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ABSTRACT

The question 1s studied of how a test panel, which repre-
sents one of an assemblage of panels in a prototype (e.g., an
aircraft fuselage), should be supported, so that a fatigue test
of that panel ylelds the same result as a test of a complete
prototype., The recommendation is developed that one should test
the panel of interest at the center of a three-by-three panel
array, rather than by itself, in order to obtaln realistic repre-
sentations of the boundary stiffness, energy dissipation, and
energy transport properties. Conslderations in obtalnling practi-
cal supports that provide approximate free, clamped, and simply
supported boundary conditlions are Investigated and reduced to
design equations, graphs, and recommendations. Extenslive analyses
of the effects of boundary conditions on maximum stresses in
resonantly and in randomly vibrating plates and cylindrical shells
are appended, as are the results of experiments and analyses con-
cerned with the determlnation of damplng and energy transport in
multipanel structures.
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INTRODUCTION

Many structural parts of aerospace craft are exposed to in-
tense fluctuating pressure fields, whilch cause these parts to
vibrate and hence to be subject to fatigue failure, In spite of
recent advances in response prediction methods and fatigue fail-
ure theories, the state of the art has not yet reached the point
where one can obtaln useful predictions of the fatigue 1life of
realistic structures exposed to realistic pressure fields, with-
out carrylng out appropriate sonlc fatligue tests.

One may 1n essence distingulsh between three types of fatigue
and related noise and vibration test: proof tests, development
tests, and research tests, In proof tests one attempts to simu-
late actual field conditions in order to evaluate the probable
in-service performance of a prototype. Development tests are
somewhat similar to proof tests, but generally are performed on
more preliminary configurations and are usually used to evaluate
the effect of changes or to compare alternate desligns. Research
tests, on the other hand, are performed primarily to check theo-
retical predlctions or to provide data on which improve theories
can be based,

Ideally, one should carry out all proof tests and probably
most development tests on complete vehicles, or at least on com-
plete major substructures, since one generally cannot hope to
simulate all of the effects of components which are omitted in
tests of smaller structural parts. However, sonic fatigue testing
of large structural assemblies 1s extremely costly, and often
entirely impractical, in view of the limited availability of
sultable test facilities. One must therefore usually confine
himself to testing only some representative structural parts, such
a8 a panel or an assemblage of panels, and immedlately face the
question of how to treat the boundaries of these structural parts
so as to slmulate the effects of the missing adjacent structures,
It is to this question that the initial sections of the present
report are addressed,

Whereas in proof and development tests panel supports must
serve to simulate the effects of adjJacent structures, panel
supports in research tests are usually requlired merely to provide



predictable and repeatable boundary conditions, which should
preferably lend themselves to convenient mathematical represen-
tatlon., The final sections of the present report deal wlith some
of the greatest problems one encounters in attempting to approxi-
mate ideal free, clamped, and simply supported boundaries.

PANEL SUPPORTS FOR PROOF AND DEVELOPMENT TESTS

Slmulation Requirements

In proof and development testing one desires to "simulate
field conditions"; that is, ofie wants to obtaln the same fallures
in the laboratory as are produced by field conditions, Since
fallures are known to be correlated with response parameters,
simulation of field conditions therefore 1in essence amounts to
reproduction of the salient (failure-producing) features of field
responses,

Clearly, more is required than simulation of the excitation
that acts on a glven panel. The response of a panel which is
part of a larger structure may be expected to depend not only on
the excitation that acts on that particular panel and on parame-
ters of that panel, but also on the vibrations of adJacent panels
and on parameters of the reinforcing members that separate the
panels, All of these items need to be considered in the design
of proof and development tests,

regard td those parameters which Ong desires to study, then,ong
does not need to consider excitations and boundary effects at all,
For example, if e has enough field or laboratory d/;a on the
vibrations of a pihel on a prototype vehicle, then ong may (at
least in concept) arrive at a corresponding panel téSt by a
trial-and-error process in which the excitations and panel supports
are adjusted until the actual panel response is reproduced to the
desired degree., However, proof tests and development tests
usually are no longer needed once a complete prototype is avail-
able from which the necessary data for designing panel tests can
be obtained, and the analytical development of such data 1s still
largely beyond the present state of the art. Thus, the central
problem in the design proof and development tests of panels
amounts to: How can '_§131mulate a panel response in the labora-
tory, in absence of t structures that are in the prototype
adjacent to the panel of interest, and without fully knowing the
panel response beforehand?

If gh¢é can somehow simulate ginel responses, at least in__



Panel Edge Support Stifinesses

From elementary analyses one may conclude that boundary
conditions affect the stress distributlions and the maximum stresses
in panels subject to prescribed excitations. Thus, in any simu-~
lation one should logically be concerned with reproducing the
boundary conditions that are effective in the prototype.

The stiffness constraints that act on a given panel edge in
a prototype structure rarely are simple, and usually are contri-
buted both by the edge reinforcing structure (such as a beamn,
stringer, ring, or bulkhead) and by the adjacent panels. Because
these stiffness contributions are complex and generally cannot
be fully predicted (and therefore not well simulated) without a
great deal of testing, one desires to know the effect that mis-
representation of these edge stiffnesses has on the results of
proof and development tests.

The results of an extended study of the effect of edge
support stiffnesses on the maximum principal stresses in vibrating
panels are presented in Appendixes I-III. Appendlx I introcduces
the "dynamic edge effect' concept, on the basis of which the
studies of support stiffness effects are carried out, and applies
this concept to study how the ratio of the maximum stress near a
panel edge to the maximum stress 1in a region several wavelengths
from the panel boundaries varies with the rotatlional and lateral
(translational) stiffnesses of the panel boundary supports.
Appendix I concerns itself only with single modes at a time,
whereas Appendix II deals with the multimodal responses to random
excitation. Appendixes I and IT pertain to flat plates, whereas
Appendix IIT presents simllar, but less complete results pertaining
to cylindrical shells,

From the results presented in Appendixes I and II one may
deduce that generally the maximum stress near an edge exceeds
the maximum stress in the interilor reglon of the panel (i.e.,
far from the panel edges) only if

-2 -2
o S+ 0am<2 (1)

where Cp and Q¢ are dimensionless panel support stiffness parame-
ters defined as



a, = Kr/en K, s o, = K. /2D kg (2)

in terms of the rotational and translational spring constants K
and K¢ of the supports, per unit edge length., The symbol D
denotes the panel's flexural rigidity, and kp represents a wave-
number which 1s defined by

r

kg = (21r/7\x)2+(21r/7\y)2 ~ o vm/dD (3)

where @ denotes the radian frequency {(of a mode or of the migd-
point of a frequency band being considered), and m represents
the panel mass per unit area, Also, Ay and Ay represent typical
wavelengths associated with the panel vibratidons, in directions
parallel and perpendicular to the edge under consilderation.,

Substitution of Egs. (2) and (3) into Eq. (1) yields
2
o Va3 (2824 1| ¢ 10 (4)
t r

for the approximate condition under which the maximum stress near
an edge exceeds the maximum "interior" stress. Inspection of

Eq. (4) leads one to conclude that the maximum edge stress (in
the absence of stress ralsers, such as holes and rivets) exceeds
the maximum interior stress only for relatively large values of
the spring constants K¢ and Ky, — and then only for low frequencies.,
Thus, one finds that for a rather wide range of frequencies and
edge support stiffnesses the greatest stresses occur in the panel
regions remote from the edges and are independent of the edge
conditions, and one then expects that accurate simulation of

edge support stiffnesses often may not be required.

The foregolng result has been derived for flat panels, but
as shown in Appendix TIII, it also holds for cylindrical shells
at frequenciles (wavenumbers) that are high enough so that membrane
stresses are insignificant as compared to flexural stresses. At
lower frequencies and wavenumbers membrane forces effeet the
shell motions significantly, and proper simulation of appropriate
membrane boundary conditions may generally be expected to be
required, in addition to simulation of the usual flexural boundary
conditions.



Energy Dissipation and Transport Properties

It is well known that the response of a panel depends not
only on its stiffness and mass properties, but also — and
particularly in the presence of random excitation — on its
"damping." Damping here refers to the panel's capacity for
ridding itself of mechanical energy, and in the most general
sense this includes both dissipation of energy and transport of
energy to adjacent structures. Simulation of damping thus may
be expected to be important, and generally also to present some
difficult problems.

Rough estimates of the energy dissipation capabilities of
a panel can readily be obtained from available information (for
example, Refs. 1-3) or from measurements carried out on a sample
panel, Desired amounts of damping may readily be simulated by
use of damping materlals applled to the test panels; however,
such damping materlial applications must be made Jjudiciously, so
as not to distort the stress distributions excessively.

On the other hand, relatively little quantitative information
is available concerning the transport of mechanical energy from
a panel to its nelghbors. It has been shown theoretlcally that
the time-average power flow from one panel to an adjacent one is
proportional to the difference between the average kinetic energies
per mode of the two panels, providing that the excifatlons acting
on the two panels are steady and uncorrelated, and provided that
no energy is dissipated by the coupling (e.g., the reinforcing
beam) between the two panels (Ref, 4). Experiments have shown
that this proportionality holds approximately, even if the theo-
retically established conditions for its applicability are not
fully satisfied, and also if more than Jjust two connected panels
are involved (Ref. 5).

