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FOREWORD

This report was prepared by the Aerospace Dynamics Branch, Vehicle Dynamics
Division, Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-
Patterson Air Force Base, Ohio. The work was conducted under Project No. 1370,
"Dynamic Problems in Flight Vehicles", Task No. 137003, "Prediction and
Prevention of Aerothermoelastic Instabilities'". Mr. James J. Olsen (FDDS) was
the Project Engineer.

The report is published in two parts: Part I, "General Applications'"; Part II,
"Application to AGARD Planforms'. The calculations were performed on the IBM
7094 at WPAFB, using a computer program developed by North American Aviation, Inc.,
and described in FDL-TDR-64-152, Part IV, "Unsteady Aerodynamics for Advanced
Configurations', Recently, improvements have been made to this supersonic
unsteady aerodynamic method. The improved methods are described in reports
FDL-TDR-64-152, Part VI, "A Supersonic Mach Box Method Applied to T-Tails,
V-Tails, and Top-Mounted Vertical Tails' and AFFDL~TR-68-30, "Supersonic Unsteady
Aerodynamics for Wings With Trailing Edge Control Surfaces and Folded Tips".
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ABSTRACT

This report is published in two parts: Part I, ‘‘General Applications,’’ and Part II,
“Application to the AGARD Planforms.’’

Part I presents and interprets the calculations of the unsteady aerodynamic prediction
method known as the ‘“Nonplanar Mach Box’’ method. It contains examples of data input and
output for the associated computer program and explains the program’s interpretation of the
user’s modal data. Also included are summaries of convergence properties, comparison with
exact linearized theory, and a brief outline of the calculations for the Advisory Group for
Aeronautical Research and Development (AGARD) planforms. A small part of the extensive
tables of Part Il is included in Part L

Part Il contains a tabulation of the ‘‘Nonplanar Mach Box’’ results for unsteady generalized
force coefficients for the planforms, Mach numbers, mode shapes, and frequencies recom-
mended by AGARD, The tabulation uses the AGARD coordinate system and format, Not all the
desired cases could be included because of the program’s current limitation to supersonic
trailing edges (leading edges can be supersonic or subsonic).

The method was found to be fully workable and constitutes a valuable research and design
tool, Convergence and accuracy were found to be comparable to steady-state, planar methods.
The computer program is available with sample problems from the Air Force Flight Dynamics
Laboratory.
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NOMENCLATURE

coefficient of a polynomial in X and Y
coefficient of a polynomial in X and Y
speed of sound
bhox length
root chord
tip chord
slope of second pitching moment curve
slope of lift curve
slope of pitching moment curve
cycles per second
frequency in CPS
nondimensional mode shape in AGARD notation
Ve
summation indices
_C_I:ﬁ
A"
reduced frequency, sw/V

reduced frequency,

Mach number

pressure on lower, upper surface
: X .th

(PL - PU) in the j° mode

generalized force coefficient

generalized force coefficient as printed out by the Mach Box Program

real part of generalized force coefficient in AGARD notation

imaginary part of generalized force coefficient in AGARD notation

dynamic pressure, pV2/ 2
summation indices

powers
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NOMENCLATURE (CONTD)
upper limit on r summation

Ri' ratio of generalized force coefficients Qi‘ between two successive
) computer runs I

8 semispan

8 wing planform area

vV airspeed

X dimensional coordinate

X X = X, dimensional coordinate

X x/b, nondimensional coordinate

X 2 position of leading edge in AGARD coordinate system
e

X, position of trailing edge in AGARD coordinate system
e

ch dimensional position of center of pressure

Y dimensional coordinate

¥y BY, transformed dimensional coordinate; also nondimensional

spanwise distance in AGARD coordinate system

¥y y/b, transformed nondimensional coordinate

Z dimensional coordinate

z Bz, transformed dimensional coordinate

zy z/b, transformed nondimensional coordinate

angle of attack, radians

M2 -1

dimensional coordinate

BL, transformed dimensional coordinate

t.r"ttr‘vl.r"vl'cbg

=

Q/b, transformed nondimensional coordinate
dimensional coordinate

37, transformed dimensional coordinate

<3 3 -3

7 /b, transformed nondimensional coordinate
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AP/2q, nondimensional pressure in AGARD notation
dimensional coordinate

£ = 'f , dimensional coordinate

£ /b, nondimensional coordinate

air density

frequency, radians/second
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SECTION 1
INTRODUCTION

Moore and Andrew (Reference 1) developed a numerical method of calculating the velocity
potentials and generalized forces on symmetrically vibrating, nonplanar wings at supersonic
speeds. The method is based on Ashley’s source distribution approach to mutual interference
effects in linearized supersonic theory (Reference 2). The method has since been extended to
guite general arrays of lifting surfaces (Reference 3), The configuration of interest in the
initial computer program and in this report, however, is restricted to a lifting surface
consisting of three intersecting planes, as in the sketch below. (The planes need not intersect

at right angles.)
<«

Practical examples of this type of lifting surface are the XB8-70 and the F-4 aircraft, The
complete theoretical development and some applications of the method are given in Refer-
ence 1, However, as is often the case, there was not sufficient time for the authors to fully
demonstrate the method to potential users and to elaborate on the intricacies of data handling
and interpretation. This report is intended to fulfill that need by serving as a handbook for
users of the computer program, by dwelling at length on convergence, correlation, and
interpretation of results, and by applying the method to the Advisory Group for Aeronautical
Research and Development (AGARD) planforms (Reference 4).

Part I summarizes the initial work which examined the program’s interpretation of the
user's modal data; presents the convergence effects of Mach number, sweep, frequency, and
folded-tip interference; and outlines the application tothe standard AGARD planforms. Part II
contains an extensive tabulation of generalized force coefficients for the planforms, Mach
numbers, frequencies and mode shapes recommended by AGARD, A small sample of the
extensive tables of Part IIis included in Part I to illustrate the method.,
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SECTION II
INTERPRETATION OF MODE SHAPE INFORMATION

1. COORDINATE SYSTEMS

Moore and Andrew (Reference 1) use three different coordinate systems in developing
equations for supersonic unsteady aerodynamics. The coordinate systems, shown in Figure 1,
are

1. The physical, dimensional system:

X, Y, Z
&, 08

2, The transformed, dimensional system:

where

=
1]

X
By
Bz

N W
1t H

3. The transformed, nondimensional system:

4
XY

Ev’?wg.

where
x| = x/b
Y, = y/b
zZ = z/b

b = box length

In working with a program developed by others, the user is often uncertain about the
coordinate system to be used. Questions naturally arise, as they did in Reference 5, such as:

‘““Are the deflections and/or coordinates normalized by some typical dimensions?

