AMRL-TR-67-177

RESEARCH ON THE EFFECTS OF ALTERATION OF THE INDIGENOUS MICROFLORA OF THE MONKEY

MYRON H. BENGSON FRED W. THOMAE

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

FOREWORD

This is the final report of a study conducted at the Gnotobiology Laboratory of the Biosciences Operation, Bioastronautics Section of General Electric's MOL Department, Valley Forge Space Technology Center, King of Prussia, Pennsylvania. The work was done for the Life Support Division of Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio, under Contract AF 33(615)-5242 during the period 1 July 1966 to 15 June 1966 and was technically monitored by Dr. Alton Prince of the Biotechnology branch of the Aerospace Medical Research Laboratories. This study was made in support of Project No. 6373 Aerospace Life Support.

The authors wish to acknowledge the valuable contributions of Mr. Herbert Kaplan, Mr. Charles Brooker and Mr. John Geating to Section I and Mr. Richard Bateson and Mr. William Bullock to Section II.

Dr. T. D. Luckey, Professor of Biochemistry, was a consultant on the project and furnished much valuable advice and guidance. Table XIII from his book "Germfree Life and Gnotobiology" was reprinted with the permission of the publisher, Academic Press, New York, N. Y.

This technical report has been reviewed and is approved.

Wayne H. McCandless
Technical Director
Biomedical Laboratory
Aerospace Medical Research Laboratories

ABSTRACT

The feasibility of changing the bacterial and fungal flora of monkeys undergoing biological confinement was studied. The significance to the host of an altered ecological relationship was examined with special attention to the feasibility and consequences of requiring microbial compatibility of astronauts for extended space mission. It was determined that while it would be extremely desirable to have microbial compatibility among crew members, tampering with the indigenous flora poses special problems for which there are as yet no answers. A data and information retrieval system, designed to aid in solving some of the problems mentioned above, has been designed and is presented.

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1/2
п	CONDUCT OF THE EXPERIMENT A. Historical B. The Isolators C. The Gnotobiotic Experiment	3
Ш	DISCUSSION	
IV .	SAMPLING, CODING, RETRIEVAL AND ANALYSIS OF MICRO-BIOLOGICAL DATA A. General B. Requirements 1. Data Gathering. 2. Data Organization. 3. Data Processing. 4. Data Communication 5. Equipment Used C. Handling the Data D. Results 1. Coding and Retrieval. 2. Statistical Analyses 3. Summary	35 35 36 37 41 42 43 43 48 48
APPENDICES		
I	BACTERIOLOGICAL PROCEDURES AND SAMPLING	75
п	MEDICAL PROCEDURES FOR EMPLOYEES HANDLING/ WORKING WITH MONKEYS	81
Ш	DIET AND WATER	83
īV	DISCUSSION OF THE ISOLATOR SYSTEM	85
v	COMPUTER PRINTOUTS	95
REFERENCES	S	149

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	Isolator System	4
2	Holding Isolator and Pass-through	5
3	Cage Inside Main Isolator	6
4	Record Identification Information	38
5	Animal Log Information	47
6	Microbial Data	47
7	Sample Dilution Scheme	76
8	Aerobe Isolation	77
9	Anaerobe Isolation	79
10	Technician Removing Feces Tray for Cleaning, Urine Collection Bottle Below	87
11	Technician Cranks to Operate Squeeze Cage Panel	88
12	Rigid Plexiglas Window in Isolator-Bacteriologist Preparing Swab for Sampling	89
13	Scale and Cage System Used for Recording Animal Weights	90
14	Stainless Steel Cage Illustrating Crank-Operated Squeeze Panel	91
15	View Through Clear Plastic Section of Animal in Cage	92
16	Stainless Steel Holding Isolator Showing Connecting Tunnel Entrance	93
17	LOGREP Program (Original Form)	99
18	Example of Operation of LOGREP Program	102
19	Excerpts from Log of Animal No. 118	103
20	Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program	104
21	Example of Operation of Final Form of Log Report Generator Program	110
22	Animal Log Information Data Collecting Form	116
23	Microbial Data Collecting Form	117
24	Thesaurus of Descriptors from Primary File	118
25	Example of Primary File Search	119
26	Report Generator Program	120

LIST OF ILLUSTRATIONS (Cont)

Figure	Title	Page
27	Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program with Several of the 24 Hierarchies Possible	125
28	Listing of Main Program and Subroutines of the Secondary File Search Program Which Will Print Out Secondary File Data from Record Addresses Sent to Scratch Area or Requested at Teletype Terminal	140
29	Examples of the Operation of the Secondary File Search Program	144
30	Animal Log Record as Stored on Disc	147
31	Microbial Data Record as Stored on Disc	147
32	Microbial Data Management System	148

LIST OF TABLES

Number	<u>Title</u>	Page
I	Constituents of Primate Diet Before Autoclave Sterilization	7
п	Contents of Water Soluble Vitamin Supplement Given to Each Monkey, Each Day	8
ш	Daily Vitamin Supplement	8
IV	Bacterial Populations - Selected Body Sites of Animal in Isolators	10
v	Microorganism Population and Moisture Content of Primate Feces at Time of Isolation	11
VI	Predominant Aerobic Organisms Isolated from Selected Body Locations Shortly After Isolation	12
VП	Summary of Organisms Isolated and Identified Before and After Cloxacillin Administration, and After Bathing in Peracetic Acid	14
VПа	Comparison of Counts Just Prior to and Two Days After Bathing with 0.1 Percent Peracetic Acid	15
vш	Results of Sensi-Disc Tests on Fecal Flora	16
ΪX	Summary of Average Counts Before and After A-Cloxacillin; B-Peracetic Acid Bathing; C-Neomycin	17
x	Numerical Counts of Selected Body Areas	20
XI	Total Body Counts Following Tetrex F Administration and Bathing With Peracetic Acid Solution	24
хп	Feces Counts Following and During Tetrex F Administration	25
ХШ	Summary of the Development of Potential "Antimicrobial Defense Systems" in Germfree Animals	30
xrv	Organisms Identified During the Course of the Experiment	55
xv	Limits of Variation	57
xvi	Statistical Analysis of Data	65
χVII	Results of T-Testing Sampling Data	66

SECTION I INTRODUCTION

Previous studies have been shown that the indigenous body microflora in the normal animal are not in a stable situation with regard to the numbers and kinds of species. What is relatively stable is the total number of microorganisms found in and on the animal.

Somehow a microbial balance of a number of species is usually achieved in the normal individual under normal terrestrial conditions that enables the subject to remain healthy. When imbalance occurs, the potential for disease increases.

As there seems to be an infinite variety of microorganism combinations, it is easy to see that an infinite number of normal and imbalance situations would and do occur. Fortunately, experience has shown that imbalances are usually quickly corrected by the very nature of the environment and the microorganisms themselves.

Considerable effort has been expended to define the indigenous microflora of laboratory animals as well as the human. In spite of a large body of literature, the very immensity of the task forces us to make gross (and often erroneous) assumptions. This study is an attempt to define some of the conditions that alter the normal balances and keep the natural condition from being reestablished.

Among the major variables that determine the composition of the body microflora are diet, exposure to other living creatures, microorganisms in the atmosphere, food and surroundings, body cleanliness, and perhaps the physical state of the individual concerned. In normal life manipulation of these variables is possible only in the grossest context—yet enormous forward progress in the well being of the human race has been made, even with the crude controls now practiced. For example, food sterilization, sewage treatment, potable water treatments, drugs and general sanitation have been shown to be effective means for general controls.

The possibility of changing the indigenous bacterial flora for an extended period, the effect on the host of the altered ecological relationships, the techniques that would be involved in such a study and the possibility of showing compatibility requirements (in the sense of a similar body microflora) for normal humans or animals has never been systematically studied, although individual parts of the above have been reported in gnotobiotic investigations. These are vital questions when considering long-term space flight. The study, therefore, while confined to infra-human primates, was primarily designed to establish more definite parameters to be used during evaluations of the microbiological considerations of manned space flight.

SECTION II CONDUCT OF THE EXPERIMENT

A. HISTORICAL

Six male rhesus, macaca mulata, post puberty and about six pounds each, were quarantined as a group for four weeks at the vendor's animal colony.* During the period, the animals were examined for tuberculosis, malaria, ova and parasites and overt pathogens (Shigella-Salmonella). No evidence of any of the above was found. Upon delivery of the animals to GE, the animals were placed in special animal quarters apart from other animals. They were caged in pairs and a random pairing system established. Every few days, the pairs were changed to insure all animals continued exposure to the microflora of the entire group. All attendents and laboratory workers were given x-ray examinations and a general health survey to insure that specific pathogens would not be transmitted accidentally to the experimental group. Additional health precautions for the personnel are listed in Appendix II.

B. THE ISOLATORS

Figures 1, 2 and 3 illustrate the isolator system used during the course of the experiments. The isolators were specially designed by GE Bioscience Operation and Frank Matthew, of Matthew's Research, the isolator vendor. Appendix I further discusses and illustrates the isolators and their technical details.

During the last two weeks of gentling and pairing, the animals were switched to an autoclaved diet. This was done to accustom them to the taste change which occurs upon sterilization and to verify that the diet planned for use during the isolation period was nutritionally adequate. Since the vitamin loss during autoclave sterilization is relatively severe, supplementary vitamins were fed via the water supply. The water was also autoclave sterilized. Table I gives the nutritional content of the diet, Table II the contents of the vitamin supplement and Table III, the amount of vitamins given contrasted to the minimum daily requirement of each Vitamin required by humans. The vitamins were filter sterilized by millipore filter techniques. The filtering was done within a sterile flexible Trexler type isolator. During this pretest period, the animals were kept in open grill cages, exposed to normal atmosphere, with the usual temperature (75°F and relative humidity of 50 percent) of the primate holding center. The food after autoclaving was not kept sterile other than enclosure in sealed kraft paper bags.

C. THE GNOTOBIOTIC EXPERIMENT

Animals (No. 119**, 116**, 120** and 118***) were randomly selected from the six possible subjects for placement in the isolators. Animals 115 and 121 were kept in the holding center

^{*}Primate Import Corporation, 34 Munson St., Port Washington, N.Y.

^{**}Primary Subjects

^{***}Isolator Control Subjects

Figure 1. Isolator System

Figure 2. Holding Isolator and Pass-Through

Figure 3. Cage Inside Main Isolator

TABLE I. CONSTITUENTS OF PRIMATE DIET BEFORE AUTOCLAVE STERILIZATION ROCKLAND PRIMATE DIET

Crude Protein	17.0 percent minimum
Crude Fat	5.0 percent minimum
Crude Fiber	3.0 percent maximum
Ground Yellow Corn	Pyridoxine Hydrochloride
Dried Skimmed Milk	Thiamine Hydrochloride
Dehulled Solvent Extracted Soybean Meal	Vitamin A Palmitate
Animal Fat (Preserved with Propylene Glycol, BHT, Citric	D-Activated Plant Sterol (Source of Vitamin D-2)
Acid)	Vitamin E Supplement
Ground Whole Wheat	Choline Chloride
Dehydrated Alfalfa Meal	Ascorbic Acid and Traces of Manganese Sulphate
Brewer's Dried Yeast	
Cane Sugar	Iron Carbonate
1.5 percent Calcium Carbonate	Iron Oxide
-	Copper Oxide
0.75 percent Salt	Cobalt Carbonate
Vitamin B-12 Supplement	Potassium Iodide
Ribolflavin Supplement	
Calcium Patothenate	Zinc Sulphate
Niacin	

TABLE II.

CONTENTS OF WATER SOLUBLE VITAMIN SUPPLEMENT
GIVEN TO EACH MONKEY, EACH DAY

Vitamin	Quantity
A (Palmitate) (1.8 mg)	6,000 USP units
D (30 mg)	1,200 USP units
C (Ascorbic acid)	60 mg
B ₁ (As Chloride)	2 mg
B ₂ (Riboflavin 5' Phosphate Sodium)	1.2 mg
B ₆ (Pyridoxine Hydrochloride)	0.5 mg
B ₁₂ (Cyanocobalamin)	2 mg
Niacinamide	10 mg
Pantothenic Acid (As Pantothenol)	3 mg

TABLE III,
DAILY VITAMIN SUPPLEMENT

Vitamin	Proportion of Minimum Daily Requirement
A	4
D	3
C	6
В ₁	8
В2	2
Niacinamide	*
*MDR not established	

equal to or above the MDR for human children and adults.

as controls. During this holding period all animals continued in good health and exhibited normal weight gains. Immediately following the introduction of the autoclaved diet, the animals went on a self-imposed fast, for about three days, but upon resumption of eating, quickly learned to like the sterilized diet as evidenced by a lesser wastage of food. The vitamin supplement was delivered in the water supply. The water dispensers were brown bottles (to reduce the vitamin loss from ambient light). Appendix III discusses the diet further.

When the animals (primary subjects) were placed in the isolators, it was found that timing of the feeding would quickly induce the animals to travel from isolator to isolator as desired. Thus the separate sections of the isolators could be opened, cleaned, stool and urine specimens removed, food and water placed into the isolators and the whole resterilized with 2% peracetic acid solution at times of our choice.

A numerical sampling of the microflora of selected body sites of the animals was performed just before the subjects were isolated. Animals 119, 116 and 120 were well shaven before being isolated. Animal 121 was also shaven.

The temperatures inside the isolators were at all times essentially the same as those experienced by the controls. (Normal laboratory temperature was kept at 75°F.) When for any reason the air temperature dropped below 75°F, quartz lamp heating units were automatically activated directly onto the animal's cage areas until the air temperature was reestablished to the desired point. The relative humidity within the laboratory, control center and interior of the isolators was automatically controlled, additional moisture sometimes being required during the colder months of the year. Our desired RH was 50 percent. The isolators were placed near windows so that the animals at their option, would get both sun and shade during the day. To insure ease in handling during body and skin sampling, the animals had been thoroughly gentled, accustomed to the sounds of voices and personnel and a radio played 24 hours a day.

The animals were not cleaned before placement within the isolator systems in order to remove one possible shock variable from the transfer. No outward evidence of emotional stress was noted at any time during the experiment, which would be traced to isolation. The animals quickly became attentive when visitors or staff approached the isolators and seemed to evidence as much interest in the humans as the humans evidenced in the animals. No loss of appetite or refusal to take liquid ever occurred during the period of isolation except following the baths discussed later.

In Table IV the numbers, subject to the cycling phenomena, which will be discussed later, represent average counts and baseline data for the animals. In Table V, microorganism population and moisture content of primate feces at times of isolation includes an estimate of feces moisture content.

A sampling of the animals shortly after introduction into the isolator, showed Animal 119 with a rapidly spreading surface infection of <u>Pseudomonas</u>. Table VI gives the microorganisms identified at this time. The Pseudomonas replication rate seemed unaffected by Phisohex, (R) and Vesphene, (B) but peracetic acid killed the cultures effectively during test.

TABLE IV.

BACTERIAL POPULATIONS - SELECTED BODY SITES OF ANIMAL IN ISOLATORS

	Aerobic	Flora	Anaerobic l	Flora
Body Area	Animal No. 116	Animal No. 119	Animal No. 116	Animal No. 119
Conjunctiva	2 x 10 ⁶	2 x 10 ⁵	3.5 x 10 ⁶	1.59 x 10 ⁸
Throat	3.46 x 10 ⁸	3.7×10^7	7.20 x 10 ⁸	7.20 x 10 ⁸
Gingiva	2.48 x 10 ⁸	5.32 x 10 ⁸	Overgrown Fungi 10	TNTC 10 ⁸
Axilla	1,19 x 10 ⁷	3 x 10 ⁶	3.5 x 10 ⁶	zero x 10 ⁵
Groin	6 x 10 ⁶	7.5×10^7	1 x 10 ⁶	9.00 x 10 ⁸
Glans Penis	7 x 10 ⁶	9.2×10^7	3.x 10 ⁶	3.68 x 10 ⁸

All counts are on Blood Agar plates. Sampling and dilutions follow the procedures of Gall. Fluid Thioglycollate has been used for the anaerobic dilutions instead of Galls' Broth. Aerobic dilutions are prepared in Brain Heart Infusion Broth. The swabs from the given areas are placed in 10 ml and this is arbitrarily taken as the 10⁻³ dilution in accordance with previous work by West, Gall and others.

TABLE V.

MICROORGANISM POPULATION AND MOISTURE CONTENT OF PRIMATE FECES AT TIME OF ISOLATION

		E	Weight Used for	Weight	Domoont	Wet Weight Diluted/	Counts	ıts
Animal No.	Sample	(Grams)***	Moisture Determination (Grams)	Lost (Grams)	Moisture	100 ml for Counts (Grams)	Aerobic	Anaerobic
115	Ħ	3.88	3.88	1,22	31,44	3 mm loop/10 ml*	3.30 x 1010	3.80 x 10 ¹⁰
115	61	3,50	2.89	1.69	58.47	0,35	2.30×10^{10}	1.83 x 10 ¹⁰
116		4.66	4.10	2,65	64, 63	0.48	zero x 10 ⁸ **	1,1 x 10 ⁹
116	67	10,19	10,00	4, 53	45,30	0,17	3 x 10 ⁸	zero x 108**
118	7	3, 13	3,09	1,76	56.95	0,13	6 x 10 ⁸	1 x 10 ⁸
119	-	7.96	7.06	5,28	74.78	0.89	2 x 10 ⁸	2 x 10 ⁸
119	87	5,20	Weigh	Weighing Error		0.12	1.7×10^{9}	zero x 108**
120	-	6.60	6.51	4.74	72,81	05.50	7 x 10 ⁸	9 x 10 ⁸
121	-	2,69	2,69	0.73	27,13	3 mm loop/10 ml*	1.65 x 10 ¹⁰	1.22 × 10 ¹⁰
121	83	2,32	1,60	1,10	68,75	0,35	1.41 x 10 ¹⁰	1.23 x 10 ¹⁰
		*Feces counts	*Feces counts done following procedure of Gall eg. a standard loop full of material into 10 ml followed by serial dilutions. The initial tube is arbitrarily taken as 10^{-3}	of Galleg, a st	andard loop fu	il of material into 10 ml 10^{-3} .		
		**No growth at	**No growth at 10 ⁸ dilution, lower dilutions accidently destroyed,	is accidently de	estroyed.			
		***Feces as dell	***Feces as delivered from the animal, collected within minutes of defecation,	llected within r	ninutes of defe	cation.		-
. —		Animals bein	Animals being fed sterilized Rockland primate diet with supplemental vitamin. Water given ad-libitum.	rimate diet wit	h supplementa	l vitamin, Water given ad	-libitum.	

TABLE VI. PREDOMINANT AEROBIC ORGANISMS ISOLATED FROM SELECTED BODY LOCATIONS SHORTLY AFTER ISOLATION

			Location and	Animal		
Organism	Eye	Throat	Gingiva	Axilla	Groin	Glans Penis
Staph*	A	в, с	A, B	A, C	В	С
Staph**	В, С	A, C	С	В	A, C	
α Hemo Strep	В	A, B, C	A, B, C	В	А, В	A
γ Hemo Strep	C				С	С
Pseudomonas		В	В		В	
Undiff, Fungi			:	С		
Lactobacillus					С	
Bacillus Undiff.		A, B, C	A, B, C	A, B, C	A, B, C	A, B, C

^{*}Non-pathogenic

A = Animal No. 116

B = Animal No. 119

C = Animal No. 120

Other organisms isolated but not identified at this date

^{**}Potential pathogen (based on Mannitol-salts agar)

The animal was completely immersed in 1/10 percent peracetic acid for several seconds and the fur and skin thoroughly wetted down. The bathing was done inside the large plastic section of the isolator and then the animals were dried with sterile toweling. Twenty-four hours and subsequent skin and fur sampling did not indicate the presence of <u>Pseudomonas</u>. For the first few days after the bath, the fur and skin of the animals reflected the loss of the microorganism population. Sampling of several points on the body gave a negligible count even after 24 hours.

Shortly thereafter a new and different population took over. The animals occasionally are able to reach their feces and this new population reflected the genera found in the feces. The new population quickly reached the approximate numerical levels previously found. Table VII is a summary of the organisms isolated before and after Cloxacillin® administration, discussed later, but also shows the loss of Pseudomonas, from surface sites, before the administration of the penicillin.

Following the success of the peracetic acid baths, all isolated animals were bathed in similar fashion with similar results.

Using a mixed culture of monkey feces microflora, antibiotic sensitivity determinations were run using 10³ dilution on blood agar plates grown both aerobically and anaerobically. Antibiotics used were BBL sensi-discs. Table VIII shows the antibiotics tested.

The most effective antibiotic on the mixed fecal flora, as tested in vitro, is Penicillin.

Sodium Cloxacillin monohydrate, pediatric dosage equivalent to 50 mg/Kg/24 hour for one week was administered to reduce microflora. Cloxacillin was chosen over penicillin G for the following reasons: higher acid stability, penicillinase resistance, enteric absorption is not as adversely influenced by the food in the stomach.

The disinfection process preceded administration of Cloxacillin; this antibiotic, acting primarily through the blood stream changed the character of the intestinal microflora on animal nos. 119, 116 and 120. Not all the microflora were affected (Tables VII and VIII), but Streptococci, Leptothrix and others disappeared or at least were not recovered in following analyses. The Proteus and Staphylococcus were also affected by the dose although not in the level that detection was no longer possible. The animals, both suffering moderate diarrhea, were kept isolated for several weeks to ascertain if a new balance had been struck. Outwardly, the health of the animals was unaffected. About four weeks after administration of Cloxocillin had ceased, neomycin was administered to animal nos. 119 and 120 for three days. Animal no. 116 was held as an isolator control and animal nos. 115 and 121 as an open colony control. Table IX compares the results. By a succession of antibiotics, it appears that the internal balance can also be affected.

Within two days, following the administration of neomycin, the monkeys 119 and 120 were suffering very badly from loose stools. Refusal to take food and general malaise indicated they were not feeling well. An isolation of <u>Candida</u> in the feces of animal no. 119 following administration confirmed our belief that the microorganism was present in the body but at

TABLE VII.

SUMMARY OF ORGANISMS ISOLATED AND IDENTIFIED BEFORE AND AFTER CLOXACILLIN ADMINISTRATION, AND AFTER BATHING IN PERACETIC ACID

	Feces	e.	Conjunctiva	ctiva	Throat	oat	Gingiva	iva	Axilla	la	Groin	in	Glans Penis	ents
Genera	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After	Before	After
Staphylococcus	A, B, C	¥	B,C		В		C		A,C		A, B	A, B, C	B,C	Д
Streptococci	ပ		ບ		A, B		A, B, C		Ü		ن		¥	
Pheumococci				•						"			∢	
Lactobacilli	-										Ü			
Clostridia	A, B, C		٥											
Corynebacteria	А,С	А,С	A, C	A, C	A,C	В	A,C	-		4	B,C		A,C	
Escherichia		4												
Proteus		A, B			• •	•					Ö		ŭ	Д
Klebstella														
Pseudomonas					ບ		Д	Д		_				
Alcaligenes			•			Д		P						
Bacillus Sp.			ບ		∢				•	•				
Leptothrix					¥									•
Bacteroides	в, с					•								
Aspergillus					-				ပ					
Salmonella-Shigella*		A, B										•••	Ö	
Candida		в,с												
	A = Antr	A = Animal No. 116	9			*The p	resence of	some or	gantsms, f	found afte	*The presence of some organisms, found after antibiotic			
	B = Antr	B = Animal No. 119	6.			admin	istration noresent to	nay be du begin wii	e to the fa	ct only s multiple	administration may be due to the fact only small numbers were present to begin with but these multiplied rapidly	ırs		_
	C = Antr	C = Animal No. 120	03			after	after competition was lessened.	was les	sened.					

TABLE VII-a.

COMPARISON OF COUNTS JUST PRIOR TO AND TWO DAYS AFTER BATHING WITH 0.1 PERCENT PERACETIC ACID

nd After Two- ints	Anaerobic	negligible at 10 ⁵ dilution	1.45 x 10 ⁷	served d from d the nat r is nce of
Post-Wash and After Two- Day Counts	Aerobic	1,2 x 10 ⁶	1.5 x 10 ⁷	n total count was obsis no longer isolatee which was considered mination indicates the Recontamination in sites. The present demonstrated for Memonstrated for
Prewash Counts	Anaerobic	5 x 10 ⁶	1.8×10^7	It will be noted that no permanent change in total count was observed in the groin area, however, Pseudomonas is no longer isolated from the animal. Loss of this microorganism which was considered the marker organism for body and fur decontamination indicates that other microorganisms also were eliminated. Recontamination is from fecal sources or from sub-surface skin sites. The presence of subcutaneous microorganisms has not been demonstrated for Macaca mulatta.
Prewasl	Aerobic	3 x 10 ⁶	1.0 × 10 ⁷	It will be noted that no in the groin area, how the animal. Loss of the marker organism for other microorganisms from fecal sources or subcutaneous microorganisms.
Animal No. 119	Body Sites	Axilla	Groin	it in the the the the oth oth fro

TABLE VIII. RESULTS OF SENSI-DISC TESTS ON FECAL FLORA

Antibiotic	Units Tested	Relative Results
Streptomycin	2 mcg	
Penicillin	2 units	
Colymycin	2 mcg	
Kynex	0, 25 mg	
Tetracycline	5 mcg	
Kantrex	5 mcg	
Neomycin	5 mcg	
Chloromyatin	5 mcg	
Polymyxin	50 units	

TABLE IX.

SUMMARY OF AVERAGE COUNTS BEFORE AND AFTER A-CLOXACILLIN;

B-PERACETIC ACID BATHING; C-NEOMYCIN

		Fec	es		ces	Conjunctiva	
		Aerobe	Anaerobe	Aerobe	Anaerobe	Aerobe	Anaerobe
116	Before	3.9 x 10 ⁸	3.1 x 10 ⁸			2.0 x 10 ⁶	3.5 x 10 ⁶
	After	3.3 x 10 ⁹	6.6 x 10 ⁹			_	2.3×10^{7}
Animal No.	11101	Thro	at	Ging	iva	Axi	la
oal		В		B		В	
nia		Aerobe	Anaerobe	Aerobe	Anaerobe	Aerobe	Anaerobe
¥	Before	3,5 x 10 ⁸	7.2×10^8	2.5 x 10 ⁸	1.0 x 10 ⁷	1.2×10^{7}	3.5 x 10 ⁶
	After	1.2 x 10 ⁹	7.4 x 10 ⁹	1.5 x 10 ⁹	4.1 x 10 ⁹	2.6 x 10 ⁶	7.7 x 10 ⁶
		Gro	in	Glans :			
		В	A	A a mala a			
		Aerobe	Anaerobe	Aerobe	Anaerobe		
	Before	6.0 x 10 ⁶	1.0×10^6	7.0 x 10 ⁶	3.0 x 10 ⁶		
	After	7.5×10^{7}	2.4×10^8	9.5 x 10 ⁷	1,4 x 10 ⁸		
		Fed	es	Feces C		Conjunctiva B	
1		Aerobe	Anaerobe	Aerobe	Anaerobe	Aerobe	Anaerobe
	Before	2.0 x 10 ⁸	2.0 x 10 ⁸	1.6 x 10 ⁹	1.7 x 10 ¹⁰	1.2 x 10 ⁵	1.6 x 10 ⁵
	After	2.9×10^{8}	4.7×10^8	6.0 x 10 ³	1.4×10^8	< 1000	6.0×10^3
6		Thro	at	Gin	Gingiva		lla
119		B A a series	A	A a series	Anaerobe	Aerobe	Anaerobe
و		Aerobe	Anaerobe 5	Aerobe			
Ta la	Before	2.7 x 10 ⁵	7.2×10^{5}	5,3 x 10 ⁶	>3.0 x 10 ⁶	3.0 x 10 ⁴	5,0 x 10 ⁴
Animal No.	After	2.0 x 10 ⁵	4.0 x 10 ⁵	2.2×10^6	1.3 x 10 ⁷	< 1000	< 1000
¥		Gro B	in	Glans : B			
		Aerobe	Anaerobe	Aerobe	Anaerobe		
	Before	7.5 x 10 ⁵	9.0 x 10 ⁵	9.2 x 10 ⁵	3.7 x 10 ⁵		
	After	9.4 x 10 ⁴	1.3 x 10 ⁵	1.7 x 10 ⁶	2.2 x 10 ⁶		

TABLE IX. SUMMARY OF AVERAGE COUNTS BEFORE AND AFTER A-CLOXACILLIN; B-PERACETIC ACID BATHING; C-NEOMYCIN (Cont)

		Fece	es	Fe	ces	Fee	ces
1 1		A			}	В	
		Aerobe	Anaerobe	Aerobe	Anaerobe	Aerobe	Anaerobe
	Before	7.0×10^{7}	9.0×10^{7}	2.4 x 10 ⁷	4.3×10^7	2.7 x 10 ⁴	1.4×10^{5}
	After	2.4×10^{7}	4.3×10^7	1.0 x 10 ⁴	1.1 x 10 ⁸	2.6 x 10 ⁴	2.2×10^4
120		Thro	at	Gin	giva	Axi	lla
		В		В		B	
No.		Aerobe	Anaerobe	Aerobe	Anaerobe	Aerobe	Anaerobe
	Before	4.4 x 10 ⁶	5.2 x 10 ⁶	2.7 x 10 ⁶	3.7×10^6	1.2 x 10 ⁵	2.7×10^4
Animal	After	5.1 x 10 ⁶	6.9×10^6	6.2 x 10 ⁶	4.1×10^6	2.0 x 10 ⁴	< 1000
4		Gro		Glar	ns Penis		
		В			В]	
		Aerobe	Anaerobe	Aerobe	Anaerobe		
	Before	3.7 x 10 ⁵	2,2 x 10 ⁴	2.4 x 10 ⁵	1.3×10^{5}		
	After	1.4 x 10 ⁵	1.4×10^{5}	1.4 x 10 ⁴	1.0 x 10 ⁴		
\vdash	L						

All reported counts were performed on blood Agar plates using the spread plate technique.