Unfortunately, there exists as yet no valid theoretical
basis for prediction of the "power flow coefficients,” i.e. of
the coefficients of proportionality between power flow and average
modal energy difference. These coefficlients may be determined
experimentally, from a series of measurements on separate structural
samples conslisting of two panels separated by a reinforcing beam
(Ref. 5). Several approaches to measuring these coefficients and
dissipative damping on larger panel arrays (with an eye toward
measurements to be performed on complete prototypes) have been
explored and are reported in Appendix IV; however, these approaches
were generally rather unsuccessful,



If two adjacent panels are excited so that they have the
same average modal kinetlc energy, then there 1s no net power
flow between them, according to the foregoing discussion. As
reported in Appendix IV, it has been verified experimentally
that power flow is indeed blocked by energy matching (and it
has been demonstrated that other means for blocking power flow,
such as masses and stiffeners added to the stiffeners between
adjacent panels, are ineffective). A panel, which in a struc-
tural prototype is surrounded on all sides by similar panels
that are similarly exclted, thus transfers no net energy to its
neighbors, and its damping is due only to 1ts energy disslpation
properties. The damping of such a panel may be estimated rela-
tively readily, and thus simulated without great difflculty, as
previously mentioned. However, the total damping of a panel that
is adjacent to dissimilar or dissimilarly excited panels 1s af-
fected also by energy transport, and cannot really be estimated.

Recommended Configuration

As pointed out in the previous paragraphs, prediction,
measurement, and simulation of the "damping" due to energy trans-
port present serious difficulties. Although exact simulation of
the stiffnesses of panel boundary structures may not be requlred
if the panels of interest are homogeneous and 1f the reinforce-
ments do not contribute stress concentrations, the simulation
accuracy requirements may be greater for realistic inhomogeneous
panels and in the presence of such stress ralsers as welds or
rivets at the boundaries, In addition, reinforcing structures
Ee.g., beams, stringers, rings) also exhibit dynamic behavior

e.g., flexural, torsional, and coupled resonances) which cannot
readily be simulated without reproducing the prototype reinforcing
structures.

All of the foregoing considerations point to the undesira-
bility of testing a single panel by itself, and indicate the
utility of using a larger array of panels, Perhaps the most con-
venient array one may use consists of a three-by-three arrange-
ment of nine panels (see Fig. IV-2, page 99) where only the center
panel 1s the one to be tested under realistic conditions, and the
other panels merely serve to provide the proper boundary condlitions
{in terms of stiffness, energy dissipation, and energy transport)
for the center one, The reinforcing beams in such an array should
correspond to the prototype in detail, as should the panels, of
course, so as to reproduce all potentlial stress concentrations.



In sonlc fatigue (or related noise and vibration) tests of
such a nlne-panel array, the entire array should be exposed to
the excitation that the corresponding portion of the prototype
is expected to experlence. Since extreme gradients in excitation
level generally do not occur, such tests may be expected to repro-
duce relatively realistically the responses, and thus also the
energy transport properties to and from the center panel.

In cases where use of a nine-panel array is impractical, use
of a five~panel array (obtained by removing the four corner panels
from a nine-panel configuration) may suffice. In a nine-panel array
relatively little energy generally may be expected to flow directly
from the center panel to the corner ones (Ref. 5), but possibly
significant energy flow may occur from the corner to the side panels.
Removal of the corner panels thus may reduce the vibration levels
of the side panels, and it may be necessary to increase the exci-
tations acting on these panels to make up for this level reduction.
One generally need not extend the reinforcing beams beyond the
nine-panel or five~panel array dimensions or worry about providing
special terminations for these beams, since, as shown in Appendix
IV, no appreciable energy transport occurs along the beams and
terminations have little effect on the vibrations of the center
test panel.

If exposure of the entire nine- or flve-panel configuration
to sonic excltation is impractical, one may expose only the center
panel, and excite the surrounding panels to the proper vibration
levels by means of shakers. Here, however, one must determine
(perhaps by calculations, for example, based on statistical energy
analysis, Ref. 4) what the proper vibration levels are, and one
must face the possibility that the spatial distributions of the
vibration fields of the various panels will be simulated improperly,

The foregolng discussion applies for panel arrays in which
curvature effects are negligible, 1i.e., for flat arrays at all
frequencies and for parts of cylindrical shells above the "breatning"
or "ring frequency" fn, Where

£, = cL/ﬁd (5)

in terms of the longitudinal wave velocity cy, of the shell material
and the dlameter d of the shell. Additional simulation difficulties
occur for curved structures at frequencies below f,, since then
membrane effects become important and affect both the vibrations
and the assocliated stresses. Under such conditions, use of some



tenslioning arrangement is Indicated to simulate shell membrane
tension in the circumferential directlon; however, use of a com-
plete closed shell section would seem to be preferable, when
possible,

PANEL SUPPORTS FOR RESEARCH TESTS

Simulation Requirements

Research tests usually have the purpose of exploring the
agreement of experimental results with theoretical predictions,
or of generating new data. Thus, panel supports for research
tests must provide predlctable and repeatable boundary conditions,
which lend themselves to exact mathematical analysis.

In research tests one usually attempts to approximate as
closely as possible ldeally clamped, simply supported, or free
boundary conditions, which imply the imposition of certain well-
known restrictions on the dlsplacements, rotations, forces, and

-moments at the panel edges. How well some practical panel edge
support structures approach these ldeal condlitions is studied in
Appendix V and summarized below.

It must also be kept in mind, however, that ideal free,
simply supported, or clamped boundaries do not permit the trans-
fer of mechanical energy across the panel edges. Because of the
finite stiffnesses of realistic support structures, these cannot
impede the flow of energy completely. Thus, support structures
may be expected to affect the effective damping of test panels,
unless extreme care is taken in the design of the panels and
their test fixtures, Corresponding recommendations appear at
the end of this section,

String-Supports (Free Boundary Simulation)

The most common practical method for simulating free
boundaries consists of suspending a test panel from long strings
or cables attached at one or two edges, so that the strings and
the test panel hang vertically.

In order for a string not to affect the motion of a panel
slgnificantly, the lateral impedance of the string must be con-
siderably smaller than the driving point impedance of a panel
edge. As shown 1n Appendix V, a string wilth negligible flexural



stlffness, for which
T2 /B I opha® << 1 (6)
staPsts s
will not affect the panel motions significantly if the condltion
PgAgT/pphpDy << 1 (7)

1s satlsfied. Here T represents the tenslion in the string, and

EgIgs its flexural stiffness (where Eg is the elastic modulus of

the string materlal and Ig the string's cross-sectional moment

of inertia). Ag represents the string's cross-sectional area,

pg the denslty of the string material, and w the radian frequency;
tge symbols pp, hp, Dp denote the density of the panel material,

the panel thickness, and the panel's flexural rigidity, respectively.

The use of cables or strings whose flexural stiffness is not
negligible — that 1s, whose properties do not satisfy the in-
equality (6) — is generally not advisable, except perhaps at
very low frequenciles, If a supporting cable has considerable
flexural stiffness, then this stiffness can lead to relatively
high cable impedances (at anti-resonances), and correspondingly
to undesirably large effects on the panel responses.

Supporting a test panel in a cutout in a "baffle" by means
of layers of a soft material (such as plastic or rubber foam)
around its edges, or by the use of tapes {(e.g., plastic or
fabric adhesive tapes) 18 also deemed to be generally inadvisable,
Such supports may be expected to provide considerable amounts of
extraneous damping, and to exhibit anti-resonances at which
panel motions may be inhibited excessively.

Clamp Design ("Built-In" Boundary Simulation)

In attempting to obtain the best possible approximations to
ideally clamped or "built-in" boundaries, researchers have
generally machined the supports and test pleces from the same
piece of metal, and have designed the support portion of the
resulting single plece of metal to be much more massive than
the test portion. (See Refs. 6, 7 for example.,) However, the
construction of supports and test panels from the same plece of
material tends to be costly, so that on this basis one may prefer
to use bolted supports instead.



A bolted support, where the edge of a test panel is clamped
between two massive bolted-together support strips, may be made
to behave like an 1ldeally machlned one 1if the bolt tension is
great enough and if the bolts are closely enough spaced so that
no (normal or tangential) relative motions occur. The basis for
designing such bolted supports is presented in Appendix V,
together with a discussion of how to optimize such designs.

Flexures {Simply Supported Boundary Simulation)

Simple supports ideally have infinite lateral (trenslational)
and zero rotational stiffness; they generally are the most diffi-
cult to approximate in practice. "Knife-edge" supports come
close to satisfying the stiffness requirements, but unfortunately
are impractical for panels. If one uses knife edges on only one
face of a panel (naturally, on the bottom face of a horizontal
panel}, then one finds that the corners of the panel leave the
supports under the static loading of its own weight (Ref. 8), and
also at the low modes — even for small amplitudes. Use of knife
edges on both faces of a panel is generally lnadvisable, because
of the moment constraint that is imposed by two opposed knife
edges (particularly if they are not precisely aligned).

The use of short leaf-spring-like sectlons, made by milling
slots into a parent panel and leaving only thin strips of metal
to support the center test portion, has been explored to some
extent (Ref. 9), Such arrangements deviate from the ideal in
that they permit a generally not Iinsignificant amount of lateral
motion, and in addition have a tendency to fatigue before the
main test panel unless extreme care 1s taken in their design
and production (Ref. 9). "Flexures," consisting essentially of
two leaf springs at right angles to each other, may be used to
reduce drastically the lateral motions that the milled-slot
arrangement permits, and have been put to some uses (Ref. 10)
unrelated to fatigue testing.

As demonstrated in Appendix V on the basis of a simple
analysis, flexures are generally not useful for the testing of
‘panels over broad frequency ranges, because of the resonant
behavior they exhibit. At any one of its anti-resonances a
leaf spring may be expected to exert a considerable moment con-
straint on the test panel and thus not to act like a simple
support. These resonant and anti-resonant characteristics might
be overcome by the use of flexures made up of very long and very
highly damped leaf-springs; however, such springs would be

10



relatively soft in their axial directlions and would not present
the desired lateral stiffness to the panel edge.