Are the coordinates transformed in any manner from physical, dimengional
coordinates?*’

A convenient method for answering those questions is contained in the Appendix. The results
for this program indicate that the user always works in the physical, dimensional X, Y, Z
system, Using equations in the Appendix, the program was applied to rectangular wings in
plunge and rotation about the leading edge. Table I gives the input data, and Table II sum-
marizes the generalized force coefficients obtained. The results show that each of the

2
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powers r and t (defined in the Appendix) must be zero and that all transformations of co-
ordinates are purely internal features of the program, indicating that the user need only work
in his original dimensional coordinate system,
2, MODE SHAPES
The modal deflection patterns can be given to the program in either of two ways:

1. Polynomial coefficients

2. Deflections Z at discrete X, Y locations
The program is set up to use the polynomial coefficients directly to evaluate downwash and
generalized forces. If the data are given as discrete deflections, then the program fits a least
squared error polynomial surface to the deflection data and proceeds from there with the
coefficients of the polynomial,

Reference 1 gives the initial or fitted polynomials in an unusual format. The coefficients At
define the polynomial surface,

Z(X,Y)

]
n M

where

t =r(”2") + (s +1)

Application of these formulas can be seen in the following example:

Z=A'

+A2X +A3Y
+ AX2+A X¥ + A Y2
4 5 6
3 2 2 3
+ A.X +ABXY+A9XY +A‘°Y
.+

Hence if the user desires a mode tobe a quadratic in the spanwise variable Y he must specify
all coefficients through A6. Further, all mode shapes are treated as symmetric about the wing
center line,

3. GENERALIZED FORCES

Reference 1 defines the generalized force coefficient Q ij as:

S
e j;f Z, (XY AP, (X,Y) X dY
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where
. . .th
Zi {X,Y) =deflection in i mode

th
AP] (X,Y) = pressure differential in J] mode

Using a plunge mode given by Z1 = Al and a rotation about the leading edge given by

22 = A2X the generalized force coefficients become

2
n —il-(ﬂlI CLa/CR

(e
H

[ ]
1]

—tkA A_C
2 Ma

M)

= —A A C, +ikC
iZI-C! a

[ =]
n

2
-A,C_I(C + ikC_ )
2
22 R'M F

Examination of the output in Table I, however, reveals that the computer program interprets
the generalized force coefficients to be just the transpose of the coefficient format given in
Reference 1., Therefore

. AP (X,Y) Z. {X.Y) dXdY
Q=25 fsf RERTE NS
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SECTION I
CONVERGENCE

The convergence of the nonplanar Mach box method should depend, as it does for the planar
method, on Mach number, sweep, and frequency. The added complication of the provision for
more general planforms also should be important, There is an enormous number of variations
which could be made to check convergence; however, this Section is limited to three basic
investigations:

1. An investigation of the effects of Mach number and sweep at zero frequency;

2. An investigation of the effects of frequency and mode shape on a delta wing at a low
supersonic Mach number;

3. An investigation of the effects of tip fold angle on a delta wing at a low supersonic
Mach number and high frequency,

1, MACH NUMBER AND SWEEP EFFECTS

Figure 2 shows rectangular and delta wings with superimposed Mach lines corresponding to
Mach numbers 1.5 and 8.0. Although the program generally allows up to 20 chordwise boxes,
these planforms have an upper chordwise limit of 15 at M_ = 3,0 because at that point the

maximum number of 30 spanwise boxes is reached, These particular planforms and Mach

numbkers were chosen to also provide a subsonic and supersonic leading edge on the delta and

to move the tip Mach lines across the center of the trailing edge of the rectangle, The modes

used were zero frequency plunge and pitch to yield generalized force coefficients directly

related to CL and CM . Recall that in Section I, it was shown that the computer program
a a

utilizes the generalized force coefficient
= -
Q= % j;f (PL-Py); Z; dxav

Then, if we set Z, = Ay and Z, = A Xatzero frequency, we can obtain the generalized force
coefficients

Q= A A0

a

2
Q" A CRC,

a
If we set Ay ==/ CR and Ag = 1/ CR’ we can obtain

Q,,=CL

a

Q,,=—C
22" "M,

Tables III and IV illustrate the data input for the rectangular and delta wings. The results are
shown in Figures 3, 4, and 5,
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Figure 3 is a plot of CL versus the number of boxes used along the root chord. The circles
a
represent predictions of the Mach box method. The lines represent the exact results of
linearized theory (of which the Machhbox scheme is a munerical approximation), The data near
the bottom of the graph are for the rectangular wing at Mach 3,0. The convergence and accuracy
are both excellent which, of course, is expected since this is about the most favorable case
imaginable. The data second from the bottom are for the delta wing at Mach 3.0, Again the
convergence and accuracy are excellent, The data third from the bottom represent the
rectangle at Mach 1.5. Convergence is somewhat slower than the earlier cases and the Mach
box prediction for CL persists at a value slightly higher than the exact value. ‘Finally, the top
a

set of data are for the delta wing at Mach 1,5, Here the convergence and accuracy have
deteriorated. It is interesting to note that inthe last case, consideration of convergence in the
three groups

a. 5,9, 13,17
b, 6,10, 14, 18
e, 17,11, 15, 19 boxes

shows rather smooth variation with the last group enjoying the best convergence and accuracy,

Figure 4 compares the Mach box and exact linearized predictions for center of pressure,
The lower graph is for the rectangular and delta wings at Mach 3.0, For both cases accuracy
and convergence are excellent, The upper graph is for the delta and rectangular wings at
Mach 1,5 Convergence and accuracy are excellent for the rectangular wing, Convergence for
the delta wing is only fair, but overall accuracy is good.

Consideration of the data of Figures 3 and 4 reveals that the lift is somewhat higher than
desired at the low Mach numbers, but that the lift distribution is generally predicted rather
well, This aspect is revealed further in Figure 5, a plot of Cyr V8 CL for the delta wing at

a a
Mach 1,5 with varying numbers of chordwise boxes. The solid diagonal line on the figure

represents the exact linearized result for delta wings that C =2¢
M, 3 Lg

ahove and to the left of the solid line represents a slope of CM vs CL greater than 2/3, The

Q a
converse applies to points below and to the right. The + at CL = 3,04 represents the exact
a
linearized prediction for this particular delta. The predictions of the Mach box method are
again conveniently classified into three groups:

.Therefore any point

a., 7,11, 15, 19 boxes denoted by A
b. 5,9, 13, 17 boxes denoted by o]
c. 6,10, 14, 18 boxes denoted by \Y/

For the first group the lift is lower than the exact value, and the center of pressure is
forward of the exact value. For the second group the lift is high, but the center of pressure is
predicted quite well. For the third group the lift is higher than the exact value, and the center
of pressure is aft of the exact value. Each of the three groups of Mach box predictions is
approaching the correct lift distribution with increasing number of hoxes, even though the
magnitude of the lift is slightly in error.
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This suggests a possible empirical modification to the computer program for later use in
unsteady flow with more complicated mode shapes, For a given number of chordwise boxes,
one could check the Mach box prediction of CL against the exact linearized result for that

a
wing and Mach number. He could then determine what empirical modification to the uniform
source strength would bring the two predictions into agreement, Then as other calculations
are performed for cases where source strength varies over the wing the empirical correction
can be applied to each local source strength in proportion to its initial value.