Lowest dilution used required 1000 microorganisms or more to read (10³) reported as less than 1000, in the third serial dilution, no colonies were found.

a level too low for isolation by routine techniques. To prevent spread, Nystatin (700,000 units/day for three days) was administered. Shortly thereafter, feces samples from the affected animal did not exhibit Candida. The administration of Nystatin appeared to have no affect on the total numerical counts of microorganisms in the feces.

In that the total counts of anaerobic microorganisms did not change substantially after neomycin, which was contrary to all expectations, it was determined that initial dosages were insufficient to cause the changes desired. Following a stabilization period of one month, Tetrex F*, was administered for 14 days. Samplings of selected body sites and feces of the animals during the following restabilization show the predominant skin and body microflora to be Corynebacteria and Staphylococcus. Table X gives average numerical values for both aerobic and anaerobic microorganisms during this period. Tetrex F is a propietary combination of neomycin and Nystatin. Our laboratories are currently evaluating this antibiotic. The animals were rebathed in peracetic acid seven days after start of dosage. The dosage was 10 cc/animal/day**. The data is presented in Tables XI and XII.

^{*}Furnished by J. P. Brochetti of Bristol Myers Laboratories

^{**}Equivalents to 250 mg Tetracycline Hcl and 250,000 units of Nystatin

TABLE X. NUMERICAL COUNTS OF SELECTED BODY AREAS*

Conjunctiva

Animal No.	Atmosphere	Average Mixed Count Blood Agar	Average Corynebacteria Muller Serum Tellurite	Average Staphylococcus Mannitol Salts
115 (Control)	Aerobic Anaerobic	1.80 x 10 ⁶ 1.45 x 10 ⁶	1.5 x 10 ⁶	1.08 x 10 ⁶
116	Aerobic Anaerobic	1.22×10^{6} 1.67×10^{6}	9.7 x 10 ⁵	1.74 x 10 ⁶
118	Aerobic Anaerobic	1.80×10^{6} 4.86×10^{7}	1.54 x 10 ⁶	2.16 x 10 ⁶
119	Aerobic Anaerobic	1.32 x 10 ⁶ 2.52 x 10 ⁶	1.41 x 10 ⁶	2.04 x 10 ⁶
120	Aerobic Anaerobic	6.56×10^{6} 1.32×10^{7}	4.07 x 10 ⁶	Not Determined
121 (Control)	Aerobic Anaerobic	5.2×10^{5} 4.3×10^{5}	3.7 x 10 ⁵	1.89 x 10 ⁵

Throat

Animal No.	Atmosphere	Average Mixed Count Blood Agar	Average Corynebacteria Muller Serum Tellurite	Average Staphylococcus Mannitol Salts
115 (Control)	Aerobic Anaerobic	1.00 x 10 ⁸ 1.88 x 10 ⁷	3,9 x 10 ⁶	2 x 10 ⁴
116	Aerobic Anaerobic	2.10×10^{8} 2.94×10^{8}	2.10 x 10 ⁸	6.8 x 10 ⁴
118	Aerobic Anaerobic	4.86 x 10 ⁸ 4.86 x 10 ⁸	3.88 x 10 ⁷	1.5 x 10 ⁴
119	Aerobic Anaerobic	4.37 x 10 ⁸ 4.32 x 10 ⁸	4.98 x 10 ⁷	7 x 10 ³
120	Aerobic Anaerobic	5.94 x 10 ⁷ 1.02 x 10 ⁷	3.66 x 10 ⁷	Not Determined
121	Aerobic	1,22 x 10 ⁹	8.9 x 10 ⁶	1.74 x 10 ⁷
(Control)	Anaerobic	4.30×10^8		

^{*}From 25 May to 24 June 1967

TABLE X.

NUMERICAL COUNTS OF SELECTED BODY AREAS* (Cont)

Gingiva

Atmosphere	Average Mixed Count Blood Agar	Average Corynebacteria Muller Serum Tellurite	Average Staphlococcus Mannitol Salts
Aerobic Anaerobic	2.09×10^{7} 1.62×10^{8}	3. x 10 ⁵	3.06 x 10 ⁶
Aerobic Anaerobic	7,29 x 10 ⁸ 4,86 x 10 ⁸	4.18 x 10 ⁷	1.64 x 10 ⁶
Aerobic Anaerobic	4.86 x 10 ⁸ 7.02 x 10 ⁸	3.87 x 10 ⁷	2.5 x 10 ⁴
Aerobic Anaerobic	6.48 x 10 ⁸ ** over-run Pseudomonas 5th serial dilu.	4.41 x 10 ⁷	4.1 x 10 ⁴
Aerobic Anaerobic	4.59 x 10 ⁸ 1.32 x 10 ⁸	7.70 x 10 ⁷	Not Determined
Arrobic	3.82×10^{7}	3.7×10^{7}	2.30 x 10 ⁶
	Aerobic Anaerobic Anaerobic Anaerobic Anaerobic Anaerobic Aerobic Anaerobic Anaerobic	Atmosphere Mixed Count Blood Agar Aerobic Anaerobic 2.09 x 10 ⁷ / ₈ 1.62 x 10 1.62 x 10 Aerobic Anaerobic 7.29 x 10 ⁸ / ₈ Aerobic Anaerobic 4.86 x 10 ⁸ / ₈ Aerobic Anaerobic 6.48 x 10 ⁸ ** Aerobic Anaerobic over-run Pseudomonas 5th serial dilu. Aerobic Anaerobic 4.59 x 10 ⁸ / ₈ Aerobic Anaerobic 3.82 x 10 ⁷ / ₇	Atmosphere Average Mixed Count Blood Agar Corynebacteria Muller Serum Tellurite Aerobic Anaerobic 2.09 x 10 ⁷ / ₈ 1.62 x 10 ⁸ 3.x 10 ⁵ / Aerobic Anaerobic 7.29 x 10 ⁸ / ₈ 4.18 x 10 ⁷ / Aerobic Anaerobic 4.86 x 10 ⁸ / ₈ 7.02 x 10 ⁸ 3.87 x 10 ⁷ / Aerobic Anaerobic 6.48 x 10 ⁸ ** 4.41 x 10 ⁷ / Aerobic Anaerobic 4.59 x 10 ⁸ / ₈ 7.70 x 10 ⁷ / Aerobic Anaerobic 3.82 x 10 ⁷ / ₇ 3.7 x 10 ⁷

Axilla

Animal No.	Atmosphere	Average Mixed Count Blood Agar	Average Corynebacteria Mueller Serum Tellurite	Average Staphlococcus Mannitol Salts
115 (Control)	Aerobic Anaerobic	1.80×10^7 8.7×10^6	1.16 x 10 ⁷	Not Determined
116	Aerobic Anaerobic	2.11 x 10 ⁶ 2.59 x 10 ⁶	4.03 x 10 ⁶	3.34 x 10 ⁶
118	Aerobic Anaerobic	2.1×10^{4} 1.1×10^{5}	8 x 10 ³ 	1,2 x 10 ⁴
119	Aerobic Anaerobic	2 x 10 ³ 4 x 10 ³	5 x 10 ³ 	6 x 10 ³
120	Aerobic Anaerobic	2.67×10^{5} 1.20×10^{5}	1.93 x 10 ⁵ 	Not Determined
121 (Control)	Aerobic Anaerobic	6 x 10 ⁵	5 x 10 ⁵ 	9 x 10 ⁴

^{*}From 15 May to 24 June 1967

^{**}Pseudomonas Present

TABLE X.

NUMERICAL COUNTS OF SELECTED BODY AREAS* (Cont)

Groin

Animal No.	Atmosphere	Average Mixed Count Blood Agar	Average Corynebacteria Muller Serum Tellurite	Average Staphlococcus Mannitol Salts
115	Aerobic	10 ⁵	No growth at 10 ⁻⁵	No growth at 10^{-5}
(Control)	Anaerobic	10 ⁵	dilu.	dilu.
116	Aerobic Anaerobic	1,72 x 10 ⁶ 2,39 x 10 ⁶	7.3 x 10 ⁵	1.10 x 10 ⁶
118	Aerobic Anaerobic	1.77 x 10 ⁶ 2.64 x 10 ⁶	1.13 x 10 ⁶	1.63 x 10 ⁵
119	Aerobic Anaerobic	5.31×10^6 2.35 x 10 ⁶	3.33 x 10 ⁶	4.2 x 10 ⁵
120	Aerobic Anaerobic	1.96 x 10 ⁶ 1.28 x 10 ⁷	10 ⁶	Not Determined
121 (Control)	Aerobic Anaerobic	7.7 x 10 ⁷ 6.0 x 10 ⁷	5 x 10 ⁵	3.12 x 10 ⁷

Glans Penis

Animal No.	Atmosphere	Average Mixed Count Blood Agar	Average Corynebacteria Muller Serum Tellurite	Average Staphlococcus Mannitol Salts
115 (Control)	Aerobic Anaerobic	3.92 x 10 ⁸ 4.50 x 10 ⁸	1.36 x 10 ⁷	Not Determined
116	Aerobic Anaerobic	3.64 x 10 ⁷ 1.63 x 10 ⁷	3.46 x 10 ⁷	7.53 x 10 ⁶
118	Aerobic Anaerobic	4.86 x 10 ⁸ 7.02 x 10 ⁸	9.8 x 10 ⁵	7.89 x 10 ⁶
119	Aerobic Anaerobic	4.05 x 10 ⁷ 4.32 x 10 ⁷	3.8 x 10 ⁵	5.22 x 10 ⁷
120	Aerobic Anaerobic	9.30 x 10 ⁷ over-run prob- ably Proteus	1.28 x 10 ⁷	Not Determined
121	Aerobic Anaerobic	1.16 x 10 ⁸ 2.54 x 10 ⁸	1.1 x 10 ⁶	4.20 x 10 ⁷

^{*}From 15 May to 24 June 1967

TABLE X.

NUMERICAL COUNTS OF SELECTED BODY AREAS* (Cont)

Feces

Animal No.	Atmosphere	Average Mixed Count Blood Agar		
116	Aerobic Anaerobic	1.19 x 10 ⁸ 1.24 x 10 ⁸		
119	Aerobic Anaerobic	1.30 x 10 ⁸ 1.08 x 10 ⁸		

^{*}From 15 May to 24 June 1967

TABLE XI.

TOTAL BODY COUNTS FOLLOWING TETREX F ADMINISTRATION AND BATHING WITH PERACETIC ACID SOLUTION

	Mannitol Salts	3 x 10 ³	2 x 10 ⁴	1 x 10 ³	1.3 x 104	2.01 x 10 ⁶	8.2 x 10 ⁶						
Animal No. 121	Mueller M Tellurite	4 x 10 ³	1.86 × 10 ⁷	2,31 x 10 ⁷			_						
	Blood Agar	1,3 × 10 ⁴	1,08 x 10 ⁹	5,0 x 10 ⁸	2.1 x 10 ⁴	3.3 x 10 ⁶	1,40 x 10 ⁷	1,9 x 10 ⁴	1.2 x 10 ⁹	7.8 x 10 ⁸	1.5 x 10 ⁴	3,2 x 10 ⁶	4.2 x 10 ⁶
	Mannitol Salts	1.0 x 10 ³	Ng 10 ⁻³	Ng 10 ⁻³	1 x 10 ³	1,33 x 10 ⁶	2,4 x 10 ⁷						
Animal No. 119	Mueller Tellurite	No growth 10-3	1.17×10^{7}	3.92 x 10 ⁶	$^{-3}$	4.5×10^5	3.72×10^{6}						
	Blood Agar	5.0 x 10 ³	5,52 x 107	6.48 x 107	Ng 10 ⁻³	1.80 x 10 ⁶	1,14 x 10 ⁷	3 x 10 ³	1,14 x 10 ⁷	1,86 x 107	1 103	1.8 x 10 ⁶	6.48 x 10 ⁷
18	Mannitol Salts	7.28 x 10 ⁶	5,1 x 107	9.4 x 104	1.0 x 10 ³	3,1 x 10 ⁴	2.94×10^{7}						
Animal No. 118	Mueller Tellurite	2,11 x 10 ⁶	1.4 x 104	1.8 x 107	2,0 x 10 ³	6.0 x 10 ³	1,8 x 10 ⁵						
	Blood Agar	4,92 x 10 ⁶	2, 90 x 10 ⁷	5.1 x 107	1.0 x 104	7.5 x 10 ⁶	3.72×10^7	4.80 x 10 ⁶	2.22×10^{7}	1.38 x 107	1,4 x 10 ⁴	1.38×10^{7}	7.8 x 10 ⁶
	Area	(1) Conjunctiva	(2) Throat	(3) Gingiva	(4) Axilla	(5) Groin	(6) Glans Penis	(1) Conjunctiva	(2) Throat	(3) Gingiva	(4) Axilla	(5) Groin	(6) Glans Penis
		£		ල ල				Œ		edon S			(9)

Animal Nos. 118, 119 and 121 were bathed in 0.1 percent peracetic acid by total immersion for approximately 15 seconds. They were sampled on the various body areas approximately 24 hours following this bath. Animal Nos. 118 and 119 are both in isolation and received a daily dosage of 250 mg tetracycline hydrochloride and 250,000 mits Nystatin for seven days prior to the bath. Animal No. 121 is in an open cage with full exposure to the normal atmosphere and received no antibiotic. Counts were performed on Blood Agar aerobically and anaerobically from all sites. Also counts were performed on Mueller Tellurite (specific for corynebacteria) agar and Mannitol salts (specific for straphylococci) agar aerobically.

TABLE XII. FECES COUNTS FOLLOWING AND DURING TETREX F ADMINISTRATION

Aerobic Counts - Animal No. 116

		T	
Sampling Day	Blood Agar	Mueller Tellurite	Eosin Methylene Blue
1	3.7 x 10 ⁷	1.3 x 10 ⁶	2.2 x 10 ⁶
3	1.0 x 10 ⁸	1.5 x 10 ⁸	2.7 x 10 ⁶
5	3.6 x 10 ⁷	4.1 x 10 ⁷	4.3 x 10 ⁶
7	4.9×10^{7}	1.1 x 10 ⁸	2.2 x 10 ⁷
9	4.2 x 10 ⁷	2.8 x 10 ⁷	1.1 x 10 ⁷
11	1.7 x 10 ⁶	1.2 x 10 ⁵	2.2 x 10 ⁷
· · · · · · · · · · · · · · · · · · ·		Anaerobes	
1	1.0 x 10 ⁸		
3	7.7×10^{7}		
5	3.8 x 10 ⁸		
7	1.9 x 10 ⁸		
9	8.4 x 10 ⁷		
11	1.2 x 10 ⁸		
	organisms. The growth with a value to the slawhereby a small the aerobic Bl	n the EMB plates were aty here appears to be an init very gradual reduction fol- low build up of residual an all amount initially acts as ood Agar plates from san	ial upsurge of aerobic lowing. This might ntibiotic action a stimulus.
	may have an ef	had a spreader which is p fect of masking some color bly be higher. First same	

administration of antibiotics.

TABLE XII. FECES COUNTS FOLLOWING AND DURING TETREX F ADMINISTRATION (Cont)

Aerobic Counts - Animal No. 118

Sampling Day	Blood Agar	Mueller Tellurite	Eosin Methylene Blue
1	1.5 x 10 ⁶	No growth 10 ⁻⁴	1 x 10 ⁴
3	2.6 x 10 ⁷	1 x 10 ⁴	Ng 10 ⁻⁴
5	2.91 x 10 ⁷	$Ng 10^{-4}$	4.7×10^6
7	8.0 x 10 ⁶	Ng 10 ⁻⁴	1.3 x 10 ⁵
9	1.3 x 10 ⁶	Ng 10 ⁻⁴ Ng 10 ⁻⁴	Ng 10 ⁻⁴
11	9.8 x 10 ⁶	Ng 10 ⁻⁴	1 x 10 ⁴

Anaerobes

1	5.0 x 10 ⁶
3	3.8 x 10 ⁷
5	3.8 x 10 ⁷
7	3.3×10^{7}
9	5,6 x 10 ⁷
11	2.5 x 10 ⁷

The colonies on the EMB plates were typical of Escherichia sp.

$\label{table xii.}$ FECES COUNTS FOLLOWING AND DURING TETREX F ADMINISTRATION (Cont)

Aerobic	Counts	-	Animal	No.	119

Sampling Day	Blood Agar	Mueller Tellurite	Eosin Methylene Blue
1	2.8 x 10 ⁷	No growth 10 ⁻⁴	Ng 10 ⁻⁴
3	1.2×10^{7}	6 x 10 ⁵	2.5 x 10 ⁶
5	4.8 x 10 ⁷	4.8 x 10 ⁵	2.8 x 10 ⁶
7	3.3 x 10 ⁷	3.5 x 10 ⁵	3.5 x 10 ⁶
9	1.4 x 10 ⁸	3.6 x 10 ⁵	3.6 x 10 ⁷
11	4.6 x 10 ⁷	4 x 10 ⁴	3.1 x 10 ⁷

Anaerobes

,	3.3 x 10 ⁷	
1 1	1	
3	7.1 x 10 ⁷	
5	1.7 x 10 ⁸	
7	1.2 x 10 ⁸	
9	2.0 x 10 ⁸	
11	1.4 x 10 ⁸	

The EMB colonies were atypical. All of the aerobic blood agar plates after 1 July 67 had a spreader believed to be proteus, which may have a masking effect. This is unavoidable by the spread plate technique used.

SECTION III DISCUSSION

A. BACKGROUND

"Medical microbiology", writes Dubos (1967), "has concerned itself primarily with the potentially pathogenic members of the indigenous microbiota. Yet, the symbiotic species are of at least equal importance because....they are essential to the well being of their host." The differentiation of "potential pathogens" from other organisms is hardly a cause for quarrel with Dubos, in that he has also stressed the demarcation between pathogen and nonpathogens is frequently dependent upon the physiologic condition of the host. His thesis that the autochthonous bacterial flora have achieved a semi-symbiotic status with the mammalian species through a long period of evolutionary association—as compared with those of more recent association which possess various degrees of pathogenicity concerns us only to the extent that in the context of space flight—any new association of microflora and astronaut will probably be detrimental to the astronaut.

It is known that some microorganisms commonly thought of as nonpathogens and certainly in the class of those considered common to life and major contributors to the gastrointestinal balance, can be lethal to species other than their normal host. Often "strange" microorganisms cannot be established and in other cases establishment causes unexpected effects both good and bad for the host. To the concept of microfloral balance must be added species specificity. Individual susceptibility has long been recognized and is probably present in many cases not reported simply because of temporary conditions that prohibit establishment of the new species in the host. An area of disagreement among bacteriologists studying the gastrointestinal microflora is the stability of the microflora population in the host healthy state. Some claim there is approximately constant composition and others hold the position that the microfloral population is anything but constant. Attempts to get beyond the semantics, species variation and exact definitions reveal more the regions of agreement than disagreement. For normal humans, it is generally agreed that the total numbers of microorganisms are approximately constant (except for the cycling phenomena described by Prince and Gall (1966) and the possibilities for temporarily altering the normal state are many and can be rapidly demonstrated.

Physiological disturbances, drugs, environmental changes and foods are among the factors which have been shown to result in an altered state. One form of altered state is, of course, imbalance, where imbalance is thought of as predominance of one or few forms of microorganisms in the gut. Although seemingly perfectly healthy animals have been shown to have intestinal microflora of only one or two bacteria, Luckey (1963) in his monograph Germ Free Life and Gnotobiology describes many instance of this observed by various workers. Generally these examples are gnotobiotes that have been germfree and have become contaminated by accident or design. The bodily defenses and the physiology of the these gnotobiotes is only superficially the same as conventional animals—every day the literature reports more differences between germfree animals and conventional animals. Table XIII from Luckey,

TABLE XIII.

SUMMARY OF THE DEVELOPMENT OF POTENTIAL "ANTIMICROBIAL DEFENSE SYSTEMS" IN GERMFREE ANIMALS*

Good	Intermediate	Little or None
Skin	Mucosa of Gastrointestinal	Cilia and squamous epithelium in sinuses
Thymus	Liver	
Bursa Fabricius		Sinus and nasal lymphatic tissue
Spleen	Spleen lymphopoiesis	
	Spleen secondary reaction centers	Tissue secondary reaction centers
	Plasma cells	Guinea pig plasma cells
Tissue monocytes, basophils, eosinophils, and heterophils	Tissue reticuloendothelial cells	Guinea pig plasms cells
Periodic vaginal exudat- ion, inflammation, and neutrophil infiltration	Tissue exudation (in cuts)	
Lymphocytes production	Lymph nodes (number and size)	
	Lumphocytes in lymph nodes Circulating lymphocytes	
Serum heterophils	Serum monocytes	
Serum $lpha$ and $oldsymbol{eta}$ globulins	Serum γ and α -globulins	
Heterochemagglutinins	Antibacterial agglutinins	Dietary protein antibodies
Antibody production system complement	Properidin	Foreign Tissue antibody production. Serum bactericidal activity
Block clearing mechanism "Shock" defense system Defecation	Reparative processes	Phagocytosis Blood vessel formati in new tissue

^{*}Luckey, T. D., "Germfree Life and Gnotobiology" Academic Press, N. Y. N. Y., 1963. Copyrighted. Reprinted with permission of publisher.

is illustrative of some of the differences in defense mechanisms. Many other abnormalities have been reported, Sprintz (1962), Wostman (1959), Miyakawa (1958), Tanami (1959).

Early experiments by Reyniers and his Lobund group have shown that simplification of intestinal flora occurs when an animal is subjected to a sterile air, sterile food and water regime, Reyniers (1946). This change from the normal environment has been discussed at length by Bengson and Thomae (1965, Luckey (1966) and Reyniers (1946).

It appears that the extent of simplification and the speed at which it occurs are dependent upon a number of variables. It has been estimated, Gordon (1967), that the number of individuals involved in a group under the sterile conditions would probably have to be less than 12 and perhaps less than 6. With this we concur. The number of individuals in the group may be the prime factor for all practical purposes in a situation that is not drug altered. Previous experiments in our laboratory, using rats, have demonstrated simplification under sterile air, sterile food, and water regimes, with six individuals. The size of the animals, the bacterial load, the health, the variety of species and perhaps very importantly, in light of the experience cited, the compatibility of the individual hosts to the varied burden. In the Lobund experiments, the rats died while the controls, living under normal conditions, survived, Reyniers (1946).

Very little is known about the body and cellular changes that occur when simplification or alteration of flora is evidenced. Microbial shock has been postulated as a consequence of simplification, long term isolation and reintroduction of species, Luckey (1966). New, to the particular host animal, species of microflora may cause infection, Tanami (1966), with severity beyond that to be expected as a result of previous host (species) experience with the microorganism.

Phillips (1966), Seelig (1966), Alterneier (1963), Andriole (1962) and Dubos (1966), have described numerous cases of rampant invasions by normally "harmless" microorganisms following drug therapy. The lethality, of such secondary invasions has been amply demonstrated. In our experiments with the rhesus, we were constantly on the alert for such secondary invasions, in particular those caused by Staphlococci and Candida.

Our choice of primates was dictated by the knowledge accumulated on the rhesus. The compatibility question was side stepped, at least during the early stages of the experiment, by the dose association and pairings. The animals did differ in their indigenous microflora. It is to be doubted if in the normal state, whatever that may be, that any two animals would ever be exactly alike as to microfloral species throughout the entire body and as for numbers, the concept of gnotobiotic exactness is patently ridiculous except in the case of microorganisms equalling zero. The shifting of the populations of the gut, cycling, appears a normal sequence of life. Sufficient identities of species were found among the subject animals to provide what we considered reliable marker guides as to the numerical changes of the gut flora. The isolation of the individual subjects then could reasonably be expected to produce simplification if carried out for a sufficient period of time, Reyniers (1946); Bengson (1965); Luckey (1966); and Morillo (1964). The sterile food diet alone could certainly induce alteration of numbers if not species, Gibbons (1964). For the above reasons, an antibiotic administration program as described previously in the historical section, was begun in order to achieve as common

a microflora as possible in as short a time as possible. While at first though, changing the microflora by removing the same organisms from all the subjects is not the way to a common flora, yet it becomes readily apparent that a series of antibiotics, in this case Cloxocillin, Neomycin and Nystatin not only removes certain of the commonalities but also removes many susceptible microorganisms that are peculiar to individual animals. Reinoculation of desired bacterial species—desired here, and referring to what we wanted, not necessarily what was good for the animal—is one way to a very similar if not an exactly common microflora.

We found that regardless of the antibiotic administered, that a new (resistant) population grew to fill the void. In very short times, the numerical population was close to the original numbers found in the gut. The alteration of the flora, internal or external, is fraught with problems. In addition to the types of secondary invasions we were alerted for, the Pseudomonas spread almost brought the experiments to a premature close. Our ability to decontaminate the animals exceeds that practical for human astronauts. The peracetic acid bath is not liable to be a tolerated feature, even among volunteers. As noted, following peracetic acid bathing, and after a seeming absence of several months, Pseudomonas infection reoccurred. In that the re-infection was not universal, to the experiment group, it must have been harbored within the animal (No. 119) or on his fur or somewhere in or on the isolator.

The isolators were scrubbed and sterilized by peracetic acid daily. No leaks were detected in the isolator before or after infection, and Pseudomonas is not common within the laboratory. The only reasonable conclusion is that the animal was always internally contaminated by Pseudomonas, original source unknown, and that the number of Pseudomonas organisms was very small. Less certain, but at least reasonable, is the assumption that the Pseudomonas was dormant, non-virulent, or held in check by other microorganisms in the population and that the alteration of the population enabled its resurgence.

The validity of comparing infra-human primate data with humans is always a question yet the question must be raised. Can the same thing happen to the astronaut?

It probably is impossible to sterilize an individual human. The work by Uhlrich (1966) describing subcutaneous microflora, the studies of the sterilization groups working out of the NASA Office of Planetary Quarantine and reports of many other bacteriologists, have shown that surface decontamination of humans is possible only for an extremely short time. Studies on burn patients and the infections of the burn sites, even under isolation, indicate the body is a vast reservoir of probably non-reachable bacteria.

With animals, a different story seems possible. Vander Waaij (1967) of Holland has reported obtaining germ-free mice by antibiotic therapy. Mouse skin and human skin are so different that a comparison seems futile. Monkey skin appears like mouse skin to the extent that the peracetic acid baths did permanently, at least while in the isolator, change the flora. The Corynebacteria and the fur and skin population seemed to originate from the feces following the bath. If the bath had merely removed the surface indigenous population and the subsurface sites had renewed the population, the general nature of the species isolated would have been similar to the original findings. As shown by Table VII, such was not the case.

It is doubtful if responsible scientists would, at this stage of knowledge, call for a sterile astronaut, were this possible. The microbic shock Luckey mentioned, alone would deter such a proposal. In the primates studies, we continually found that the supposed static conditions were not static. To achieve a static state, we must go to the zero condition mentioned afore. The diet fed, Appendix III, was adequate as evidenced by the continued good health of the subjects and the controls. Yet the diet must have exerted some effect on the bacterial population and thus affected the fungi and other physiological parameters. The effect of diet, on the "normal" animal and human has had some work performed but certainly only enough to show intriguing possibilities for microbial population control, Gall and Riely (1967); Thomae (1967); Lyght (1966); Gall (1964); Reyniers (1946); Porter (1940); and Winitz (1966).

The survival of human skin populations, following decontamination by washing, has been studied by Uhlrich (1966); Skinefield (1965); Evans (1950); and Updegraff (1964). The general findings of these investigations, that normal levels of bacterial population may be increased temporarily by bathing or showering and decreased by use of germicidal detergents, supports Uhlrich's contention that human skin has a built in control mechanism which maintains levels of population peculiar to each individual. The mechanism of the control is unknown but is effected by residual action of such decontaminants as hexachloraphene when long term use of the chemical has been shown. This has pertinance to the astronaut hygiene problem. Until enough experiments have been done and data correlated between animal skin and human skin, the decontamination of monkey skin in our experiments can only be cited as indicative of what could happen to surface populations. Litsky and Litsky have evaluated single bar soaps, Litsky and Litsky (1967). They have confirmed and extended Uhlrich's work. In addition to the residual action of hexachloraphene type soaps, they have evaluated new products and reported substantial improvement in reducing microbial populations, with greatly extended times for population recovery.

This work has important connotations. The possibility of developing products to further extend the recovery time is encouraging. The repopulation of the monkey skin surfaces, from sources other than skin bacteria, may thus have validity, in the consideration of an astronaut hygienic problem. Yet, if it should be possible to reduce the normal body surface microflora to a very low level by extended use of efficient bacterial soaps, then resistant bacteria and fungi from other sources may develop into the predominant skin microorganisms. Monkey 119 was affected by the rapidly spreading Pseudomonas infection, was washed with a hexachloraphene product. Little if any effect was noted on the Pseudomonas. Tests with other common decontaminating agents were equally ineffective. We resorted to the 1/10% peracetic acid bath to eliminate the infection. Luckey has used 1/10% peracetic acid solution routinely to decontaminate his own hands following laboratory work involving pathogens. He has not reported ill effects from this relatively harsh treatment but it must be carefully considered that this was not a continuous daily or even frequent procedure. Skin sensitivity, like bacterial populations, varies from person to person. As an emergency measure, however, this treatment should be considered. Also to be taken into account is the fact that the very condition, abnormally low population of the normal microflora because of the decontaminant process, may have led to the infection susceptibility originally. This situation will be repeated as long as the atmosphere and cabin contains decontaminant-resistant pathogens. A case for pre-flight cabin sterilization is thus presented. This is an area that must be investigated

before long flights. Gnotobiotic study of the spacecraft defined here as "knowledge of living organisms aboard the spacecraft" then may be required. The term gnotobiotic does not limit the number of species or the numerical value of the count.

