.29), J=1, 3" =1, K,' = 1. Since Eq. (5.30) is linear in %, the

second partials of F relative to x are zero and

r¢(s) = (é"i-l) . (5.41)

Thus, Eq. (5.39) becomes

2

E[nezl - -% aozno ft .t {t+1) " 2 ¢ (§+])d§ dr
o r {r4l)

o RN LT ("SI (TR L R (I

+ (e 1)log(t+1) ]

5.3 Mechanical Differential Analyzer

Consider a differential analyzer constructed by means of disk integrators,
gears and differentials and certain suitable servo systems which eliminate load
from the disk integrators and their inputs, The independent variable t will
be obtained from a uniformly rotating shaft, Thus, if + denotes real time

dt
dr

r {5.42)
where r 1is a constant,
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A servo system has an input and an output which we denote by Z and =z
respectively, Let TZ denote the torque exerted by the input and Tz the
torque exerted by the output of the servo system. It is possible, in general, to

replace TZ by zero and we shall do so in our future discussions,

The output torque is proportional to the input signal and the latter in turn is

proportionalto Z - =z,

T, = k™ (Z - 2) (5. 43)

or
z = Z - kT, (5. 44)

For the present discussion, we shall suppose that an "integrator'' consists of
a disk integrator and three servo systems--one on the ocutput and one on each of

the two inputs, (cf, Fig. 1), If X denotes the output of the disk integrator and

INTEGRATOR . 8. 50— x

Figure 1

w and v the two inputs, the desired relation between these is

X = wv, {5.45)

The output X of the disk integrator is the input of a servo system with

cutput x. Thus, Eq. {5.44) yields

x = X - kT_, . (5. 46)
xX

On the basis of the usual assumptions that the friction is proportional to rx and

that the inertia load is proportional to rzii )

T, + kyrx+ k r2 X . (5.47)

x 2
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As long as the integrators do not load their inputs, it is reasonable to assume
that k, and kZ will be constant for a given problem. They will depend on
the number of gears and differentials driven by the output of the servo system,
We have postulated three servo systems to permit this assumption, If servo
systems are not used on the inputs of the disk integrators, Tx may be a much
more complex function, although it is believed that in various individual problems

it should be possible to obtain it,

We can combine Eqs, {5.45), {5.46) and (5,47) to yield

L] L) * e .

x + d;x + dzx = WV (5.48)
where
d] = kk]r
d, = kk,r° (5. 49)
2 2 . .

Now w and v are also outputs of servo systems with inputs W and V

respectively, The torque TW is proportional to W,

T = kyrw. (5. 50)
W

From Eq. (5.43) we conclude

w = W - d3‘§: (5.51)

where

d3 = kk31'.

- L]
It is consistent with the usual practices in error analysis to replace w by W
in Eq, (5.51). We do this now but we shall return to this point at the end of this

section, Thus

wo= W o- dW, ' (5.52)
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Similarly for v,

: (5.53)

Equations (5.48), {5.52) and (5. 53) may be combined to yield

cav

x + dx+ dzx = {W - d3W) (Vv - d4V). (5.54)

We now briefly discuss the applications of the above to a specific set-up of

We suppose this involves n integrators in the above

the differential analyzer,
For each output we obtain the equivalent of

sense with outputs x,, ..., X .
Eq. (5.54),
x + d1xj + dzxj = (W) - d3Wj) (Vj - d4Vj). (5.55)

The Wj and Vj depend linearly on the x's.,” Thus

w. = a’oj + X a'jkxk (5.56)

V= b s % bpx. (5.57)

Equation (5. 55) represents the expanded set of G equations used in
. L]

Chapter 4, which replaces the correct relation

(5. 58)

x.'—'W.%f. .
J J

Now suppose X], sse) x! is a correct solution of Eqs. (5.56), (5.57) and
(5.58), Suppose the solution of Egs. (5.55), (5.56) and (5.57) is in the form

1 ’ ¥
xl + u]’ *a ) xn+ un-

Substituting in Eqs. (5.56) we obtain
W. = W!+ &W, 5.59
J 3 J ( )
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where

- ' -
Wj = .':l.oj + i ajkxk , SW. = X a’jkuk .

bk
Similarly,
vV, =V!/!+ &V, ' (5. 60)
J J J
where
. ' - - L]
. b . Xy , = : .
VJ + oj + Elf lexl s SVJ Ellbﬂul

Equation (5. 55) thus becomes

sea

uj[dZ]
) a e ’ ' - '
+uld] + BV, W, - dyd, W)
+'.-a{f‘w!—d{v.'+ 5de -d.av
% W5~ a3 Wyl t 3°4 J]

- WAV -d,V'1+ R. + 8, = 0. 61
JVi- 4Vl + R+ S, (5.61)

Here we have collected the terms which are linear in uj and its derivatives;
R, involves terms of higher degree than one in uj and its derivatives; and

S. does not invlove uj or its derivatives at all,

R, =~ sW,56V.-4d 5V) + sWAd 8V, - d,d 5V, 5,

j J( J 4 J) J( 3 i 374 VJ) (5.62)
L X R ' - .