2, FREQUENCY EFFECTS

The planform used is again the delta wingof Figure 2, The wing is subject to plunge, rotation,
parabolic camber and cubic camber modes at a Mach number of 1.5 and at frequencies of
0.0, 4,4445, and 8,889 cps. The four mode shapes can be expressed by polynomials:

Z, = 5.4772
Z, = 0.18257X

Z, = 0.18257X - 0.006085X>

7, = 0.18257X - 0.018257X° + 0,004057X°

The four mode shapes are presented in Figure 6. The cubic term in the fourth mode has been
made large to emphasize its influence. The data are presented in Table V; the results are
summarized in Figures 7 through 10,

Figures 7, 8, and 9areplots of the absolute value of the lift coefficients in the four modes of
Figure 6 versus the number of boxes used along the chord. The results are plotted in terms of

QJ (N)
the fractional deviation of the lift with N boxes from the 1ift with 19 boxes, _Q l({g) -1
J

Hence a value of 0.05 on the ordinate would indicate that the lift with N boxes is 5% higher
than the lift with 19 boxes,

Figure 7 illustrates the results for zero frequency, For modes 2, 3, and 4 the lift for 6 boxes
along the chord is about 11% to 12% higher than the lift for 19 boxes, As the number of boxes
is increased the predictions undergo a convergent oscillation, indicating that at the upper limit
of the allowable number of boxes, the predictions are probably within 3% of final converged
solutions, At zero frequency, there is no lift in mode 1, the plunge mode,

Figure 8 repeats Figure 7 exceptthatthe reduced frequency has been increased to k = 0,5,
The character of the convergence is nearly identical to that of k = 0,0, In fact, if the reader
could superimpose the two Figures, he would find very little difference in modes 2, 3, and 4.

Figure 9 repeats Figures 7 and 8 except that the reduced frequency has been increased to
k = 1,0, Here again, the type of convergence is relatively unchanged.
Figures 7, 8, and 9 can lead to two important conclusions:
1, The type of convergence is only slightly affected by the type of mode (plunge, rotation,
parabolic camber, cubic camber);

2, The type of convergence is only slightly affected by reduced frequency (O £k £1),
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This would indicate that perhaps the answers could he converged more rapidly by employing
the empirical technigque of weighting the generalized forces by the factor which causes CL

a
to agree with experiment, exact theory, or some converged solution, For instance, for 14 boxes
along the chord we have the following results from Figures 7, 8, and 9:

Q; @4/q; a9

J k=20 k = 0.5 k=1.0

1 - 1,047 1,046

2 1.046 1,046 1,045

3 1,051 1,049 1,043

4 1,049 1,049 1,050
The result for J = 2, kK = 0 corresponds io CL . Therefore, we divide all the other answers
by 1.046 and obtain: a

Qg (4/q; @9)

Cy, (14)/cLa (19)

a
J k=20 k=105 k=10
1 - 1.001 1.0
2 1.0 1,0 0.9990
3 1,005 1,003 0,9971
4 1,003 1,003 1.004

The results are plotted in Figure 10 for varying numbers of boxes along the root chord, The
results indicate that the convergence process could be rapidly accelerated by continually
weighting the generalized forces by a factor which would cause the static CL to assume the
a
‘‘correct’”” wvalue, Figure 10 reveals that the total ‘““‘error’’ for some oscillating mode with
considerable camber is only 1% or 2% different that the ‘‘error’’ in CL and that this tendency
a
is relatively insensitive to frequency for k’s up to at least 1.0.

3. INTERFERENCE EFFECTS

The final aspect of convergence that is examined is the provision of the program to handle
wings with folding tips. The delta wing of Figure 2 is studied at Mach 1.5, a frequency of
8,889 cps (k = 1), and in a cubic camber mode. The wing is folded at various angles about a
line midway between the root and the tip. The 1ift in the camber mode is examined for increas-
ing numbers of boxes, In order to evaluate liff, the first mode must be a ‘“‘dummy’’ plunge
mode while the second is the camber mode. The input data are shown in Table VI; the results
are shown in TFigure 11, The results indicate that the convergence of the absolute value of the
1ift in the camber mode improves as the tip fold angle is progressively increased from 0° to 90°,
The 3% deviation at a fold angle of 0° is decreased 1o a deviation of less than 1% for 90° fold.
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SECTION IV
APPLICATION TO THE AGARD PLANFORMS

At the 20th meeting of the AGARD Panel on Structures and Materials, the NATO countries
were invited to perform unsteady aerodynamic calculations on a set of standard planforms,
The coordinate system and the definition of generalized forces to be used differ from those
used in this report so that some interpretation is necessary. Further, the program is
currently capable only of analyzing symmetric vibration modes, so that duplication of the
AGARD antisymmetric modes is not possible, Part II of this report contains the detailed
tabulated results of the application of this program,

The standard AGARD format requires the use of a nondimensional coordinate system which
is denoted by x, y, z. The origin of coordinates is at the center of the root chord, and all
coordinates are made nondimensional by dividing by the semispan s. The Mach box program
uses a dimensional coordinate system, originating at the apex,

X

Mach Box AGARD

Hence we have the transformations
C

y = Y/s z = Z/s X = (X'—ZB-)/S
The AGARD definition of a generalized force coefficient is
X
3 N
Q. = - f f £ (x,y) X, (x,y) dx dy
1] hud hu ! J
y=-lx= x‘e
e
where
)\j (x,y)= APj (x,y)/2q
fi (x,y)= Zi (x,y)/s
Then in the Mach box notation we have
‘t?
t1 e Zi(x,y) APJ(x,y)
Q‘l = - f :—f s 2 dx dy
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Returning to the dimensional X, Y, Z coordinate system

X
+s t

e
Q. = [ [z x Ap (x,v)ax v
iy 3 i j
2Qqs Y=-3s )(=)<‘E
e

*
In terms of the Mach box program definition (call it Qij )

- T T (G +C
Q.= —-(@.) a5 =-(a".) (% +5r)
1 i) 232

1) 2q53 )

where the superscript ““T** denotes ‘‘transpose’’ and we have taken the area definition of any
trapezoidal wing S = (CR + CT)S. Then for a given set of mode shapes, to put the data in the

AGARD format we must (1) change the sign and transpose Q
chord and divide by the semispan, squared,

i * and (2) multiply by the average

A convenient way to aid the changes automatically is to choose dimensions so that
‘R +%

252

= 1.0

This will occasionally necessitate the dimensions to vary from those of AGARD, but since the
AGARD generalized force coefficients are nondimensional, they should be unaffectied.

A final note in this regard is that the reduced frequency is defined as ks = sw/v in the

AGARD format and that the generalized force coefficients are broken into real and imaginary
parts:

Q..= Q' +ik_ Q.
(0 i s ij

1, THE ASPECT RATIO 2,0 RECTANGULAR WING

Figure 12 depicts the aspect ratio 2,0 rectangular wing. Both the root chord and the semi-
span can be set equal to 1.0 which is the value specified by AGARD, The Mach box program
can be used at the desired Mach numbers of 1,05, 1.20, and 2,00, Figure 13 shows the Mach box
program’s approximation of the wing and diaphragm areas for the three Mach numbers used
in these calculations. The necessary oscillatory frequencies to yield the desired values of
k can be obtained from

- SW ems f
s v M,a

Hence for a = 1000 ft/sec and s = 1 ft, we have

fops = 159:16 (Mg k)

10
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Table VII illustrates the frequencies required at each Mach number and reduced frequency.
Table VIII gives the mode shapes in the AGARD and Mach box coordinate systems, Table IX
summarizes the real part of the generalized force for ks = 0.0, Because of their rather

gpecialized interest, the complete tables for kS # 0 arenot reproduced here but are available
in Part II of this report,