SECTION IV

SAMPLING, CODING, RETRIEVAL AND ANALYSIS OF MICROBIOLOGICAL DATA

A. GENERAL

It has become apparent that the ultimate utility of the study results is dependent upon the statistical reliability of the sampling procedures and the ease with which the data can be handled and compared with that obtained from isolation and confinement tests on man and other animals.

The computer facilities of the Missile and Space Division, Valley Forge Space Technology Center, including the General Electric proprietary Desk Side Computer System (DSCS) have been employed in a program to develop accurate and readily usable procedures to handle data generated during the experimentation. The methodology is available for application to past, present, and future experiments dealing with the isolation and confinement aspects of manned space flight.

Historically, the way in which biologists have attempted to develop the theories and practice regarding the maintenance of man in good physiological condition, is to use lower animals as test subjects. As animals higher in the phylogenetic scale are used, the opportunity increases to extrapolate experimental results and apply them to man.

The contract, "Research on the Effects of Alteration of the Indigenous Microflora of the Monkey" will, it is hoped, furnish guidelines for the control and management of the indigenous microflora of space vehicle crews. By using monkeys, greater risks can be taken; in this instance, confinement for several months and then exposure to a normal "classic" animal. The simplest possible experimental design which met the contractual requirements resulted in large amounts of raw data, thus celerity in data reduction is necessary. The data obtained during the course of experimental work was suitably coded for retrieval and analysis.

B. REQUIREMENTS

In order for the data to be accurate and precise, they must be obtained by the use of carefully controlled standardized procedures; in order to be useful, they must be subjected to rigorous statistical procedures, such as T-testing, analyses of variance, regression analyses, etc. Before large volumes of data can be handled efficiently, however, it is necessary to translate the experimental results into computer language. Then as experimental work progresses, data can be stored and periodically analyzed.

Unfortunately, much biological data does not lend itself to precise quantitation. Because of the judgment factor, each type of data has to be considered separately, on the basis of its susceptibility to expression in precise terms. For example, motility is an attribute present in some microorganisms and absent in others. The presence or absence of this characteristic can be expressed easily. However, the morphology of a microorganism is not simply

rod, sphere or spiral. If morphological information were important, it would be necessary to actually measure a sample of each organism isolated and establish size limits.

After a codification procedure was established, the data was stored so that retrieval of the information could be made in a manner which answers the specific questions of an investigator. Such a data retrieval system is now working at the Valley Forge Space Technology Center, for use with the General Electric proprietary remote time-sharing computer system to answer inquiries from anywhere in the United States about documents, piece parts and program items. The real problem in utilization of such retrieval systems for the monkey flora data handling is in the proper and complete indexing of the test results.

Available programming techniques and data storage capacity resulting from the DSCS have been used in this study to evaluate the microbial data that is being collected in the model (monkey) manned space flight experiments. The basis of this computerized system is a microbial data file which contains a series of indexed, coded, data records. Each record contains all the essential information that is generated from the samples that are taken from a particular animal at one time. The data file resides in an auxiliary memory area (magnetic disc) that can be randomly accessed by a computer.

The data are arranged in such a manner that analyses can be performed from virtually any standpoint that relates to the data. Furthermore, the capability exists to perform these analyses from a remote location. Therefore, it is possible for someone in a remote location using a teletype terminal to access the computer system (facility) which contains the data file, and request that a particular analysis be performed. The computer system then performs the analysis and communicates the results back to the remotely located terminal.

In general, to establish an information system of this type, four phases of activity must be considered:

- Data Gathering The collecting of data by mechanical, electrical or human means.
- Data Organization The arrangement of data into a workable form and storage of the data in a computer system in a compact, readily accessible form.
- Data Processing Electronic manipulation of the data in order to provide the required information.
- <u>Data Communication</u> The transmission of the data from the source to the computer and the transmission of the ordered data or analytical results from the computer to the user.

Each of these four steps, as they relate to this particular task, is briefly explained in the following paragraphs.

1. DATA GATHERING

Data Gathering, or data collection, involving the microbial populations of six male, rhesus monkeys, has been in process for approximately nine months.

The following information was collected each time samples were made:

- a. The animal that was sampled
- b. The date and time when the sample was made
- c. Temperature, pressure and humidity at the time of the sample, if different than normal, ambient environment
- d. Antibiotics, if any, that were used since the last sample
- e. Antiseptic washes, if any, that were used since the last sample
- f. Type diet (name) and whether sterile or non-sterile
- g. Whether or not the animal was in isolation
- h. Length of time in isolation
- i. Whether or not other animals were present (which ones, how long)
- j. The classes of organisms and genera that were found at each body site that was sampled

2. DATA ORGANIZATION

Data Organization was done in the following manner. Each time an animal was sampled, a physical record was generated on a source document similar in form to the one shown in Figure 4. (Actual examples of forms used are shown in Appendix V, Figures 22 and 23.) From the source document (physical record) computer records of coded information were generated. This task involved developing a computer program which accepts as input the coded and empirical information from the source document, and "loads" this information into an auxiliary computer memory area for permanent storage. As a result of this process, a computerized microbial data file which contains a series of indexed, coded, data records was created.

Figure 4, the coding format, was derived from the following questions and answers:

- 1. Q. What is the maximum possible number of body sites?
 - A. 15
 - Q. What number of body sites is presently used?
 - A. 7

١

Measurement Number *****

Animal Sampled **

Date **/**/**

Time ****

CONDITIONS

Temp **OC

Hum **%

Pres *** mm of Hg

Isolation * (yes/no)

Time in Isolation *** days

Diet * (Sterile or Non-sterile)

Diet Name *

Organisms Ingested *****

Other Animals Present * (Number)

Which One * How Long *** (Days)
Which One * How Long ***
Which One * How Long ***
Which One * How Long ***

ORGANISMS

*= 1 Character of Code

Figure 4. Record Identification Information

	Q.	What is the location of these seven sites?
	A.	Feces (considered a body site for coding purposes)
		Conjunctiva
		Throat
		Gingiva
		Axilla
		Groin
		Glans Penis
2.	Q.	How many different kinds (kind was defined as taxonomic class) of organisms have been found?
	A.	3
	Q.	What is the maximum number considered possible?
	A.	15
	Q.	How many different genera have been found?
	A.	19
	Q.	What is the maximum possible number of genera?
	A.	100
3.	Q.	How many antibiotics and combinations thereof have been used?
	A.	(1) Tegopen (Sodium Cloxacillin)
		(2) Mycifradin Sulfate (Neomycin Sulfate)
		(3) Nystatin
		(4) Tetrex-F (Tetracycline and Nystatin)
		(5) Chloramphenicol and Furoxone

Q.	What is the maximum	number of antibiotics	and combinations	thereof anticipated?
----	---------------------	-----------------------	------------------	----------------------

A. 15

Q. How many different antiseptic washes have been used?

A. (1) Peracetic acid (0.1%)

Q. What is the maximum number of different antiseptic washes that could be used?

A. 5

4. Q. What is the number of days since the start of the experiment and how long have the animals been in isolation?

A.	Animal No.	115	116	118	119	120	121
	Arrival at GE	303	303	303	303	303	303
	Sampling Begun	151	17 6	135	214	190	214
	Placing in Isolation	None	188	127	197	188	None

Q. What was the sampling rate?

A. Nominal 2/week

Range 0-5 times/week

Q. What is the number of animals in the experiment?

5. Q. What are the environmental conditions?

A. The assumption is made that temperature, relative humidity and barometric pressure is constant

Temperature: $70^{\circ}F + 5^{\circ}F$

R. H.: 50% ± 5%

(Note: Pressure is higher in isolators than in lab colony at constant ΔP)

6. Q. What number of measurements has been made to date?

(One measurement defined as all sampling made on one animal in a single day)

- A. Total number to date: 79
- 7. Q. What number of changes has been made in the diet?
 - A. One control and one animal in isolation had their diets changed for a single period (one month) during the course of experiment. They were then placed back on the regular diet.

3. DATA PROCESSING

Data Processing required that computer programs be developed which could interact with the microbial data file and perform the following analyses:

- a. The variation in numbers of organisms of various types on a given body site sampled at different times and between different body sites sampled at the same time.
- b. The degree of transfer of organisms between subjects.
- c. The bionomic interrelationships among organisms.
- d. The effect of the presence or lack of biological isolation, antiseptic washes, antibiotics and other environmental factors on organisms.
- e. Indigenous controlling or stabilizing effect that certain organisms have on the microbial population.
- f. Exogenous stabilizing and controlling effects that certain organisms have on the microbial populations.
- g. Extent of microbiological compatibility required for group confinement.

Programs were developed to perform analyses a. and d. above. They are also stored in auxiliary computer memory area (magnetic disc). Programs to perform the other analyses can be written when data is available, and similarly stored. As a result, when an analysis is required, an individual informs the computer system by code of the analyses he requires. See Appendix V for the sequence of events occurring when the real time computer system is contacted by teletype and a program is requested. The proper program is then located in the auxiliary memory, translated from source language (GE modified Fortran II) by a compiler into machine-object language, and stored ready for use in the computer's core memory. The computer then executes the program on command from the requestor. During the execution of the program, the computer's core memory interacts with the records in the Microbial Data File or Animal Log File specified by the Program. For other programs, data can be entered by hand on the remote teletype or by punched paper tape. A fourth alternate is the use of

magnetic tape physically stored and accessible in the central computer, which has been previously written via the teletype or a punched card-to-tape reader. This interaction continued until all the instructions that make up the program had been executed to completion and the desired results obtained. These results were then available for transmission to the requestor.

Flexibility exists to modify the programs that are presently stored and to add entirely new programs if they are required. As a result, as the requirements and priorities for analysis change, the overall computerized system will have the capability to conform to these changes.

4. DATA COMMUNICATION

Data Communication has two channels.

From source to computer, is the channel through which information on the source documents (physical records) that has been collected has been converted to punched cards or punched tape. The card or tape information was then converted to magnetic tape and the tape information loaded into the auxiliary memory area, using standard batch processing techniques. As a result, the Microbial Data File and Animal Log File were created. From this point on, the capability exists to transmit file-update information to these files from a teletype terminal or from punch cards.

From computer to user is the channel through which, upon a user's request, printouts and analyses of these files are performed, and the resultant information is transmitted to the user, via a telephone line to a teletype terminal or by standard batch reports.

Having delineated the steps necessary to apply information retrieval techniques to microbiological data, a detailed examination of how the information was coded follows. Normally, in the conduct of any laboratory work, a laboratory notebook is used to record an experimental design, results, and other observations. If the experiment, such as this one on monkey flora, runs for any length of time, the amount of recorded data increases and laboratory notebooks for the one experiment begin to fill up shelves. When comparisons are made between the results obtained on two days (widely separated in time), an appreciable amount of time is spent fumbling through pages, looking for the data specifically needed. Furthermore, should a number of pieces of information be required, such as the numbers and kinds of organisms found at four body sites on two monkeys for twelve weeks, an inordinate amount of time is spent finding the data in notebooks, re-recording the data and then manually sorting and comparing some 200,000 pieces of information (2 monkeys x 2 samplings/week x 12 weeks x 4 body sites x total population at each site, e.g., 192 populations x 5 genera found at each site).

The structuring and coding of the data blank enables one to develop an insight into the experimental frame and the voids that exist in the data banks. These voids may then be filled by further experimentation and/or literature searches.

Much of the data collected in biological experiments is subjective and qualitative in nature. The field has not yet been developed to the point where all of the parameters of a biological system can be expressed in objective, precise, quantitative terms (i.e., numeric). Statistical

analyses in depth are therefore difficult to make, inasmuch as certain of the inputs to a data bank are subjective and based on judgment.

The incidence or absence of species migration from one individual to another can be demonstrated through time-distribution plots for individuals, and possibly within groups. Additional information may be forthcoming from a specific treatment of the data, but cannot be predicted easily until the data are suitably coded and available for retrieval procedures.

Remaining variables, both qualitative and quantitative must be collected, sorted, grouped and compared in an effort to discover significant changes, effects and correlations. The most efficient methodology available, which can be used to accomplish these tasks, was that encompassed by information retrieval techniques.

5. EQUIPMENT USED

The General Electric Desk-Side Computer System (DSCS) is a remotely controlled, business and scientific data processing system. It comprises a standard tele-typewriter for communication via telephone lines to a General Electric DATANET-30 and a GE-235 computer at Valley Forge Space Technology Center (VFSTC), Pennsylvania. The programming technique used was a version of Fortran II - GE Card Fortran. Additional programming techniques are continually being developed for the system. Special programs may be stored on the random access disc at VFSTC.

The GE-DSCS is an ever-evolving system. Uses to date have included solution of engineering design problems, statistical analyses, library searches and a number of research applications.

C. HANDLING THE DATA

A format was determined which would arrange raw data from laboratory notebooks in a manner permitting the data to be readily placed in the computer. This involved the choice of a data cataloging method which would systematize the actual transfer of information from the laboratory notebook to a computer disc within a framework, flexible enough to accommodate changes in experimental design, yet distinctive enough to furnish a key to the stored data. This key is comprised of the following Record Identification Information:

- a. Record Number
- b. Animal Sampled
- c. Date
- d. Time

Record Number encompasses all data obtained from any one site on an animal on one day. Thus, if on one day one site on six animals or six sites on one animal are sampled, six measurements will have been made. With the Measurement Number as a key, all other

Contrails

pertinent information on one animal can be included in the record, both on the day the sampling was done and several days or weeks later as subcultures, counts and identifications of organisms are made.

The next heading on the record "Conditions" includes:

- a. Temperature (°C)
- b. Relative humidity (percent RH)
- c. Atmospheric pressure (mm Hg)
- d. Isolation (Yes/No)
- e. Time in isolation (days)
- f. Other animals present (number) which one (animal number how long (days) (Repeated for Number of Animals Present)
- g. Diet (name) (sterile or non-sterile)
- h. Water (sterile or non-sterile)
- i. Antiseptic Wash (name/no.)
- j. Antibiotics (Name(s))
- k. Organisms ingested

During this experiment, atmospheric conditions of temperature, pressure and humidity are essentially constant but should data on human chamber subjects at altitude be analyzed, this data would be of importance. The next items of interest concern the isolation (within a biological barrier) of the animals. Water and food sterility and type of food are also recorded.

Antiseptic washes used must be noted because of their effects on the skin flora. Antibiotics have been administered singly and in pairs. At this point, it did not seem necessary to include the time elapsed since the last administration of an antibiotic, but this could be calculated by the computer at a later time if subsequent iterations of one or more analyses showed that the information was significant. Affecting the floral population is the oral administration of organisms and this, too, can be noted.

Finally, the microorganisms themselves are listed by:

- a. Body Site
- b. Type (Class to which Genus belongs and Genus)
- c. Number

Two problems arose: (1) How to classify the organisms of interest and (2) How inclusive the classification should be? The latter question arose because monkeys do have intestinal parasites such as worms and protozoa. By specifying on our purchase order that our monkeys would be free of worms and protozoa as well as TB and S&S, the animals received in our laboratories had no discernible signs of worms and protozoa. However, these fauna may have had an effect on the flora and possibly would be included in future data analyses.

The former problem is one of taxonomy. In the Plant Kingdom, the Class Bacteria and the Subphylum Fungi (or Division Mycota, depending on which authority is quoted) contain organisms of pertinence to this study. The Phylum Protozoa and possibly Phylum Nematoda in the Animal Kingdom also contain organisms of interest and, had they been found during the course of this experiment, would be included in data analyses even though they cannot be considered flora, but indeed, are fauna.

Because taxonomists do not seem to be able to agree on how to classify the Fungi, and certain of the Protozoa and Bacteria, a decision was made to categorize the organisms found in this study by Class and Genus. Regardless of whether there are four or nine classes of fungi, the coding system can be adapted to accept either. For the time being, we are assuming that Genera belonging to four Classes of Fungi and four Classes of Protozoa in addition to the Class Bacteria, may be found.

In order to size the disc storage capacity required, the number of characters utilized in the coding of the raw data had to be calculated. We were not dealing here with bits or "words" but with characters. In Figure 4, the number of characters required to code each item of information is shown by the number of asterisks. For example, time requires four characters. The number of characters needed for both Record Identification Information and Conditions can be determined with relative ease. The only place where the number of characters could increase significantly, is for Organisms Ingested since, if thirty different organisms were to be used, the number of characters required would be 120. Under "Organisms", sufficient storage capacity had to be allotted for the worst possible case, namely that at each body site every possible genus would be found. We have assumed, based on our own experience plus a literature search, that a maximum of 100 genera belonging to a maximum of 15 taxonomic classes could be found. Thus far, we have sampled at seven body sites (for coding purposes, a feces sample is considered to be a body site sample), and are assuming that not more than 15 different sites will be utilized.

Thus, for each body site, 1500 (15 Classes x 100 genera) entries are possible. To denote the 100 genera, space for three hundred characters must be allotted. (In the simplest form, if we wish to code 100 of the same kind of thing, the total number, 100, which has three digits, establishes the number of digits or characters required to denote each of the total 100. Number 1 would be 001, 52 would be 052, etc.) The 1500 possible entries for each site, then, would require 300 x 30 or 9000 characters. For all body sites, assuming a maximum of 15, 9000 x 30 or 270,000 would be required for microbial data alone. Since this capacity would be required only is 100 genera belonging to 15 Classes were found at 15 body sites, considerably less capacity is actually required. Based on examinations of the data, we are presently using 500,000 character capacity to store, retreive

and analyze the data. As more experience is gained this capacity can be increased or decreased as needed.

Another advantage of the present system is that once current data has been analyzed, it does not have to be left in the computer, but can be transferred to magnetic or punched tape for permanent storage. At some later time, if new analyses are desired or if the current data are to be compared with data obtained a year or two hence, the data on the tape can be fed back into the computer at that time. Our present estimate of computer storage time with a 500,000 character capacity limit is about six months.

In drawing together and coding data which have been gathered to date, it became obvious that the format which has been described would not be sufficiently flexible to store this, plus ancillary, information for retrieval and analysis. The problem which was encountered can be stated: some of the data referred to things that were done to the animal or which described the animal's condition while other data was purely microbial and described the population of microorganisms at a given site on a given date. The former data could be called "Animal Log Information" while the latter is "Microbial Data". For example, on a given date, X milligrams of antibiotic C were given to monkey Y. But no microbial sampling was done till three days later. This information could not be entered on the format shown in Figure 5 because the two events occurred at different times.

Two files, therefore, were used. One was a log of significant events which might have an effect on the microorganisms of an animal (Animal Log Information) while the other dealt with the results of microbial sampling exclusively (Microbial Data). Thus two files could be stored separately in the computer auxiliary memory (later to be transferred to magnetic tape for permanent storage or to core memory for computation). The significance of any event or series of events in the animal's life could then be determined by comparing the two files and looking for correlations between events and trends in microbial data. All of the analyses which were discussed before can be done using the revised format. Intervals between events can be determined automatically (i.e., "how long" in days). In addition, flexibility is gained by use of this double format so that the effect of significant events, such as administration of antibiotics or antiseptic wash, upon the microorganism population of an animal can be determined.

The format currently being used and the number of characters involved are represented in Figures 5 and 6. A new category has been added called "Observations" on the Animal Log (Figure 5). This represents events which may affect microbial data or the way the animal is treated but which are not listed as a separate category. An example is diarrhea. If an animal develops diarrhea, he may be treated with antibiotics and/or ingestion of microorganisms in the form of Lactinex. The other categories of the Animal Log have been broken away from the original format. Whether or not the animal is "in isolation" is answered by a "yes" or "no" in the Name or Presence Column. Then the category stays in the same isolated or non-isolated position until the record is updated by a change to the opposite condition. The same is true of the category "Diet (Sterile or Non-Sterile)". "Diet Name" is another category which stays the same in the computer record until a change is effected.

Record No. ****

Animal	***
Date	**/**/**

Categories	Name or Presence	Amount
Isolation (Yes/No)	*	
Diet (Sterile or Non-Sterile)	*	
Diet Name	*	***
Organisms Ingested	*	***
Antiseptic Wash	*	
Antibiotic	*	***
Observation	*	***

Other Animal Information

Animal

Added or Removed *

* = 1 Character of Code

Figure 5. Animal Log Information

Record No. ***

Animal Sampled ** Date

Humidity ** Pressure ** Temperature **

Organisms Exponent of Site Anaerobes Coefficient Aerobes Base Ten Number Site Class Genus

* = 1 Character of Code

Figure 6. Microbial Data

On the other hand, "Organisms Ingested", "Antiseptic Wash", "Antibiotics" and "Observations" are unique events which must be coded into the computer record every time an animal is fed microorganisms, is bathed in antiseptic solution, is given antibiotics or is observed to behave in a way or be in a condition which may alter his indigenous microorganisms. "Other Animal Information" pertains to the presence of other animals with the animal coded and being described. Entries in this category also stay the same in the computer record until some change takes place with the addition or removal of an animal from the same isolator or lab colony as the animal under consideration.

The second part of the revised format is the Microbial Data itself (Figure 6). This is similar to the original format (Figure 5) except that the total number of aerobes and anaerobes present at a given site on a given date has been added as a category and the time of day the sample is taken has been deleted because it was felt that it played no important role in the data obtained during this program. If it should become important later, in this program or in another program, it can be added.

By changing the format in which the microbial and animal data are kept in the computer, two separate records are thus generated. Information can now be entered into either record separately as data is gathered, and correlations between the two records can be made as desired. Such correlations may well illuminate the significant variables which affect the microbial flora of primates and man.

D. RESULTS

CODING AND RETRIEVAL

A major part of the effort was spent in coding the Microbial Data and Animal Log Information, writing programs to "place" this data in the computer auxiliary memory and writing programs to retrieve the data for subsequent examination and analysis. The data itself, both log and microbial, was stored in two secondary files on the magnetic disc which could be accessed by their record addresses. A primary file of record addresses was then created which was indexed by key-word descriptors refering to the content of the records. (A listing of these descriptors is shown in Appendix V, Figure 24.) For example, a typical Animal Log Record might have reference to diet name - Rockland Primate Diet, diet-sterile, animals added, animals removed, isolation - yes, diarrhea, antibiotics-Tegopen. The primary file stored this record address under all these descriptors. A second program could examine the primary file by any one or combination of descriptors (see Appendix V).

The record address is found as a "hit" and printed out if called for with other record addresses containing information to which these descriptors applied. These addresses may be sent to a "scratch" area where other programs can examine them, retrieve the records themselves and print out their contents in a variety of ways. A detailed discussion of this search facility and examples of its operation are given in Appendix V.

The key programs were written to display the data in the secondary files. For animal log information, the Log Report Generator Program can retrieve and display log information for any animal in its entirety or between any two dates. Further modifications of this

program made it even more flexible, permitting summaries by activities (e.g., diet or antibiotics used) and by elements within activities (e.g., Purina Monkey Chow or Tetrex-F) and permitting display of the data by activity, by date or by date and activity. A report of any one activity is also possible and the period for which a report is generated can be changed. (Examples of the operation of these programs and the programs themselves are shown in Appendix V, Figures 21 and 27). This program thus allowed an investigator to examine the log data for any animal or group of animals in a variety of ways, in part or in toto, depending on the kinds of questions to be answered. The ease and flexibility of this computerized approach as opposed to manually shuffling through stacks of laboratory notebooks cannot be over-emphasized. Even more important, pieces of significant information that might be overlooked using a manual approach because of the sheer mass and disorganization of the raw lab notebooks data, cannot escape notice when the computer is used.

A second key program was created to display the contents of microbial data records in the secondary file. This is called the Report Generator Program. It permits the display of the quantitative results of microbial sampling in 24 possible matrix arrays determined by animal, date of sampling, sites sampled, and class-genus found. A detailed exploration of the operation of this program plus examples are found in Appendix V.

The Report Generator Program, as on the Log Report Generator Program, gives an investigator a great deal of flexibility in displaying the sampling data. Depending on the kind of question he wishes to ask, one of the 24 types of displays will permit him to answer it easily. He first searches the primary file for the type of data which interests him and then automatically sends the record addresses found to a scratch area of the auxiliary magnetic disc memory. He next calls for the Report Generator Program by means of the appropriate code. This then retrieves the records themselves in the actual secondary file by looking up the addresses stored in the scratch area, and prints the stored data out in the matrix called for by the investigator.

These two major programs thus permit retrieval of all data in both the animal log file and the microbial data file, in part or in toto. In addition, they allow an investigator at the teletype, remote to the central computer where both programs and data are stored, to display the data in a variety of ways which are useful to him in answering questions about what has been done to the animals, what the results of sampling have been, how the manipulations of the animals have affected the sampling results, and how the microbial data varies with time, site, animal and class-genus. The versatility which this gives an investigator in manipulating data and animals and in learning how to modify his experimental protocol is unexcelled by any manual non-computer technique available.

2. STATISTICAL ANALYSIS

Certain of the statistical analyses outlined in the previous section could not be performed due to a lack of pertinent data. With the microbial data on hand the following statistical evaluations were possible:

- a. Limits of variation could be established:
 - 1. On a given body site sampled at different times.
 - 2. Between different body sites averaged over the period of the period of the experiment.
- b. An attempt could be made to identify environmental factors affecting microorganisms studied, e.g., isolation, antibiotics, antiseptic washes, diet, etc.

Comparisons between animals along these lines could also be made.

A number of statistical analyses which were projected initially could not be performed due to the lack of data in certain areas. Additional sampling, microbial counts, identification of microorganisms, and manipulation of the animals would be required as outlined below to complete the analyses orginally desired:

- a. Limits of variation
 - 1. Identification of all genera present in every sample
 - 2. Numerical counts of number of organisms of each genus present in every sample
- b. Degree of transfer of microorganisms between subjects
 - 1. Exposure of isolated animals to each other and to control animal(s)
 - 2. Exhaustive sampling of animals involved for several months following exposure on a regular basis.
 - 3. Identification of all genera present in every sample
 - 4. Numerical counts of number of organisms of each genus present in every sample
- c. Bionomic interrelationships among organisms
 - 1. Regular sampling from each site over an extended period of time
 - 2. Identification of all genera present in every sample
 - 3. Numerical counts of number of organisms of each genus present in every sample

- d. Environmental factors affecting microorganisms studied
 - 1. Identification of all genera present in every sample
 - 2. Numerical counts of number of organisms of each genus present in every sample
 - 3. Further manipulation of environmental factors as dictated by the analyses of changes in microflora of animals.
- e. Indigenous controlling or stabilizing microorganisms
 - 1. Identification of all genera present in every sample
 - 2. Numerical counts of number of organisms of each genus present in every sample
 - 3. Analysis of 1 and 2 to determine which organisms are exerting a controlling or stabilizing influence.
- f. Exogenous organisms enhancing stabilization and control
 - Introduction of potentially controlling organisms into or onto experimental animals.
 - 2. Long term analyses of microflora as in a1 and a2 and e3.
 - 3. Repeated introduction of potentially controlling organisms into or onto experimental animals.
 - Repeat of f2.
 - 5. Introduction of other potentially controlling organisms.
 - 6. Repeat of f2.
- g. Extent of microbiological compatibility required for group confinement.
 - 1. Completion of experimental protocol calling for contact between animals already in isolation and exposure to control animal(s).
 - 2. Observation to determine development of pathological conditions in experimental animals.
 - 3. Extensive microbial sampling on a regular basis over the period of several months.
 - 4. Identification of all genera present in every sample.

- 5. Numerical counts of number of organisms of each genus present in every sample
- Addition or removal of still more animals of similar or different microfloral populations until the size of the confined group and the individual microfloral populations is optimized.
- 7. Extensive sampling al and a2.

The above outline presents the ideal experimental procedures for permitting valid statistical treatment of microbial sampling data. The minimum experimental requirements for effective minimum statistical treatment of data are outlined below:

- a. Regular sampling of all sites on all animals including controls. This can be once a day, once every three days, once a week or once every two weeks, depending on facilities and personnel available, for a period of one year.
- b. Identification of all genera present from all samples taken in the first month.
- c. Numerical counts for at least five marker genera plus total aerobes and anaerobes throughout the sampling period. (Each dilution plated in triplicate.)
- d. Manipulation of environmental factors: e.g. isolation, antibiotics, antiseptic w ses, organisms ingested as dictated by the results of sampling data. Controls should include:
 - 1. One animal in isolation which receives a sterile diet by no treatment of any kind.
 - 2. One animal in the lab colony which receives sterile diet, antibiotics, antiseptic washes, organisms ingested, etc. on the same schedule as the experimental animals in isolation.
 - 3. One animal in the lab colony which receives no treatment of any kind, however, it should receive a non-sterile diet.
- e. Identification of all genera present from all samples taken during the sixth month.
- f. Re-exposure of isolated animals to each other during the seventh month. This should include rotating pairs of animals in the same cage so that all are exposed to each other.
- g. Identification of all genera present during the ninth month.

- h. Exposure of all isolated animals to a control animal. This should consist of sharing of air supply for the tenth month and intimate contact as above between all experimental animals and control animal for the eleventh month.
- i. Identification of all genera present during the tenth, eleventh and twelfth months and numerical counts of potentially pathogenic organisms as well as marker organisms.

The statistical analyses which were possible were performed using the GE Time-Sharing Computer. The programs required were written and edited using the computer, and finally stored in auxiliary memory for later use when necessary. Organisms identified during the course of the experiment for each animal and site are presented in Table XIV.