sJ =d xJ + dsz + d4W vJ + d3WJ - d,d, wv (5. 63)
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Now let * denote the operation of replacing WJ.', Wj', etc, by suitably
chosen constants, The equivalent of Eq. (4. 17) of Chapter 4 (that is, the homo-
geneous part of Eq. {5.61) ) is

2
by uj[dzl
e -*e ' [ ] ‘
* a *
+ )L[ujd1 + an(d4Wj, d3_d4wj ¥}

L] L .' L] .| .I‘
L= V(Wi - AW %) + SW.(d,Vi* - d,d, V%
v Luy - BVWsE - daWyH J93Y5" = d3dgVyM ]

_ .l* _ .I‘*
+ SWj(Vj d4Vj )] 0, (5.64)

although here the effective value of X 1is one,
The ”o's correspond to the modes of
w, - SV WM - d W'%) + BW (A, V¥ - d.d,V!x
" Y 35 19V 394V ]

- . .!* - "_'* =
+1- SWVI - V] = 0 | (5. 65)

while the » ofs correspond to the modes of

ujg[dZ]

+oMud, 4 an(d4WJf*- dyd W i¥) ] (5. 66)

4. - SVAW'* - d. W' SW.A.V* - d.d, V%] =0.
*luy - SVW, 3Wi*) 4 #9435 394V5%) )

The yo's and v o's are to be extendedto A = 1,

This is as far as one can go with a general theory, Further developments
must involve assumptions on the relative sizes of the quantities introduced above,
However, one might also attempt to carry through the above arguments in the
case where one does not assume servo amplifiers on the inputs of the integrators,
The output torque Tx would then contain terms corresponding to the various

integrators which receive x, as part of W, or V..
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The above discussion has been considerably simplified by the use of Egs.
(5.52) and (5. 53} instead of

w + d3v'v W | (5.67)

+

v + d4v = V (5.68)
respectively, We believe the substitution of \;V for w and V for ;r in
these equations would be the customary practice in error analysis and is justified.
(Second approximations could also be used,) On the other hand it is possible to
proceed using Eqs. (5.67) and (5.68) even though the result is far more compli-
cated. It may be of interest to compare the relative complexity of the two pro-
cedures, and for this reason we indicate the process by which w and v can

be eliminated between Eqs, (5.67), (5.68) and (5.48). We write the last L = wv

[T X

where L = x+ dlx + dzx.

For symmetry in our treatment, we differentiate Eq, (5.68) and let v = s,

V = 8, Thus our system of equations becomes

wt dw = W (5.67)
s +d;s=5 (5. 69}
L = ws - (5. 70)

and we want to eliminate the w and s,
Suppose that 0 < d4 < d3 and 1'34/::'13 = 5 « Then, if we differentiate
L = ws and multiply by d4

d4L = d4ws + d4sw

= p(W - w)s + w(5 - s) (5.71)
= (! +p)ws + pWs + w8
= =-(1+,)L + ,Ws + WS,

Let

M = (1 +,)L + d,L. (5.72)
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We then have the equations
M= wS + ,Ws (5.73)

L = ws

from which we can eliminate s and obtain

swZ - wM + LWL = 0. (5.74)

We can now eliminate w by using w+ d3w = W, For differentiating Eq.

(5.74) and eliminating w yields

(25 - d,S)w’> - (26W + M - d,M)w + MW - d, ,(WL + LW) = 0. (5. 75)
3 3 3P

Thus we have two quadratic equations in w and the latter can be eliminated,
The resulting equation is nonlinear and of the second order in 1., which means
that it is of the fifth order in x. While one could theoretically apply the methods
of this paper to this situation, it is difficult to conceive of a situation in which
this more complicated procedure would be of practical interest, If a more ac-
curate analysis is desired the use of higher order approximations in Eqs. (5.67)

and (5. 68) would be preferred.

The authors have also considered the case in which torque amplifiers are

used instead of servo systems, The results are similar but more complicated.

5.4 Sensitivity in the Constant Coefficient Case

Because of the great practical importance of linear differential equations
with constant coefficients we shall consider certain phenomena which arise in
such systems, The constant coefficient case has been treated by other authors
{cf. : Brock and Murray, Macnee, Raymond, loc. cit,). In the examples which
follow we shall give a discussion which can be generalized to n g order sys-

tems. The complete analysis will be given in a future paper.