2, THE ASPECT RATIO 1.45 TAPERED, SWEPT-BACK WING

Figure 14 depicts the aspect ratio 1,45 tapered, swept-back wing, We find that interpretation
of the Mach box output in terms of the AGARD requirements are facilitated if we change the
semispan from 1,0 to 1,379, Therefore

s = |.379
CR = 2.224
CT = 1.579
CR + CT
Then — 5 = 1.0 and the AGARD generalized force matrix can again be obtained from the
2s

Mach box output by a simple change of sign and transposition. The desired Mach numbers are
2.0, 1.2, and 1,04; however, to obtain a supersonic trailing edge the minimum Mach number
must be 1,057. Figure 15 shows the Mach box program’s approximation of the wing and
diaphragm areas for the three Mach numbers used. The desired values of reduced frequency
are 0, 0.5, and 1,4. The necessary oscillatory frequencies required to obtain the desired
values of ks can be obtained from

Mgak,
27s
Since s = 1,379 and a = 1000.0, f = 115.4 (M, ks).

Table X illustrates the frequencies required at each Mach number and reduced frequency
while Table XI gives the mode shapes in the AGARD and Mach box coordinate systems,
Table XI1I contains zero frequency results for the AGARD generalized force coefficient Q‘ij'

3, THE ASPECT RATIO 4.0 ARROWHEAD WING

Figure 16 depicts the AGARD aspect ratio 4.0 arrowhead wing. The root chord has the
C C
R+ T

2s2

must change s from the AGARD value of 1.0 to 0.5. The Mach box program can be run at the
desired Mach numbers of 2,0, 1,5621, and 1,25, However, at the desired Mach number of 1,1
the trailing edge is subsonic, therefore the current Mach box program must be run at a
minimum Mach number of 1.12 to insure a supersonic trailing edge. Figure 17 shows the
Mach box program’s approximation of the wing and diaphragm areas at the four Mach numbers
used. The oscillatory frequencies necessary to yield the desired values of ks can he cobtained
from

f=

same length as the semispan and the tip chord is zero, Therefore to force = 1.0, we

f -&a—k’—-mssm k)

cps ~  2ws ' L
Table XIII gives the frequencies required at each Mach number and reduced frequency.
Table XIV gives the mode shapes in the AGARD and Mach box coordinate systems, Table XV

gives Q'ij for kS = 0.0.

11
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

a., The user of the folded tip Mach box computer program need only work in a physical,
dimensional, right~-hand coordinate system X, Y, Z,

b. When the symmetric mode shapes are given by polynomial coefficients the definition of
cozfficients is (where Y should be interpreted as [Y])

) 2 2 3 2
Z(X,Y)-AI+ A2X+A3Y+A4X +A5XY+A6Y -I-A?X +A8X Y
2 3
+ AXYT +A YT+

¢. The generalized force coefficients are defined as

= -
Q. % 35 _/;f(PL Py )i 2, dx dY

d. For rectangular and delta wings at M = 3.0, convergence and accuracy of lift and

center of pressure were excellent, At M_ = 1.5 convergence was generally slower and
accuracy slightly less.

e, The bulk of any error introduced by the Mach box system could be eliminated by

correcting all generalized forces in proportion to a CL correction,
a

f, The convergence properties were generally insensitive to frequency for 0 £k £1,
The convergence properties were also only slightly influenced by the type of mode treated.

g. For the conditions analyzed, folding the wing tip tended to increase convergence,

h, The AGARD planforms can be treated directly with the Mach box program, with some
attention required fo coordinate systems, symmeiry of mode shapes, and interpretation of
results,

i. The Nonplanar Mach Box computer program is now a completely workable, useful
research and design tool, The latest version of the program is available from the Air Force
Flight Dynamics Laboratory,

2. RECOMMENDATIONS

a. Succeding reports which discuss the development of similar computer programs should
be more explicit in their treatment of coordinate systems, Care should be taken in implement-
ing the definitions of generalized force coefficients,

b, Succeeding programs should relate polynomial coefficients for mode shapes directly to

the powers of X and Y involved, Z(X,Y) =ZA xHy)
. ij
1]

12
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c. Simple CL corrections can be included in the program to weight all generalized

a

force coefficients and improve convergence. These corrections could be tabulated from exact
linearized theory for simple planforms, or from numerical results with great numbers of
boxes for more complicated planforms.

d. The program should be expanded to accommodate antisymmetric as well as symmetric

modes.
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Figure 12. AGARD Aspect Ratio 2,0 Rectangular Wing,

CR =10,58 =10
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(a) M_ = 2,0
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Figure 13. Mach Box Approximation to the Aspect Ratio
2.0 Rectangular Wing
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Figure 15. Mach Box Approximation to the AGARD Aspect
Ratio 1.45 Tapered Swept-Back Wing
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Figure 15. Mach Box Approximation to the AGARD Aspect Ratio
1.45 Tapered Swept-Back Wing
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Figure 16. The AGARD Aspect Ratio 4.0 Arrowhead Wing
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Figure 17,

(b) M, = 1.5621

Mach Box Approximation to the AGARD Aspect
Ratio 4.0 Arrowhead Wing
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() M_ =1.25

Figure 17, Mach Box Approximation to the AGARD Aspect
Ratio 4.0 Arrowhead

35



AFFDL-TR-67-104
PartI

(d M_ =1.12

[+

Figure 17, Mach Box Approximation to the AGARD Aspect
Ratio 4.0 Arrowhead Wing
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TABLE |
INPUT DATA FOR CHECK OF MODAL INTERPRETATION
Card Fieid Entry Explanation
1 i 2.0 Mach number
2 12000.0 Speed of Sound
3 30.0 Reot Chord
2 ] 0.0 Wing Leading Edge Sweep
2 0.0 Wing Trailing Edge Sweep
3 30.0 Distance, Root Chord to Fold Line
4 0.0 Tip Leading Edge Sweep
5 0.0 Tip Trailing Edge Sweep
6 30.0 Distance, Root Chord to Tip Line
3 1 6 Number of Chordwise Boxes
2 2 Number of Frequencies
3 2 Number of Modes
4 1 Print Velocity Potential Influence
Coefficients
5 i Print Initial Source Strengths
6 1 Print Final Source Strengths
4 1 1 Wing Mode is a Polynomial
2 1 Maximum Polynomial Degree
3 0 Irrelevant Zero
4 1 Print Polynomial Coefficients
5 1 0 No Tip
6 1 0.0 First Frequency
2 1.0 Number of Fold Angles
3 2.0 Second Frequency
4 1.0 Number of Fold Angles
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TABLE | (CONTD)
Cord Field Entry Explenation
7 1 0.0 Fold Angle for First Frequency
8 1 1.0 First Mode is Oscillatory
2 10.0 Polynomial Coefficient
3 0.0 Polynomial Coefficient
4 0.0 Polynomial Coefficient
9 1 1.0 Second Mode is Oscillatory
2 o 0.0 Polynomial Coefficient
3 0.2 Polynomial Coefficient
4 0.0 Polynomial Coefficient
10 1 0.0 Fold Angle for Second Frequency
1 1 1.0 First Mode is Oscillatory
2 10.0 Polynomial Coefficient
3 0.0 Polynomial Coefficient
4 0.0 Polynomial Coefficient
12 ] 1.0 Second Mode is Oscillatory
2 0.0 Polynomial Coefficient
3 0.2 Polynomial Coefficient
4 0.0 Polynomial Coefficient
The next 12 cards are identical with the following exceptions:
[ 3 300.0 Root Chord
2 3 300.0 Distance, Roct to Fold Line
6 300.0 Distance, Root to Tip
6 3 0.2 Second Frequency
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TABLE Hl
CUTPUT SUMMARY FOR MODAL INTERPRETATION
Z, =100 Z, = 0.2X
(cps) Cr O Q2 0 Q22
0.0 30.0 0.0 0.0 -4.03 -1.14
0.0 300.0 0.0 0.0 -4.03 -1.14x10
2.0 3.0 -1.75x1074-i1.05x10-1 -6.8210-5-12.99x10-2 -4.03-12.69x10-2 -1.14-i1.07x10-2
0.2 300.0 -1.75x10-5-i1.05x10-2