Limits of variation were attacked from a number of directions. Maximum and minimum counts for aerobes and anaerobes and for genera for which numerical data was available were extracted from the data and are presented in Table XV.

Another approach to the determination of limits of variation which also gave information bearing on the effect of environmental conditions on microbial populations was to employ linear regression analysis on microbial counts (dependent variable) for a given organism at a given site with time in days as the independent variable. This allowed us to ascertain whether there was a measurable change with a tendency to increase or decrease over the period of sampling. The program employed also permitted transformation of the dependent variable in a variety of ways including logarthmic transformation. This type of transformation allowed us to test for the presence of an expotential change in microbial numbers. Analysis of residuals, however, (difference between actual value of dependent variable and computed value by the best fitted linear regression line) showed that the data followed a sinusoidal pattern about an untransformed regression line with a general tendency to increase or decrease. The results of linear regression using untransformed data are presented in Table XVI. Comparison between animals yields interesting results. Animal no. 115, a laboratory colony control, shows no significant change in its number of fecal aerobes or anaerobes over the period of sampling. The fecal aerobes in animal nos. 116, 118 and 119 are decreasing. These animals were all receiving antibiotics over an extended period of time. Animal no. 120's fecal aerobes increased with time. This animal had been in isolation but had not been receiving antibiotics. Although no. 116's fecal anaerobes do not show a significant change, animal nos. 118 and 119's fecal anaerobes also decreased. Animal no. 120's fecal anaerobes increased at the same rate as his aerobes. Analyses of fecal Corvnebacteria present an incomplete picture due to the sparcity of data. Animal no. 116 shows no significant change while animal no. 119 shows a decreasing curve. Axilla and groin aerobic and anaerobic counts shows no clearly defined pattern. Animal no. 119 had received more antiseptic washes than no. 116, but only axilla anaerobes were decreasing significantly for no. 119. It is interesting to note, however, that the rate of increase for animal no. 119's groin-anaerobes is less than that for no. 116's by two orders of magnitude.

To determine site-to-site differences within animals and between animals exhaustive T-testing was performed using the computer. Examples of the extensive results of these analyses are given in Tables XVII A and XVII B. The results are summarized in two ways in Table XVII C and XVII D. In Table XVII C, significant differences between mean counts at the 90 percent

confidence level are noted. In Table XVII D, mean counts whose probability of being different is less than 50 percent are listed. In other words, the means in this latter case probably arise from count distributions which are the same.

Despite the sparcity of data, certain similarities and differences are evident. Within one animal, for example, fecal counts are frequently different from other body sites. When they are similar, it is usually to throat, gingiva and glans penis. This is not surpirsing since these animals are known to be coprophagous. Throat and gingiva are also frequently similar. But they can be either different or the same as conjunctiva, axilla, groin, and glans penis. This is also true of conjunctival counts when compared to other body sites.

As for similarities and differences between animals, control animals (nos. 115 and 121) are frequently different than some experimental animals for all types of organisms at all sites. But an anomalous result is that sometimes the control animal counts are significantly different from each other. Between experimental animals themselves, animal no. 116 shows up most frequently as differing from one or the other of the remaining experimental animals. Similarities between experimental animals are very frequent, animal nos. 118 and 119 being most often similar at all sites and for all organisms. Another anomalous result is that sometimes the experimental animals are found to have counts similar to the controls. In all cases, however, more frequent sampling would help to make these distinctions or similarities clearer.

3. SUMMARY

The power and flexibility of using a digital computer for storing and retrieving microbial data and animal log information and displaying it in a variety of useful ways, has been amply demonstrated. The use of statistical routines on the computer has also resulted in enormous time saving and ease of operation as compared with the effort which would have been required to perform these analyses manually. One of the main accomplishments of this approach has been to show what kind of experimental protocol would be necessary to accomplish all the aims of this area of experimentation. The combination of man and high-speed computer is a tool of unexcelled merit for studying the effects of isolation on the microbial ecology of groups of animals and for collating the results of such experiments for application to the problem of confinement of man during space flight.

TABLE XIV. ORGANISMS IDENTIFIED DURING THE COURSE OF THE EXPERIMENT

Animal No. 115

Animai Ao, 115						
Sites	Throat	Claster	Azilla	Grein	Glans Penis	Peces
Conjunctive	Inrost	Gingiva	АМПЕ	Groin	Glans Penis	reces
Streptocoecus			Streptococcus			Streptococcus
Coryne-	Coryne-	Coryne-	Coryne-	Coryne-	Coryne-	Coryne-
hacterium	baoterium	basterium	bacterium	bacterium	bacte rium	bacterium
						Proteus
						Escherichia
Staphylococous	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus
Į.	1					Aerobacter
Animal No. 116						
					Streptococcus	
Coryne-	Co ryne	Coryne-	Coryne-	Coryne-	Coryne-	Coryne-
bacterium	bacte rium	bacte rium.	bacterium	bacterium	baste rium	bacterium
			Proteus	Proteus		Proteus
						Escherichia
Staphylococcus	Staphylonocous	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococous	Staphylococcus
						Shigella
Eecherichia-	Escherichia-	Escherichia-		Escherichia-	Eacherichia-	
Aerobacter Group	Aerobacter Group	Aerobacter Group		Aerobacter Group	Aerobacter Group	
Стоф	Отоф	Group		37040	210mb	
Animal No. 118						
						Streptococcus
Coryne-	Coryne-	Corvae-	Согуве-	Coryne-	Согуме-	Coryne-
bacterium	bacterium	bacterium	baoterium	bacterium	bacterium	bacterium
Staphylococcus	Staphylococous	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	
						Aerobacter
						Shigella
	Escherichia-				Escherichia-	Eacherichia-
	Aerobacter				Aerobacter	Aerobacter
	Group				Group	Group
Animal No. 119						
[·	I	St				
	Streptococcus	Streptococcus	C	Commo	Comme	Comme
Coryne- bacterium	Coryne- bacterium	Coryne- bacterium	Coryne- bacterium	Coryne- bacterium	Coryne- bacterium	Coryne- bacterium
1				Proteus	Proteus	Proteus
Staphylococous	Staphylococcus	Staphylococcus	Staphylococous	Staphylococcus	Staphylococcus	Staphylococcus
Language Control	Same Associated	Eacherichia-		Escheriohia-	Escherichia-	
		Aerobacter		Aerobacter	Ae robacte r	
		Group		Group	Group	
	Paeudomonas	Pseudomonas		Pseudomonas		Pseudomonas
						Salmonella
	Alcaligenes	Alcaligenes				
Animal No. 120						
Streptococcus		Streptococcus	Streptococcus	Bt reptococcus		Streptococcus
Coryne-	Coryne-	Coryne-	Coryne-	Coryne-	Coryne-	Сотуве-
banterium	bacterium	bacterium	bacterium	bacte rium	bacterium	bacte rium
				Proteus	Proteus	
Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus
1				Escherichia- Aerobacter	Escherichia- Aerobacter	
				Group	Group	
	Pseudomonas					
					Salmonelia	
				Lactobacillus		
			Bacteroides	Bacteroides		
			Clostridium	Clostridium		
				Aspergillus		
	1			AMDITUUM		
			Aspergillus		L	
Animal No. 121			Asperguius		L	
Animal No. 121			Asperguius			Streptococcus
	Correc	Correc			Coryna	Streptococcus
Animal No. 12i Coryne- bacterium	Coryne-	Coryne- bacterium	Coryne- bacterium	Coryne- bacterium	Coryne- bacterium	Streptococcus
Coryne- bacterium			Coryne-	Coryne-		Streptococcus
Coryne- bacterium Staphylococcus	bacterium	bacterium	Coryne- bacterium	Coryne- bacterium	bacterium	Streptococcus
Coryne- bacterium	bacterium Staphylococcus	bacterium Staphylococcus	Coryne- bacterium	Coryne- bacterium	bacterium	Streptococcus

Contrails

TABLE XV. LIMITS OF VARIATION

	Animal	Per Gram of Sample		
	No.	Maximum Count	Minimum Count	
Conjunctiva				
Aerobes	115	1.3 x 10 ⁷	1.8 x 10 ⁶	
	116	1.2 x 10 ⁷	1.2 x 10 ⁶	
	118	4.9×10^{6}	1.0 x 10 ⁴	
	119	1.3 x 10 ⁶	$< 1 \times 10^{3}$	
	120	2.6 x 10 ⁷	2.7 x 10 ⁴	
	121	5.2 x 10 ⁵	1.3 x 10 ⁴	
Anaerobes	115	1.5 x 10 ⁶	7.9 x 10 ⁶	
	116	2.3 x 10 ⁷	1.7 x 10 ⁶	
	118	4.9 x 10 ⁷	4.0 x 10 ³	
	119	2.5 x 10 ⁶	3.0 x 10 ³	
	120	2.6 x 10 ⁷	1.4 x 10 ⁵	
	121	1.9 x 10 ⁴	4.3 x 10 ⁵	
Corynebacterium	115	1.5 x 10 ⁶		
	116	6.4 x 10 ⁶	5.5 x 10 ⁵	
	118	2.1 x 10 ⁶	$< 1 \times 10^{3}$	
	119	1.4 x 10 ⁶	$< 1 \times 10^{3}$	
	120	4.1 x 10 ⁶	1.4 x 10 ⁵	
	121	4.0 x 10 ³	3.7×10^5	
Staphylococcus	115	1.1 x 10 ⁶		
	116	8.9 x 10 ⁶	1.7×10^6	
	118	7.3×10^6	< 1 x 10 ³	
	119	2.0×10^{6}	$< 1 \times 10^{3}$	
	120	1.4 x 10 ⁷	1.1×10^{5}	
	121	1.9 x 10 ⁵	3.0×10^3	

TABLE XV. LIMITS OF VARIATION (Cont)

	Animal	Per Gram	
	No.	Maximum Count	Minimum Count
Conjunctiva (Cont)			
Escherichia-Aerobacter Group	115		
	116	2.3×10^6	
	118	$< 1 \times 10^{5}$	
	119	$< 1 \times 10^{3}$	
	120	$< 1 \times 10^4$	
	121	6.0×10^3	
Throat		:	
Aerobes	115	5.1 x 10 ⁹	9.9 x 10 ⁷
	116	1.2×10^9	6.3 x 10 ⁶
	118	4.9×10^8	2.9 x 10 ⁷
	119	2.4 x 10 ⁸	2.0×10^{5}
	120	5.9 x 10 ⁷	4.4 x 10 ⁶
	121	1.2 x 10 ⁹	1.1 x 10 ⁷
Anaerobes	115	3.7 x 10 ⁹	1.6 x 10 ⁸
	116	7.4 x 10 ⁹	1.3 x 10 ⁷
	118	4.9 x 10 ⁸	2.2 x 10 ⁷
	119	4.3 x 10 ⁸	6.0 x 10 ⁵
	120	6.9 x 10 ⁷	5.2 x 10 ⁶
	121	1.2 x 10 ⁹	1.9 x 10 ⁷
Corynebacterium	115	3.9 x 10 ⁶	
	116	7.2×10^8	< 1 x 10 ⁵
	118	3.9 x 10 ⁷	1.4 x 10 ⁴
	119	5.0 x 10 ⁷	2.0 x 10 ⁵
	120	7.7×10^7	3.5×10^6
	121	1.9 x 10 ⁷	7.0 x 10 ⁶

TABLE XV. LIMITS OF VARIATION (Cont)

	Animal	Per Gram of Sample		
	No.	Maximum Count	Minimum Count	
Throat (Cont)				
Staphylococcus	115	2.0×10^4		
	116	2.7×10^6	6.8 x 10 ⁴	
	118	5.1 x 10 ⁷	< 1 x 10 ⁴	
	119	7.0×10^3	$< 1 \times 10^3$	
	120	1.4 x 10 ⁵	2.0×10^4	
	121	1.7×10^{7}	2.0×10^4	
Escherichia-Aerobacter Group	115			
	116	7.6 x 10 ⁷		
	118	1.0 x 10 ³		
	119	$< 1 \times 10^3$		
	120	$< 1 \times 10^4$		
	121	1.9×10^4	- 	
Gingiva				
Aerobes	115	1.5 x 10 ⁹	2.1 x 10 ⁷	
	116	1.5 x 10 ⁹	1.8 x 10 ⁸	
	118	4.9×10^8	2.0×10^{5}	
	119	6.5 x 10 ⁸	2.2 x 10 ⁶	
	120	4.6 x 10 ⁸	2.7×10^{6}	
	121	5.0 x 10 ⁸	1.9 x 10 ⁷	
Anaerobes	115	7.2 x 10 ⁸	1.6 x 10 ⁸	
	116	4.1 x 10 ⁹	4.8 x 10 ⁸	
	118	7.0 x 10 ⁸	1.3 x 10 ⁶	
	119	1.9×10^{7}	3.0 x 10 ⁶	
	120	4.5×10^8	3.7 x 10 ⁶	
	121	7.8×10^8	9.7 x 10 ⁶	

	Animal	Per Gram of Sample		
	No.	Maximum Count	Minimum Count	
Giantes (Gant)				
Gingiva (Cont)		•		
Corynebacterium	115	3.0×10^6		
	116	4.6×10^8	1.0 x 10 ⁶	
	118	3.9×10^7	2.6 x 10 ⁵	
	119	4.4×10^{7}	1.5 x 10 ⁶	
	120	7.7×10^7	< 1 x 10 ⁵	
	121	2.3×10^7	3.7 x 10 ⁶	
Staphylococcus	115	3.1×10^6		
	116	3.6×10^6	1.0×10^5	
	118	9.4×10^4	$< 1 \times 10^{3}$	
	119	4.1×10^4	$< 1 \times 10^{3}$	
	120	1.5×10^{7}	< 1 x 10 ⁴	
	121	2.3 x 10 ⁶	1.0 x 10 ³	
Escherichia-Aerobacter Group	115			
	116	2.3×10^{7}		
	118	$< 1 \times 10^{3}$		
	119	1.0 x 10 ³		
	120	< 1 x 10 ⁴		
	121	1.0 x 10 ³		
Axilla				
Aerobes	115	6.6 x 10 ⁷	4.3 x 10 ⁷	
	116	1.5 x 10 ⁴	6.0 x 10 ⁴	
	118	2.1 x 10 ⁴	9.0×10^3	
	119	2.8 x 10 ⁵	$< 1 \times 10^{3}$	
	120	1.1 x 10 ⁷	$< 1 \times 10^4$	
	121	6.0 x 10 ⁵	2.0 x 10 ⁴	

TABLE XV. LIMITS OF VARIATION (Cont)

	Animal		of Sample
	No.	Maximum Count	Minimum Count
Axilla (Cont)			
Anaerobes	115	3.0 x 10 ⁷	8.7 x 10 ⁶
	116	2.9 x 10 ⁷	1.0×10^4
	118	1.1 x 10 ⁵	1.4 x 10 ⁴
	119	5.0 x 10 ⁴	$< 1 \times 10^{3}$
	120	1.7 x 10 ⁷	$< 1 \times 10^4$
	121	1.0 x 10 ⁶	< 1 x 10 ⁴
Corynebacterium	115	1.7 x 10 ⁷	
	116	1.0×10^{7}	2.2 x 10 ⁶
	118	1.8 x 10 ⁴	2.0×10^{3}
	119	5.0 x 10 ³	$< 1 \times 10^{3}$
	120	1.2 x 10 ⁶	1.0 x 10 ⁴
	121	8.0 x 10 ⁵	$< 1 \times 10^4$
Staphylococcus	115		
	116	1.6 x 10 ⁷	9.0×10^{5}
	118	1.0 x 10 ³	$< 1 \times 10^{3}$
	119	5.0 x 10 ³	$< 1 \times 10^{3}$
	120	1.8 x 10 ⁷	$< 1 \times 10^4$
	121	1.7 x 10 ⁵	1.3 x 10 ⁴
Escherichia-Aerobacter Group	115		
	116	< 1 x 10 ⁵	
	118	< 1 x 10 ³	
	119	< 1 x 10 ³	
	120	< 1 x 10 ⁴	
	121	< 1 x 10 ³	

	Animal	Per Gram of Sample	
	No.	Maximum Count	Minimum Count
<u>Groin</u>			
Aerobes	115	2.7×10^7	1.0 x 10 ⁵
	116	7.5×10^{7}	1.0 x 10 ⁵
	118	7.5×10^6	1.0 x 10 ³
	119	8.6×10^6	1.6 x 10 ⁴
	120	2.0×10^{6}	1.0×10^4
	121	7.7×10^6	1.1×10^{5}
Anaerobes	115	2.2×10^8	1.0 x 10 ⁵
	116	4.2×10^8	6.0 x 10 ⁴
	118	1.4×10^7	$< 1 \times 10^{3}$
	119	2.4×10^{6}	1.0×10^4
	120	1.3×10^{7}	2.2 x 10 ⁴
	121	6.0×10^7	5.0 x 10 ⁴
Corynebacte rium	115	$< 1 \times 10^5$	
	116	3.3×10^7	7.2 x 10 ⁵
	118	1.1×10^6	$< 1 \times 10^3$
	119	3.3×10^6	6.0 x 10 ³
	120	1.4×10^6	5.3 x 10 ⁵
	121	5.0 x 10 ⁵	$< 1 \times 10^4$
Staphylococcus	115	< 1 x 10 ⁵	
	116	4.4 x 10 ⁷	1.1 x 10 ⁵
	118	1.6×10^{5}	$< 1 \times 10^{3}$
	119	1.6 x 10 ⁶	1.1 x 10 ⁴
	120	2.2 x 10 ⁶	6.0×10^{5}
	121	8.2×10^4	3.1 x 10 ⁷

	Animal	Per Gram o	Per Gram of Sample	
	No.	Maximum Count	Minimum Count	
Groin (Cont)				
Escherichia-Aerobacter Group	115			
	116	7.0 x 10 ⁵		
	118	$< 1 \times 10^{3}$		
	119	5.0 x 10 ³	140 100 100	
	120	1.0 x 10 ⁴		
	121	$< 1 \times 10^3$		
Glans Penis				
Aerobes	115	3.9 x 10 ⁸	1.2 x 10 ⁸	
	116	9.5 x 10 ⁷	7.0 x 10 ⁶	
	118	4.9×10^{8}	6.1 x 10 ⁴	
	119	4.0 x 10 ⁷	9.2 x 10 ⁵	
	120	9.3 x 10 ⁷	1.4 x 10 ⁵	
	121	1.2 x 10 ⁸	2.2 x 10 ⁵	
Anaerobes	115	4.5 x 10 ⁸	4.9 x 10 ⁷	
	116	1.4 x 10 ⁸	3.0 x 10 ⁶	
	118	7.0 x 10 ⁸	5.3 x 10 ⁴	
	119	6.5×10^{7}	3.7×10^5	
	120	2.2 x 10 ⁸	1.0 x 10 ⁴	
	121	2.5 x 10 ⁸	8.0 x 10 ⁴	
Corynebacte rium	115	1.4 x 10 ⁷		
	116	1.0 x 10 ⁸	4.6 x 10 ⁶	
	118	9.8 x 10 ⁵	4.6 x 10 ⁴	
	119	3.7 x 10 ⁶	2.2 x 10 ⁵	
	120	1.3 x 10 ⁷	3.0 x 10 ⁵	
	121	1.1 x 10 ⁶	1.0 x 10 ⁴	

	Animal	Per Gram of Sample	
	No.	Maximum Count	Minimum Count
Glans Penis (Cont)			
Staphylococcus	115		
	116	1.2 x 10 ⁸	7.5 x 10 ⁶
	118	2.9 x 10 ⁷	2.6 x 10 ⁴
	119	5.2 x 10 ⁷	1.2 x 10 ⁵
	120	1.4 x 10 ⁷	< 1 x 10 ⁴
	121	4.2 x 10 ⁷	2.4 x 10 ⁵
Escherichia-Aerobacter Group	115		
	116	9.7 x 10 ⁶	
	118	2.8 x 10 ⁵	
	119	2.0 x 10 ⁵	
	120	1.0 x 10 ⁴	
	121	$< 1 \times 10^{3}$	 -
Feces			
Aerobes	115	3.1 x 10 ¹¹	7.1 x 10 ⁷
	116	1.0 x 10 ¹⁰	1.7 x 10 ⁶
	118	4.0 x 10 ¹⁰	1.5 x 10 ⁵
	119	6.1 x 10 ⁹	7.6 x 10 ³
	120	1.0 x 10 ¹⁰	$< 1 \times 10^3$
	121	1.7 x 10 ⁸	1,5 x 10 ⁸
Anaerobes	115	3.9 x 10 ¹²	2.3 x 10 ⁸
	116	1.5 x 10 ¹⁰	3.4 x 10 ⁷
	118	7.6×10^{12}	5.0 x 10 ⁶
	119	1.5 x 10 ¹⁰	7.1 x 10 ⁶
	120	7.8 x 10 ⁹	2.5 x 10 ⁷
	121	1.2 x 10 ⁸	

TABLE XV. LIMITS OF VARIATION (Cont)

	Animal	Per Gram	of Sample
	No.	Maximum Count	Minimum Count
Feces (Cont)			
Corynebacterium	115		
	116	1.5 x 10 ⁸	1.2 x 10 ⁵
	118	1.0 x 10 ⁴	< 1 x 10 ⁴
	119	6.0 x 10 ⁵	< 1 x 10 ⁴
	120		
	121		
Escherichia-Aerobacter Group	115		
	116		
	118	4.7 x 10 ⁶	< 1 x 10 ⁴
	119	< 1 x 10 ⁴	
	120		
	121		

TABLE XVI. STATISTICAL ANALYSIS OF DATA

Linear Regression Analysis of Changes in Number of Organisms at a Given Site for a Given Class Genus over the Period Samples were Taken

		 		
	,	T Value		
		(Test whether b is		
Animal	Slope (b)	significantly dif-	Correlation	
No.	(Organisms/Day)	ferent from 0)	Coefficient (r)	Change
Feces-Aerobes				
115	6.4×10^{8}	0.211	0	None
116	-3.5×10^{7}	3.74	0.694	Decreasing
118	-5.9×10^{7}	1.31	0.238	Decreasing
119	-1.2×10^{7}	1.93	0.392	Decreasing
120	3.0×10^7	1.36	0.418	Increasing
Feces-Anaerobes				
115	1.1×10^{10}	0.330	0	None
116	-1.2×10^{7}	0.733	0	None
118	-9.6×10^9	1.10	0.131	Decreasing
	7			(Slight Tendency)
119	-1.7×10^7	0.916	0	Decreasing
4.5.5	3.0×10^{7}			(Slight Tendency)
120	3.0 x 10'	3.55	0.812	Increasing
Feces-Coryne-				
bacterium				
116	-4.3×10^6	0.541	0	None
119	-6.2×10^4	4.74	0.918	Decreasing
			01020	200100000
Axilla-Aerobes				
116	8.5×10^{3}	0.116	0	None
119	-2.9×10^2	0.267	0	None
Axilla-Anaerobes				
116	9.9×10^{4}	1.42	0.449	Increasing
119	-3.0×10^{2}	7.07	0.971	Decreasing
İ	0,0 40	1.07	0.011	Dooroasing
Groin-Aerobes				
116	4.07×10^4	0.0166	0	None
119	2.9 x 10 ⁴	1.72	0.496	Increasing
Groin-Anaerobes	_			
116	1.6×10^{6}	1.34	0.409	Increasing
119	1.0×10^4	2.35	0,429	Increasing

TABLE XVIIA. RESULTS OF T-TESTING SAMPLING DATA (BETWEEN SITES ON A GIVEN ANIMAL -119)

				Sampling Data	ģ			
Site	1	2	3	4	5	9	7	
Aerobes								
1(Conjunctiva)		*60% <p<80%< td=""><td>60%<p<80%< td=""><td>60%<p<80%< td=""><td>< 50%</td><td>60%<p<80%< td=""><td>99.5%</td><td></td></p<80%<></td></p<80%<></td></p<80%<></td></p<80%<>	60% <p<80%< td=""><td>60%<p<80%< td=""><td>< 50%</td><td>60%<p<80%< td=""><td>99.5%</td><td></td></p<80%<></td></p<80%<></td></p<80%<>	60% <p<80%< td=""><td>< 50%</td><td>60%<p<80%< td=""><td>99.5%</td><td></td></p<80%<></td></p<80%<>	< 50%	60% <p<80%< td=""><td>99.5%</td><td></td></p<80%<>	99.5%	
2(Throat)			%0g>	< 50%	< 20%	60% <p<80%< td=""><td>60%<p<80%< td=""><td></td></p<80%<></td></p<80%<>	60% <p<80%< td=""><td></td></p<80%<>	
3(Gingiva)				< 50%	< 20%	60% <p<80%< td=""><td>60%<p<80%< td=""><td></td></p<80%<></td></p<80%<>	60% <p<80%< td=""><td></td></p<80%<>	
4(Axilla)					< 50%	80% <p<90%< td=""><td>80%<p<90%< td=""><td></td></p<90%<></td></p<90%<>	80% <p<90%< td=""><td></td></p<90%<>	
5(Groin)						80% <p<90%< td=""><td>80%<p<90%< td=""><td></td></p<90%<></td></p<90%<>	80% <p<90%< td=""><td></td></p<90%<>	
6(Glans Penis)							60% < P < 80%	
7 (Feces)								

Anaerobes						
1(Conjunctiva)	60% <p<80%< td=""><td>95%<p<97.5%< td=""><td>60%<p<80%< td=""><td><50%</td><td>80%<p<90%< td=""><td>99.5%<p<99.9%< td=""></p<99.9%<></td></p<90%<></td></p<80%<></td></p<97.5%<></td></p<80%<>	95% <p<97.5%< td=""><td>60%<p<80%< td=""><td><50%</td><td>80%<p<90%< td=""><td>99.5%<p<99.9%< td=""></p<99.9%<></td></p<90%<></td></p<80%<></td></p<97.5%<>	60% <p<80%< td=""><td><50%</td><td>80%<p<90%< td=""><td>99.5%<p<99.9%< td=""></p<99.9%<></td></p<90%<></td></p<80%<>	<50%	80% <p<90%< td=""><td>99.5%<p<99.9%< td=""></p<99.9%<></td></p<90%<>	99.5% <p<99.9%< td=""></p<99.9%<>
2(Throat)		%09>	60% <p<80%< td=""><td>< 20%</td><td>%09></td><td>60%<p<80%< td=""></p<80%<></td></p<80%<>	< 20%	%09>	60% <p<80%< td=""></p<80%<>
3(Gingiva)			< 20%	< 20%	< 50%	95% <p<97.5%< td=""></p<97.5%<>
4(Axilla)				< 20%	80% <p<90%< td=""><td>60%<p<80%< td=""></p<80%<></td></p<90%<>	60% <p<80%< td=""></p<80%<>
5(Groin)					95% <p<97.5% 80%<p<90%<="" td=""><td>80%<p<90%< td=""></p<90%<></td></p<97.5%>	80% <p<90%< td=""></p<90%<>
6(Glans Penis)						60% < P < 80%
7(Feces)			.,			

*Numerical values in percent denote the probability (P) that the mean microbial counts arise from different populations.