Recommendations

Of the variocus types of commonly used ideal boundary con-
ditions, free condlitions may be simulated most readily, as
evident from the foregoling discussion. Therefore, free boundary
conditions should be used for research tests where possible.

Clamped boundaries may be simulated with greater difficulty,
but good approximations may be obtalned by use of properly de-
signed clamping arrangements., Such an arrangement must be both
stiff and heavy, and the entire support-and-panel assembly should
be suspended from strings, in order to minimize the dissipation
of energy due to support motions,

Simple supports are the most troublesome of all; there
exlsts no adequate practical means for simulating them over
extended frequency ranges. Therefore, in splte of the relative
simplicity of the assoclated analyses, one should strive to avoid
the use of simple supports.

CONCLUDING REMARKS

The present report constitutes an attempt at setting down
rational guldellnes for the selection and design of panel fatigue
test fixtures and is based on heuristic deductions, on the results
of extended analyses, and on some exploratory experimental data,

One may be reasonably confident that the recommendations which
appear in this report are generally valid. However, one should keep
in mind that the analyses that were carried out are not completely
general, and that the exploratory experiments were relatively
limited. In particular, most of the analytical work presented
in the appendixes applies to homogeneous isotropic rectangular
flat panels without stress concentrations; additional studies,
particularly of anisotroplc panels having various common types
of stress concentrations undoubtedly would yield instructive
results., Further work on curved panels, which constitute parts
of shells, appears also to be needed rather urgently; because of
the complexity of the assoclated analyses, relatively little
progress has so far been made 1In this area,

1l



There is evidently also a need for further experimental
work to study the spreading of energy in multi-panel structures,
and to develop techniques for the prediction and measurement of
this spreading. The exploratory experiments reported here, as
well as related prior ones, were performed on geometrically
simple (generally flat) panels with epoxy-bonded reinforcements
of simple cross-section. More work 1s needed, particularly on
less regularly shaped and curved panels with riveted-on reinforcing
beams of Z- or C-shaped cross-sections, which are typical of
aerospace vehicle construction.

The deslgn of fixtures to support panels in fatigue tests
continues to be partly art and partly science, It 1s hoped that
the present report will help to swing the pointer a little
farther toward the science silde, but more work is needed before
this swing can be made very pronounced.

12
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DEFINITION OF SYMBOLS USED
IN APPENDIXES I AND II

A Plate area
Bl,B2 Constants
b Plate length 1n y-coordinate direction
co’cl’ vee CM,CB Constants
c Pressure cross-correlation function;
p see Eq. (1) of Appendix II
Eh3
D = ——=" Flexural rigidity of plate
12(1-v%)
Dl’Dz’D3 See Egs. (41) of Appendix I

d;(€), a,(¢)

E

Eq By E

1’ 3

anr 5

Fl(T, @ wrs)

FQ(wmn’ wrs)

£(T)

G,H,J

mr

Spatial correlation functions; see
Eq. (28) of Appendix IT

Young's modulus

See Eqs. (45) of Appendix I
See Eq. (30) of Appendix IT
See Eq. (36) of Appendix IT
See Eq. (36) of Appendix ITI

Temporal correlation function; see
Eq. (28) of Appendix II

Functions of B; defined in Eq. (17)
of Appendix I

See Eq. (34) of Appendix IT
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Symbols (continued)

Plate thickness

Response integral; see Eq. (15) of
Appendix IT

See Eq. (34) of Appendix II

Support rotational and translational
stiffnesses, per unit edge length

Wavenumber parameter; defined in Eq. (3)
of Appendix I

Wavenumber parameter; defined in Eq. (17)
of Appendix I

Wavenumbers in x and y directions,
respectively

Average plate edge length

Linear differential operator; see
Eq. (12) of Appendix IT

Correlation length; see Eq. (32) of
Appendix II

= max[J, v+B2]; see Eq. (27) of
Appendix I

Mass per unit area of plate

Stress factor; defined in Eg. (19)
of Appendlx T

Number of modes in coherent group
Number of incoherent mode groups
Number of resonantly excited modes

Modal density
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Symbols (continued)

<p2>t Temporal mean square pressure; see
Eq. (4) of Appendix II

<p2> Spatial mean square pressure; see
8 Eq. (5) of Appendix II

p(x,y,t) Pressure distribution on plate

Q Plate parameter; see Eq. (17) of
Appendix IIX

R Ratio of maximum stresses; see
Eq. (24) of Appendix I

Sinrs See Eq, (30) of Appendix II

T Response functions; see Eq. (9)
of Appendilx II

W Cross-power spectral density of

p p(x,y,t); see Eq. (3) of Appendix II

ww Cross-power spectral density of
deflection w

w Lateral flexural deflection of
plate

X Constant

X,y Cartesian coordinates parallel to
plate edges

Y, Ye, YB Deflectlion functions; defined in
Egs. (2), (6), and (10) of Appendix I

0.0y Stiffness parameters; defined in
Eq. (17) of Appendix I

Yo See Eq. {34) of Appendix IT
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Symbols (continued)

Parameter defined in Eq. (17) of
Appendix I

Bandwidth of excltation frequency band

Kronecker delta (takes one unit value
if i=j; is zero otherwise)

Spatial separatlion in y-direction;
see Eq. (2) of Appendix II

Loss factor of plate

Stress parameter; defined in Eq. (19)
of Appendix I

Polsson'!s ratio

Spatial separation in x-direction;
see Eq. (2§ of Appendix II

Normal stresses in X,y coordlnate
directions

Time separation; see Eq. (2) of
Appendix II

Shear stress
Natural mode shape functlons

Circular frequency

Center frequency of excitation band

Natural frequency of mn mode

17



APPENDIX T
EFFECT OF BOUNDARY CONDITIONS

ON MAXIMUM MODAL STRESSES IN PLATES

THE DYNAMIC EDGE EFFECT IN PLATES

Bolotin's Asymptotic Method

It is well-known that the mode shapes of uniform rectangu-
lar plates are essentially sinusoldal, except in the 1lmmediate
vicinity of the plate boundaries (Ref, 1). Accordingly, Bolotin
has developed a method of analysis based on approximate mode
shapes, which satisfy specified boundary conditions and which
approach sinusoids in the plate "interior region," many wave-
lengths from the boundaries (Fig., I-1).

Bolotin has shown (Ref. 2) that one may represent the de-
flection w{x,y) of a plate in the region near a boundary that is
parallel to the x-axis as

w(x,y) = ¥(y) sin k, (x-x_) (1)

where the function Y(y) must be of the form

-k
Y(y) = co[sin kyy+B1 cOS kyy+B2 e Oy] s (2)

[ op2,,2
ko =\ 2k (3)

in order to satisfy the classical equatlion of free vibrations of
plates,

with

oyt wemoiw = 0, (4)

and in order to approach a sinusoidal form asymptotically (for

large values of x). In the foregoing expressions, ky and k
represent the wavenumbers associated with the plate mode sthes

18



in the interior reglon, and C,, B}, and Bp are constants. B3
and Bo may be evaluated from boundary conditions; C, 1s of no
interest, since mode shapes are defined only within an arbitrary
multiplicative constant.

The Boe koy term represents the "dynamic edge effect," and
the region within which this term is significant as compared to
the other two terms of Eq, (2) has been called the "dynamic edge
effect region."

Bolotin has also demonstrated (Refs. 2,3) that one generally

obtalns very good approximations to the natural frequencies 1f
one uses the expression

w = (kxa+ky2) Vo/m (5)

which follows from substitution of the asymptotic form of
Eq. ieg into Eq. (1), and from substitution of the result into
Eq. .

Errors in Stresses from Edge Effect Calculations

Bolotin and hls associates have used the foregoling dynamilce
edge effect concept and his related "asymptotlc method" to study
natural frequencies of plates and to analyze edge stresses for
some special cases. Although they studled the errors in the
natural frequencies calculated by this method, no one seems to
have been concerned with the errors in the corresponding mode
shapes and 1n the stress distributions associated with these
mode shapes. Since the primary concern here is with stresses,
at least a brief investigation of the errors in the mode shapes
and stresses 1s indicated. Such an investigatlon appears in the
following paragraphs.

The simplest problem one might conslder 1s that of a rec-
tangular plate which is simply supported on all edges, For
such a plate 1t turns out that the dynamic edge effect is de-
generate, and that Bolotints method gives mode shapes which
coincide exactly with the exact mode shapes., '

More instructive results may be obtailned by considering

a rectangular plate which is simply supported on only two
opposite edges (x=0 and x=a) and clamped at the other two edges
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(y=0 and y=b). For such a plate, the (exact) general solution
of Eq. (4) may be expressed as

W= Ye(y) sin k_x

e

Ye(y) = C; sin kyy+c2 cos kyy (6)

+C3 sinh koy+04 cosh koy »

where the C's are constants.

Application of the clamped edge conditions

¥, (0) = ¥ (b) = ¥4(0) = ¥i(b) =0 ()

where the prime denotes differentiation, to the second of
Eq. {6) permits one to evaluate all but one of the C's and
vlelds the mode shape function

Kk
v . sin kyb-EX sinh k_b
€ = - - o _
C1 [sin kyy ko sinh koy] cos k&b—cosh kob [cos kyy cosh koy]

(8)

and the relation

k2
X

koky

cos kyb cosh k_b- sinh k_b sin kyb =1 (9)

which the wavenumbers must satisfy.