We shall consider the effects of a« errors in the coefficients, Normally
the original differential equations are analytic in these parameters. If this be
the case, the usual existence theorems show that the scolutions are also analytic
in the e , and hence we may differentiate the solutions relative to a to obtain
the coefficients of € .i error terms (see Eq. {3.35) ). However, while the
solutions are analytic in « , the characteristic roots need not be, Consider the
simple example

x = -3x + {1l -aly
y'_ - -ox - y {5.76)
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where the " ¢'' that appears is an e« error in our usual definition. The charac-

teristic roots of Eq. (5.76) are

Ay = -2+ Ve . A, =-2-Va

and are clearly not analyticin a at e = 0, The analyticity of the solutions

_ -2t 1 . - =2t 1-a .
x(t) = x e {cosh Vat - = sinh Va t) + Y,e \/_-:— sinh Ve t

2t

- 1 -
y(t) = -x e " 7= sinh vVa t) + Y, e Zt(cosh Va t o+ “/'-'-—i" sinh Va t)

is guaranteed by our existence theorems,

Suppose we have a linear differential equation with constant coefficients which
has a characteristic root A of multiplicity m, Then if we consider the same
At

, the
term in the solution corresponding to this non-homogeneous term is of the form

t7e At . In analogy with physical systems we shall sometimes call '"characteris-

linear differential equation with a non-homogeneous term of the form e

tic roots" by the name '"characteristic frequencies' and call the non-homogeneous
term a "forcing function', We shall refer to the phenomena that occur when a
forcing function f{t) contains a characteristic frequency as resonance, or say

that the function f(t) resonates (with respect to the given differential equation).

Now we will show that when a system with constant coefficients

x, = ;2 aij( a )xJ. (5.77)

contains an error parameter a in the coefficients, the final error involves a

resonance, For, let

_ox (5. 78)
YO — aa - [ ]

1

Then Y3 satisfies

a aa..
roo= a..le« L Y M ox 5.79
y ? ;e v; . %; ( )
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Since xj is a solution of Eq. {5.77), the forcing term

d a’ij
da xj

of Eq, {(5.79) is a linear combination of exponentials t'e At where A isa
characteristic root of the system of Eq. (5.77) with multiplicity exceeding r.
Since the homogeneous portions of Eq. (5.79) are the same as those of Eq.
(5.77), the Y5 will contain resonance terms. In particular if A is of

2m=1 At
e

multiplicity m, y; may contain terms of the form At or gimilar

terms involving lower powers of t,

How badly an error resonates depends not only on the multiplicity of a char-
acteristic root but also on the Jordan normal form of the matrix of the system.

Suppose we have the system of Eq. (5.77) which we write in vector form as
x = AX (5.80)

where x and x are column vectors and A is the coefficient matrix, Then
we know there exists a non-singular square matrix M suchthat B = MAM-1

is in Jordan normal form.

-1 -
Now let y = MxM ', Then applying M on the left and M ! on the right
to Eq, (5.80) we obtain

L) * -“ - - -
y = MxM~' = MAxM~' = MAM™ 'MxM~' = By. . (5.81)

Equation {5, 81) consists of blocks of equations of the form

, = AY.
Y Y;

Vigr T Yyt AV

Visk = Viek-1 Mk

Such a block is solved in the form
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Yj+l = Aj+]e + Ajte
2
At at t At
Yj+2 = Aj+2e + Aj+]te + AJ? e
k
At At t At
yj+k = Aj+ke + Aj+k-lte vt eee F Aj"ﬁ"!— e

where the Aj' Aj+1' caes Aj+k for the different blocks are independent con-
stants of integration, Consequently, the highest power, m, of t associated
with a given A in the solution is one less than the maximum length of a block
for this A rather than the muitiplicity of A . Resonance is associated with

the terms which are not in purely exponential form,

We illustrate the phenomenon of resonance with a simple example, Con-

sider the system of differential equations

x = -k2x+ ay

y = x-kzy + az {5.82)

z = oy - kzz

where k 1is a real constant, « is an a« parameter, Clearly, this system
2

is analytic in o and has the normal form of Eq. {5,80) (with A = -k at
a = 0), The characteristic roots of Eq. (5.82) are A v = -kz;
2 2 . . .
J\z = -k + V2a; Ag = -k” - V2a, and three linearly independent solutions
are
2
oty = o F
k%t
CPz(t) = e cosh Va2a t
2
P 0 = e K tiinh  VZa 't
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The general solution of Eq. (5.82) for the boundary conditions

x(0) = X y(0) = Yo z{0) = Z is:

1 1 : a a
x = xo[Z_ % +_'2_ qJZ] + Yo[ \/;_%] + zo[ -7(‘31 +'?f92]

1
y=x [—%1+ vy gl + 2zl 2 _Pal
o,-~2a3 ot F2 o \/73

1

1 1
z = XO[ 2a CP-I + 2a CPZ] + YO[ m’cpi‘}] + ZO["Z—CP] +TCP2:]-
Differentiating x, y, z with respecttc a and then setting a« = 0 gives us

d
the coefficients %:, 7?;-, %QE__ inthe ¢ error terms, We find in this

example that

A 2
9x _ -1 .2 -kt -kt
% )azo = XO[MZ tTe 1+ Yo[te 1+ zo[O]
3 2 2 2
dy t -kt 2 -kt -k
(6:: )a=0 xo{-—3 e 1+ yo[t e 1+ zo{te t]
4 2 3 2 2
dz _ -t -k t -k™t 1.2 -kt
(a ) -xo[ iz © t] + yo[““*_,’ e 1+ z.O[2 t7e ]
@ a:O

and hence that except for certain special boundary conditions the error varies as

the fourth power of the time,
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