TABLE XVIIA. RESULTS OF T-TESTING SAMPLING DATA (BETWEEN SITES ON A GIVEN ANIMAL-119) (Cont)

Site 1 2 3 4 Corynebacterium * <50%					Sampling Data	ng Data		
* <50% <50% <50% <60% <60% <60% <60% <60% <60% <60% <6			7	က	4	2	9	<i>L</i>
* <50% <50% <50% <60% <60% <60% <60% <60% <60% <60% <6	rynebacterium							
%96>W> 60%			< 50%	< 20%		< 50%	< 50%	< 50%
< 60% < 60% < 80% < 90% < P < 95%	(Throat)			< 50%	60% <p<80%< th=""><th>60%<p<80%< th=""><th>60%<p<80%< th=""><th>80%<p<90%< th=""></p<90%<></th></p<80%<></th></p<80%<></th></p<80%<>	60% <p<80%< th=""><th>60%<p<80%< th=""><th>80%<p<90%< th=""></p<90%<></th></p<80%<></th></p<80%<>	60% <p<80%< th=""><th>80%<p<90%< th=""></p<90%<></th></p<80%<>	80% <p<90%< th=""></p<90%<>
<pre><e0% <e0%="" <e0%<="" th=""><th>(Gingiva)</th><th></th><th></th><th></th><th>60%<p<80%< th=""><th>60% < P < 80%</th><th>60%<p<80%< th=""><th>60%<p<80%< th=""></p<80%<></th></p<80%<></th></p<80%<></th></e0%></pre>	(Gingiva)				60% <p<80%< th=""><th>60% < P < 80%</th><th>60%<p<80%< th=""><th>60%<p<80%< th=""></p<80%<></th></p<80%<></th></p<80%<>	60% < P < 80%	60% <p<80%< th=""><th>60%<p<80%< th=""></p<80%<></th></p<80%<>	60% <p<80%< th=""></p<80%<>
<60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60% <60%	(Axilla)					< 50%	%0g>	< 50%
<60% <60% <60% <90% < D<95%	(Groin)						< 50%	60% <p<80%< td=""></p<80%<>
<60% <60% <60% 90% < P < 95%	(Glans Penis)							60% <p<80%< td=""></p<80%<>
<60% <60% 90% < P < 95%	(Feces)	\dashv						
<60% <60% 90% < D < 95% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90%	taphylococcus							
a) 90% <p<95% a)="" penis)<="" th=""><th>(Conjunctiva)</th><td></td><td>%09></td><td>%09></td><td>%09></td><td>< 50%</td><td>60%<p<80%< td=""><td></td></p<80%<></td></p<95%>	(Conjunctiva)		%09>	%09>	%09>	< 50%	60% <p<80%< td=""><td></td></p<80%<>	
a) Penis)	(Throat)			90% <p<95%< td=""><td>< 50%</td><td>< 50%</td><td>60%<p<80%< td=""><td></td></p<80%<></td></p<95%<>	< 50%	< 50%	60% <p<80%< td=""><td></td></p<80%<>	
4(Axilla) 5(Groin) 6(Glans Penis)	(Gingiva)				%09>	< 50%	%09>	
5(Groin) 6(Glans Penis)	(Axilla)					< 50%	60% <p<80%< td=""><td></td></p<80%<>	
6(Glans Pents)	(Groin)						80% <p<90%< td=""><td></td></p<90%<>	
	(Glans Penis)							
7(Feces)	(Feces)							

*Numerical values in percent denote the probability (P) that the mean microbial counts arise from different populations

The second secon

TABLE XVIIB. FECES RESULTS OF T-TESTING SAMPLING DATA (BETWEEN ANIMALS ON A GIVEN SITE)

Aerobes

Animal No.	115	116	118	119	120	121
115		*80% <p<90%< td=""><td>80%<p<90%< td=""><td>90%<p<95%< td=""><td>60%<p<80%< td=""><td>> 99.9%</td></p<80%<></td></p<95%<></td></p<90%<></td></p<90%<>	80% <p<90%< td=""><td>90%<p<95%< td=""><td>60%<p<80%< td=""><td>> 99.9%</td></p<80%<></td></p<95%<></td></p<90%<>	90% <p<95%< td=""><td>60%<p<80%< td=""><td>> 99.9%</td></p<80%<></td></p<95%<>	60% <p<80%< td=""><td>> 99.9%</td></p<80%<>	> 99.9%
116			< 50%	60% <p<80%< td=""><td>< 50%</td><td>60%<p<80%< td=""></p<80%<></td></p<80%<>	< 50%	60% <p<80%< td=""></p<80%<>
118				60% <p<80%< td=""><td>< 50%</td><td>> 99.9%</td></p<80%<>	< 50%	> 99.9%
119					60% <p<80%< td=""><td>95%<p<97.5%< td=""></p<97.5%<></td></p<80%<>	95% <p<97.5%< td=""></p<97.5%<>
120						80% <p<90%< td=""></p<90%<>

Anaerobes

115	80% < P < 90%	< 50%	80% <p<90%< th=""><th>60%<p<80%< th=""><th>97.5%<p<99%< th=""></p<99%<></th></p<80%<></th></p<90%<>	60% <p<80%< th=""><th>97.5%<p<99%< th=""></p<99%<></th></p<80%<>	97.5% <p<99%< th=""></p<99%<>
116		60% < P < 80%	< 50%	< 50%	> 99.9%
118			60% <p<80%< td=""><td>< 60%</td><td>99.5%<p<99.9%< td=""></p<99.9%<></td></p<80%<>	< 60%	99.5% <p<99.9%< td=""></p<99.9%<>
119				< 50%	> 99.9%
120					90% <p<95%< td=""></p<95%<>

Corynebacterium

119	90% < P < 95%		

^{*}Numerical values in percent denote the probability (P) that the mean microbial counts arise from different populations.

TABLE XVIIC. RESULTS OF T-TESTING SAMPLING DATA

(SUMMARY OF MEAN MICROBIAL COUNTS WHICH ARE SIGNIFICANTLY DIFFERENT AT THE 90 PERCENT CONFIDENCE LEVEL)

Between Site	s on a Given Animal	
Animal No.		Sites*
116	Aerobes	1-3, 3-4, 3-5, 3-6, 4-6
116	Anaerobes	1-7, 4-6, 4-7, 5-7, 6-7
116	Corynebacterium	1-2
118	Aerobes	1-7, 2-7, 3-7, 4-7, 5-7, 6-7
118	Anaerobes	1-7, 2-7, 3-7, 4-7, 5-7, 6-7
119	Aerobes	1-7
119	Anaerobes	1-7, 3-7, 5-6
119	Staphylococcus	2-3
120	Aerobes	2-4, 2-5
120	Anaerobes	3-4
120	Corynebacterium	1-3
120	Staphylococcus	2-3, 2-4, 2-6, 5-6
121	Aerobes	1-7, 4-7, 5-7
121	Anaerobes	1-7, 4-7, 5-7
121	Corynebacterium	1-2, 2-4, 2-5, 2-6

*Site Codes

1	Conjunctiva	3	Gingiva	5	Groin
2	Throat	4	Axilla	6	Glans Penis
				7	Feces

TABLE XVIIC. RESULTS OF T-TESTING SAMPLING DATA (Cont)

Between Animals on a Given Site	Animal No.
Conjunctiva - Aerobes	120-121
Conjunctiva - Anaerobes	120-121
Conjunctiva - Corynebacterium	118-121
Conjunctiva - Staphylococcus	116-121, 118-121
Throat - Aerobes	119-121, 120-121
Gingiva - Staphylococcus	116-120, 118-120
Axilla - Aerobes	116-118, 116-119, 116-121
Axilla - Anaerobes	116-118, 116-119, 116-121
Axilla - Corynebacterium	116-118, 116-121
Axilla - Staphylococcus	118-120, 119-120
Groin - Corynebacterium	120-121
Feces - Aerobes	115-119, 115-121, 118-121, 119-121
Feces - Anaerobes	115-121, 116-121, 118-121, 119-121, 120-121
Feces - Corynebacterium	116-119

TABLE XVIID. RESULTS OF T-TESTING SAMPLING DATA

(SUMMARY OF MEAN MICROBIAL COUNTS WHOSE PROBABILITY OF BEING DIFFERENT IS LESS THAN 50 PERCENT)

Between Sit	es on a Given Animal	City.
Animal No.		Sites
115	Aerobes	1-5, 1-7, 2-3, 2-7, 3-6, 3-7, 4-7, 5-7, 6-7
115	Anaerobes	1-7, 2-7, 3-6, 3-7, 4-7, 5-6, 5-7, 6-7
116	Aerobes	1-4, 1-5
116	Anaerobes	1-4, 2-3, 2-7, 3-7, 5-6
116	Corynebacterium	4-5, 6-7
116	Staphylococcus	1-4, 2-3, 4-5
118	Aerobes	1-5, 2-3, 2-6, 3-6
118	Anaerobes	1-5, 2-3, 2-6, 3-6, 5-6
118	Corynebacte rium	1-2, 2-3, 5-6,
118	Staphylococcus	1-2, 1-6, 2-6, 3-5
119	Aerobes	1-5, 2-3, 2-4, 2-5, 3-4, 3-5, 4-5
119	Anaerobes	1-5, 2-5, 3-4, 3-5, 3-6, 4-5
119	Corynebacterium	1-2, 1-3, 1-5, 1-6, 2-3, 4-5, 2-6, 4-7, 5-6
119	Staphylococcus	1-3, 1-5, 2-4, 2-5, 3-5, 4-5
120	Aerobes	2-6, 4-5
120	Anaerobes	1-4, 4-5
120	Corynebacterium	1-5, 2-3
120	Staphylococcus	1-3, 1-6, 3-5, 4-5
121	Aerobes	1-4, 3-7
121	Anaerobes	2-3, 3-6, 4-5, 4-6, 6-7
121	Corynebacterium	1-6, 2-3, 4-5, 4-6, 5-6
121	Staphylococcus	1-4, 2-5, 5-6

TABLE XVIID. RESULTS OF T-TESTING SAMPLING DATA (Cont)

Between Sites on a Given Animal	Animal No.
Conjunctiva - Aerobes	115-116, 115-120, 116-118, 116-120, 119-121
Conjunctiva - Anaerobes	115-116, 115-118, 115-120, 116-118, 116-120 118-120, 119-121
Conjunctiva - Corynebacterium	116-118, 116-119, 116-120, 118-120, 119-120
Conjunctiva - Staphylococcus	116-118, 116-120, 118-120, 119-121
Throat - Aerobes	118-119
Throat - Anaerobes	115-116, 118-119, 118-121
Throat - Corynebacterium	118-119, 118-121, 119-121
Throat - Staphylococcus	116-121, 119-121, 120-121
Gingiva - Aerobes	115-116, 118-119, 118-120, 118-121, 119-120 119-121, 120-121
Gingiva - Anaerobes	115-118, 115-121, 118-120, 118-121, 120-121
Gingiva - Corynebacterium	116-120, 118-119, 118-121, 119-121
Axilla - Aerobes	118-119
Axilla - Anaerobes	115-116, 116-120, 118-119
Axilla - Corynebacterium	118-119, 119-120, 119-121, 120-121
Axilla - Staphylococcus	118-121, 119-121
Groin - Aerobes	115-116, 118-119, 118-121
Groin - Anaerobes	115-116, 118-119, 118-120, 118-121
Groin - Corynebacterium	118-119, 118-120, 118-121, 119-120, 119-121
Groin - Staphylococcus	116-121, 118-119, 119-120, 120-121
Glans Penis - Aerobes	115-118, 116-120, 116-121, 119-120, 120-121
Glans Penis - Anaerobes	115-116, 115-118, 115-121, 116-118, 116-120, 116-121, 118-120, 118-121, 119-120, 120-121
Glans Penis - Corynebacterium	118-121
Glans Penis - Staphylococcus	116-120, 118-120, 118-121, 119-120, 119-121 120-121
Feces - Aerobes	116-118, 116-120, 118-120
Feces - Anaerobes	115-118, 116-119, 116-120, 119-120

APPENDIX I

BACTERIOLOGICAL PROCEDURES AND SAMPLING

The methods of West and Gall were followed as applicable. Figures 7 through 9 illustrate the dilution schemes, aerobic and anaerobic isolations. As the marker organisms were identified and the experiment proceeded only those procedures applicable to the problem at hand were followed. Thus only a few samplings were sent through the isolation scheme in that we were more interested in following the fate of a few critical genera.

Notes on Procedures and Isolates

- 1. All samples were analyzed as soon as possible after they were taken from the animal.
- 2. All media and diluent were prewarmed at 37°C.
- 3. All incubation were carried out at 37°C unless otherwise stated.
- 4. Cultures were identified to the genera level only.
- 5. Isolates were stored at 4°C on appropriate culture media.
- 6. Periodicity of sampling can only be determined in the natural course of sampling.

Figure 7. Sample Dilution Scheme*

Figure 8. Aerobe Isolation

Figure 8. Aerobe Isolation (Cont)

Figure 9. Anaerobe Isolation

79

APPENDIX II

MEDICAL PROCEDURES FOR EMPLOYEES HANDLING/WORKING WITH MONKEYS

I. Annual Chest X-ray

Tuberculin skin testing every six months for those individuals who are tuberculin negative.

II. Immunization Program

Smallpox Vaccine
Oral Polio Vaccine
Tetanus Toxoid Vaccine

III. Treatment of Injury (Monkey Bite)

Clean wound thoroughly Administer tetanus toxoid booster Administer gamma globulin 15 cc., intramuscularly

- IV. Any individual with an open wound on the exposed part of his body is not permitted to handle a monkey.
- V. Individuals handling monkeys are to wear a protective respiratory mask (surgical type) and protective gloves. Individuals working around monkeys but not handling monkeys are to wear a protective respiratory mask.

APPENDIX III DIET AND WATER

Visual estimates, average food intake and feces measurements indicate that all six animals were very close regarding size throughout the experiment. The apparent state of good health was reflected in the activities, the appetites and other more subtle indications such as alertness to sounds, recognition of their animal caretakers, and response to learned activities such as isolator transfer. Experimental complexities made it extremely difficult to weigh the animals in the isolators. The control animals grew about a kilogram during the past year.

The GE diet (Table I) contains 17 percent crude protein. One estimate of protein required is 7.5 percent, May et. al (1950) with about three grams per day per kilogram of body weight intake. Recognizing the denaturing effect of autoclave sterilization, the animals consumed more than the required amount. We doubt that more than 50 percent of the protein, available before autoclaving, was destroyed. The control animals, when fed this diet, exhibited every sign of robust health.

The rhesus required fat in the diet, Greenberg (1949) or at least essential fatty acids. The polyunsaturated fatty acids required are certainly to be found in the animal fat portion of the feed mixture (Table I). Although mineral requirements, iron, calcium, phosphorus, etc. are constituent parts of the daily portion, the quantitative requirements are largely unknown, Day (1966a). To replace the Vitamins lost during autoclaving, a vitamin supplement was added. Of particular interest were A, B and C.

Known requirements for Vitamins include A, D, E, C, B_1 , B_2 , B_6 , Niacin, Pantothemic acid, Brotin, Folic Acid and B_{12} , Day (1966b). Cyanocobalamin, B_{12} , has been shown to increase growth rate, May (1951). This does not prove an absolute need but in the absence of literature data to prove or disprove the requirement, B_{12} was added. The vitamin additive, prepared by Vitarine Co. of Springfield Gardens, New York, does not contain B_{12} but tocopherols are present in the solid materials fed.

Table II lists the composition of the daily sterile vitamin formulation of the drinking water which was prepared daily. Following autoclave sterilization of the water (using the method of Heumpner, 1967), the Millipore filter sterilized vitamin supplement was added. The entire mixing process was done inside a sterile, Trexler type, flexible isolator. The water containers (brown bottles), were attached to sterile stainless steel water dispensers.

The narrow necked containers were filled as nearly to the brim as possible following the addition of the vitamins, in order to reduce the exposure to the air. All water containers were kept in the darker section of the isolator. The animals were given free access to the water dispenser at all times.

There were individual, and consistent, differences in the total water requirement of the different animals. Although as stated, the activity level of the monkies appeared similar, at least one animal constantly exceeded the others in total intake. Each animal finished about

760 ml of liquid a day except No. 119. This animal emptied his initial fortified liquid usually at the end of eight or nine hours. (A second container more than satisfied him for the next sixteen hours.) The water in the second container was not fortified, and it is speculated that the vitamin supplement contained some feature or taste that the animal unconsciously craved or desired.

The individuality of this animal cannot be explained by any data that GE has nor did his external actions and characteristics seem different from the other animals.

APPENDIX IV

DISCUSSION OF THE ISOLATOR SYSTEM

The isolator system, shown in Figure 1, 2 and 3 was designed by the authors and Mr. Frank Matthews, President of Matthew Research, Alexandria, Virginia. Each system is comprised of two separate isolators connected by a stainless steel tunnel. One isolator consists of stainless steel with a large plastic window and the other isolator consists of 30 gauge transparent plastic. Two systems comprise a unit and two units were used during the experiment.

The flexible plastic isolator (polyvinyl chloride) enclosed a stainless steel monkey cage.* The monkey cage was equipped with a squeeze panel, operated by the turning of a crank. Provision was made for separating the animal from his urine and feces. The urine and feces were collected separately in a manner similar to that employed by standard metabolism cages. The cage was equipped with locks and an automatic watering device which was movable (at the desire of the researcher), within the isolator. Figure 10 and Figure 11 illustrate these features.

To keep the animals under observation at all times, the flexible isolator was equipped with rigid plexiglass windows (Figure 12). Glove ports, zipper closers, equipment holding trays, cage support locks and minor items common to gnotobiotic isolators were included. Air was furnished to the animals after passing through a HEPA filter designed to remove all microorganisms from the air supply. The atmosphere was exhausted from the isolators into the laboratory through a similar system and was charcoal-filtered to remove any odors.

The glove ports, one set on each side of the flexible isolator worked well. Particularly useful was a sliding feature that enabled the operator to reach any portion of the isolator without uncomfortable stretching. Air jets inside the glove mitigated some of the discomfort and sweating normally occurring to an operator while working for an extended period using rubber gloves.

One set of glove ports on each side was found to be inadequate. On many occasions, another set of hands (three people) was needed to accomplish a particular task and this was, of course, impossible. Bathing the animals was a particularly unpleasant and difficult task for two people working remotely. When sampling certain body areas, the addition of another person would have considerably reduced the time factor.

The flexible isolator could be easily zipped open for cleaning. Closing the isolator was not as simple and plastic zippers such as GE used have their disadvantages, one disadvantage being they fail to hold tight. After one zipper failure, (fortunately when the animal was in the stainless steel section), GE resorted to closing the zipper on the isolator and reinforcing the entire

^{*}Manufactured by Matthews Research Co., Alexandria, Va.

zipper with two-inch vinyl tape. A steel zipper such as that used on astronaut space suits is recommended.

The isolators were kept under constant positive pressure when not actually opened for cleaning. Sterilization was accomplished using freon powered peracetic acid sprayers. The isolators could then be leak-tested immediately after sterilization. Figures 13, 14, and 15 illustrate other pertinent features of the system. Figure 16 shows the tunnel entrance from main isolator to the stainless steel holding section.

The system's air supply can be interconnected by ports built into the isolator walls. During the major portion of the experiment, these were taped shut but during the last phase, opening the ports enables GE to reunite the animals in the sense of transferring their microflora from one animal to another via the atmosphere.

GE's overall impression of the isolator system, in spite of the drawbacks reported, was superior.

Figure 10. Technician Removing Feces Tray for Cleaning, Urine Collection Bottle Below

Figure 11. Technician Cranks to Operate Squeeze Cage Panel

Figure 12. Rigid Plexiglas Window in Isolator-Bacteriologist Preparing Swab for Sampling

Figure 13. Scale and Cage System Used for Recording Animal Weights

Figure 14. Stainless Steel Cage Illustrating Crank-Operated Squeeze Panel

Figure 15. View Through Clear Plastic Section of Animal in Cage

Figure 16. Stainless Steel Holding Isolator Showing Connecting Tunnel Entrance

APPENDIX V COMPUTER PRINTOUTS

Introduction and Explanation

Appendix V presents some of the actual printouts from the GE DSCS. Figure 17 illustrates the "LOGREP" Program in the modified Fortran II compiler language used by the GE DSCS. This program was developed especially for this study to report any segment of the log information on any one of the monkeys studied. The operation of the program is demonstrated in Figure 18. This shows the entire sequence of events when the computer is dialed via regular telephone lines from the DSCS teletype terminal. After the telephone connection is made, the computer types out on the terminal "THIS IS THE MSD 265 SYSTEM" and requests authorization to proceed by asking for a legitimate user number which can be billed for time-sharing usage: "USER NUMBER --." The operator at the terminal replies with the number which has been assigned. Then the computer asks for the system: "SYSTEM--."

The operator replies in this case with: "\$FORTRAN." The computer next asks whether it is to prepare itself for compilation of a new program or is to call up some old (old means previously stored) Fortran program stored in the auxiliary memory (magnetic disc area) assigned to this user number. Since the program of interest is already stored, the operator replies: "\$OLD." The computer types out "WAIT" while it switches all the users on-line in and out of control until this operator's turn comes up again. It then searches its auxiliary memory for the program called for and when it finds the "LOGREP" program it signals the operator at the remote terminal by typing out "READY," Since the operator wishes now to use the program as it is, he types in "\$RUN." He receives another "WAIT" signal in return, and, when his turn comes up again, it proceeds to run the program. First, it types out the memory area which is available for use by the program. This is the difference, in octal arithmetic, between the two numbers following "LOAD LIMITS" and is determined by the memory storage space used up by the Fortran compiler and by the machine "object" program in machine language generated by the user "source" program in Fortran. Next, it asks for input data from the operator by calling for an animal number. Then it queries the operator as to whether the entire animal log is desired. If the answer were "YES," the computer would then proceed to type out the entire log for the animal designated. The operator in this case replies "NO" so the computer proceeds to ask for the time interval between which log data is desired. The operator replies August 15, 1966 to September 7, 1966 in the format dictated by the computer: "60815, 60907." The computer then proceeds to type out the answer and stops itself when completed.

Some excerpts from the log of animal No. 118 are shown in Figure 19. An example of the operation of the updated, more flexible form of the Log Report Generator program is found in Figure 21. All programs involved are listed in Figures 17 and 20.

As has been described in the body of the report, all of the log data and microbial data (microbial identifications and numerical counts resulting from sampling of specific sites) was stored in the computer in auxiliary memory (magnetic disc storage). Copies of the forms used for collecting these data are shown in Figures 22 and 23. A major facility was developed for the purposes of searching a list of descriptors, and pulling out of a primary file the record

numbers to which these descriptors applied. (The list of descriptors is shown in Figure 24.) These record numbers (addresses) can then be printed out and a secondary file containing the actual records can be examined word by word, in part or in full by a number of programs written for these purposes. A second part of this facility allows the operator to "SEND" these addresses to another part of auxiliary memory storage (Scratch Area) where they are used by another major program (REPORT GENERATOR) to go back and search the secondary file for actual microbial data and to display the data in twenty-four possible matrices depending upon the hierarchy used.

The search of the primary file employs any combination of descriptors employing a programmed logical format. A slash (/) is equivalent to "OR;" a plus sign (+) is equivalent to "AND;" a minus sign (-) is equivalent to "AND NOT;" and a period (.) is equivalent to "END OF LOGICAL STATEMENT."

The operation of the search program is illustrated in Figure 25. The same sequence of steps takes place when the telephone connection is made to the computer as described above. In reply to the computer's demand for a "SYSTEM --," however, the operator at the remote teletype calls for "\$IN\$\$1" which is the routine for searching the primary file. The computer replies "READY" and the operator types in a logical combination of descriptors. He wants to know what the computer has stored on animal Nos. 115 or 121, which contains information on Corynebacteria but not Staphylococci in its sampling data. The operator, in effect states his demand by using the logical statement shown in Figure 25. Translated, this reads: (Animal No. 115 or Animal No. 121) and Corynebacterium, but not Staphylococcus, and Sampled. The operator then types "\$RUN." The computer replies: "0007HITS" which means that it has searched its entire primary file containing the record addresses for all the data and has found seven records which contain data which fit the logical statement of descriptors. It then types out "PRINT: =," which is a demand to know whether it should type out these record addresses. If "NONE" were typed in by the operator, it would go on to the next step. But in this case, the operator tells the computer to type out the addresses by replaying "ALL." The computer then types out the seven addresses. It goes on to type "SEND:=." This is a request it asks the operator which means, do you want these addresses sent to a separate area of auxiliary memory (Scratch Area) where they can be examined by other programs. In this case, the operator does not want this done, so he replies "NONE." He could have any or all of these addresses sent to this memory area by typing in the addresses separately or by replying "ALL" in which case all seven addresses would be sent. (This last facility will later be seen to be essential to the operation of the Report Generator Program.) After this sequence is completed, the computer indicates that it has carried out the operation called for by replying "QUESTION COMPLETED." It is now ready for the next search.

The Report Generator Program was a major accomplishment of this effort. It permits the display of microbial data records whose addresses have been "sent" to an area of auxiliary memory (Scratch Area) by the search routine in 24 different ways according to the hierarchy requested. The four members of the hierarchy are animal (No. 1), date (No. 2), site of sampling (No. 3) and class-genus found (No. 4). The format of the printout of microbial data is determined by the order in which these categories are typed into the computer from the remote terminal. The best way to understand this program is to study the examples in Figure 27. The program including its subroutines is listed in the GE DSCS's version of Fortran II in Figure 26.

Some abbreviations in the examples of output from the Report Generator Program require explanation: a number in the form "XE+Z" means $X \cdot 10^{Z}$; "NC" means the genus in question was identified qualitatively but no count is available; a number in the form "N-Y" means that no growth was observed at a dilution of 10^{-Y} . Site codes are as follows:

- 1 = Conjunctiva
- 2 = Throat
- 3 = Gingiva
- 4 = Axilla
- 5 = Groin
- 6 = Glans Penis
- 7 = Feces

Class-Genus codes are as follows:

CODE	CLASS	GENUS
101	Bacteria	Streptococcus
102	Bacteria	Corynebacterium
103	Bacteria	Proteus
104	Bacteria	Excherichia
105	Bacteria	Staphylococcus
106	Bacteria	Aerobacter
107	Bacteria	Shigella
108	Bacteria	Escherichia-Aerobacter Group
109	Bacteria	Pseudomonas
110	Bacteria	Salmonella
111	Bacteria	Lactobacillus
112	Bacte ria	Bacteroides
113	Bacteria	Clostridium
214	Ascomycetes	Aspergillus
115	Bacteria	Alcaligenes

Dates are printed out in the form 70314 where the first digit refers to year (1967), the next two digits refer to month (March) and the last two digits refer to day (14th). To make clear what input is typed in by the operator and what output is printed out by the computer, the operator input has been underlined. To make new inputs of hierarchy stand out, "HIERARCHY RECORDED" has been printed beside the new orders of numbers.

The data in any records whose addresses are sent to the Scratch Area can be read directly (whether animal log or microbial data records) by means of the secondary file search program. This program also permits the teletype operator to read the contents of any record requested by its address. The program and examples of its operation are listed in Figures 28 and 29.

Examples of coded data records as actually stored in auxiliary memory (magnetic disc) are shown in Figures 30 and 31. The interaction of the Primary File, Secondary File, Scratch Area and Fortran Programs, which as a whole compose the Data Management System, is diagrammed in Figure 32.

```
$LIST
00000
            COMMON DUM(27), KR(64), K(5,300,1), KCD1(9,6), KCD2(120,10)
             IRAM=1545
00010
00020
            CALL SYSLØ1(IRAM, KR)
00030
            NA=1
90940
             DO 60 I=1.9
             DO 60 J1=1.6
00050
            KCD1(I,J1)=KR(NA)
00060
00070
            NA=NA+1
            CONTINUE
00080
       60
00090
             IRAM=3040
00100
       62
             IRAM=[RAM+1
00110
            NB=1
00120
            CALLSYSLØ1(IRAM, KR)
00130
             IF(IRAM-3041)63,63
00140
            NB=1
00150
             GO TO 61
00160
       63
             DO 61 I=1.100
00170
             DO 61 J1=1.10
            KCD2(I.JI)=KR(NB)
00180
       65
00190
            NB=NB+1
00200
             IF(NB-61)61,62,61
00210
            CONTINUE
        61
00220
       64
            PRINT14
            FORMAT("TYPE ANIMAL NUMBER FOR WHICH LOG INFORMATION "
00230
       14
           1"IS DESIRED"/)
00240
00250
            READ: N1
00260
            PRINT16
00270
       16
            FORMAT("DO YOU WISH THE ENTIRE LOG (YES/NO)")
00280
            READI 7. N2
00290
        17 FORMAT(A3)
             IF(N2-/454660)66,18,66
00300
00310
             IF(N2-/702562)19,19,19
       66
       18
00320
            PRINT20
            FORMAT("TYPE STARTING AND ENDING DATES OF THE DESIRED"
00330
       20
           1"PRINT OUT IN THE FORM -- 70114, 71105 -- WHERE 7 REPRESENTS"
00340
           2" THE YEAR, 01 AND 11 REPRESENT THE MONTHS JAN. (01) AND "
00350
00360
           2"NOV.(11) AND 14 AND 05 REPRESENT THE DAYS OF THOSE MONTHS"
            READ: N3. N4
00370
00380
       19
            IF(N1-115)26,21,26
00390
       26
             IF(N1-116)27, 22,27
00400
       27
             IF(N1-118)28,23,28
00410
       28
             IF(N1-119)29,24,29
00420
       29
             IF(N1-120)70,25,70
00430
       70
             IF(N1-121)18,71,18
             IRAM1=1561
00440
       21
00450
             GO TO30
00460
       22
             IRAM1=1801
00470
             GO TO 30
```

Figure 17. LOGREP Program (Original Form) (Sheet 1 of 3)

```
99489
       23
             IRAM1=2241
00490
             60 TO 30
00500
       24
             IRAM1=2321
00510
             GO TO 30
00520
       25
             IRAM1=2561
00530
             GO TO 30
00540
       71
             IRAM1=2801
00550
       30
             IRAM2=IRAM1+30
             0=11
00560
00570
             DO 31 I2=IRAM1, IRAM2
00580
             IF(IRAM1-12)75,47,75
             IF(NX-9)48,47,47
00590
       75
00600
       47
             NX = \emptyset
00610
             CALL SYSLØ1(12,KR)
00620
             NH=NH+1
00630
             DO 32 J=1.57.7
             IF(KR(J))32,33,32
00640
00650
         32
                CONTINUE
00660
             LS=63
00670
             60 TO 51
       33
             LS=J+1
00680
00690
       51
             DO 31 JJ=1.LS.7
             1+11=11
00700
             K(2,II)=KR(JJ)
00710
             K(3,II)=KR(JJ+1)
00720
             K(4,11)=KR(JJ+5)
00730
             K(5,II)=KR(JJ+6)
00740
             IF(K(2, II)-9)101,102,101
00750
             K(5, II)=/514560
00760
        102
00770
        101
             AA=KR(JJ+4)/10.-6
99789
             K(1, II)=AA+100000+KR(JJ+2)+100+KR(JJ+3)
             NX=NX+1
00785
00790
             IF(K(3, II)-30)31,900,31
        900
00800
             K(4, II)=/003301
00805
             K(5, II)=/472360
00850
        31
             CONTINUE
99869
        48
             IF(N3)36,35,36
00870
        36
             DO 40 II1=1,II
00880
             IF(K(1, III)-N3)40,42,42
        40
             CONTINUE
00890
             DO 41 II2=II1.II
00900
        42
             IF(K(1, II2)-N4)41,43,43
00910
00920
             CONTINUE
        41
             60 TO 43
00930
00940
        35
             I I I = 1
             112=11
00950
             DO 45 II=II1.II2
00960
        43
             KYR=K(1,II)/10000+60
00970
             KMO=XMODF(K(1,11),10000)/100
00980
00990
             KDA=XMODF(K(1,II),100)
             CALL CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
01000
01010
             IF(K(4, II)-/003301)84,82,84
             Figure 17. LOGREP Program (Original Form) (Sheet 2 of 3)
```



```
84
             IF(K(4, II)-/606060)81,82,81
01020
01030
       82
            PRINT83, IMO, IDA, IYR, (KCD1(K(2, II), J), J=1, 6), (KCD2(K(3, II), L)
01040
            1.L=1.10).K(4.II).K(5.II)
01050
             GO TO 45
01060
            PRINT80, IMO, IDA, IYR, (KCD1(K(2, II), J), J=1, 6), (KCD2(K(3, II), L)
       81
01070
            1.L=1.10),K(4,II),K(5,II)
01080
       80
             FORMAT(1X,A2,"/",A2,"/",A2,2X,6A3,2X,10A3,1X,17,A3)
              FORMAT(1X,A2,"/",A2,"/",A2,2X,6A3,2X,1ØA3,2X,A6,A3)
01090
       83
01110
       45
             CONTINUE
01120
             STOP
             END
01130
01140
             SUBROUTINE CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
01150
            K=10
Ø1160
             IOCTA=/010000
01170
             IOCT=/000100
01180
             IMO=IDA=/000000
01190
            DO 100 I=1.31
01200
             IF(I-K)600,500,600
01210
            IDA=IDA+IOCTA-/001100
       500
01220
            K=K+10
01230
             GO TO 400
01240
       600
            IDA=IDA+IOCT
       400
            IF(KDA-I)100,110,100
01250
       100
01260
            CONTINUE
            K=10
01270
       110
             D0200 1=1,12
01280
01290
             IF(I-K)150,140,150
0+300
            IMO=IMO+10CTA-/001106
       140
01310
            GO TO 170
01320
       150
            IMO=IMO+IOCT
01330
       170
            IF(KMO-1)200,210,200
01340
       200
            CONTINUE
01350
       210
            IF(KYR-66)230,220,230
01360
       230
             IF(KYR-67)250,240,250
01370
       250
            PRINT270
01380
       270
            FORMAT("ERROR IN YEAR INPUT ")
01390
       240
            IYR=/060700
01400
            RETURN
01410 220
            IYR=/060600
01420
            RETURN
01430
            END
```

Figure 17. LOGREP Program (Original Form) (Sheet 3 of 3)

THIS IS THE MSD 265 SYSTEM

15 USER NUMBER-SYSTEM--\$FORTRAN
RUN TYPE-- \$OLD
OLD PROGRAM NAME--LOGREP
WAIT-

READY.