Bolotin's asymptotic method, when applied to the same
problem, yields

20



¥B k —ko
- = sin kyy-ﬁf(éos ko y-e %) s Tor O<y<b/2 (10)

B
instead of Eq. (8) and

ky tan(kyb/?)+ko = 0 (for symmetric* mode shapes)
(11)

k, tan(kyb/?)-l—ky =0 (for anti-symmetric* mode shapes)

instead of Eq. (9). Here Cy is an arbitrary constant, as is Cy
in Eq. (8). The subscript B in Yp is 1intended to differentiate
the result from Bolotin's method from the exact mode shape func-
tion Y .

e

One finds that Eqs., (8) and (9) approach Egs. (10) and (11),
respectively, as kxy and ky take on large values, Thus, the
greatest difference between the two solutions may be expected
to occur for the smallest values of ky and ky; i.e., for the
fundamental mode. Table I shows the results’ of corresponding
calculations for a square panel, with the constants Cj and Cg
adjusted so that Ye(b/2)=Yp(b/2}=1. The aifference between
Bolotin's and the exact mode shape is seen to be small.

The stress_components Oy, © [in Timoshenko's no-

s T
tation (Ref, 4)] in the outermosi fibirs of a homogeneous iso-
troplc plate of thickness h obey the well-known relations

2
h
ig-ﬁc -WXX""VW

X ¥y
h2
i'sﬁ GY = Wyy+v WXX (12)
2
h 2
T80 Txy T (1-v )wxy

*About y = b/2,
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where the subscripts on w denoted partial differentiation, and
where v represents Polsson's ratio, One may thus calculate the
stresses assoclated with a given mode shape by substltuting the
corresponding mode shape function into Eq. {12).

Although 1t has already been shown that the exact mode
shape function Ye{y) is closely approximated by the corresponding
function Yg(y) obtalned from Bolotin's method, the errors in the
stresses may be greater, since the stresses involve the second
derivatives of the shape functions — and these errors requlre
some further study.

By differentiation of Egs. (8) and (10) one may obtain

K
2 sin k_b-—Z sinh k Db
Yak© ¥ k v K o
e Z e @]
: = 'EX sinh k¥ + —55 T H-cosn w5~ °°Sb k¥ (13)
¢ (k2+k2> ° y 0
I\y" o
and
Y'4+kS ¥ kK -k.y
E ¥ B T o (1%)
c <k2+k2> °
B\y 0

One may again determine that the asymptotic values (i1.e.
the values as ky, ky = ) of the right-hand sides of Eqgs. (13
and (14) are identital, and thus that the greatest differepce
between them is obtained for the lowest mode. Values of Yg
and YR calculated for this mode are indicated in Table I,

Good agreement between the approximate and eéxact solution may
agaln be noted, indicating that one introduces little error if
one calculates stresses from Bolotin's instead of the exact
mode shapes.,
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TABLE I

COMPARISON OF EXACT AND BOLOTIN'S APPROXIMATE
MODE SHAPE FUNCTIONS, FOR FUNDAMENTAL MODE OF
CLAMPED-CLAMPED SUPPORTED-SUPPORTED SQUARE PLATE

¥/ Yo Yq ) b2 4 p?
0.0 0 0 52,69 53.40
0.05 .0357 L0364 22,22 22,67
0.1 .1280 .1307 13,38 13.59
0,2 4057 L4136 - 2.58 - 2,72
0.3 .7020 L7136 -15,00 -15.79
0.4 .9202 .9305 -23.29 -24,28
0.5 1.000 1.000 -26.15 -27.44

Analysis of this speclal case thus indicates that Bolotin's
asymptotic method gives the mode shapes and the assoclated stress
distributions within tolerable error bounds. Although this
method was developed primarily for the higher modes, the present
results encourage one to use the proposed approximate method
also for the lowest modes,
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EVALUATION OF BOUNDARY EFFECTS ON MAXIMUM STRESSES

Translational and Rotational Edge Constraints

In order to study the effect of changes in the plate edge
constraints on the plate stresses 1t is convenient to consider
two spring-like boundary conditions: 1) A rotational spring
condition, characterized by spring constant Ky, which provides
a moment (per unit edge length) proportional to the edge
rotation; 2) a translational spring, described by spring cons-
tant K¢, which provides a lateral force (per unit edge length)
proportional to the edge deflection.

From the well-known plate moment and shear force expressions
(Ref. 4) one finds that these spring constants are related to
the plate deflection as

Kr[wry]y:0 = D[ww-l-v Wxx]y—-o
(15)
~K, W = w W
t[Wlgeo = Dlw 4w, 1o
where the subscripts on the wi!s denote partial differentiation,
Substitution of Eq. (2) into (15) permits one to evaluate the
constants By and Bo, and to write

-B;A = 32A+2G(G+2arﬂ)
(16)
2
..32A = lmrat(; +J
where
G = l+f32 s H = \/1+2E32 s J = l+v62
A = JH-lo GP(cta_H) (17)

o, = KP/Eka s O = Kt/QDkg

B = kx/ky s k° = ka+k
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Stresses

The normal and shear stresses in the outermost fibers of
the plate may be computed from the deflection w according to
Eq. (12). From these stresses one may determine the maximum
principal stress Op by use of the general relation

2
20, (x,¥) = |cx|+|oy]+Wv/[lcx|—|oy|] +47§y . (18)

By substitution of Egs. (1) and {2) into (12) one may ob-
tain expressions for the stress distribution throughout the
entire plate., However, the "edge stresses' {at the plate edge
y=0) and the "asymptotic stresses" (at y==) are of particular
interest here, If one defines

A, =Nlo | A, = N|Gy| Y W N|Txy|
(19)

N = |h2/6D k§00 cos kx(xﬂxo)|

and lets the added subscripts e and a refer to the edge and to
the space-wise maximum asymptotlc stresses, respectively, then

one may write
2 2 a2
|-—(v+B )Bl + (vH -B )32|

2 a2
Ay o™ |-7 B, + (H -vB >32| (20)

ey, = 1) (o)

Ase

and
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Ax,a = |<y+8?> \/1:£?|

Ay g =9 V 1487 | (21)
](1-\;)(3 Vies?| .

My,

One may then study the relative magnitudes of the edge stresses
and the maximum asymptotic stresses by comparing Egs. (20) and (21).

Since the normal stresses vary as siln ky(x-x,), whereas the
shear stress varies as cos kx{(x-Xg), the maxfmum normal and shear
stresses do not occur at the same locations, At those locatlions
where the normal stresses take on their greatest values, the
shear stress vanishes; the greatest principal stress there 1s
equa% g? the greater of the two normal stresses, in view of

Eq. (10).

From Eq. (21) one can deduce that Axy % always 1s smaller
h

than either Ax or My g, Or both, Hence, e maximum principal
stress in the asympto ic region is given by

(ép,o>max = Max [lﬂx,al ’ Iﬂy,a‘] . (22)

By maximizing (with respect to xg the expression for the princi-
pal stress obtained from Egs. (18) and (19), one finds that the
maximum principal edge stress obeys the following expression,
provided that Ay>Ax:

ty ror (S,
(Ap, e)max = (23)

2 -
Axy Ai:fZ§;§g§>2 for Aiy><fxﬁﬁ¥>ny




The added subscript e is implied for all A's on the right-hand
side of Eq. {23). Equation (23) may be made to apply for A >A
by interchanging all x and y subscripts.

Ratio of Maximum Edge and Interior Stresses

The "asymptotic stresses" are those associated with the
sinusoidal mode shapes that approximate the plate deflection in
regions remote from any boundary, and are thus independent of

the boundary conditions. The "edge stresses,” on the other hand,

depend very markedly on the boundary conditions. Thus, the

stress ratio
-
(24)
( p,a )max

may be taken as a convenient measure of the effect of boundary
conditions on the maximum stresses.

In view of the form of Eq. (2), it is conceivable that the
greatest stresses may occur not directly at the edge, but rather
at some other position within one wavelength from the edge. One
might thus argue that the ratio R 1s not representative of the
greatest stress., However, by examining the expressions for the
stress distributions in detall one can show that for the higher
modes the actual maximum stress differs only negligibly from
the maximum edge stress,

STRESS RATIOS FOR LIMITING CASES

Infinite Translational Stiffness

For the case where the plate edge i1s not permitted to
deflect, and where the plate edge rotation is opposed by a
rotational spring of finite stiffness Kp, one may let Ky«
in Egs., {16) and (17) and obtain

P - r =
Bo=By"mmgm =B - (25)
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Then Egs. (20)-(22) yield

W/ 2
(ﬁp,a)max = V1+B™ M

2
Ax,e = 2vG B
(26)
Ay o = 2G°B
AXy’e = (1-v)B(1-BH)
where
M = max[J, wBZ] . (27)

If one substitutes Eq. (26) into Egs. (23) and (24) [and notes
that Ay>Ax if 1>v, which 1s always true], then one obtailns

(

2
2G° B
f'or ar>ar0

R = ¢ M<1+B2> - (28)
]1/2

BG[52<i-v2 uvaﬁGg
172

T2 2] > 2J1/2 for a, e,
M[ar+(§+arg) [B -arG
where

%o =G Vi - (29)

One may show that the ratio of the two bracketed expressions
of Eq. (28) that begin with P2 takes on its maximum value for
Qp=Cpno, and that for apddno Eq. (28) implies
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BVo(1-v Va(1-v)

BYEl-v) (XEAV) (30

R g —E¢ \fEff:gil 2
B M[a§+(G+aPH) ] /

The right-most of the foregoing expressions is less than unity
for v>0.23, which holds for most structural materials. Thus,

one may conclude that R 1s less than unity if d,.{Gny; i.e., that
the greatest asymptotic princlpal stress then exceeds the greatest
principal edge stress,

From Eq. (28) one may obtain contours of constant R in the
dp-f plane. The most lmportant of these contours, the one for
R=1, is sketched in Fig. I-2 (for v=0.3). Figure I-2 permits
one to tell at a glance whether the edge stresses or the asymp-
totic stresses predominate for a given reduced rotational con-
straint stiffness ¢, and for a glven wavenumber ratio f.