-6.82¢10-5-i2.99x10-2

-4.03-12.69x10-2

-1.14x10%1.07x 101
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TABLE IH
INPUT DATA FOR CONVERGENCE STUDY ON THE RECTANGULAR WING
Card Field Entry Explanation
I 1 3.0 Mach Number
2 1117.0 Speed of Sound
3 30.0 Root Chord
2 1 0.0 Wing Leading Edge Sweep
2 0.0 Wing Trailing Edge Sweep
3 20.0 Distance, Root to Fold
Line
4 0.0 Tip Leading Edge Sweep
5 0.0 Tip Trailing Edge Sweep
é 20.0 Distance, Root to Tip
3 1 5 Chordwise Boxes
2 1 Number of Frequencies
3 2 Number of Modes
4 0 Don't Print Velocity Potentiai
Influence Coefficients
5 0 Don’t Print Initial Source
Strengths
6 1 Print Fina!l Source Strengths
4 1 1 Wing Mode is Polynomial
2 1 Maximum Polynomial
Degree
3 0 irrelevant Zero
4 1 Print Polynomial
Coefficients
3 1 0 No Tip
6 I 0.0 Frequency
2 1.0 Number of Fold Angles
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TABLE 11| (CONTD)
Card Field Entry Explanation
7 1 0.0 Fold Angle
8 1 0.0 Don't Calculate ¢ for First
Mode

2 -5.47723 Polynomial Coefficient
3 0.0 Polynomial Coefficient
4 0.0 Polynomial Coefficient

9 ] 1.0 Second Mode is Oscillatory
Z 0.0 Polynomial Coefficient
3 0.182574 Polynomial Coefficient
4 0.0 Polynomial Coefficient

These 9 cards are then repeated 9 times with the following exceptions:

3

4

1

4

6,7,..14
¢

Chordwise Boxes Varied

Don’t Print Polynomials

The last case is also similar except we call for the polynomial coefficients:

4 4 1 Print Polynomial
Coefficients

Al of the above cards are repeated for M = 1.5 with the exception:

1 ] 1.5 Mach Number
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TABLE IV
INPUT DATA FOR CONVERGENCE STUDY ON THE DEL TA WING
Card Field Entry Explanation
1 1 3.0 Mach Number
2 1117.0 Speed of Sound
3 30.0 Root Chord
2 1 56.31 Wing Leading Edge Sweep
2 0.0 Wing Trailing Edge Sweep
3 20.0 Distance, Root to Fold
Line
4 56.31 Tip Leading Edge Sweep
5 0.0 Tip Trailing Edge Sweep
6 20.0 Distance, Root to Tip
3 1 5 Chordwise Boxes
2 1 Number of Frequencies
3 2 Number of Modes
4 0 Don't Print Velocity Potential
Influence Coefficients
5 0 Don't Print Initial
Source Strengths
6 1 Print Final Source
Strengths
4 1 1 Wing Mode is Polynomial
2 1 Maximum Polynomial Degree
3 0 Irrelevant Zero
4 1 Print Polynomial
Coefficients
5 1 0 No Tip
6 ] 0.0 Frequency
2 1.0 Number of Fold Angles
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TABLE IV (CONTD)
Card Field Entry Explanation
7 1 0.0 Fold Angle
8 1 0.0 Don’t Calculate ¢ for First
Mode
2 -5.47723 Polynomial Coefficient
3 0.0 Polynomial Coefficient
4 0.0 Polynomial Coefficient
9 i 1.0 Second Mode is Oscillatory
2 0.0 Polynomial Coefficient
3 0.182574 Polynomial Coefficient
4 0.0 Polynomial Coefficient

These 9 cards are then repeated 9 times with the fo

llowing exceptions:

3
4

1
4

6,7,...14
0

Chordwise Boxes Varied

Don't Print Polynomials

The last case is also similar except we call for the

pelynomial coefficients:

4 4 1 Print Polynomial
Coefficients
All of the above cards are repeated for M = 1.5 with the exception:

]

i

1.3

Mach Number
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TABLE V
INPUT DATA FOR THE FREQUENCY CONVERGENCE STUDY
Card Field Entry Explanation
1 1 1.5 Mach Number
2 1117.0 Speed of Sound
3 30.0 Root Chord
2 1 56.31 ~ Wing Leading Edge Sweep
2 0.0 Wing Trailing Edge Sweep
3 20.0 Distance, Root chord to
, Fold Line
4 56.31 Tip Leading Edge Sweep
5 | 0.0 Tip Trailing Edge Sweep
é 20.0 Distance, Root chord to
Tip Line
3 1 3 Number of Boxes Along Root
2 3 Number of Frequencies
3 4 Number of Modes
4 0 Don’t Print Velocity Potential
Influence Coefficients
5 0 Don’t Print Initial Source
: Strengths
6 0 Don’t Print Final Source
Strengths
4 [ 1 Wing Modes are Polynomials
2 3 Maximum Polynomial Degree
3 0 Irrelevant Zero
4 ] Print Coefficients
5 1 0 No Tip
6 1 0.0 First Frequency
2 1.0 Number of Foid Angles
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TABLE V (CONTD)

Card Field Entry Explanation
3 4.4445 Second Frequency
4 1.0 Number of Fold Angles
5 8.889 Third Frequency
6 1.0 Number of Fold Angles
7 1 0.0 Fold Angle for First
Frequency
8 1 1.0 First Mode is Oscillatory
2 5.4772 A,, Polynomia! Coefficient
3 0.0 A,, Polynomial Coefficient
4 0.0 A, Polynomial Coefficient
5 0.0 A4, Polynomial Coefficient
6 0.0 Ag, Polynomial Coefficient
9 1 0.0 A4, Polynomial Coefficient
2 0.0 A5, Polynomial Coefficient
3 0.0 Ag, Polynomial Coefficient
4 0.0 Ag, Polynomial Coefficient
5 0.0 A,g, Polynomial Coefficient
10 ] 1.0 Second Mode is Oscillatory
2 0.0 A,, Polynomial Coefficient
3 0.18257 A,, Polynomia! Coefficient
4 0.0 A4, Polynomial Coefficient
5 0.0 Ay, Polynomial Coefficient
6 0.0 As, Polynemial Coefficient
11 1 0.0 A, Polynomial Coefficient
2 0.0 A, Polynomial Coefficient
3 0.0 Ag, Polynomial Coefficient
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TABLE V (CONTD)
Card Field Entry Explanation