\$RUN WAIT•

LOAD LIMITS 07523 12275

TYPE ANIMAL NUMBER FOR WHICH LOG INFORMATION IS DESIRED :=115

DO YOU WISH THE ENTIRE LOG (YES/NO):=NO

TYPE STARTING AND ENDING DATES OF THE DESIRED PRINT OUT IN THE FORM--70114,71105--WHERE 7 REPRESENTS THE YEAR, 01 AND 11 REPRESENT THE MONTHS JAN.(01) AND NOV.(11) AND 14 AND 05 REPRESENT THE DAYS OF THOSE MONTHS:=60815,60907

08/15/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	110MG
08/16/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	110MG
08/17/66	OBSERVATIONS	ANTIHELMINTHIC TRET (TRIBNDZE)	75MGK
Ø8/17/66	OBSERVATIONS	TB TESTED NEGATIVE	
08/22/66	OBSERVATIONS	STOOL CULTURE NEGATIVE(SAL+SH)	
08/22/66	OBSERVATIONS	BLOOD SMEAR NEGATIVE (MALARIA)	
09/01/66	OBSERVATIONS	TB TESTED NEGATIVE	
09/07/66	OBSERVATIONS	ANIMAL RECEIVED AT GE	
*STOP	Ø AT Ø725Ø		

ABBREVIATIONS: MG = MILLIGRAMS: MGK = MILLIGRAMS PER KILOGRAM
Figure 18. Example of Operation of LOGREP Program

	66	e cate a della	
00/07///	OBSERVATIONS -	ANIMAL RECEIVED AT GE	
09/07/66 09/07/66	DIET (STERILE/NON)	NON STERILE	
09/07/66	DIET NAMES	PURINA MONKEY CHOW+BANAS.+ORS.	
09/07/66	OTHER ANIMALS	ANIMAL ADDED	115AN
09/07/66	OTHER ANIMALS	ANIMAL ADDED	116AN
	OTHER ANIMALS	ANIMAL ADDED	119AN
09/07/66 09/07/66	OTHER ANIMALS	ANIMAL ADDED	120AN
	OTHER ANIMALS	ANIMAL ADDED	121AN
09/07/66	OTHER ANTHALS	HATHER POPER	•
03/02/67	ISOLATION (YES/NO)	YES	
03/02/67	DIET (STERILE/NON)	STERILE	
03/02/67	DIET NAMES	SIMILAC+IRON+VITAMINS	
03/02/67	OTHER ANIMALS	ANIMAL REMOVED	115AN
03/02/67	OTHER ANIMALS	ANIMAL REMOVED	121AN
03/03/67	SAMPLES TAKEN	FECES	182171RN
03/06/67		FECES	182172RN
03/10/67	ORGANISMS INGESTED	LACTINEX	1 GM
03/23/67	DIET (STERILE/NON)	STERILE	
03/23/67	DIET NAMES	ROCKLAND PRIMATE DIET+VITAMINS	
		THE PARTY OF THE P	
06/23/67	SAMPLES TAKEN	CONJUNTIVA	100045DN
06/23/67	SAMPLES TAKEN	THROAT	182065RN 182066RN
06/23/67	SAMPLES TAKEN	GINGIVA	182067RN
06/23/67	SAMPLES TAKEN	AXILLA	182068RN
06/23/67	SAMPLES TAKEN	GROIN	182069RN
06/23/67	SAMPLES TAKEN	GLANS PENIS	182070RN
06/30/67		TETREX F	250MG
07/01/67		TETREX F	250MG
07/01/67	SAMPLES TAKEN	FECES	182174RN
Dir Bir Gr	DAN DED PRIVER	7 2025	102174114
		•	
07/02/67	ANTIBIOTICS	TETREX F	250MG
07/03/67		TETREX F	250MG
07/03/67		FECES	182175RN
07/04/67		TETREX F	250MG
07/05/67		TETREX F	250MG
07/05/67		FECES	182176RN
07/06/67		TETREX F	250MG
07/06/67		PERACETIC ACID	Ø . 1PC
07/07/67		TETREX F	250MG
07/07/67		FECES	182177RN
07/07/67		CONJUNTIVA	182073RN
07/07/67		THROAT	182074RN
07/07/67		GINGIVA	182075RN
07/07/67		AXILLA	182076RN
07/07/67		GROIN	182077RN
07/07/67		GLANS PENIS	182078RN

ABBREVIATIONS: AN = ANIMAL NUMBER; RN = RECORD NUMBER; GM = GRAM; MG = MILLIGRAM; PC = PERCENT.

Figure 19. Excerpts From Log of Animal No. 118

DEDOPROGRAM NAME--LOGREP

```
FLIST
aaaaa
            COMMON DUM(27), KR(64), NS(9), K(5,225,1), KCD1(9,6), KCD2(99,10)
00005
           IN1(6)
00030
            IRAM=1545
90949
            CALL RAM(IRAM)
00130
       64 PRINT 402
00140
       402 FORMAT("TYPE THE NUMBER OF ANIMALS FOR WHICH LOG INFORMATION
00150
           1" IS DESIRED (6 MAX+)"/)
00160
            READ: NN1
00170
            PRINT403
      403 FORMAT("TYPE ANIMAL NUMBERS (115,116,120,ECT.)"/)
00180
00190
            READ:(N1(I),I=1,NN1)
            DO 45 [=1.NN]
00200
00205
            N3=N4=0
            PRINT485,N1(I)
00210
00220 485 FORMAT(/"ANIMAL"1X,14)
00230
            PRINT16
            FORMAT("DO YOU WISH THE ENTIRE LOG (YES/NO)")
00240 16
00250
            READ17,N2
00260
       17 FORMAT(A3)
00270
            IF(N2-/454660)66,18,66
            IF(N2-/702562)19,19,19
00280
      66
00290
       18
            PRINT20
00300
      20
            FORMATC"TYPE STARTING AND ENDING DATES OF THE DESIRED"
           1"PRINT OUT IN THE FORM--70114,70223--"//
00310
           2"DATE CODE EXPLANATION"//3X"FOR DATE CODE 70114"/
00320
00330
           37X"7=YEAR(1967)"/6X"01=MONTH(JAN.)"/6X"14=DAY(JAN.14)"/)
00340
            READ:N3:N4
00345
            CALL LOG(I. [RAM]. IRAM2)
00530
            11=0
00540
            DO 31 12= IRAM1, IRAM2
            IF(IRAM1-12)75,47,75
00550
            IF(NX-9)48,47,47
00560
00570
            NX=0
00580
            CALL SYSLØ1(12,KR)
00590
            NH=NH+1
00600
            DO 32 J=1,57,7
00610
            IF(KR(J))32,33,32
00620
       32
              CONTINUE
00630
            LS=63
00640
            GO TO 51
00650
            LS=J-1
      33
            IF(LS)51,48,51
00660
99679
            DO 31 JJ=1.LS.7
00680
            11=11+1
00690
            K(2:II)=KR(JJ)
00700
            K(3, II)=KR(JJ+1)
00710
            K(4,11)=KR(JJ+5)
            K(5,II)=KR(JJ+6)
00720
            IF(K(2,11)-9)101,102,101
99739
00740 102 K(5,II)=/514560
      101 AA=KR(JJ+4)/10.-6
00750
00760
            K(1,II)=AA*100000+KR(JJ+2)*100+KR(JJ+3)
00770
            NX=NX+1
00780
            IF(K(3,11)-30)31,900,31
00790
       900 K(4,11)=/003301
            K(5,11)=/472360
00800
00810
     - 31
            CONTINUE
00820
       48
            IF(N3)36,35,36
00830
            DO 40 II1=1,II
      36
00840
            IF(K(1:II1)-N3)40:42:42
00850
            CONTINUE
00856
            GO TO 42
```

Figure 20. Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program (Sheet 1 of 6)


```
00 41 II2=II1.II
00860
       42
            IF(K(1, II2)-N4)41,41,319
00870
       310
DORRO
            112=112-1
            GO TO 43
00890
            CONTINUE
00900
       41
00910
            GO TO 43
00920
       35
            I I 1 = 1
00930
            11=211
00935
            N3=K(1, III)
00936
            N4=K(1,112)
            CALL SUM(III, II2)
00940
            CALL DATE(N3,KYR,KM0,KDA)
00950
00960
            CALL CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
            CALL DATE(N4,KYR,KMO,KDA)
00970
00980
            CALL CONVERT(KYR*KMO*KDA*IYR1*IMO1*IDA1)
            PRINT309,N1(I), IMO, IDA, IYR, IMO1, IDA1, IYR1,NS(1),NS(2),NS(4),
00990
01000
           INS(5)*NS(6)*NS(7)*NS(9)
           FORMAT(///28X;"LOG INFORMATION",///30X;"ANIMAL",1X;14,///
01010
           119X"PERIOD FROM ",A2,"/",A2," TO ",A2,"/",A2,"/",A24
91929
           2/23X"TOTALS FOR THIS PERIOD"//19X"ACTIVITIES"20X"FREQ."//
01030
           316X"ENVIRONMENT CHANGED"11X.13." TIMES"/16X"DIET CHANGED"
01040
           418X.13." TIMES"/16X"ORGANISMS INGESTED"12X.13." TIMES"
01050
           5/16X"ANTISEPTIC WASHES USED"8X.13." TIMES"/16X"ANTIBIOTICS"
01060
           6" USED"14X.13." TIMES"/16X"OBSERVATIONS MADE"13X.13." TIME
01065
           7/16X"SAMPLES TAKEN"17X, 13," TIMES"/)
01066
            CALL TUMS(III.II2)
01068
01070
            PRINT486
       486 FORMAT(//"DO YOU WISH DETAILED LOG INFORMATION (YES/NO)"/)
81888
01090
            READS05,NX2
       505 FORMAT(A3)
01100
            IF'(NX2-/454660)524,45,524
01110
       524
            IF(NX2-/702562)506,506,506
01111
       506 PRINTS07
01120
       507 FORMATC//"INDICATE WHICH OF THE FOLLOWING PRINT OUTS YOU DES
01130
           1/1X"1"3X"COMPLETE REPORT BY ACTIVITY"/1X"2"3X"COMPLETE RE"
01140
           2"PORT BY DATE"/1X"3"3X"COMPLETE REPORT OF ONE ACTIVITY
01150
           31X"4"3X"COMPLETE REPORT BY DATE AND ACTIVITY"/
Ø1155
           41X"5"3X"CHANGE PERIOD"/1X"6"3X"NEXT LEVEL"/)
01157
01160
            READ: NX3
            GO TO(508,514,510,508,18,45),NX3
01170
01180
       510 PRINT512
01190
       512 FORMATC//"INDICATE ONE OF THE FOLLOWING ACTIVITIES"/
           1/1X"1"3X"ENVIRONMENT"/1X"2"3X"DIET"/1X"3"3X"ORGANISMS IN"
01200
01205
           2"GESTED"/1X"4"3X"ANTISEPTIC WASHES"/1X"5"3X"ANTIBIOTICS"
           3/1X"6"3X"OBSERVATIONS"/1X"7"3X"SAMPLES TAKEN"/)
01210
01220
            READ: IZ1
            GO TO (394,394,395,395,395,395,396), [Z1
91221
01222
       394 IZ2=IZ1
01223
            GO TO 513
01224
       395 IZ2=IZ1+1
01225
            121=122
95210
            GO TO 513
01227
       396
            IZ1=121+2
P1228
            IZ2=IZ1
01230
            GO TO 513
01240
       508 [21=1
01250
            122=9
91269
       513 CALL SUMM(III) [12, I, IZ1, IZ2, IMO, IDA, IYR, IMO1, IDA1, IYR1)
01270
            IF(NX3-4)506,514,506
01283
       514 PRINT515.N1(I), IMO, IDA, IYR, IMO1, IDA1, IYR1
01284
       515 FORMAT(///31X"ANIMAL"1X,14,///19X"PERIOD FROM ",A2,"/"
           1,A2,"/",A2," TO ",A2,"/",A2,"/",A2,//24X"DETAILED LOG IN"
01285
           2"FORMATION"//3X"DATES"5X"ACTIVITIES"10X"ELEMENTS"24X"NUMBER$
01286
01288
       509 00 45 [1=111,112
01290
            CALL DATE(K(1:11);KYR;KM0;KDA)
01291
            IF(KMM-KMO)516,517,516
```

Figure 20. Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program (Sheet 2 of 6)


```
01292
       516 PRINT518
            FORMAT(" ")
01293
       518
             KMM=KMO
01294
        517
01310
             CALL CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
             IF(K(4, II)-/003301)84,82,84
01320
01330
       84
             IF(K(4,II)-/606060)81,82,81
            PRINT83, IMO, IDA, IYR, (KCD1(K(2, II), J), J=1,6), (KCD2(K(3, II), L)
01349
       82
01350
            1.L=1.10).K(4.II).K(5.II)
01360
             60 TO 46
            PRINT80, IMO, IDA, IYR, (KCD1(K(2, II), J), J=1,6), (KCD2(K(3, II), L)
01370
       81
01380
            1.L=1.10).K(4.II).K(5.II)
             FORMAT(1X,A2,"/",A2,"/",A2,2X,6A3,2X,10A3,1X,17,A3)
01390
       80
01400
       83
              FORMAT(1X,A2,"/",A2,"/",A2,2X,6A3,2X,10A3,2X,A6,A3)
01405
             IF(11-112)45,506,45
        46
01410
        45
             CONTINUE
01420
             STOP
01436
             END
$OLD
OLD PROGRAM NAME -- SUM
WAIT.
READY.
SLIST
01140
             SUBROUTINE CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
01150
             K=10
             IOCTA=/010000
Ø1160
             IOCT=/000100
01170
01180
             000000=DA=00000
01190
             DO 100 I=1.31
01200
             IF(1-K)600.500.600
01210
        500
             IDA=IDA+IOCTA+/001100
01220
             K=K+10
             GO TO 400
01230
            IDA=IDA+IOCT
Ø124Ø
        600
01250
        400
             IF(KDA-I)100,110,100
             CONTINUE
01260
        100
01270
        110
             K=10
01280
              DO200 I=1:12
01290
             IF(I+K)150,140,150
01300
        1 40
             IMO=IMO+IOCTA-/001100
             60 TO 170
01310
 01320
        150
             IMO=IMO+IOCT
             IF(KMO-1)200,210,200
01330
        170
01340
        200
             CONTINUE
01350
        210
             IF(KYR-66)230,220,230
01360
        230
              IF(KYR-67)250,240,250
01370
        250
             PRINT270
             FORMAT("ERROR IN YEAR INPUT ")
01380
        270
 01390
             IYR=/060700
        240
             RETURN
01400
 01410
        550
             IYR=/060600
 01420
             RETURN
01430
             END
 01440
             SUBROUTINE SUM(III, II2)
 01446
             COMMON DUM(27), KR(64), NS(9), K(5,225,1)
91447
             DO 594 JJX=1.9
        594
             NS(JJX)=0
 01448
             DO 300 J=1.9
 Ø1 45Ø
```

Figure 20. Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program (Sheet 3 of 6)


```
01455
            IF(J-3)299,300,299
01456
       299
            IF(J-8)298,300,298
            DO 300 II=II1.II2
01460
01470
            IF(K(2,11)-J)304,301,304
01475
            PRINT:NS(J)
01480
       301
            1+(L)2N=(L)2N
Ø1 485
            IF(J-2)303,300,300
            IF(K(2, II)+(J+7))300,302,300
01490
       303
01500
       302
            NS(J)=NS(J)+1
01520
            CONTINUE
       300
Ø1530
            RETURN
Ø1540
            END
01550
            SUBROUTINE DATE(KX, KYR, KMO, KDA)
01560
            KYR=KX/10000+60
            KMO=XMODF(KX,10000)/100
01570
01580
            KDA=XMODF(KX,100)
01600
            RETURN
01610
            END
            SUBROUTINE SUMM(III, II2, I, IZ1, IZ2, IMO, IDA, IYR, IMO1, IDA1, IYR)
01650
01674
            COMMON DUM(27); KR(64); NS(9); K(5,225,1); KCD1(9,6); KCD2(99,10)
01675
01680
            PRINT702,N1(I), IMO, IDA, IYR, IMO1, IDA1, IYR1
       /02 FORMAT(///31X"ANIMAL"[X,14,///19X"PERIOD FROM ",A2,"/"
01690
           1,A2,"/",A2," TO ",A2,"/",A2,"/",A2//25X"DETAILED LOG IN"
01700
           2"FORMATION"//)
01710
01721
       790 DO 703 J=IZ1, IZ2
             IF(J-3)761,703,761
01725
01726
            IF(J-8)715,703,715
01727
       715 PRINT716, (KCD1(J,L),L=1,6)
01728
            PRINT745
01729
            FORMAT(/2X,6A3)
01730
             60 TO(712,714,703,717,719,721,722,703,723),J
01756
            FORMAT(//11X"ELEMENTS"23X"DATES"5X"NUMBERS"/)
01760
            NKI=1
01770
            NK2=3
             GO TO 739
01780
01820
            NK1=3
            NK2=14
01830
             GO TO 739
01840
01870
       717
            NK1=15
            NK2=29
01880
01890
             60 TO 739
01920
       719
            NK1=30
Ø1930
            NK2=35
01940
            60 TO 739
01970
       721
            NK1=36
01980
            NK2=49
             GO TO 739
01990
02000
            NKI=50
02005
            NK2=90
02010
             60 TO 739
02040
       723
            NK1 = 93
02050
             NK2=99
02065
            M=Ø
             00 703 NK=NK1.NK2
02070
02071
             IF(M)775,776,775
            PRINT774
02075
       775
            FORMAT(" ")
02076
       774
02077
            M=0
02080
       776
           DO 703 II=II1.II2
             IF(J-1)763,768,763
02083
            IF(NK+3)763,764,763
02085
       76B
02090
       763
            IF(K(3, II)-NK)703,705,703
02100
            CALL DATE(K(1, II), KYR, KMO, KDA)
             CALL CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
02110
             IF(K(4, II)-/003301)765,766,765
02113
```

Figure 20. Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program (Sheet 4 of 6)


```
765 IF(K(4,11)-/606060)762,766,762
02114
02116
       766
            PRINT767, (KCD2(NK,NZ4),NZ4=1,10), IMO, IDA, IYR, K(4,11), K(5,11)
02117
            M=M+1
02118
             GO TO 703
            PRINT730, (KCD2(NK,N),N=1,10), IMO, IDA, IYR, K(4, II), K(5, II)
02120
       762
            FORMAT(9X, 10A3, 1X, A2, "/", A2, "/", A2, 2X, 17, A3)
02130
            FORMAT(9X,10A3,1X,A2,"/",A2,"/",A2,3X,A6,A3)
02131
       767
02135
             M=M+1
             60 TO 703
02150
02170
       764
                 NK1=91
02180
             NK2=92
02185
             GO TO 739
       703 CONTINUE
02210
02211
             M=0
             RETURN
02220
             END
02230
             SUBROUTINE TUMS(III: II2)
02240
02250
             COMMON DUM(27), KR(64), NS(9), K(5,225,1), KCD1(9,6), KCD2(99,10)
02260
             PRINT809
       809 FORMAT(/23X"SUBTOTALS FOR THIS PERIOD"//8X"ACTIVITIES"
02270
            112X"ELEMENTS"22X"FREQ.")
02271
02288
             KRR1=0
             DO 804 NK5=1,99
02290
             KRR=Ø
92399
Ø231Ø
       855
            DO 804 II=II1.112
             IF(K(3,11)-NK5)803,802,803
02320
       827
02330
       802
             KRR=KRR+1
02332 817
            IF(K(2, II)-8)819,820,819
       820 KRR2=1
02335
             GO TO 803
02336
             KRR2=K(2.11)
02337
       819
02340 803
            IF(II-II2)804,814,804
02350
       814
             IF(KRR)805,804,805
92358
       805
            IF(KRR1-KRR2)811,812,811
02359
       811
             PRINT813
             FORMAT(" ")
02360
       813
02361
       812
             KRRI=KRR2
             PRINT806, (KCD1(KRR2,M),M=1,6), (KCD2(NK5,L),L=1,10),KRR
02362
02365
       806
             FORMAT(6X,6A3,2X,10A3,13," TIMES")
02374
       804
             CONTINUE
02380
             RETURN
02390
             END
 50LD
OLD PROGRAM NAME -- RAM
WAIT.
READY.
 SLIST
 00010
             SUBROUTINE RAM(IRAM)
 00020
             COMMON DUM(27), KR(64), NS(9), K(5,225,1), KCD1(9,6), KCD2(99,10)
             CALL SYSLØI(IRAM, KR)
 00030
 00040
             NA=1
 00050
             DO 60 I=1.9
             DO 60 J1=1.6
 99969
             KCD1(I.J1)=KR(NA)
 00070
             NA=NA+1
 00080
 00090
             CONTINUE
 00100
             IRAM=3040
 00110
        62
             IRAM≈IRAM+1
- 00120
             NB=1
```

Figure 20. Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program (Sheet 5 of 6)


```
CALLSYSLØ1(IRAM, KR)
`00150
00160
            IF(IRAM-3041)63#63
00170
            NB=1
            GO TO 61
00180
            DO 61 I=1,99
00190
       63
00200
            DO 61 J1=1,10
            KCD2(I.J1)=KR(NB)
00210
       65
00220
            NB=NB+1
00230
            IF(NB-61)61,62,61
        61 CONTINUE
00240
00250
            RETURN
00260
            END
            SUBROUTINE LOG(I, IRAM1, IRAM2)
00340
            COMMON DUM(27); KR(64); NS(9); K(5; 225; 1); KCD1(9; 6); KCD2(99; 10)
00345
00346
           1N1(6)
00350
            IF(N1(I)-115)26,21,26
00360
       26
             IF(N1(I)-116)27,22,27
00370
       27
            IF(N1(I)-118)28,23,28
            IF(N1(I)-119)29,24,29
00380
       28
00390
       29
             IF(N1(I)-120)70,25,70
00400
       70
             IF(N1(I)-121)71,71,71
       21
             IRAM1=1561
00410
00420
             GO TO30
00430
       22
             IRAM1=1801
            GO TO 30
00440
00450
       23
             IRAM1=2241
00460
            60 TO 30
00470
       24
             IRAM1=2321
            GO TO 30
00480
00490
       25
             IRAM1=2561
             GO TO 30
00500
00510
       71
            IRAM1=2801
           .IRAM2=IRAM1+30
00520
       30
00530
           RETURN
00540
            END :
```

Figure 20. Listing of the Main Program and Subroutines Which Make Up the Final Form of Log Report Generator Program (Sheet 6 of 6)

RUN TYPE-- \$LOAD LOGREP.SUJ-M.RAM

LOAD LIMITS 13134 13367

TYPE THE NUMBER OF ANIMALS FOR WHICH LOG INFORMATION IS DESIRED (6 MAX.) :=11-+3

TYPE ANIMAL NUMBERS (115,116,120,ECT.)

ANIMAL 115 DO YOU WISH THE ENTIRE LOG (YES/NG):=NO

TYPE STARTING AND ENDING DATES OF THE DESIRED PRINT OUT IN THE FORM--70114,70223--

DATE CODE EXPLANATION

FOR DATE CODE 70114
7=YEAR(1967)
01=MONTH(JAN.)
14=DAY(JAN.14)
1=(0815,60907)

LOG INFORMATION

ANIMAL 115

PERIOD FROM 08/15/66 TO 09/07/66

TOTALS FOR THIS PERIOD

ACTIVITIES	F	REO.
ENVIRONMENT CHANGED	5	TIMES
DIET CHANGED	1	TIMES
ORGANISMS INGESTED	0	TIMES
ANTISEPTIC WASHES USED	0	TIMES
ANTIBIOTICS USED	2.	TIMES
OBSERVATIONS MADE	6	TIMES
SAMPLES TAKEN	Ø	TIMES

SUBTOTALS FOR THIS PERIOD

ACTIVITIES	ELEMENTS		FREQ.
DIET	NON STERILE	1	TIMES
DIET NAMES	PURINA MUNKEY CHUM+RANAS.+ORS.	1	TIMES
ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	s	TIMES
OBSERVATIONS	ANTIHELMINTHIC TRET. (TRIBNDZE)	1	TIMES
OBSERVATIONS	TB TESTED NEGATIVE	2	TIMES
OBSERVATIONS	STOOL CULTURE NEGATIVE (SAL+SH)	1	TIMES
OBSERVATIONS	BLOOD SMEAR NEGATIVE (MALARIA)	1	TIMES
OBSERVATIONS	ANIMAL RECEIVED AT GE	1	TIMES
ENVIRONMENT	ANIMAL ADDED	5	TIMES

Figure 21. Example of Operation of Final Form of Log Report Generator Program (Characters Underlined Indicate Input to Computer from Teletype Terminal) (Sheet 1 of 6)

Contrails

DO YOU WISH DETAILED LOG INFORMATION (YES/NO) := YES

INDICATE WHICH OF THE FOLLOWING PRINT OUTS YOU DESIRE

- 1 COMPLETE REPORT BY ACTIVITY
- 2 COMPLETE REPORT BY DATE
- 3 COMPLETE REPORT OF ONE ACTIVITY
- 4 COMPLETE REPORT BY DATE AND ACTIVITY
- 5 CHANGE PERIOD
- 6 NEXT LEVEL

:=1

ANIMAL 115

PFRIOD FROM Ø8/15/66 TO Ø9/07/66 DETAILED LOG INFORMATION

ENVIRONMENT

FLEMENTS .	DATES	NUMBERS
ANIMAL ADDED	09/07/66	116AN
ANIMAL ADDED	09/07/66	118AN
ANIMAL ADDED	09/07/66	119AN
ANIMAL ADDED .	09/07/66	120AN
ANIMAL ADDED	09/07/66	121AN

DIET

ELEMENTS DATES NUMBERS

NON STERILE 09/07/66

PURINA MONKEY CHOW+BANAS.+ORS. 09/07/66

Figure 21. Example of Operation of Final Form of Log Report Generator Program (Characters Underlined Indicate Input to Computer from Teletype Terminal) (Sheet 2 of 6)

ANTIBIOTICS

ELEMENTS	DATES	NUMBERS
CHLORAMPHENICOL+FUROXONE	08/15/66	110MG
CHLORAMPHENICOL+FUROXONE	08/16/66	110MG

OBSERVATIONS

ELEMENTS	DATES	NUMBERS
ANTIHELMINTHIC TRET. (TRIBNDZE)	08/17/66	75MGK
TB TESTED NEGATIVE TB TESTED NEGATIVE	08/17/66 09/01/66	
STOOL CULTURE NEGATIVE(SAL+SH)	08/22/66	
BLOOD SMEAR NEGATIVE (MALARIA)	08/22/66	
ANIMAL RECEIVED AT GE	09/07/66	

Figure 21. Example of Operation of Final Form of Log Report Generator Program (Characters Underlined Indicate Input to Computer from Teletype Terminal) (Sheet 3 of 6)

INDICATE WHICH OF THE FOLLOWING PRINT OUTS YOU DESIRE

- 1 COMPLETE REPORT BY ACTIVITY
- 2 COMPLETE REPORT BY DATE
- 3 COMPLETE REPORT OF ONE ACTIVITY
- 4 COMPLETE REPORT BY DATE AND ACTIVITY
- 5 CHANGE PERIOD
- 6 NEXT LEVEL

=2

ANIMAL 115

PERIOD FROM 09/07/66 TO 09/07/66

DETAILED LOG INFORMATION

DATES	ACTIVITIES	ELEMENTS	NUMBERS
08/15/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	110MG
Ø8/16/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	110MG
08/17/66	OBSERVATIONS	ANTIHELMINTHIC TRET (TRIBNDZE)	75MGK
08/17/66	OBSERVATIONS	TB TESTED NEGATIVE	
08/22/66	OBSERVATIONS	STOOL CULTURE NEGATIVE (SAL+SH)	
08/55/66	OBSERVATIONS	BLOOD SMEAR NEGATIVE (MALARIA)	
09/01/66	OBSERVATIONS	TB TESTED NEGATIVE	
09/07/66	OBSERVATIONS	ANIMAL RECEIVED AT GE	
09/07/66	DIET	NON STERILE	
09/07/66	DIET NAMES	PURINA MONKEY CHOW+BANAS.+ORS.	
09/07/66	OTHER ANIMALS	ANIMAL ADDED	116AN
09/07/66	OTHER ANIMALS	ANIMAL ADDED	118AN
09/07/66	OTHER ANIMALS	ANIMAL ADDED	119AN
09/07/66	OTHER ANIMALS	ANIMAL ADDED	120AN
09/07/ 66	OTHER ANIMALS	ANIMAL ADDED	121AN

Figure 21. Example of Operation of Final Form of Log Report Generator Program (Characters Underlined Indicate Input to Computer from Teletype Terminal) (Sheet 4 of 6)

INDICATE WHICH OF THE FOLLOWING PRINT OUTS YOU DESIRE

- 1 COMPLETE REPORT BY ACTIVITY
- 2 COMPLETE REPORT BY DATE
- 3 COMPLETE REPORT OF ONE ACTIVITY
- 4 COMPLETE REPORT BY DATE AND ACTIVITY
- 5 CHANGE PERIOD
- A NEXT LEVEL

:=3

INDICATE ONE OF THE FOLLOWING ACTIVITIES

- 1 ENVIRONMENT
- S DIEL
- 3 ORGANISMS INGESTED
- 4 ANTISEPTIC WASHES
- 5 ANTIBIOTICS
- 6 OBSERVATIONS
- 7 SAMPLES TAKEN

#=<u>6</u>

ANIMAL 115

PERIOD FROM 09/07/66 TO 09/07/66

DETAILED LOG INFORMATION

NUMBERS

OBSERVATIONS

EL EMENTO

FLEWEW 12	DATES	NUMBERS
ANTIHELMINTHIC TRET. (TRIBNDZ	E) 08/17/66	75MGK
TB TESTED NEGATIVE TB TESTED NEGATIVE	08/17/66 09/01/66	
STOOL CULTURE NEGATIVE(SAL+S	H) Ø8/22/66	
BLOOD SMEAR NEGATIVE(MALARIA) Ø8/22/66	
ANIMAL RECEIVED AT GE	09/07/66	

Figure 21. Example of Operation of Final Form of Log Report Generator Program (Characters Underlined Indicate Input to Computer from Teletype Terminal) (Sheet 5 of 6)

INDICATE WHICH OF THE FOLLOWING PRINT OUTS YOU DESIRE

- 1 COMPLETE REPORT BY ACTIVITY
- 2 COMPLETE REPORT BY DATE
- 3 COMPLETE REPORT OF ONE ACTIVITY
- 4 COMPLETE REPORT BY DATE AND ACTIVITY
- 5 CHANGE PERIOD
- 6 NEXT LEVEL

:=<u>6</u>

ANIMAL 116
DO YOU WISH THE ENTIRE LOG (YES/NO):=\$STOP
READY.