In the R<1 reglon of Fig. I-2 the asymptotic stresses pre-
dominate, Since these are independent of the boundary conditions,
changes of the constraint stiffness (within this region) will
not affect the dominant stresses, and thus will have no effect
on the fatigue 1life of the plate.

Infinite Rotational Stiffness

For the case where the plate edge rests on an "elastic
foundation” but is constrained so that its slope in direction
perpendlcular to the edge remains zero, one may let Ky—w in
Egs. {16) and (17). One then obtains

B, = -B2+1/dtG s By = 1/H (31)

and Egqs. (20) and (21) yield

2 2
Bee = lova®/H - (v+8) /e, G
2
h, o = |2¢5/8 + 3/a, ] (32)
= 0 ( = M V1+B°
AXY,e ? p,a’max 1 .
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Since the edge shear stress vanishes here, the greatest
principal edge stress is always equal to the greater of the two
normal stresses, Detalled examinatlon of the above expressions
indicates that ﬂx,e>ﬁy,e for

(1-p%)H/26° < @ < H/2G (33)

and that otherwise Ax o<y o.

One may again form the stress ratios R and obtain contours
of constant R in the a4-B plane. Figure I-3 shows the R=l con-
tour, together with limits for the dominance of the ox and Oy
normal stresses.

Zero Rotational Stiffnesses

For the case where the moment-stiffness at the plate edge
is zero, and where the plate edge translation 1s opposed by a
restraint of finite stiffness Ky, one may let K, — 0 in Egs. (16)
and (17) and obtain

B, = -(14B%) /B, = -3/b,

(34)
B,(26°/J-1)

td
i

where

B¢

[H]

JH-4&tG3 . (35)

Then Egs. (20) and (21) yield
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2.2, .2
A = 26°B°(1-v5) /By, A

=
]

S (1-v)BL1+IH/A, ] | (36)
(& Wpax = MI1+(26%-0)2 £21VE

Since here ’e=0, the greatest principal edge stress 1is
equal either to Ax,e or to the principal stress as obtained from
Eq. (23), which heré reduces to

bo,e = Aky,e[1-(Ax,e/EAXy,e)g]_l/e . (37)

Detailed examination reveals that the greatest value of the
principal stress given by Eq. (37) is always less than the cor-
responding maximum of the asymptotlic stress (Ap,a)max- There-
fore, one needs only to compare Ax,e and (Apﬁo maxes one finds
that ﬂx,e>(ﬂp,e)max if

|26 Vo -35/6% |<B(14v)/ V2 . (38)

The stress ratio R, as defined in Eq, (24), here becomes

252G2<E'”?>

R = M[AE+<?G2- )2]1/2 . (39)

The region of the 0i-f plane in which R>1 may be determined
by setting R=l in Eq. (38). one rinds that R>1 for

0,<D;/2 + v (D3/M)2-D§

(40)

at>D1/2 - W/(D3/M)2-D§
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where

D, = JH/263 Dy = 82(1-v2) f2a
(41)

D, = (26%-7)/40°

The above expressions define a strip region centered along
the line atle/z, on which the denomlnators of the expressilons
for the constants By and B, vanish identically. Figure I-4
shows the contour of R=1l, fogether with the discontinuity line
a4=D1/2 in the o-f plane.

Zero Translatlonal Stiffness

For the case where the shear force at the plate edge is
zero, and where the plate edge rotation is opposed by a rota-
tional restraint of finite stiffness Kp, one may set K¢=0 in
Eqs, (16) and (17) to obtain

B, = -[Bytla 6/5+26°/7H]

(42)
B, = ~1/H .
Then Egs. (20) and (21) reduce to
2y a2
Aeje = %q[ar(v_,_BE) + L1=pgP e G]
Ay,e = 89,8 5 Ay o = 2(1-v)B (43)

e (51

P>
[+
|
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One may find the greatest princlpal edge stress from the
above expressions by the method illustrated 1n the development
of Eq. (23). One can show, after much manipulation, that only
Ag,e can yileld values of the stress ratlo R which exceed unity.
Thé correspondling stress ratio may be expressed as

R - (v+62) [a +E3]

(44)
'\/(ar+E1)2+E2
where
E, = (26°-7)/8cH , E, = /4G
(45)
Ey = BaG(l-ve)/2H(82+v) .

The contour of R=1l and region for R>1 and R<1l are shown 1n Flg. I-5.

Cbservations

In addition to the delineation of the R>1 and R<1l regions
presented in Figs, I-2 — I-5, the foregolng analysis of the
limiting cases has shown the following:

1. The maximum princlpal edge stress which exceeds the
maxlimum princlpal asymptotic stress is equal elther to oy or
to o

yc

2, If either one of the edge stiffnesses is infinite, then

the edge stress °y dominates in the R>1 region.

3. If either one of the edge stiffnesses 1s zero, then
the edge stress 0y dominates in the R>1 region.
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STRESS RATIOS FOR GENERAL CASES

Simplifying Assumption

The previous sectlion, which dealt with the maximum stresses
in panels where only one of the two types of edge stiffnesses
is finite (the other being zero or infinite), sheds light on the
approach one may take to deal with the most general case of con-
cern here, Since the general expressions for the edge stresses
have already been developed, one needs only to carry out the
maximizations required to determlne the greatest principal edge
stress, and then to delineate those regions in the edge-stiffness
and wavenumber-ratio (dn, 0t, B) space where the "edge-to-
asymptotic" stress ratio R, as defined in Eq. (24) exceeds
unity. This procedure 1is quite straightforward in principle,
but requires an excessive amount of algebraic manipulation.
Hence, 1t is useful to introduce some plausible assumptlions, the
validity of which may be inferred from the previous analyses of
the limiting cases.

The previous studies have shown that in the limiting edge-
stiffness cases the shear stress at the panel edge plays no role
in establishing the maximum principal edge stress. Thus, it
seems reasonable to assume that this shear stress is only rarely
significant In the more general case, and to take the statement
that "The maximum principal edge stress which exceeds the maximum
principal asymptotlc stress is equal either to ox or to cy“ to
hold in general.

With the aforementioned assumptlion the analysis is greatly
simplified, By combining Eqs. (16}, (20), and (21) one obtains

2G|-ve<ﬁaratG2+q> + (v+6é><garH+G |

by 18]
Ay o8] = 4a,6|-20, 634ny| (46)
1/2

n, o lo] = m{[uare<atG—H> + J-2G2]2 + A2} .
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From the comparison of the expressions for fAx,e and ﬂ,y e
it follows that ?

Ay,e>nx,e 1f a >a, and/or o >,
(47)
1’\:‘1,"30!\\_5(’e if e <oy and/or a <o,
where
2 2.2 |
B (1-v) o = B G (1+v) . (48)

a = » =

One finds that the stress ratio R always 1s less than unity
if apdds. Since one here is concerned only wilth those condlitions
which yield R>1, one needs to deal only with those cases where
a_<%,.

r~2

Tt is convenient to divide the entire range of edge-support
conditions into two classes, depending on the relative magnitudes
of ap and Q3 (where o, of course, 1s a function of the trans-
1ational stiffness parameter o). Cases where Qpn>0; may be
called rotationally "clamped-like," those where ¢ <&, may be
called "free-like.," rl

Clamped-Like Edges

For a,>0, Eq. (46) indicates that Ay o>fix,e. One then
finds that

3
4arG[2atG —HJ]

= M{{Aare<étG-#>+J-2G2]2 N Ae}

R

s - (49)
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The surface on which R=1 in the (o,, @y, B) space¥* is
sketched in Flg. I-6; the regions where R exceeds or 1is less
than unlty are also indicated 1In that figure.

Free-Like Edges

For an.{ay, Eq, (46) indicates that Ax,e>ly e. In thls case
one finds that ?

.20, (&+Bé)(?arﬂ+é) - VG(FaratGazq) . (50)
{A2+[4arG(atG~H> + J-eea]z} &

Figure I-7 shows the corresponding R=1 surface in {(o,, @i, P)
space and indicates the regions where R>1 and R<1,

*In Fig, I-6 B is shown as a function of 1l/oy and 1/a,
(instead of ar and 0p), in order to display the limiting
surfaces more clearly,

36



REFERENCES FOR APPENDIX I

F.V, Hunt, "Stress and Strain Limits on the Attailnable
Veloecity in Mechanical Vibration," J. Acoust. Soc. Am.
32: 1123-1128 (1960).

V.V. Bolotin, "Dynamic Edge Effect in the Oscillation
of Plates,” Inzhenernyl Sbornik 31: 3-14 (1960) (In
Russian).

Vv.V. Bolotin, B.P. Makarov, G.V. Mishenkov, and Iu. Iu.
Shveiko, "An Asymptotic Method for the Study of Natural
Frequencles of Elastic Plates,"” Sbornik Raschety na
Prochnost', Vol. 6, Mashgiz (1960) (In Russian).

S. Timoshenko, Theory of Plates and Shells (McGraw-Hill
Book Company, Inc,, New York, 1340),

37



I' REGION |
y |
! |
| |
' |
: |
!
- ——— =4 ———
| £ !