4 0.0 Ay, Polynomial Coefficient
5 0.0 A1g, Polynomial Coefficient

12 1 1.0 Third Mode is Oscillatory
2 0.0 A1, Polynomial Coefficient
3 0.18257 A,, Polynomial Coefficient
4 0.0 A4, Polynomial Coefficient
5 -0.006085 A4, Polynomial Coefficient
6 0.0 As, Polynomial Coefficient

13 1 0.0 A, Polynomial Coefficient
2 0.0 A, Polynomial Coefficient
3 0.0 Ag, Polynomial Coefficient
4 0.0 Ag, Polynomial Coefficient
5 0.0 Ayy, Polynomial Coefficient

14 1 1.0 Fourth Mode is Oscillatory
2 0.0 A,, Polynomial Coefficient
3 0.18257 A,, Polynomial Coefficient
4 0.0 A,, Polynomial Coefficient
5 -0.018257 A4, Polynomial Coefficient
6 0.0 As, Polynomial Coefficient

15 1 0.0 A, Polynomial Coefficient
2 0.004057 A,, Polynomial Coefficient
3 0.0 Ag, Polynomial Coefficient
4 0.0 Ay, Polynomial Coefficient
5 0.0 Ayo, Polynomial Coefficient

Cards 7-15 are repeated twice more to yield mode shape data for the second and third fre-
quencies. These 33 data cards must be repeated for each new value of the number of boxes.
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TABLE VI
INPUT DATA FOR THE INTERFERENCE CONVERGENCE STUDY
Card Field Entry Explanation
1 1 1.5 Mach Number
2 1117.0 Speed of Sound
3 30.0 Root Chord
2 1 56.31 Wing Leading Edge Sweep
2 0.0 Wing Trailing Edge Sweep
3 10.0 Distance, Root to Fold
Line
4 56.31 Tip Leading Edge Sweep
5 0.0 Tip Trailing Edge Sweep
6 20.0 Distonce, Root to Tip
3 1 5 Number of Boxes
2 1 Number of Frequencies
3 2 Number of Modes
4 0 Don’t Print Velocity Potential
influence Coefficients
5 0 Don’t Print Initial Source
Strengths
6 1 Print Final Source Strength
4 1 1 Wing Modes are Polynomials
2 3 Maximum Degree of Polynomials
3 0 Irrelevant Zero
4 1 Print Polynomial Coefficients
5 1 ] Tip Modes are Polynomials
3 Meximum Degree of Polynomial
0 lrrelevant Zero

B W N

1 Print Polynomial Coefficients
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TABLE VI (CONTD)
Card Field Entry Explanation
6 1 8.889 Frequency
2 4.0 Number of Fold Angles
7 1 0.0 Fold Angle
8 1 0.0 Use First Wing Mode Only to Produce
Generalized Forces in Mode 2.
2 5.4772 A, Polynomial Coefficient in Wing
First Mode
3 0.0 A,, Polynomial Coefficient in Wing
First Mode
4 0.0 A, Polynomial Coefficient in Wing
First Mode
5 0.0 A,, Polynomial Coefficient in Wing
First Mode
[ 0.0 Ac, Polynomial Coefficient in Wing
First Mode
9 1 0.0 Ag, Polynomial Coefficient in Wing
First Mode
2 0.0 A;, Polynomial Coefficient in Wing
First Mode
3 0.0 Ag, Polynomial Coefficient in Wing
First Mode
4 0.0 Ay, Polynomial Coefficient in Wing
First Mode
5 0.0 Ao, Polynomial Coefficient in Wing
First Mode
10 1 1.0 Second Wing Mode is Oscillatory
Type
2 0.0 A, Polynomial Coefficient in Wing
Second Mode
3 0.18257 A,, Polynomial Coefficient in Wing
Second Mode
4 0.0 A,, Polynomial Coefficient in Wing
Second Mode
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TABLE VI (CONTD)
Card Field Entry Explanation
5 -0.018257 A,, Polynomial Coefficient in Wing
Second Mode
6 0.0 As, Polynomial Coefficient in Wing
Second Mode
1 ] 0.0 Ag, Polynomial Coefficient in Wing
Second Mode
2 0.004057 A, Polynomial Coefficient in Wing
Second Mode
3 0.0 Ag, Polynomial Coefficient in Wing
Second Mode
4 0.0 Ay, Polynomial Coefficient in Wing
Second Mode
5 0.0 Ayp, Polynomial Coefficient in Wing
Second Mode-
12 1 0.0 Use First Tip Mode Only to Produce
Generalized Forces in Mode 2
2 5.4772 A4, Polynomial Coefficient in Tip
First Mode
3 0.0 A,, Polynomial Coefficient in Tip
First Mode
4 0.0 A, Polynomial Coefficient in Tip
First Mode
5 0.0 A4, Polynomial Coefficient in Tip
First Mode
6 0.0 As, Polynomial Coefficient in Tip
First Mode
13 1 0.0 Ag, Polynomial Coefficient in Tip
First Mode
2 0.0 A;, Polynomial Coefficient in Tip
First Mode
3 0.0 Ag, Polynomial Coefficient in Tip
First Mode
4 0.0 Ay, Polynomial Coefficient in Tip

First Mode
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TABLE VI (CONTD)
Card Field Entry Explanation

5 0.0 A4, Polynomial Coefficient in Tip

First Mode
14 1 1.0 Second Tip Mode is Oscillatory Type

2 0.0 A,, Polynomial Coefficient in Tip
Second Mode

3 0.18257 A,, Polynomial Coefficient in Tip
Second Mode

4 0.0 A, Polynomial Coefficient in Tip
Second Mode

5 -0.018257 Ay, Polynomial Coefficient in Tip
Second Mode

6 0.0 As, Polynomial Coefficient in Tip
Second Mode

15 1 0.0 As, Polynomial Coefficient in Tip

Second Mode

2 0.004057 A, Polynomicl Ceefficient in Tip
Second Mode

3 0.0 Ag, Polynomial Coefficient in Tip
Second Mode

4 0.0 Ay, Polynomial Coefficient in Tip
Second Mode

5 0.0 A,o, Polynomial Coefficient in Tip
Second Mode

Cards 7-15 are repeated three times for fold angles of 30 degrees, 60 degrees and
90 degrees for a total of 42 cards. The polynomial coefficients of the tip modes
are multiplied by the cosine of the fold angle.