Figure 21. Example of Operation of Final Form of Log Report Generator Program (Characters Underlined Indicate Input to Computer from Teletype Terminal) (Sheet 6 of 6)

ANIMAL LOG INFORMATION

ANIMAL	(code)	RECORD NUMBER
DATE		
CATEGORIES	NAME OR PRESENCE	TRUOMA
Isolation (yes/no)		
Diet (sterile or non)		
Diet Name		
Organisms Ingested		***
Antiseptic Wash		
Antibiotics		
Observations		
	OTHER ANIMAL INFORMATION	•
ANIMAL	mate (m. n.	
ADDED OF PEMOUED		

Figure 22. Animal Log Information Data Collecting Form

MICROBIAL DATA

RECORD	NUMBER	
--------	--------	--

ANIMAL SAMPLED DATE TEMPERATURE SITE	HUMIDITY	PRESSURETOTAL NUMBER
	Anabrobes	
CLASS	GENUS	Number
	** *** *******************************	
		

Figure 23. Microbial Data Collecting Form

Contrails

ANIMAL 115
ANIMAL 116
ANIMAL 118
ANIMAL 119
ANIMAL 120
ANIMAL 121
ISOLATION YES
ISOLATION NO
DIET STERILE
DIET NON-STERILE
DIET CHANGES

PURINA MONKEY CHOW BANANAS ORANGES

VITAMINS

ROCKLAND PRIMATE DIET

SIMILAC

ORGANISMS INGESTED

LACTINEX

ANTISEPTIC WASH PERACETIC ACID ANTIBIOTICS

CHLORAMPHENICOL FUROXONE

TEGOPEN
TETREX F
NEOMYCIN
NYSTATIN

ANTIHELMINTHIC TREATMENT

THIBENDAXOLE DIARRHEA

TB TESTED NEGATIVE

STOOL CULTURE NEGATIVE SAL SHI

ASPERGILLUS ALCALIGENES

NO COUNT AEROBES
NO COUNT ANAEROBES

NUMBER NO GROWTH BLOOD SMEAR NEGATIVE MALARIA

ANIMAL RECEIVED ANIMAL WEIGHED FECES YELLOW FECES NORMAL EYES IRRITATED

OTHER ANIMALS PRESENT

ANIMAL REMOVED

SAMPLED FECES

CONJUNCTIVA

THROAT GINGIVA AXILLA GROIN

GLANS PENIS
BACTERIA
ASCOMYCETES
STREPTOCOCCUS
CORYNEBACTERIUM

PROTEUS
ESCHERICHIA
STAPHYLOCOCCUS
AEROBACTER
SHIGELLA

ESCHERICHIA AEROBACTER GROUP

PSEUDOMONAS SALMONELLA LACTOBACCILLUS BACTEROIDES CLOSTRIDIUM

Figure 24. Thesaurus of Descriptors from Primary File

THIS IS THE MSD 265 SYSTEM

10 USER NUMBER--SYSTEM--\$IN001 READY.

(ANIMAL*115/ANIMAL*121)+CORYNEBACTERIUM-STAPHYLOCOCCUS+SAMPLED.
\$RUN

00007 HITS

PRINT:=ALL

151610 151611 151620 151622 151723 151726 151728

SEND:=NONE

QUESTION COMPLETED

Figure 25. Example of Primary File Research

LISTING OF THE THREE SUBPROGRAMS WHICH TOGETHER MAKE UP THE REPORT GENERATOR PROGRAM.

```
THIS IS THE MSD 265 SYSTEM
```

12 USER NUMBER--FWT212 SYSTEM--\$FORTRAN RUN TYPE-- \$OLD OLD PROGRAM NAME--RPG WAIT.

READY.

```
TRIJA
```

```
00000
            DIMENSION J(4), LINH(40), KT(10), JT(4)
            COMMON NDUM(55), ID(512), KR(64)
00010
            COMMON K(5,250,1), ISB(250)
88828
00030
          2 CALL HIER(J)
            KS=4
00040
00050
            DO 50 L=1.250
88868
            ISB(L)=L
00070
            DO 50 I=1.5
         50 K(I.L)=0
00080
00090
            L=1
00140
         80 CALL READUM(NH)
00145
            SENSE LIGHT 4
00150
         90 IF(J(4))95,91,95
00160
         91 DO 94 I=2,4
         94 JT(1)=J(1-1)
00170
00186
            JT(1)=4
            SENSE LIGHT 6
00190
00200
            NL=3
            60 TO 97
06210
         95 DO 96 I=1.4
09220
         96 JT(I)=J(I)
00230
88248
            NL=4
00250
         97 CALL SORT(JT.NH)
            CALL COLS(NH, J.LINH, LC)
66266
89260
            IF(LC-1)3,3,1
00264
          3 PRINT 11,J(1)
         11 FORMAT("1DO NOT USE CODE NUMBER" 12" AS COLUMN HEADER -- "/
99266
89269
           2"THERE IS ONLY ONE REPRESENTATIVE OF THAT VARIABLE."//)
00269
            60 TO 200
60270
          1 DO 1001=1.4
        100 KT(1)=K(1,1SB(L))
00280
00290
            CALL PF(KS, J, KT, NL)
00300
            CALL HDR(J, LC, LINH)
            CALL LINR(J.LC.L.LINH.KS.NL.NH)
00310
00312
            IF(J(4))198,198,199
        198 L=L+1
00313
        199 IF(L-NH) 4.4.200
00320
00330
        200 PRINT 10
         10 FORMAT("1END REPORT")
00340
            SENSE LIGHT Ø
00341
00342
            SENSE LIGHT 4
00350
            60 TO 2
```

Figure 26. Report Generator Program (Sheet 1 of 5)


```
00351
          4 IF(J(4))1.5.1
00352
          5 L=L-1
            GO TO 1
00353
00360
            END
OLD PROGRAM NAME -- REPORT
WAIT.
READY.
SLIST
            SUBROUTINE SORT(J,NH)
00050
            DIMENSIONJ(4)
00060
00070
            COMMON NDUM(55), ID(512), KR(64)
00080
            COMMONK(5,250,1), [SB(250)
            DO 110 L=1,250
00090
00100
            ISB(L)=L
            N≠NH
00110
00120
       115
           DO 400 L=2.NH
00130
            DO 350 II=1.4
00140
            I=5-II
00150
            IF(K(J(I), ISB(L))-K(J(I), ISB(L-1)))320,350,400
           ITM=ISB(L-1)
00160
00170
            ISB(L-1)=ISB(L)
00180
            ISB(L)=ITM
            SENSE LIGHT 1
00190
00200
            GO TO 400
            CONTINUE
00210
       350
00215
       400
            CONTINUE
00220
            IF(SENSE LIGHT1)115
            RETURN
00230
60240
            END
00250
            SUBROUTINE HIER(J)
00260
            DIMENSION J(4)
00270
            IF(SENSE LIGHT 4)100
            PRINT 10
00280
00290
         10 FORMAT("CODING OF VARIABLES"//" 1---ANIMAL"/" 2---DATE"/
           2" 3---SITE"/" 4---CLASS-GENUS"///"TYPE CODE NUMBERS OF "
00300
           2"EACH VARIABLE IN ORDER"/"STARTING WITH THE HIGHEST ORDER."
00310
           3/"I.E., MAJOR GROUP TO MINOR GROUP (COLUMN HEADER)"/>
00320
            GO TO 101
00325
00330
        100 SENSE LIGHT 4
        101 READ: (J(I), I=1,4)
00340
00350
            DO 110 I=1.2
00360
            (I)L=TL
00370
            J(I)=J(5~I)
       110 J(5-1)=JT
00380
            IF(J(2)-4)200,150,200
00381
00382
        150 JT=J(1)
00383
            J(1)=J(2)
00384
            TL=(S)L
ØØ385
            PRINT 11,J(4),J(3),J(2),J(1)
00386
         11 FORMAT("HIERARCHY REORDERED TO EQUIVALENT: "412)
ØØ39Ø
       200
            RETURN
00400
            SUBROUTINE READUM(NH)
99419
00420
            COMMON NDUM(55), ID(512), KR(64)
99439
            COMMON K(5,250,1)
            IRAM=1537
99448
00460
            NREC=8
            CALL SYSLØI(IRAM, ID, NREC)
00470
```

Figure 26. Report Generator Program (Sheet 2 of 5)


```
00480
            NREC=1
00490
            DO 68 I=1,512
            IF(ID(I))69,69,68
00492
            CONTINUE
88494
       68
            NH= I-1
00496
       69
00500
            PRINT:NH
00510
            1..=1
00520
            DO 500 M=1.NH
            IRAM=XMODF(ID(M),10000)
00530
00540
            CALL SYSLØ1(IRAM, KR, NREC)
00550
            LS≃L
            ND=2*KR(7)+6
20560
00570
            K(5,L)=KR(5)
00580
            K(4,L)=+2
00590
            K(5,L+1)=KR(6)
            K(4,L+1)=-1
00600
00605
            L=L+2
00607
             IF(KR(7))70,70
            DO 28 I=8.ND.2
00610
00620
            K(4,L)=KR(I)
00630
            K(5,L)=KR(I+1)
00640
            L=L+1
             CONTINUE
00650
       20
00670
            LN=L-1
       70
00680
             DO 30 I=1.3
            DO 30 LL=LS.LN
00690
00700
       30
            K(I,LL)=KR(I+1)
            CONTINUE
00710
       500
            NH=LN
00715
00720
             RETURN
09730
            END
SOLD
OLD PROGRAM NAME -- FORMS
WAIT.
READY.
$LIST
00000
             SUBROUTINE PF(KS, J, KT, NL)
00018
             DIMENSION J(4), KT(4)
         10 FORMAT("ANIMAL NUMBER--"15)
00020
00030
         11 FORMAT("DATE"-"17)
         12 FORMAT("SITE CODE--"13)
0000
00045
         13 FORMAT("CLASS-GENUS CODE--"15)
00050
         14 FORMAT("AEROBE")
00060
         15 FORMAT("ANAEROBE")
         90 FORMAT(//)
00070
             PRINT 90
00080
60090
             PRINT 90
00091
            KS=XMINØF(KS,NL)
00100
         100 DO 200 I=3.KS
00101
             IR=KS-I+3
00126
             IB=J(IR)
Ø0130
             GO TO(110.120.130.140).IB
         110 PRINT 10.KT(1)
00140
00150
             60 TO 200
00160
         120 PRINT 11,KT(2)
00170
             60 TO 200
00180
         130 PRINT 12.KT(3)
00190
             GO TO 200
00200
         140 IF(KT(4)+1)150,160,170
```

Figure 26. Report Generator Program (Sheet 3 of 5)


```
150 PRINT 14
00210
00220
            60 TO 200
00230
        160 PRINT 15
            60 TO 200
99249
00250
        170 PRINT 13.KT(4)
00260
        200 CONTINUE
00270
            PRINT 90
        300 RETURN
00280
00290
            END
00500
            SUBROUTINE LINR(J.LC.L.LINH.KS.NL.NH)
00510
            DIMENSION J(4), LINE(40,2), LINH(40)
00520
            COMMON NDUM(55), ID(512), KR(64)
00530
            COMMON K(5,250,1), ISB(250)
00531
            LL=1
00540
        100 DO 110 I=1.40
            LINE(1,1)=0
00545
00550
        110 LINE(I.2)=0
00560
            KS=0
00570
            DO 200 I=1.LC
00580
            IF(SENSE LIGHT 6)130
        118 IF(J(1)-4)150,150,800
00590
00630
        130 SENSE LIGHT 6
            IF(K(4, ISB(L)))150, 600, 140
00631
60640
        140 L=L+1
00650
            GO TO 130
00660
        150 IF(LINH(I)-K(J(1), ISB(L)))190,160,800
00 670
        190 [=I+1
            GO TO 150
00680
00690
        160 LINE(1,1)=K(5,1SB(L))
            IF(SENSE LIGHT 6)161.169
00691
00692
        161 SENSE LIGHT 6
            L=L+1
99693
00694
            LINE(1,2)=K(5,1SB(L))
00695
            LL=2
00700
        169 DO 178 II=2,NL
00710
            IF(K(J(II), ISB(L))-K(J(II), ISB(L+1)))165,170,165
00720
        165 KS=II
00730
        170 CONTINUE
88748
            1. = 1. + 1
00750
            IF(KS-2)200,300,300
88768
        200 CONTINUE
        300 PRINT 10,K(J(2),ISB(L-1))
00770
            FORMAT(16#2X)
00780
80798
            DO 400 I=1.LC
00792
            DO 400 L2=1,LL
00795
            IF(LINE(I,L2))310,311,310
00797
       311 LINE(I,L2)=/606060
90890 -
       310
            IF(LINE(1,L2)-99999)350,350,320
        320 PRINT 11.LINE(1,L2)
00810
00820
         11 FORMAT(1H+, 3X, A3, 2X)
            GO TO 388
06830
60840
        350 FLN=LINE(I.L2)/100
            MANT=XMODF(LINE(I,L2),100)
00850
00860
            FLN=10. ++MANT+FLN
00870
            PRINT 12.FLN
         12 FORMAT(1H+,1PE8-1)
99889
00890
        380 IF(XMODF(I+L2,8))400,390,400
00900
        390 PRINT 13
00910
         13 FORMAT(8X)
00920
        400 CONTINUE
00960
        420 IF(KS-2)800,100,600
88978
        608 RETURN
        800 IF(L-NK)801,601,600
00980
99981
        801 PRINT 15,LANH
         15 FORMAT("SEQ.ERR. AT"I4" FOR"I4///)
66990
00991
            STOP 1
```

Figure 26. Report Generator Program (Sheet 4 of 5)


```
00992
        601 L=L+1
00993
            GO TO 600
01010
            END
01015
            SUBROUTINE HDR(J, L, LINH)
            DIMENSION LINH(40), J(4)
01016
            FORMAT IF O(" ANIMAL DATE SITE CL-GEN")
01020
            IF(J(1)-4)200,100,200
01030
01040
        100 PRINT 10
01050
        10 FORMAT(15X,"CLASS-GENUS CODE"/)
            PRINT 11, IFØ(2*J(2)), IFØ(2*J(2)+1), (LINH(KK), KK=3,L)
01060
01070
        1! FORMATC2A3"
                         AEROBE ANAEROBE" 15,518,5(/6X,818))
01080
            BO TO 500
01090
        200 J1F=5*(J(1)-1)+2
01100
            J1L=J1F+4
01110
            FORMAT ICGOH(" ANIMAL NUMBERS DATES
                                                           SITE CODES
01120
            PRINT 13, (ICGOH(KK), KK=J1F, J1L)
01130
        13 FORMAT(15X,5A3/)
01140
            IF(J(3)-4)210,300,210
01150
        210 IF(J(4)-4)220,300,220
01160
        220 PRINT 14. IFO(J(2) *2), IFO(J(2) *2+1), (LINH(KK), KK=1,L)
         14 FORMAT(2A3,2X,111,3116/9(119,3116/))
01170
            PRINT 15
01180
01190
         15 FORMAT(7X,4(4X,4HAERB,4X,4HANRB))
01200
            GO TO 500
        300 PRINT 16, IFO(2*J(2)), IFO(2*J(2)+1), (LINH(KK), KK=1,L)
01210
01220
            FORMAT(2A3,818,5(/6X,818))
       16
       500 PRINT20
Ø1225
            FORMAT(" ")
01227 20
01230
            RETURN
01240
            END
03000
            SUBROUTINE COLS(NH, J, LINH, LC)
03010
            DIMENSION J(4), LINH(40)
03020
            COMMON NDUM(55), ID(512), KR(64)
03030
            COMMON K(5,250,1)
            DO 50 1=1,40
03032
        50 LINH(1)=0
03034
03040
        100 LC=0
03050
            DO 120 L=1.NH
            DO 110 I=1.LC.
03060
03070
            IF(K(J(1),L)-LINH(I))110,120,110
03080
        110 CONTINUE
03090
            LC=LC+1
            LINH(LC)=K(J(1),L)
03100
        120 CONTINUE
03110
03112
        130 DO 200 L=2.LC
03113
            IF(LINH(L)-LINH(L-1))150,200,200
03114
        150 LT=LINH(L)
Ø3115
           LINH(L)=LINH(L-I)
Ø3116
            LINH(L-1)=LT
03117
            SENSE LIGHT 2
        200 CONTINUE
Ø3118
03120
            IF(SENSE LIGHT 2)130
Ø3122
            RETURN
03130
            END
```

ELAPSED TIME IN HUNDREDTHS OF HOURS 029

Figure 26. Report Generator Program (Sheet 5 of 5)


```
THIS IS THE MSD 265 SYSTEM
```

4 USER NUMBER--SYSTEM--\$IN001 READY.

(ANIMAL*115/ANIMAL*118/ANIMAL*121)+(CONJUNCTIVA/THROAT/GINGIVA)+
SAMPLED.

SAMPLED.

00024 HITS

PRINT:=ALL

151609 151610 151611 151617 151618 151619 182057 182058 182059 182065 182066 182067 182073 182074 182075 212881 212882 212883 212889 212890 212891 212897 212898 212899.

QUESTION COMPLETED

SHELLO

4 USER NUMBER-SYSTEM--SFORTRAN
RUN TYPE-- SLOAD RPG, REPORT, FORMS

LOAD LIMITS 11676 13643

CODING OF VARIABLES

1 --- AN IMAL

2---DATE

3---SITE

4---CLASS-GENUS

TYPE CODE NUMBERS OF EACH VARIABLE IN ORDER STARTING WITH THE HIGHEST ORDER, I.E., MAJOR GROUP TO MINOR GROUP (COLUMN HEADER) 1=1 2 3 4

24

ANIMAL NUMBER-- 115 DATE-- 70314

CLASS-GENUS CODE

SITE AEROBE ANAEROBE 101 102 105 108

1 1.3E+07 7.9E+06 NC NC
2 5.1E+09 3.7E+09 NC
3 1.5E+09 7.2E+08 NC

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 1 of 15)

DATE-- 70623

CLASS-GENUS CODE

SITE	AEROBE	ANAEROBE	101	102	105	108
1	1 • 8E+06	1 • 5E+Ø6		1 • 5E + Ø 6	1 • 1E+06	
5	9.9E+07	1 . 6E+0B		3.9E+06	2+8E+84	
. 3	2 • 1E+07	1 • 6E+08		3+0E+06	3 • 1E+Ø6	

ANIMAL NUMBER-- 118 DATE-- 70405

CLASS-GENUS CODE

SITE	AEROBE	ANAEROBE	101	102	105	108
1	1 - BE+84	4-0E+03		N-3	N-3	N-5
2	3.8E+07	3-2E+07		1-0E+06	N-4	1 • 0E+03
3	2.0E+05	1 - 3E+06		2.6E+05	N-3	N-3

DATE-- 70623

CLASS-GENUS CODE

SITE	AEROBE	ANAEROBE	101	1 92	105	198
1	1 • 8E+Ø6	4.9E+07	-	1 • 5E+06	2.2E+06	
2	4.9E+08	4.9E+08		3.9E+#7	1 • 5E+Ø4	
3	4.9E+08	7-0E+0B		3+9E+07	2.5E+Ø4	

DATE-- 70707

CLASS-GENUS CODE

SITE	AEROBE	ANAEROBE	101	102	105	108
1	4.9E+06	4.8E+06		2-1E+06	7 - 3E+06	
2	2.9E+07	2.2E+07		1 • 4E+84	5 • 1E+#7	
3	5 • 1E+07	1 • 4E+87		1.8E+07	9 • 4E+04	

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 2 of 15)

ANIMAL	NUMBER	121
DATE	70510	

CLASS-GENUS CODE

SITE	ī.	AEROBE	ANAEROBE	101	102	105	108
	1	1.2E+05	7-0E+04		9.0E+03	1 • 5E+Ø5	6-0E+03
	2	1 - 1E+07	1-9E+07		7.0E+06	2.3E+Ø4	1.9E+04
	3	1.9E+07	9 • 7E+06		4.3E+06	1 - 1E+04	1-0E+03

DATE -- 70623

CLASS-GENUS CODE

SITE	AEROBE	ANAEROBE	101	102	105	108
1	5.2E+05	4.3E+05		3 • 7E+05	1 • 9E+05	
2		4.3E+07		8.9E+06	1 • 7E+07	
3	2.8E+07	2.3E+07		3 • 7E+06	2.3E+06	

DATE-- 70707

CLASS-GENUS CODE

SITE	AEROBE	ANAEROBE	101	102	105	
1	1 - 3E+04	1 - 9E+04		4.0E+03	3.0E+03	
2	1 • 1E+09	1 • 2E+09		1.9E+07	2-0E+04	
3	5 • ØE+Ø8	+8E+Ø8		2.3E+07	1-0E+03	

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 3 of 15)

108

Contrails

END REPORT:=1 3 2 4 Hierarchy Reordered.

24

ANIMAL NUMBER-- 115 SITE CODE-- 1

CLASS-GENUS CODE

DATE AEROBE ANAEROBE 101 102 105 108

70314 1.3E+07 7.9E+06 NC NC
70623 1.8E+06 1.5E+06 1.5E+06 1.1E+06

SITE CODE -- 2

CLASS-GENUS CODE

DATE AEROBE ANAEROBE 101 102 105 108

70314 5-1E+09 3-7E+09 NC
70623 9-9E+07 1-6E+08 3-9E+06 2-0E+04

SITE CODE-- 3

CLASS-GENUS CODE

DATE AEROBE ANAEROBE 101 102 105 108

70314 1.5E+09 7.2E+08 NC
70623 2.1E+07 1.6E+08 3.0E+06 3.1E+06

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 4 of 15)

ANIMAL NUMBER-- 118 SITE CODE-- 1

CLASS-GENUS CODE

DATE	AEROBE	ANAEROBE	101	102	105	108
70 405 70 623 70 70 7	1.8E+06	4-0E+03 4-9E+07 4-8E+06			N-3 2-2E+06 7-3E+06	N-5

SITE CODE-- 2

CLASS-GENUS CODE

DATE	AEROBE	ANAEROBE	101	102	195	108
70 405 70 623 70 70 7	4.9E+08	3.2E+07 4.9E+08 2.2E+07		1.0E+06 3.9E+07 1.4E+04		1.0E+03

SITE CODE-- 3

CLASS-GENUS CODE

DATE	AEROBE	ANAEROBE	101	102	105	108
70 405	2.0E+05	1 - 3E+06		2 • 6E+05	N-3	N-3
70 623	4.9E+08	7-0E+08		3-9E+07	2.5E+04	
70707	5 • 1E+07	1 • 4E+07		1-8E+07	9 • 4E+04	

ANIMAL NUMBER-- 121 SITE CODE-- 1

CLASS-GENUS CODE

DATE	AEROBE	ANAEROBE	101	102	105	108
70510		7.0E+04			1 - SE+05	6.0E+03
70623 70707		4•3E+05 1•9E+04			1.9E+05 3.0E+03	

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 5 of 15)

SITE CODE-- 2

CLASS-GENUS CODE

DATE	AEROBE	ANAEROBE	101	102	105	108
70510 70623 70707	1 • 2E+09	1•9E+07 4•3E+07 1•2E+09		8.9E+06	2.3E+04 1.7E+07 2.0E+04	1•9E+04

SITE CODE-- 3

CLASS-GENUS CODE

DATE	AEROBE	ANAEROBE	101	102	105	108
70510 70623 70707		9•7E+06 2•3E+07 7•8E+08		3 . 7E+06	1 • 1E+04 2 • 3E+06 1 • 0E+03	1 • 0E+03

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 6 of 15)

END REPORT: = 1 4 2 3 Hierarchy Reordered.

24

ANIMAL NUMBER-- 115 AEROBE

SITE CODES

DATE 1 2

70314 1.3E+07 5.1E+09 1.5E+09 70623 1.8E+06 9.9E+07 2.1E+07

ANAEROBE

SITE CODES

DATE 1 2 3

70314 7.9E+06 3.7E+09 7.2E+08 70623 1.5E+06 1.6E+08 1.6E+08

CLASS-GENUS CODE-- 101

SITE CODES

DATE 1 2 3

70314 NC

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 7 of 15)

CLASS-GENUS CODE-- 102

SITE CODES

DATE 1 2 3

70314 NC NC 70623 1.5E+06 3.9E+06 3.0E+06

CLASS-GENUS CODE -- 105

SITE CODES

DATE 1 2 3

70314 NC

70623 1.1E+06 2.0E+04 3.1E+06

ANIMAL NUMBER-- 118 AEROBE

SITE CODES

DATE ! 2 3

ANAEROBE

SITE CODES-

DATE 1 2 3

70405 4.0E+03 3.2E+07 1.3E+06 70623 4.9E+07 4.9E+08 7.0E+08 70707 4.8E+06 2.2E+07 1.4E+07

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 8 of 15)

CLASS-GENUS CODE -- 102

SITE CODES

DATE 1 2 3

70.405 N-3 1.0F+06 2.6E+05

70.623 1.5E+06 3.9E+07 3.9E+07

70.707 2.1E+06 1.4E:04 1.8E+07

CLASS-GENUS CODE-- 105

SITE CODES

DATE 1 2 3

70405 N-3 N-4 N-3

70623 2.2E+06 1.5E+04 2.5E+04

70707 7.3E+06 5.1E+07 9.4E+04

CLASS-GENUS CODE-- 108

SITE CODES

DATE 1 2 3
70 405 N-5 1-0E+03 N-3

ANIMAL NUMBER-- 121 AEROBE

SITE CODES

DATE 1 2 3

70510 1.2E+05 1.1E+07 1.9E+07

70623 5.2E+05 1.2E+09 2.8E+07

70707 1.3E+04 1.1E+09 5.0E+08

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 9 of 15)

ANAEROBE

DATE 1 2 3 70510 7.0E+04 1.9E+07 9.7E+06 70623 4.3E+05 4.3E+07 2.3E+07 70707 1.9E+04 1.2E+09 7.8E+08

CLASS-GENUS CODE-- 102

SITE CODES

DATE	, 1	2	3
70510 70623 70707	3 - 7E+85	7•0E+06 B•9E+06 1•9E+07	3 . 7E+86

CLASS-GENUS CODE-- 185

SITE CODES

DATE	1	2	, 3
70510 70623		2 - 3E+04 1 - 7E+07	
70707		2. BE+84	

CLASS-GENUS CODE-- 108

SITE CODES

DATE 1 2 3 70510 6-8E+03 1-9E+04 1-0E+03

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 10 of 15)

END REPORT:=3 4 2 1 Hierarchy Reordered.