/REGION OF EDGE EFFECT

F1G.I-1 INTERIOR AND EDGE EFFECT REGIONS OF PLATE

38



Ann.f.yv: NOIL103743Q TvYd3ILV1 0¥3Z OL QINIVHLSNOD S$390Q4
HLIM S3LYT1d NI IONVYNIWNOG SSIYLS dO1¥3ILNI ANV 3001

21 (gQUW) ™2 /iy Oy gz /iy =10 SSINILILS TYNOILVLOY 03ONA3Y
4

£

1

. €'0=21 0OllvY .m.szm_Oa
x,q_zAw_o_..uﬁﬁz_.n.V \x,.:z nuooubvnm

1<y

I>d

Ay/%W=g OlLvY ¥IFWNNIAVM

¢-1°914

39



o

Anuu._v: NOILV1Od O¥3Z OL GINIVYLSNOD S3I9Q3 HLIM

SILVTd NI FJONVNINOG SSIYLS ¥OIYILNI ANV 39Q3

€-1°914

zn{QeW)em Nz /ty= 9y az/ % = Yo SSINAHILS TYNOILYISNYEL 4IONA3N

Sl

ol

S0

|

£0=4 0l11VY S\NOSSI0d

XVW Amo._gm_t.__.c,\.v::_,_ Am_eam_.o )

I<y

=y

A ——

3%p < m.moll\
/
/

™

1=y

[>Y

o
A/*M =g OlLvY HIEWNNIAVM

40



| ] |
R=(0¢pge) max./ (CiNTERIOR ) MAX.
‘ \ \ POISSON'S RATIO ¥=0.3
3.0 \
x)\
\x
'."f \ R<|
@ 2.0 \
E \
E \ R=1
g \ R>1
\
J
>
3 0 \ \
\ 2 2
a - (1+vB5)/1+28
‘\ i~ 4(+p2)32
/
o0 0.l 0.2 0.3 0.9 0.5

3 ‘
REDUCED TRANSLATIONAL STIFFNESS a;=Ky/2Dky'=K;/2, /w(m3D)"/?

FIG.I-4 EDGE AND INTERIOR STRESS DOMINANCE IN
PLATES WITH MOMENT-FREE EDGES (Kr=0)

41



30 /

-
-~

.,

o
3 /
@ 2.0

o

& R>]

v

nr

0

2 MK

D

=

[(VE]

>

=

| \
0 R< 1]
R={ Cgpge) max/ (TInTERIOR) MAX.
POISSON'S RATIO =03
% 1.0 2.0 3.0

REDUCED ROTATIONAL STIFFNESS @, =K, /2D k, =K /2 /o737

FIG.I-5 EDGE AND INTERIOR STRESS DOMINANCE IN
PLATES WITH SHEAR-FORCE-FREE EDGES(Kt= 0)

42



/ 0.5

148,220 kp /K,

B: Ky /ky

—3.0 R=(0epeE ) MAX./(T INTERIOR) MAX.
POISSON'S RATIO ¥=0.3
2.0
R=| SURFACE
10 —— — — — — — _—
R>I

1 l >

0 0.5 LO .5 Va, =20k S/Kt
R<1 t P

FIG.I-6 REGIONS OF EDGE AND INTERIOR STRESS DOMINANCE IN
PLATES WITH ROTATIONALLY "CLAMPED-LIKE™ EDGES (ar>a1)

43



F
R=(0O ) (o }
INTERSECTION OF E0GE ) MAX./(T INTERIOR MAX.
R=1 SURFACE WITH \ POISSON'S RATIO ¥=0.3
@, = O PLANE ,‘
\
| \
: 20F A1 R=1 SURFACE
| INTERSECTION OF R=1
ey / SURFACE WITH @,= O PLANE
' 0] _ _
: e \=—DISCONTINUITY SURFACE (A=0)
\
v ol 02 )03 04 05
LI\ b = L | - .
| —— -
| -
/ -
- | P
/ /10 ,Li/ R<1
S
d INTERSECTION OF R =1 SURFACE
i WITH .= 1 PLANE
4
2.0
a.=K./2Dk,

FIG.1I-7 REGIONS OF EDGE AND INTERIOR STRESS DOMINANCE IN
PLATES WITH ROTATIONALLY "FREE-LIKE®™ EDGES (ar<al)

1y



APPENDIX II

EFFECTS OF BOUNDARY CONDITIONS ON
MAXIMUM STRESSES IN RANDOMLY VIBRATING PLATES

INTRODUCTION

The vibrations of an elastic plate which is subject to
broad-band excitation, at freguencies that are well above the
fundamental plate resonance, may be described in terms of the
sume of the responses of all modes. The effects of trans-
1ational and rotational boundary stiffnesses on maximum plate
stresses then can, in principle, be studied by the same method
as was employed in Appendix I for the analysis of stresses
associated with single modes. However, the analysis of multi-
modal responses presents some difficulties which makes the fore-~
going approach impractical, Unlike in the single modal case,
the ratio of maximum edge to maximum interior stress in the
multimodal case depends markedly on the character of the ex-
citation field. This dependence not only complicates the
general analysis, but also makes finding of the maximum stresses
very difficult.

In order to circumvent the aforementioned difficulties,
the present appendix makes use of a different approach than
Appendix I, Instead of superposing modal responses, the pre-
sent appendix develops a general expression which describes the
temporal mean square response of a plate subject to a random
pressure field, then determines the spatial maximum of this
temporal mean square response by a statistical method, and
finally examines the effect of edge conditions on this maximum.

RANDOM VIBRATIONS

There exists much literature on the calculation of dynamic
responses of elastic structures to random pressure fields
(Refs. 1,2). It is useful to restate here briefly some of the
most important results, for the sake of clarity and completeness.

A1l of the work discussed here pertains to uniform homo-
geneous isotropilc flat plates, with thickness h, flexural
rigidity D, Poisson's ratio v, and mass mo per unit area.
Structural damping is treated by permitting the plate rigidity
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to take on complex values (Ref. 3), and the corresponding loss
factor 1n is taken to be small and independent of frequency.
The excitation fields are considered to be stationary, homo-
geneous, and ergodic random processes,

Characterlization of Excitation Pressure

The cross-correlation function Cp of the pressure p(x,y,t)
is defined as

T
C,(8:6,7) = 1in 5 _[T p(x,5,t)p(x',y",t47) ar (1)

where
€ =x=x' , C=y-y' , T =t-t' . (2)

Also, x and y (and x' and ¥v') represent Cartesian coordinates in
the plane of the plate, and t (and t') denotes time.

The cross power spectral density Wp of p 1s defined as the
Fourier transform of the cross-correlation function; so that

[vo] [++]
Wy = (2r)~1/2 f cpe'i‘“"’d-r . = (zw)‘l/ef W el%Taw .

feo  ? lw P
(3)

The temporal mean square value of p is denocted by <p2>t
and obeys

<@y = €,(0,0,0) = (2172 [T (0,0,0) a0 . (4)

- 00

The spatial mean square value of P is represented by
<p?>4 and is defined by
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%>, =3 j; p° dA (5)

where A denotes the plate area.

Response Quantitles

If the deflection w=w(x,y)e ™" of a damped elastic plate
exposed to a sinusoidal pressure fileld p=p(x,y]elw¢ is taken to
obey the classical thin plate equation (Ref. 3

D(1+1sn) VWm0 =5, (6)

where
5 = 83gn W = (D/I(Dl ] (7)

then the cross power spectral density ww of the plate deflection w
may be written as

d ¢
W = AN mn rs W

W mnrs _2 % G&,mnrs ?
monnTrs

(8)

where the asterisk (*) indicates the complex conjugate of the
quantity to which it is appended, and where

_ 2 2 2
(9)
= 6 ] 1 [
wQ,mnrs _”fA J;Wp @m(x:y)érs(x ,V') dxdy dxtdy' .

The functions ®ymn represent the normallzed natural mode
shapes, which satisfy the modal equation
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DV”@mn-mﬁn me® =0 (10)

(where wp, represents the natural frequency associated with the
mn mode) as well as the prescribed boundary conditions and the
normalization condition

J a8 y) At =5 (11)

where &y, Bpg 2re Kronecker deltas, For any structural response

quantity U (such as stress), which is related to the natural
mode shapes as

Un = Dy O (12)

in terms of a linear differential operator Lxy, which contailns
only the spatial coordinates, one may express the spectral
density of that response quantity as

_ 2E2Z Uﬁn Urs

U~ mnrs 2 g wQ,mnPS ) (13)
o mn rs

W

From an equation analogous to Eq. (4) one may then find the
temporal mean square response to be given by

2. _ IISR -2
<vU >t = mnrs "o Uﬁn Urs Imnrs ’ (14)
where
W
_ -1/2 ® mnrs
Tnrs = (2m) / J[ ﬁéhfr_¥ da . (15)

-0 m rs
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MAXIMUM STRESSES

Edge and Interior (Asymptotic) Stresses

The temporal mean square values of the edge and asymptotic
stresses may be found by the direct application of the fore-
olng results. From the discussion of slingle modal responses
%Appendix I), one may observe that the stresses associated with
the mn mode at the plate edge and in the plate interior may be
written B

%, e,mn = Qe Rx,mn sin km(x-xo)
= w! -
cy,e,mn Q! Ry,mn sin km(x xo) 6)
% .a,mn = Q@ sin km(x~xo) sin kn(y-yo)
Oy a,mn = Q ! sin km(x—xo) sin kn(y"yo)
where
Q =12 \me/a.hl‘L > B = km/kn
(17)
VB2 14+vB2
W= m o' = w mn
mn mn 2 ? mn mn 2
46 +6

and where the R's denote ratios of maximum edge to maximum in-
terior stresses:
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. ~ [Gé,mn,x]max 1 B 4B 1 2B§n(l“vl
T T = TR | T
o ,ca,mn,x]max V lﬁB% viB
(18)
. % ,mn, ) max 1 . 1+28$m [2-)
T = —By+Ea - .
B PP U1 0} _Ua,mn,y]max 1/1+B$ 1+an

Here By and Bp are functions of v and By, as defined in Eq., (16)
of Appendix I,

Response Maxima; Dependence on Modal Coherence

If one attempts to determine the spatial maximum of the
temporal mean square response by application of the eclassical
maximization process, one finds that the locations and the
magnitudes of the response maxima depend strongly on the ex-
cltation, Also, except in the somewhat degenerate case where
a few modes dominate the plate motion, use of the classical
process generally proves to be too tedious. Fortunately, one
may arrive at a simple development based on the recently ob-
tained result (Ref, 4) which indicates that the probability of
the occurrence of response concentrations (i.e., of locations on
the plate where all excited modes have their stress maxima) is
nearly equal to unity.