The entire deck of 42 cards must be repeated for each new number of boxes used
along the chord.
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TABLE VII
MACH NUMBER, kg, AND FREQUENCY FOR THE AGARD ASPECT RATIO 2.0 RECTANGLE

M ke f {cps)
1.05 0 0
0.3 50.14
0.6 100.3
1.0 167.1
2.0 334.2
1.20 0 0
0.3 57.30
0.6 114.6
1.0 191.0
2.0 382.0
2.00 0 0
0.3 95.51
0.6 191.0
1.0 318.4
2.0 636.6

51




AFFDL-TR-67-104
Part 1

TABLE VIll

MODE SHAPES FOR THE ASPECT RATIO 2.0 RECTANGULAR WING
IN AGARD AND MACH BOX COORDINATE SYSTEMS

Mode f(x,y) Z{XY)
1 1 1
2 x 0.5+ X
3 x? 0.25 - X + X2
4 y2 Y2
5 x2y2 0.25Y2 - XY 24 X2Y?2
6 M [v]
7 x|y} 0.50v]+ x|v]
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TABLE IX
Qij IN AGARD NOTATION, ASPECT RATIO 2.0 RECTANGLE

() My =2.0, kg =0.0
I 3=l J=2 J=3 J=4 =5 JE J=7
1 0.0 1.988,0 1.123 -1 0.0 7.554,-2 0.0 8.478,-1
2 0.0 -5.579,-2 3,864 -1 0.0 1.235,-1 0.0 -5.105,-2
3 0.0 1.660,-1 5.713,-3 0.0 2.792,-3 0.0 7.142,:2
4 0.0 4.631,-2 2.165,-1 0.0 1.199.-1 0.0 3,709 -2
5 0.0 -1.542,-2 3.870,-2 0.0 1.521,-2 0.0 -4.369,-2
6 0.0 -1.704 -1 4184, -1 0.0 1.621,-1 0.0 8.621-3
7 0.0 4.809,-1 2424,-2 0.0 4.818,-2 0.0 1.914,-1

(b) Mo = 1.20, kg = 0.0
! J=1 J=2 J=3 J=4 5 Js6 J=7
1 0.0,-0 3.836,-0 7.603 -1 0.0,-0 3.439,-1 0.0,-0 1.180,-0
2 0.0,-0 -3.783,-1 1.021,-0 0.0,-0 2.800,-1 0.0,-0 -2.559,-1
3 0.0,-0 3.264,-1 4.290,-2 0.0,-0 7.144 -3 0.0,-0 1.202,4
4 0.0,-0 -3.603,-2 4.916,-1 0.0,-C 2.200,-1 0.0,-0 -7.159,-2
5 0.0,-0 -1552,-1 6.702,-2 0.0,-0 9.345,-3 0.0,-0 -6.860,-2
b 0.0,-0 -6.793,-1 1.005,-0 0.0,-0 3.368 -1 0.0,-0 -2.380,-1
7 0.0,-0 9.670,-1 1.201,-1 0.0,-0 1.120,-1 0.0,-0 2.591 -1

(c) Mo = 1.05, kg = 0.0
| J)=1 1=2 =3 J=4 J=5 J=6 J=
1 0.000,0 3.776,0 2.6930 0.000,0 6,095,-1 0.000,0 1.008,0
2 0.000,0 -1.348,0 1.921,0 0.000,0 3.527,-1 0.000,0 -4.343,-1
3 0.000,0 3.770,-1 8.046 -2 0.000,0 -1.440,-2 0.000,0 1.782,-1
4 0.000,0 -4.093,-1 9.456 -1 (0.000,0 2687 -1 0.000,0 -1.640.-1
5 0.000,0 -2.442,-1 1.697,-2 0.000,0 -5.394,-3 0.000,0 -6.413,-2
b 0.000,0 -1.604,0 17370 0.000,0 3.967,-1 0.000,0 -4.060 -1
7 0.000,0 1.036,0 5.357 -1 0.000,0 1.742 -1 0.000,0 2.113 -1
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TABLE X

MACH NUMBER, k_, AND FREQUENCY FOR THE AGARD
ASPECT RATI0°1.45 TAPERED, SWEPT-BACK WING

M k, f (cps)
2.0 0.0 0.0
0.5 115.4
1.4 3232
1.2 0.0 0.0
0.5 69.3
1.4 193.9
1.057 0.0 0.0
0.5 61.0
1.4 171.0
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TABLE Xl

MODE SHAPES FOR THE ASPECT RATIO 1.45 TAPERED, SWEPT-BACK
WING IN AGARD AND MACH BOX COORDINATE SYSTEMS

Mode f (x,y) Z(X,Y)
1 1.0 1.379
2 x 124 X
3 x2 0.8967 - 1.613X + .7252X2
4 y2 0.7252Y2
5 Iv| ¥
6 ly| -0.8064]Y| + 0.7252x]v |
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TABLE XII
Qij IN AGARD NOTATION, ASPECT RATIO 1.45 TAPERED, SWEPT- BACK WING
(2) My, =20,kg=00
I J=1 J=2 J=3 =4 J=5 J=6
1 0.000,0 2.667,0 1.527.0 0.000,0 0.000,0 9.742,-1
2 0.000,0 4.866,-1 1.533,0 0.000,0 0.000,0 1.988 -1
3 0.000,0 5.629 -1 8.727 -1 0.000,0 0.000,G 1.722 -1
4 0.600,0 -1.875,-1 4.201,-1 0.000,0 {.000,0 -8.662,-2
5 0.000,0 -§.714,-1 8.355,-1 0.000,0 0.000,0 -2.261,-1
6 0.000,0 1.974,0 6.996,-1 (3.000,0 {.000,0 7.383,-1
(b} M =12, kg =0.0
I J=1 =2 J=3 J=4 J=5 J=%
1 0.000,0 4,185,0 4,265,0 0.000,0 0.000,0 1.061,0
2 (¢.000,0 4.300,-2 3.574,0 0.000,0 0.000,¢ -1.748 -1
3 0.000,0 6.378,-1 19110 0.000,0 0.000,0 1.222,-2
4 0.000,0 -6.576,-1 8.724.-1 0.000,0 0.006,0 -3.018,-1
5 0.000,0 -2.144,0 14920 0.000,0 0.000,0 6.584,-1
6 0.000,8 3.258,0 2.128,0 0.000,0 0.600,0 8.911,-1
() WMo = 1057, kg = 0.0
I J=1 J=2 J=3 J=4 J=h IEY
1 0.000,0 3.680.0 6.419.0 0.000,0 0.000,0 8.929,-1
i 0.000,0 9.459,-1 4.301,0 0.000,¢ {.000,0 -3.309,-1
3 0.000,0 1.144.-1 2.178,0 0.000,G 0.000,0 2.817 -2
4 0.000,0 9.734,-1 8.306,-1 0.000,0 0.000,0 -3.234,-1
5 0.000,0 -2.882,0 1.102,0 0.000,0 0.000,0 -7.118-1
6 0.000,0 3.242.0 3.523.0 0.000,0 0.000,0 8.480 -1
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TABLE XHI

MACH NUMBER, k,, AND FREQUENCY FOR THE AGARD
ASPECT RATIO 4.0 ARROWHEAD WING

M ks f {cps)
2.0 0.0 0.0
0.5 318.3

1.0 636.6

2.0 1273.3

4.0 2546.6

1.5621 0.0 0.0
0.5 248.6

1.0 497.2

2.0 994.5

4.0 1989.0

1.25 0.0 0.0
0.5 198.9

1.0 397.9

2.0 795.8

4.0 1591.6

1.12 0.0 0.0
0.5 178.3

1.0 356.5

2.0 713.0

4.0 14261
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TABLE XIV

MODE SHAPES FOR THE ASPECT RATIO 4.0 ARROWHEAD WING
IN AGARD AND MACH BOX COORDINATE SYSTEMS

Mode f (x.y) Z (X,Y)
1 | 1 0.5
2 x 0.25 + X
3 x2 0.125 - X + 2.0 X2
4 y2 2.0Y2
5 Iy] Y]
6 x|y| 0.5[Y|+ 2.0 x|Y]