SITE CODE-- 1 AEROBE

ANIMAL NUMBERS

DATE	115	118	121
70314	1 • 3E+07		
70 405		1 - 0E+04	
70510			1 - 2E+05
70 623	1 • 8E+06	1 . 8E+0 +	5-2E+05
70707			1 - 3E+04

ANAEROBE

ANIMAL NUMBERS

115	116	181
7-9E+06		
	4-8E+83	
		7-0E+04
1 • 5E+Ø6	4.9E+07	4.3E+05
	4.8E+Ø6	1-9E+04
	7•9E+06	7.9E+06 4.0E+03 1.5E+06 4.9E+07

CLASS-GENUS CODE-- 101

ANIMAL NUMBERS

DATE 115 118 121 78314 NC

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 11 of 15)

CLASS-GENUS CODE-- 102

ANIMAL NUMBERS

DATE	115	118	121
70405		N-3	0 07.00
70510			9 • 0E + 03
70623	1 • 5E+06	1 • 5E+06	
70707		2+1E+06	4.0E+03

CLASS-GENUS CODE-- 105

ANIMAL NUMBERS

DATE	115	118	121
70314	NC		
70 405		N-3	
70510			1.5E+05
70 623	1 • 1E+06	2.2E+06	1.9E+05
70707		7+3E+06	3-0E+03

CLASS-GENUS CODE-- 108

ANIMAL NUMBERS

DATE	115	118	121
70 405		N-5	
70510			6.0E+03

SITE CODE-- 2 AEROBE

ANIMAL NUMBERS

DATE	115	118	121
70314	5 • 1E+09		
70 405		3.8E+07	
70510			1 - IE+07
70623	9.9E+07	4.9E+08	1 • 2E+09
70 707		2.9E+07	1 - 1E+09

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 12 of 15)

ANAEROBE

ANIMAL NUMBERS

DATE	115	118	121
70314	3.7E+09		
70405		3.2E+07	
70510			1 . 9E+07
70 623	1 • 6E+08	4.9E+0B	4.3E+07
70707		2.2E+07	1 - 2E+09

CLASS-GENUS CODE-- 102

ANIMAL NUMBERS

DATE	115	118	121
78314	NC		
70 405		1.0E+06	
70510			7.0E+06
70623	3•9E+06	3.9E+07	8.9E+06
79 797		1 . 4E+04	1.9E+07

CLASS-GENUS CODE-- 105

ANIMAL NUMBERS

DATE	115	118	121
70 405		N-4	
70510			2.3E+04
70 623	2.0E+04	1 • 5E+04	1 - 7E+07
70707		5-1E+07	2.0E+04

CLASS-GENUS CODE-- 108

ANIMAL NUMBERS

DATE	115	118	121
70 405		1 • ØE + Ø3	
70510			1 • 9E+04

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 13 of 15)

SITE CODE-- 3 AEROBE

ANIMAL NUMBERS

DATE	115	118	121
70314	1 - SE+09	-	
70 405		2.0E+05	
70510			1.9E+87
78623	2-1E+07	4.9E+88	2.8E+67
70707		5+1E+07	5-0E+08

ANAEROBE

ANIMAL NUMBERS

DATE	115	118	121
70314 70405	7•2E+06	1 • 3E+Ø6	
70510			9-7E+86
70623 70707	1 • 6E+08		2.3E+07

CLASS-GENUS CODE-- 102

ANIMAL NUMBERS

DATE	115	118	121
70314	NC		
70 405		2 · 6E+05	
70510			4. 3E+86
76623	3.0E+06	3-9E+07	3.7E+86
70707		1-8E+07	2.3E+07

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 14 of 15)

CLASS-GENUS CODE-- 105

ANIMAL NUMBERS

DATE	115	118	121
78405		N-3	
70510			1 . 1E+04
70623	3.1E+06	2.5E+84	2.3E+86
70707		9 • 4E+04	1 - ØE+03

CLASS-GENUS CODE-- 108

	ANIMAL NUMBERS		
DATE	115	118	121
70 405		N-3	,
70510			1 • ØE+Ø3

Figure 27. Example of Search of Primary File, Sending of Report Addresses to Scratch Area and Operation of Report Generator Program With Several of the 24 Hierarchies Possible (Sheet 15 of 15)

OLD PROGRAM NAME -- SEARCH

READY.

```
SLIST
00000
            COMMON DUM(27), KR(64), ID(512), K(5,225,1), KCD1(9,6),
           1KCD2(99,10),KCD3(2,7),KCD4(15,10)
00005
00030
            IRAM=1545
00040
            CALL RAM(IRAM)
00050
            IRAM=1537
00060
            NREC=8
00070
            CALL SYSLØI(IRAM, ID, NREC)
            DO 10 I=1.512
00080
            IF(ID(I))10,11,10
00090
       10
            CONTINUE
00100
00110
            NH= I - 1
            PRINT12
00120
00130
       12
            FORMAT(//"DO YOU WISH TO ENTER A RECORD ADDRESS"/
           I"AND HAVE THAT RECORD SENT BACK TO THE TTY OR"/
00140
           2"DO YOU WISH TO HAVE RECORDS WHICH ARE IN THE"/
00150
           3"SCRATCH AREA SENT TO THE TTY"/
00160
           4"
                  TYPE 1 FOR ENTERING AN ADDRESS AND"/
00170
           5"
00180
                       2 FOR READING THE SCRATCH AREA"/)
            READ: NTY
00190
00200
            IF(NTY-1)35,36,35
00210
       36
            PRINT37
            FORMAT(/"TYPE THE RECORD ADDRESS IN THE FORM 151629"/)
00220
       37
00230
            READ: ID(1)
            NH1 = 1
99249
00241
            NH2=1
            GO TO 38
00250
            NH2=NH
00255
       35
00260
            NH1=1
            DO 14 I=NH1.NH2
       38
00270
00273
             [[=0
00275
            PRINT 425, ID(I)
            FORMAT(//2X"RECORD NUMBER"2X,17)
00276
       425
             ID1=ID(I)/10000+100
00280
             IRAM=XMODF(ID(I),10000)
00290
00300
             CALL SYSLØI(IRAM, KR)
             IF(KR(2)-100)21,21,20
00310
99699
             DO 32 J=1.57.7
       21
             IF(KR(J))32,33,32
00610
00620
        32
                CONTINUE
00630
            LS=63
00640
             60 TO 51
00650
       33
            LS=J-1
            DO 31 JJ=1.LS.7
00670
       51
00680
             1+11=11
            K(2,11)=KR(JJ)
00690
00700
            K(3, II)=KR(JJ+1)
00710
            K(4, II)=KR(JJ+5)
00720
            K(5,II)=KR(JJ+6)
00730
             IF(K(2,11)-9)101,102,101
00740
       102 K(5, II)=/514560
       101 AA=KR(JJ+4)/10+-6
00750
             K(1,II) =AA*100000+KR(JJ+2)*100+KR(JJ+3)
00760
00770
            NX=NX+1
00780
             IF(K(3, II)-30)31,900,31
       900
            K(4,II)=/003301
00790
             K(5,11)=/472360
00860
88818
       31
             CONTINUE.
00820
             PRINT322, ID1
            FORMAT(///31X"ANIMAL"1X, I4, //3X"DATES"5X"ACTIVITIES"
00821
       322
```

Figure 28. Listing of Main Program and Subroutines of the Secondary File Search Program Which will Print Out Secondary File Data From Record Addresses Sent to Scratch Area of Requested at Teletype Terminal (Sheet 1 of 4)


```
00822
           110X"ELEMENTS"24X"NUMBERS")
00825
            111=1
00826
            115=11
       509 DO 45 [[=[]]:12
01288
01290
            CALL DATE(K(1)II), KYR, KMO, KDA)
            IF (KMM-KMO) 516, 517, 516
01291
01292
       516 PRINT518
       518 FORMAT(" ")
01293
01294
       517 KMM≈KMO
            CALL CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
01310
            IF(K(4,II)-/003301)84,82,84
01320
01330
      84
            IF(K(4, [1)-/606060)81,82,81
01340
            PRINT83, IMO, IDA, IYR, (KCD1(K(2, II), J), J=1,6), (KCD2(K(3, II), L)
       82
01350
           1,L=1,10),K(4,II),K(5,II)
01360
            60 TO 45
01370
            PRINT80: IMO: IDA: IYR: (KCD1(K(2:11):J):J=1:6): (KCD2(K(3:11):L)
      81
           1.L=1.10).K(4.II).K(5.II)
01380
            FORMAT(1X,A2,"/",A2,"/",A2,2X,6A3,2X,10A3,1X,17,A3)
01390
             FORMAT(1X,A2,"/",A2,"/",A2,2X,6A3,2X,10A3,2X,A6,A3)
01400
01410
       45
            CONTINUE
            60 TO14
01420
            NA=\emptyset
01430
01440
            DO 206IN=2.6
01450
            NA=NA+1
01460 206 K(1,NA)=KR(IN)
01465
            IF (K(1,3)-7)450,451,450
01466
      451 KS=93
            GO TO 454
01467
01470
           KS=K(1,3)+93
01480
      454 CALL DATE(K(1,2),KYR,KMO,KDA)
01490
            CALL CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
            IF(KR(7))226,229,226
01500
01505
      226 NA=Ø
01510
            ND=2*KR(7)+6
01520
            DO 225 NT=8,ND,2
01530
            NA=NA+1
            K(2,NA)=KR(NT)/100
01540
01550
            K(3,NA)=XMODF(KR(NT),100)
01560
            K(4,NA)=KR(NT+1)
01585
      225 CONTINUE
01590
      229 PRINT220,K(1,1),IMO,IDA,IYR,(KCD2(KS,L),L=1,10)
01591
            IF(K(1,4)-99999)351,351,352
01592
      352 PRINT221.K(1.4)
            GO TO 423
01593
01594
       351 CALL ANA(K(1,4),XNA3)
Ø1595
            PRINT235, XNA3
01596
       423 IF(K(1,5)-99999)354,354,353
01597
      353 PRINT223,K(1,5)
01598
            GO TO 227
Ø1599 354 CALL ANA(K(1,5), XNA3)
01600
            PRINT224, XNA3
            IF(KR(7))421,14,421
01610
      227
01620 421 JRR=KR(7)
01625
            PRINT336
Ø1626 336 FORMAT(/7X"CLASS"16X"GENUS"27X"COUNT"/)
01630
            DO 222 KRR=1.JRR
            IF(K(4,KRR)-99999)320,320,350
01640
01650 350 PRINT232 (KCD3(K(2, KRR), LL), LL=1,7), (KCD4(K(3, KRR), LO), LO=10
           1,K(4,KRR)
Ø1 660
01680
            60 TO 222
01690 320 CALL ANA(K(4,KRR),XNA3)
01695
            PRINT233, (KCD3(K(2, KRR), LL), LL=1, 7), (KCD4(K(3, KRR), LO), LO=10
           1.XNA3
01697
01700 222 CONTINUE
01705
            CONTINUE
       14
01707
            GO TO 429
```

Figure 28. Listing of Main Program and Subroutines of the Secondary File Search Program Which will Print Out Secondary File Data From Record Addresses Sent to Scratch Area of Requested at Teletype Terminal (Sheet 2 of 4)


```
220 FORMAT(//31X"ANIMAL"1X,14,//31X"DATE ",A2,"/",A2,"/",A2,//
01710
           131X"SITE"2X, 10A3)
01720
            FORMAT(//27X"AEROBES"6X.A3)
01730
       221
            FORMAT(//27X"AEROBES"2X,E10.3)
01740
       235
            FORMAT(/25X"ANAEROBES"6X,A3)
01750
       223
             FORMAT(/25X"ANAEROBES"2X,E10.3)
01760
       224
            FORMAT(5X,7A3,10A3,6X,A3/)
01770
       232
01780
            FORMAT(5X+7A3+10A3+2X+E10+3/)
       233
01790
             STOP
01800
             END
             SUBROUTINE ANACKX, XNA3)
01810
01820
            NA1=KX/100
01830
             NA2=XMODF(KX,100)
01840
            SAN++.01+10-++NA2
01850
             RETURN
01860
             END
SOLD
OLD PROGRAM NAME -- TAM
WAIT.
READY.
$LIST
00000
             SUBROUTINF RAMCIRAM)
00010
             COMMON DUM(27), KR(64), ID(512), K(5,225,1), KCD1(9,6),
            1KCD2(99,10),KCD3(2,7),KCD4(15,10)
00020
00030
             CALL SYSLOI(IRAM, KR)
000 40
             NA=1
00050
             00 60 T=1.9
00060
             DO 60 J1=1.6
00070
             KCD1(I,J1)=KR(NA)
00080
             NA=NA+1
00090
             CONTINUE
00100
             IRAM=3040
00110
       62
             IRAM=IRAM+1
00120
             NP=1
00130
             CALLSYSLØ! (IRAM, KR)
00140
             IF(IRAM-3041)63,63
00150
             NR=1
00160
             60 TO 61
00170
       63
             DO 61 I=1.99
00180
             DO 61 J1=1:10
00190
             KCD2(I,J1)=KR(NB)
       65
00200
            NB=NB+1
00210
             IF(NB-61)61,62,61
00220
        61 CONTINUE
00230
             IRAM=3058
00240
             CALL SYSLØI (IRAM, KR)
00250
             NA=1
00260
             DO 70 1=1.2
             DO 70 JI=1.7
00270
00280
             KCD3(I.JI)=KR(NA)
00290
             NA=NA+1
00300
       70
             CONTINUE
00310
             IRAM=IRAM+1
             CALL SYSLØI(IRAM, KR)
00320
00330
             NB=1
00336
             IF(IRAM-3059)73,73
00337
            NB=1
00338
             GO TO 71
            DO 71 I=1.15
00340
```

Figure 28. Listing of Main Program and Subroutines of the Secondary File Search Program Which will Print Out Secondary File Data From Record Addresses Sent to Scratch Area of Requested at Teletype Terminal (Sheet 3 of 4)


```
DO 71 JI=1.10
00350
00360
            KCD4([,JI)=KR(NB)
00370
             NB=NB+1
00380
             IF(NB-61)71,72,71
             CONTINUE
00390
       71
00400
             RETURN
00410
             END
             SUBROUTINE CONVERT(KYR, KMO, KDA, IYR, IMO, IDA)
00420
00 430
             IOCTA=/010000
20440
             IOCT=/000100
00450
00460
             IMO=IDA=000000
             DO 100 I=1.31
00470
00480
             IF(I-K)600,500,600
00490
       500
             IDA=IDA+IOCTA-/001100
00500
             K=K+10
00510
             GO TO 400
00520
       600
             IDA=IDA+IQCT
00530
       400
             IF(KDA-1)100,110,100
00540
       100
             CONTINUE
00550
       110
             K=10
00560
              21.1=1 0020d
00570
             IF(I-K)150,140,150
             IMO=IMO+IOCTA-/001100
00580
       140
00590
             GO TO 170
             IMO = IMO + IOCT
00600
       150
       170
             IF(KMO-1)200,210,200
00610
00620 . 200
             CONTINUE
00630
       210
             IF(KYR-66)230,220,230
00640
       230
              IF(KYR-67)250,240,250
             PRINT270
00650
       250
       270
             FORMAT("ERROR IN YEAR INPUT ")
00660
       240
00670
             IYR=/060700
00680
             RETURN
00690
       550
             IYR=/060600
             RETURN
00700
00710
             END
00720
             SUBROUTINE DATE(KX, KYR, KMO, KDA)
             KYR=KX/10000+60 ·
00730
             KMO=XMODF(KX,10000)/100
00740
             KDA=XMUDF(KX 100)
00750
00760
             RETURN
00770
             END
```

Figure 28. Listing of Main Program and Subroutines of the Secondary File Search Program Which will Print Out Secondary File Data From Record Addresses Sent to Scratch Area of Requested at Teletype Terminal (Sheet 4 of 4)

PRIMARY FILE SEARCH

ANIMAL*115+DIARRHEA. \$RUN 00002 HITS PRINT:=ALL 151561 151565 SEND:=ALL

QUESTION COMPLETED

Figure 29. Examples of the Operation of the Secondary File Search Program (Sheet 1 of 3)

144

\$LOAD SEARCH, TAM

LOAD LIMITS 11056 12142

DO YOU WISH TO ENTER A RECORD ADDRESS
AND HAVE THAT RECORD SENT BACK TO THE TTY OR
DO YOU WISH TO HAVE RECORDS WHICH ARE IN THE
SCRATCH AREA SENT TO THE TTY
TYPE I FOR ENTERING AN ADDRESS AND

2 FOR READING THE SCRATCH AREA

:=5

RECORD NUMBER 151561

ANIMAL	1	1	5
--------	---	---	---

DATES	ACTIVITIES	ELEMENTS	NUMBERS
08/03/66	ENVIRONMENT	NO ISOLATION	
08/03/66	DIET	NON STERILE	
08/03/66	OBSERVATIONS	ANTIHELMINTHIC TRET. (TRIBNDZE)	75MGK
08/03/66	OBSERVATIONS	TB TESTED NEGATIVE	
08/14/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	110MG
08/14/66	OBSERVATIONS	DIARRHEA	
08/15/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONF	110MG
08/16/66	ANTIBIOTICS	CHLORAMPHENICOL+FUROXONE	110MG
08/17/66	OBSERVATIONS	ANTIHELMINTHIC TRET. (TRIBNDZE)	75M GK

RECORD NUMBER 151565

ANIMAL 115

DATES	ACTIVITIES	ELEMENTS	NUMBERS
03/07/67	DIET	STERILE	
03/07/67	DIET NAMES	SIMILAC+IRON+VITAMINS	N.
03/09/67	OBSERVATIONS	DIARRHEA	
03/09/67	OBSERVATIONS	FECES YELLOW	
03/13/67	SAMPLES TAKEN	FECES	151725RN
03/14/67	SAMPLES TAKEN	FECES	151726RN
03/14/67	SAMPLES TAKEN	CONJUNCTIVA	151609RN
03/14/67	SAMPLES TAKEN	THROAT	151610RN
03/14/67	SAMPLES TAKEN	GINGIVA	151611RN

Figure 29. Examples of the Operation of the Secondary File Search Program (Sheet 2 of 3)

DO YOU WISH TO ENTER A RECORD ADDRESS
AND HAVE THAT RECORD SENT BACK TO THE TTY OR
DO YOU WISH TO HAVE RECORDS WHICH ARE IN THE
SCRATCH AREA SENT TO THE TTY
TYPE 1 FOR ENTERING AN ADDRESS AND
2 FOR READING THE SCRATCH AREA

TYPE THE RECORD ADDRESS IN THE FORM 151629 #=161884

RECORD NUMBER 161884

:=1

ANIMAL 116

DATE 04/21/67

SITE AXILLA

AEROBES 0.260E+07

ANAEROBES 0.770E+07

LASS COUNT

BACTERIA ESCHERICHIA-AEROBACTER GROUP N-5

BACTERIA STAPHYLOCOCCUS 0.900E+06

BACTERIA CORYNEBACTERIUM 0.220E+07

Figure 29. Examples of the Operation of the Secondary File Search Program (Sheet 3 of 3)

1561	-					
/ 1	2	8	3	66	Ø	Ø
S	4	8	3	66	. 0	Ø
7.	50	8	3	66	75	0
7	52	8	3	66	Ø.	Ø
6	36	8	14	66	110	0
. 7	51	8	14	66	Ø	Ø
6	36	-8	15	66	110	Ø
6 .	36	8	16	66	110	Ø
7	5Ø	8	17	66	75	Ø
0						

Figure 30. Animal Log Record as Stored on Disc

2059						
2059	118	70405	3.	205	1305	3
108	Ø	105	0	102	2604	Ø
Ø	Ø	0	. 0	0	Ø	0
0	Ø	0	0 .	0	Ø	0
Ø	0	- 0	Ø	. Ø	Ø	Ø
. 0	. 0	0	`ø	Ø	Ø	0
. 0	Ø	Ø	Ø	. Ø	Ø	0
0	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	• •	Ø	0	0	ø
Ø						

Figure 31. Microbial Data Record as Stored on Disc

③

User requests that Record Addresses that resulted from the Search be transferred to the Scratch Area

Figure 32. Microbial Data Management System

REFERENCES

- 1. Altemeier, W., R. Hummel, and E. Hill, 1963. "Staphylococcal Enterocolitis Following Antibiotic Therapy", Ann. Surgical 157, No. 6.
- 2. Andriole, V. T., H. M. Kravetz, W. C. Roberts, and J. P. Utz, 1962. "Candida Endocarditis", Am. J. Med. 32, 251-285.
- 3. Bengson, M. H. and F. W. Thomae, Jr., 1965. "Controlling the Hazards of Biological and Particulate Contamination Within Manned Spacecraft", Cont. Control 4, 9-12.
- 4. Day, P. L., 1966. Nutrient Requirements of Laboratory Animals. Nat. Acad. Sci., NRC publ. 990, page 31.
- 5. Dubos, R., 1966. Med. World News, 7, No. 34, p. 79.
- 6. Dubos, R. J., D. C. Savage and R. W. Schaedler, 1967. "The Indigenous Flora of the Gastrointestinal Tract", Diseases of the Colon & Rectum, 10, No. 1.
- 7. Evans, C. A., W. M. Smith, E. A. Johnston, E. R. Gibbett, 1950. "Bacterial Flora of the Normal Skin", Journ. of Investigative Dermatology, 15, 305-324.
- 8. Gall, L. S., and Riely, P. E., 1964. <u>Determination of Aerobic and Anaerobic Microflora of Human Feces</u>, AMRL-TR-64-107, Aerospace Med. Resc. Labs, WPAFB, Ohio.
- 9. Gall, L. and P. E. Riely, April 1967. The Effect of Diet and Atmosphere on Intestinal and Skin Flora, Vol. I and II. NASA CR 661, NASA, Washington, D.C.
- 10. Gibbons, R. J., and S. S. Socronsky, 1964. "Establishment of Bacteria Indigenous to Man in Gnotobiotic Mice", Bact. Proc. M 15, p. 46.
- 11. Greenberg, L. D. and H. D. Moon, 1949. Ann. N. Y. Acad. Sci. 52, 284.
- 12. Gyllenberg, H. and P. Roine, 1957. "The Value of Colony Counts in Evaluating the Abundance of Lactobacillus Lipidus in Infant Feces", Acta et Microbiol., Scandin. Pat. 41, 144.
- 13. Huempfner, H. R., Jan. 1967. Standard Operating Procedures, Germfree Techniques, Dept. of Community Medicine, Univ. of Kentucky College of Medicine, Medical Center, Lexington, Ky.
- 14. Litsky, B. Y. and W. Litsky, May 1967. "Evaluation of Single Use Bar Soaps for Surgical Scrub", Hospital Management, 102, p. 74.

- 15. Luckey, T. D., 1963. Germfree Life and Gnotobiology, Academic Press, New York, N.Y.
- 16. Luckey, T. D., 1966. "Potential Microbic Shock in Manned Aerospace Systems", Aerospace Med. 37, No. 12.
- 17. Lyght, C., 1966. Merck Manual of Diagnosis and Therapy. Merck, Sharpe and Dohm Res. Labs, West Point, Penna.
- 18. May, C. D., E. N. Nelson, E. V. Lowe, and R. J. Salmon, 1950. <u>Am. J. Diseases</u> Children, 80, 191.
- 19. May, C. D., R. D. Sundberg, F. Schaar, E. V. Lowe, and R. J. Salmon, 1951. Am. J. Diseases Children 82, 282.
- 20. Mijakawa, M., 1958. "Studies on Inflammation". Saiskin Igaku, 13, pp. 38-50.
- 21. Morillo, J. A., T. A. DiGenio, and E. E. Baker, 1964. "Significance of Salmonellae Isolated from Apparently Healthy Mice", Bact. Proc. Abst. M19, p. 46.
- 22. Phillips, A. W., July 1966. "Candida Albicans in the Gnotobiotic Animal", <u>Proc. of</u> IX Int. Congress for Microbiol, Moscow, USSR.
- 23. Porter, J. R. and L. F. Rettger, 1940. "Influence of Diet on the Distribution of Bacteria in Stomach, Small Intestine and Cerum of White Rats," J. Infect. Diseases, 66, 104-110.
- 24. Prince, A. E., P. E. Riely, and L. S. Gall, 1966. "Medical Bionomics in Space Systems", In Microbial Considerations Within Manned Aerospace Systems. An Invited Session of the 66th Ann. Meeting, ASM, Los Angeles.
- 25. Reyniers, J. A., 1946. "Germfree Life Applied to Nutrition Studies", Lobund Rpts. No. 1, 87-120.
- 26. Reyniers, J. A., 1946. "Germfree Life Studies", Lobund Rpts. No. 1, page 94.
- 27. Seelig, M., 1966. "Mechanisms by which Antibiotics Increase the Incidence and Severity of Candidiasis and Alter the Immunological Defenses. <u>Bact. Rev.</u> 30, No. 2, pp. 442-459.
- 28. Shinefield, H. R., J. C. Ribble, H. F. Erchenwold, M. Boris and J. M. Sutherland, 1965. "Bacterial Interference". Skin Bacteria and Their Role in Infection. McGraw Hill, pp. 235-251.
- 29. Sprintz, H., R. Sribhibhadh, E. Gangarosa, C. Geyajati, D. Kundel, and S. Halstead, 1962. "Biopsy of a Small Bowel of Thai People," Am. J. Clin. Path. 38, 43.

- 30. Tanami, J., 1959. "Studies on Germfree Animals," J. Chiba Med. Soc. 35, pp. 1-24.
- 31. Tanami, J., 1966. "Antogionistic and Symbiotic State of Bacteria in the Intestinal Tract of Gnotobiotic Animals," <u>Proc. of IX Int. Congress for Microbiol.</u>, Moscow, USSR.
- 32. Thomae, F., H. Kaplan, and M. Bengson., April 1967. "Establishment and Maintenance of a Dominant Intestinal Flora by Nutritional Means," Int. Symposium on Germfree Research, Nagoya, Japan. Also Recent Adv. in Germfree Research, Chem. Rubber Publ. Co., Cleveland, Ohio, to be published September (1967).
- 33. Uhlrich, J., 1966. "Aerobic Bacteria of the Human Skin" <u>In Microbiological Considerations Within Manned Aerospace Systems</u>. An Invited Session of the 66th Ann. Meeting ASM, Los Angeles.
- 34. Undegraff, D. M., 1964. A Cultural Method of Quantitatively Studying Microorganisms of the Skin, Journal of Investigative Dermatology, 43, 129-137.
- Vander Waaij, D., 1965 and April 1967. "Bacterial Decontamination of Mice", NATO Adv. Study Inst. The Germfree Animal in Research, Hampshire, England, p. 38, (abst). Also Symposium Germfree Research in Med. and Surg., Nagoya, Japan.
- 36. Winitz, M., 1966. "Chemical Diet: Clinical Applications." JAMA 196, No. 6, p. 35.
- 37. Wostman, B. S. and E. Bruckner-Kardoss, 1959. "Development of Cecal Distension in Germfree Baby Rats," Am. J. Physiol. 197, pp. 1345-46.

Security Classification	· · · · · · · · · · · · · · · · · · ·				
	NTROL DATA - R				
(Security classification of title, body of abstract and index 1. ORIGINATING ACTIVITY (Corporate author)	ing annotation must be e	ntered when the overall report is clas-			
Biosciences Operation		Unclassified			
General Electric Co. MSD		2b. GROUP			
Valley Forge Space Technology Center	Penna. 19406	N/A			
REPORT TITLE					
RESEARCH ON THE EFFECTS OF ALT THE MO		HE INDIGENOUS MICRO	FLORA OF		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report June 1966 - June 19 5. AUTHOR(S) (First name, middle initial, last name)	67				
,					
Myron H. Bengson					
Fred W. Thomae					
8. REPORT DATE	78. TOTAL NO. O	F PAGES 75, NO. OF REFS			
May 1968	164	37			
84. CONTRACT OR GRANT NO. AF 33(615)-5242	98. ORIGINATOR	REPORT NUMBER(5)	-		
, ,					
b. PROJECT NO. 6373	!	N/A			
с.	9b. OTHER REPO	ORT NO(5) (Any other numbers that may be assigned			
	thie report)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.		
d.	AMRL-TI	R-67-177			
10. DISTRIBUTION STATEMENT					
Distribution of this document is unlimit	ad It mass bo	rologsed to the Clearing	ahouse		
			gnouse,		
Department of Commerce, for sale to					
11. SUPPLEMENTARY NOTES	i	MILITARY ACTIVITY			
		ledical Research Laborat			
	Aerospace Medical Division, Air Force				
13. ABSTRACT	Systems Con	nmand, Wright Patterson	AFB OH		
The feasibility of changing the bacterial	and fungal flor	a of monkeys undergoing	biological		
confinement was studied. The significa					
was examined with special attention to t		-	-		
bial compatibility of astronauts for exte	•		-		
it would be extremely desirable to have	-				
	•		•		
tampering with the indigenous flora pos			-		
answers. A data and information retrie	•	-	ome of the		
problems mentioned above, has been designed and is presented.					
·					

Approved for Public Release

Security Classification

DD FORM 1473

Security Classification LINK A LINK B LINK C ROLE ROLE **Gnoto Biotics** Monkeys (Macaca Mulatta) Biological Confinement Micro Flora, Alteration of Bacteria, Alteration of Computer Coding, Bio Data Ecology of Long Term Space Flight Microbial Compatibility **Bacterial Simplification**

Security	Classification	