It is convenient to rewrite Eg., (14) as

2 bW
<vU >t - mnrs I1rnr1r's mnrstnQrs ’ (19)

in terms of I'mmpg, a coefficient that depends on the Lyy
operator of Eq. ?12) which describes the relation of the
response quantity U to the deflections. One finds that one
may express the spatial maximum of this temporal mean square
response {in the light of the aforementioned response concen-
tration argument) as

Max[<U2>t] = giig anrslmnrsMax[an®rs] . (20)
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The notation Max[ ] is used here and henceforth to designate
maximization with respect to space.

The evaluation of the sums of Eq. (20) may be greatly
simplified if the modal excitation coefficients Ipnps are
grouped into classes according to the magnlitude of the cross-
product contributions relative to that of the self-product con-
tributions, If one designates as "uncorrelated" (or incoherently
responding) those modes whose self-product contributions to the
maximum response greatly exceed their cross-product contributions,
and correspondingly designates as "correlated" (or coherently
responding) those modes whose self- and cross-product contri-
butions are of the same order of magnitude, then one may arrive
at the following statements concerning the maximum response:

1) If all (resonantly excited) modes are
uncorrelated, then

_ 23 2 1 ar?
Max[<u®> ] = 22T 7 ooMax[el ] = 4USS. o . (21)

mn mnm nmamn

2) If all N, of the excited modes are correlated, then

ZEZZ 1 wmax[o o]

2
Max[<U >t] mnrs  mnrs o mnrs mn rs

i

P 2
r
N, I nMax[® ]

I

[

2
UN <U >t,8 (22)

3) If the Ny excited modes are made up of Ngp modal groups,
where each group contains N, modes which are corrélated with
each other, but uncorrelated with modes outside the group, then

2 P 2 2
~ r =
Max{<U >t] Nch m I Max[®Z 1] uNgNC<U >t,s . (23)

The last form of each of Eas, (21)—(23) is obtained by consider-
ing double-sinusoldal mode shapes, llke thogse Indlcated in the
last two of Eq. (16). [The form of Eq. (23) also follows from
the temporal and spatial mean square, which obeys
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2 2z 2
<u >t,s = mn 1-‘rnnmnImnmn<q>mn>s s (24)

as may readlly be obtained from Eq. (19).]

Maxima of Mean Square Stresses

The foregoling development and the indication that response
concentrations are expected to occur with unity probabllity
(Ref. 4) permits one to evaluate various stress maxima,

By combining Eqs. (14) and (16) one may find the mean
square stresses to obey

2 2EXZ —_ -

= r
<Ux,e>t mnrs UImnrswmnwrst,mnRx,rs¢mr
2 2227 -1 !
<0'3r,e>t ~ mnrs PoImnrswmnwbsRy,mnRy,rs¢mr
(25)
2 IEZF - -
= r
<°x,a>t mnrs oImnrswmnwfs¢mnrs
2 ZEEZ -1 -t
= r
<Gy,a>t mnrs UImnrswhnmrs¢mnrs
where
= A2 2
Ty =Q /Amo
¢, = sin km(x—xo) sin kr(x-—xo) (26)
¢ ps = Sin km(x-xo) sin kn(y-yo) sin kr(x—xo) sin ks(yhyo)

If response concentrations occur, then the following
general expressions apply for the maximum edge and interior
stresses as may be found from Eq. {25):
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2 _ 35538 - —
M""uc[<61c,e>1:] ~ mnrs cImnrswhnmrst,mnRx,rs
2 >35> —t 1
Max[(oy,e>t] T mnrs FGImnrswhhmrsRy,mnRy,rs
(27)
2 _ ZE53 o = =
Max[<dx,a>t] T mnrs GImnrswbnmrs
2 PN —1 .t
Max[(oy,a>t]_‘ mnrs l-.0'Irnnrs“omnwr-s *

These expressions may readily be simplified for the varlous
modal correlatlion conditions discussed above., The clrcumstances
under which these conditions apply are investlgated in some
detall in the following sections.

Effect of Excitation Field Correlation on Modal Coherence

In order to demonstrate the effect of parameters of the
excitation field on the coherence of the modal response, it is
useful to consider cross-correlation functions of the "separable"
form

2
Co = P° £(7) ay(8) ap(0) (28)

where ;ﬁ denotes the mean square pressure, and where the functions
dy and dp are discussed subsequently. The pressure fields to
which Eq. (28) applies are nonconvecting stationary random pro-
cesses having homogeneous spatial correlations, and are of con-
siderable practical interest.

Substitution of the above correlation function into Eq. (3),
and subsequent application of the last of Egs. {9) and of
Eg. (15) leads to a result which one may express as

s

= p°~ F S s (29)

Imnr's mnrs mnrs
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where

!
1l

(2w)”1/2\/ﬂm Fw) do
mnrs -~ J T T *

0 mn rs

1l

(27r)—1/2L/‘m £(r) =107 4y (30)

- 00

F{w)

1
h

= ﬁﬂ ay(8)ay(0) @ el dxdy dxtay'

To lnvestigate how the coherence of the excited modes
depends on the spatial correlation length of the excitation
field, 1t is useful to consider a cross-correlation function
whose spatlial dependence is of the form

ay(8)ay(e) = e [El/E - lel /e (31)

where the "correlation length" £ of the excitation field is
defined as

1 ® 1 ®
t=3 fwdl(a) df =3 f dp(8) at . (32)
—— -0
Substitution of Eq. (31) into the last of Eq. (30) and inte-
gration of the result over the entire plate area A=L“ ylelds
s = 4226 ¢ (kKKK )2 (33)
mrs mr ns rmns o

where
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6 =6 +(sk )(8k ) (4/L) (k£ )2 v
Voo = (1) [(-1)(-1)7] &7/ (34)
Km = l+£2k$ .

It 1s evident from the above expression that all the modes
may be considered as incoherently responding if £/I<<1l, and as
coherently responding if £/I>1.

Effect of Plate Parameters on Modal Coherence

The dependence of modal coherence on the plate damping
factor and resonance frequencles may be studied by refering to
Eq. {(29). By combining the first two of Eq. (30} and inter-
changing the order of integration, one obtains

o o ~Iwr
1 JF e aw
F = £{r)
mnrs ~ 27 J [_m T 'T'r"S?] ar . (35)

The above indicated integration with respect to @ may be carried
out by the method of residues. For small damping factors 7 one
may write the result as
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er e~ 54
Lo TonTrs™

)

= Fl(T’wmn’wfs) FE(whn’mrs

2 - T/2
T © s cos(mbsf) for >0

rs
Fy = (36)
aéL-e"mmnT/Q COS(whnT) for 7<0
mn
2 2
. Wn(mhﬁkyrs)
2T TP 7 2, 2 .2
(wrs-wmn) + 1 (wrs+wmn)
One may then rewrite Eq, (35) as
l 00
F ors = 55 Fo ‘/ﬁ Fl(T) £f(r) ar . (37)

00

Inspection of the second of Eq, {(36) shows that the magnitude

of Fo 1s Independent of the excitation fileld and varies strongly
with the difference between the modal natural frequencies. 1In
fact, Fo appears very nearly like the transfer function of a
simple single-degree-of-freedom system. One may therefore
approximate Fo by

2 2
/(e 4o ) for |o -0 |<B,
7| = (38)
0 for Iw%s'whn|>Be
where
_ 2 2 -1
Be = Wn(wmn+mfs)(uﬁmﬁa%s) (39)

1s the effective bandwidth,

56



If this effective bandwidth is narrower than the frequency
spacing between modes, i.e, if ngBe<l, where ng denotes the modal
density (i.e., the average number of modes per unit frequency
interval), then the excited modes may be considered as uncorre-
lated, On the other hand, if the bandwidth is wider, so that
NoongBe>l, then one may expect all of the N, excited modes on
the average to respond as Ng(=NQ/hmBe) groups of modes.

With the aid of Eq. (39) one may rewrite the condition
ngyBe<1 for modal incoherence as

)2 < 2 (40)

(cuamn-mp)2 + (w »

-
TS P

where
wp = 1/'2171'1nCD R (41)

Clearly, if the natural frequencies of all of the excited modes
are below wp, regardless of the excitation fleld, then the
modes are incoherent,

STRESSES PRODUCED BY BAND-LIMITED WHITE NOISE EXCITATION

For many analyses one may represent the time-correlation
f(r) by a simple function, such as a decaying exponentlal.
(A decaying exponential correlation is particulary well suited
to describe the pressure field assoclated with a turbulent
boundary layer, for whlch the time correlation characterlzes
the generation and decay of eddies,)

In general, however, one cannot describe actual (experi-
mentally measured) spectra by simple expressions. In such
cases 1t 1is probably most convenient to consider the entire ex-
citation spectrum as divided Into a series of contiguous fre-
guency bands, to assume the excitation in each band to be
essentially of the nature of band-limited white nolse, and to
study the structural response 1n these bands separately — rather
than dealing with the entire spectrum at once.
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Response Characteristics

The time-correlation function f(r) for the band-limited
white noise excitation, for which the spectrum F(w) is shown in
Fig., II-1, is given by

£(r) = (Ew)'1/2f°° Fw) 197 4o

(42)
= /m)Y2 5o ) 7 sin(wyr) - sin(em)] .