58



AFFDL-TR-67-104

Part I
TABLE XV
Q:j IN AGARD NOTATION, ASPECT RATIO 4.0 ARROWHEAD WING
(a) Moo =2.0, kg =0.0
I J=1 =2 J=3 J=4 J=5 J=6
1 0.000,0 1.264,0 8.020,-1 0.000,0 0.000,0 4.063,-1
2 0.000,0 4.643,-1 5.162,-1 0.000,0 0.000,0 2.096,-1
3 0.000,0 3.164,-1 3.114,-1 0.000,0 0.000,0 1.472,-1
4 0.000,0 1.608,-1 2.073,-1 0.000,0 0.000,0 9.877,-2
5 0.000,0 9.266,-2 3.190,-1 0.000,0 0.000,0 1.176,-1
6 0.000,0 4.879,-1 3.259,-1 0.000,0 0.000,0 1.897 -1
(B) M, =1.5621, kg = 0.0
I J=l =2 J=3 J=4 J=5 J=%
1 0.000,0 1.584,0 1.099,0 0.000,0 0.000,0 4.837,-1
2 0.000,0 5.459,-1 6.555,-1 6.000,0 0.000,0 2.322,-1
3 0.000,0 3.506,-1 3.822,-1 0.000,0 0.000,0 1.478,-1
4 0.000,0 1.868,-1 2.412,-1 0.000,0 0.000,0 1.035,-1
5 0.000,0 8.154,-2 3.706,-1 0.000,0 0.000,0 1.176,-1
6 0.000,0 6.134,-1 4.215,-1 0.000,0 0.000,0 2.168,-1
{c) Mo =1.25, kg = 0.0
I J=1 1=2 J=3 Jj=4 J=5 J=6
1 0.000,0 1.540,0 1.834,0 0.000,0 0.000,0 6.308,-1
2 0.000,0 7.290,-1 1.075,0 0.000,0 0.000,0 3.233,-1
3 0.000,0 4,940,-1 6.762,-1 0.000,0 0.000,0 2.187,-1
4 0.000,0 3.041,-1 4,514,-1 0.000,0 0.000,0 1.621,-1
5 0.000,0 1.901,-1 6.180,-1 0.000,0 0.000,0 1.808,-1
6 0.000,0 8.072,-1 7.631,-1 0.000,0 0.000,0 3.001,-1
() My, =112, kg =0.0
I J=1 J=2 i=3 J=A J=5 J=5
1 0.000,0 2.353,0 2.539,0 0.000,0 0.000,0 8.202,-1
2 0.000,0 9.641,-1 1.497,0 0.000,0 0.000,0 4.455,-1
3 0.000,0 6.800,-1 9.726,-1 0.000,0 0.000,0 3.121,-1
4 0.000,0 4,225 -1 6.663,-1 0.000,0 0.000,0 2.269,-1
5 0.000,0 3.217,1 8.810,-1 0.000,0 0.000,0 2.612,-1
6 0.000,0 9.949,-1 1.098,0 0.000,0 6.000,0 3.929.-1
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APPENDIX

INTERPRETATION OF MODE SHAPES

Introduce a right-hand coordinate system X, Y, Z; :? . 7, E, where each coordinate has
the physical dimensions of length

z,t

The amplitude of the oscillatory defiection of the surface at X, Y, is given by Z (X,Y), and
the downwash at that point is given by

WIX,Y) = - {u 12‘—21:—'+ in(X,Y)]

Hence the nondimensional downwash or ‘‘local angle of attack’’ is given by

alX,y) =

wix,y) [dZ(X,Y) b kZ{X,Y) ]
U ax : Cq

where CR is some typical dimension, say the root chord, and k is the ‘‘reduced’’ frequency
Cq w/U,

At this point we define a generalized force coefficient Qij as was done in Reference 1 by:

o
i T g% '!s'f Zi(X,Y)AF’j{X,Y)dXdY

where Sis thewingarea, Ziis the deflection in the ith mode and APj is the pressure difference
across the surface in the Jth mode (positive in the direction of positive Z),

When first using a computer program we are not sure whether X, Y, Z have been non-
dimensionalized. Hence we assume the deflectionis givenby a fairly general polynomial form:

r Py \ t
C N
R R R

Z (X,Y) =5 Aij( X )l( Y )i
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For instance a plunge mode would be given by

r
Z(X,Y) = A, Cp

and a rotation about the leading edge would be given by

Z (X,Y) = Alo X CR

Our purpose is to determine what values to assign to the powers r and {. We can note that the
pressure differential at X, Y can be given by

APi (X,Y) = ff ifl(x,v;f.n)ajtf,n) d§ dn
S a
Then the generalized force coefficient becomes

1 AAP
Qij'&'s' szitx,v)[ff (xvfn)a (€n)d€dn]dXdY

Dropping the A notation in favor of a simpler one, we define the first mode by Z AIC;
r-t

and the second mode hy Z2 = A2XC

If we introduce abbreviations for the following integrals in analogy with the steady-state case:

L =;sff[f dAP(’(Yf?ﬂclfd'qjld)lcmr
ROM ffx[ fdAP(XY ¢ d€ d'r,']dx ay
a

;F = qS ff"z[ f—a‘éE(X,Y;'g.;) o€ d;;]dx dy

a
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The generalized force coefficients* become

e a2 p2r-1
Q” z - ik A' CR CL
a
2r -t
Q_ =-AAC (c, +ikc,)
12 1 2R La MCI
- 2r -t
Qa
a2 2r-2t +1 ,
022 = A2 CR (cMa+ ik CFQ)

Now suppose that we make computer runs ontwo geometrically similar wings at the same k
and with the same coefficients Al and A2, but with different root chords. Since CL . CM ,
a a
and CF will remain constant between the two runs, the ratios of the root chords and
a
generalized forces between the two runs are

=
Y

20
'
A

*It is important to note that if the generalized force coefficient Qij is defined in the
transpose sense:

Q =

—= | dx dY
i a8 ffAPi (X,Y1Z, (X,Y)

S

then all of the subscripts given above must be transposed. As shown in Section I, this latter
definition is in fact the one used in the computer program, and the former definition is the
one used in Reference 1,
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Here we have four equations for the two unknowns r and t, Various combinations of the
above equations yield the following solutions, all of which should be consistent.

-
it

|
5 (I +1log R“/Iog Rc)

i
r = —2'(I - log Rzzllog R,
t = | - log (RZZ/RIZ)/Iog R.

-
"
1

log (Rzleal)/Iog R":

t = | + log (R||/R2|)/Iog Rc
t = + |
| 6q (R“/R‘zlilog Rc
t = 1 +1log(R /R )
1 22
2 Log R,

These equations for r and t are the same whether we use

-
o, =75 j;f AP, (X,Y) Z, (X,Y) dX 4

or

S
oij -q8-£ APj (X,Y)Zi(X,Y}dXdY
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