By substituting Eq. (42) into Eq. (37), and carrying out the
indicated integration, one may obtain

¥
mgrs = GHS)-l/Q F(wc) [Lmn+LrS] (43)
where
o 72 [t )
) @ 1752 2, 1,
2 2 -
—— 2 L]
®j,mn = 1 wmnwj[wmn 1+ /LO'(DJ] d (1)
1 for [wﬁn l+n2/ﬂ>—w§] <0
Sk = '
0 otherwise

J,k = 1,2 .
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As has been noted previouslﬁ Fp is independent of the ex-
citation, From Egs. (43) and (4 5 one may determine that
Fpnrs/Fo exhiblits a sharp maximum 1f both ®pn and ®pg lie with-
in the excitation band; this maximum corresponds to resonant
response to the excitation. By making the plauslble assumptions
that only resonant modes are excited significantly, and that
their averaﬁe response characteristics are the same as those of
an "average” mode having its resonance at the band-center fre-
guency ®., one may determine the maximum edge and asymptotic
stresses as dlscussed in the following sections,

The response in a given frequency band, the maximum stresses
within that band, and the corresponding edge/asymptotic stress
ratios, may be expected to depend on how coherently the modes
in that band respond. As previously discussed, modes respond
incoherently if we<wy, (or £/I<<1). Thus, the responses in the
lowest frequency bands of interest (i.e., the responses which
generally are assoclated with the highest stresses) usually will
be incoherent. On the other hand, coherent responses may be
expected for high enough frequencies.

Maximum Stresses for Group of Incoherent Modes

For the case where all modal resonance responses in the band
of interest are incoherent (i.e., where W <w, or £/I<<1), the
"eross-terms" of Eq. (43) vanish, and one obtains

Fonmn ~ (2'rr)'1/2 F(mc).Am-nw/n wz (45)

where Aw = wp-uq 1s the excitation bandwidth,

One may then compute the maximum edge and asymptotlc stresses
from Eq., {27). For example, for the x-components of these
stresses one finds

po1 Fled) H 46
o Vo ®, Motk ()

Max [<U§’ (g))t]

where for the edge stress
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J;m S (92 P) Ri,mn(wc,ﬁ)(v+52)2(1+r32)"3 B (47)

o
n
glr

and for the asymptotic stress

Sl

x,a fom Spnmn (90 sB) (w82)(1462)73 ap . (48)

Maxlmum Stresses for Group of Coherent Modes

One may deal with cases where the previous assumption of
modal incoherence does not hold most simply by selecting band-
widths Aw that satisfy

AL = B z-% M o s (49)

so that all resonant modes within a band respond coherently.
Then one finds from Egs. (37), (43), and (49) that

(7-2 tan"t(r/2) F(%)  sor Jo_-o |, |0, -0 |<B /2
[ = 3
2r3 N Uoc
Fonrs =< (50)
l0 otherwise .
One then finds from Eq. (27) that
2 7-2 tan"I(n/2) 'o F(“’c)(ﬁ‘“'%)e
Max[<°x,(§)>t] = 43 Heo(g)  (51)
2W3 n e, a

where
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4 00 [+ ]
Hx,a =3 JC Jg Z122 Smnrs(wc’ﬁl’BE)dal dsE

4 o0 o
Hk,e E';E UéiJr le2smnrs(wb’Bl’BE)Rx,mn(wc’Bl)Rx,rs(wc’BQ)daldBE

)
(52)

[
7]

1 (v+61)2(1+6§)'3 s 1=1,2 ‘

Stress Ratios

These foregoing expressions permit one to compute the
stress ratios (of maximum edge stress to maximum asymptotic
stress) in terms of the previously introduced rotational and
translational edge stiffness parameters., The results of such
computations for incoherently responding modes are plotted in
Flg. II-2, This figure is qualitatively like that pertaining
to the response of a single mode; the edge stress here is seen
to exceed the asymptotic stress only for large rotational and
translational edge stiffnesses, i.e.,, for the "clamped-like"
edge conditions. A plot like Flg. II-2 may be developed also
for coherently responding modes; such a plot also appears
qualitatively like Fig, II-2.
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APPENDIX IIX

DYNAMIC EDGE EFFECT
IN CYLINDRICAL SHELLS

SHELL EQUATIONS OF MOTION

General Egquations

Novizhilov's well-known equations of free vibrations of
thin cylindrical shells (Ref. 1) may be written in matrix form
as

dyy 92 d1; u |
dyy Gpp dpgf  } V=0
d d d w
2
BECEERCEENREE] B
32 | 1-v 2° 32
dyq = e * 77 302 1-v) 302
(1)
v 32 | 3% 2 3 32 o, d°
d + + a“f2(1-v + -{(1-v
o(32 322 ( 2> 3¢
4o =1+ a + + (1-v
33 362 dt2 3t2
_1+v O _ _ d
dyp = dpy = 73 > dy3 =d3y =V 3E
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where £ is a dimensionless axial coordinate and t a dimensionless
time parameter., These are related to the usual axial coordinate
z' and to actual time t! as

E=2'/r , t = t'cL/r (2)

in terms of the mean radius r of the shell and the longitudinal
wave velocity ci, of the shell material. The symbol 6 represents
the angular coordinate (in the usual cylindrical coordinate
system), and u,v,w denote axial, tangentlal, and radial dis-
placement components, respectively (See Fig, III-1), The
parameter a 1s proportional to the ratio of the shell thickness
h to the radius r, and obeys

a = h/r V12 s (3)
and v represents Poisson's ratio.

The problem of determining the displacéments u,v,w which
satisfy Eq. (1) may be reduced to that of solving one differ-
ential equation, if one lets

WeDig @ , v=Dy @ , w=Dy & (4)

where the D's are the minors of the determinant Ad of the co-
efficients Eq. (1). Substitution of these expressions into
Eq. (1) leads, by virtue of symmetry of bq, to

b, ®=0 (5)

The differential operator 83 is seen to be of eighth order
in £ and 8; hence, four boundary conditions at each edge are
required for the complete evaluation of &, Most boundary con-
ditions of general interest may be described by specilalizations
of the relations given below.

For a clircumferential boundary (at £=Constant):
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dH

1 =
Tl + Kl u=90 ’ N1 +-;5§ -K3 w =20 » |
(6)
H
1 _ dw
Sl"—f;"l'KEV-—O » G1+K4m-—o °

For a longitudinal boundary (at 6=Constant):

BH2
T2+L1V=O N2+m-L3W=O »
(7)
S L =0 G L. ¥ _ o
o " Hp W o * by TN T *

Here T denotes the tension force, S the tangentlal shear force,
N the normal shear force, G the bending moment, and H the
twisting moment per unit edge length; the subscript 1 refers to
such loads that act on a surface of constant £, and subscript 2
refers to loads that act on a surface of constant € as indicated
in Fig, III-1. The K's and L's are constants that describe the
stiffnesses of the edge supports.

Approximate Equatiocns

One may simplify Eq. (%) greatly by introducing

€ = [h2/12r2(1—v2)]1/4

X = 9/6 s Z = G,/E
(8)

T=v/ed , V=v/s , W=w/e

32 %
V2=——2+——§ .
3z Ax
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One may then express Eq. (5) as

8
) ¥ e=0 (9)
n=0
where
4 2
) 8 a 4
Dy=—p+V +—5v , D=0 |, (10)
0 3. ot 1

and the remaining Dn's are complicated operators which are not
reproduced here because they are of no interest for the present
purposes.

For solutions whose characteristic lengths (wavelengths)
are smaller than er or of the same order, one may neglect all
but the initial term of Egq. {9). The resulting approximate
shell equation may be written as

4 2
[—B—E+V8+%V4]¢=O R (11)
oz dt

and the relations (4) between the displacement components and @
may be expressed as

33 33]
- + v ¢ s
[ Bzaxg 323

a3 33 ]
[(24-\!) atzax + ax3 o R (12)

;J--—-'Vad) o

u

v

Equation (11) is known as the Donnel equation for the free
vibration of cylindrical shells {or in Ref. 1, as the approximate
equation for states of stress with "large indices of variation").
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The corresponding relations between displacements and stress
components are given in Ref, 1,

EDGE EFFECT

The dynamic edge effect 1n thin cylindrical shells may be
studied by the asymptotic method of Bolotin (Ref. 2).

Nonoscillatory and Oscillatory Edge Effects

Consider a longitudinal edge (along a line at constant z).
For such an edge one requires a solution of Eg. (11) of the
form '

832 1wt
O = i A, e 1 sin ke(x-xo) e . (13)

1=l

The above expression may be shown to satisfy Eq. (11) 1if the
coefficients s4 are the roots of the equation

2 -2
o° = (éf—kg) + sg(ég-kg) . (14)

If the modes shapes are to approach sinusolids asymptotlcally,
then one expects to find at least two roots of the form

8° = -k . (15)

For such roots one may set

ky=pcos® , k,=psinbé (16)

in Eq. (14) and obtain the frequency-wavenumber relatlon

2 4 by

0 = p 4+ cos . (17)
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Flgure ITI-2 shows two typical loei of constant frequency
in the (ki,kp) or the (p,6) plane. One may show that membrane
effects in the shell are important if cos48>p*, but that these
effects are unimportant d ﬁhat the shell behaves very nearly
like a flat plate 1if cos*6<p+. The region where the former in-
equality holds has been labeled "membrane region" in Fig, III-2;
the remainder of the area of Fig. III-2 has been labeled "bending
region,

By equating Egs. (14) and (17) one finds

2
(32+ki> {36-p2 l+3sin22)su+p4sin29<?+3sin29 +-li£%§—g>

p
82-—p6 sin49(1+sin29>(1+ ;E)} =0 ,
P

from which one may determine the remalning six roots of Eq, (14)
in terms of p and &, If pdpy, where

3/2

o 4 (1+Msin29) s (19)

Py = -1 + 1081n%6 + 2sin

all six roots are real. The corresponding solution of Eq. (11)
i1s of the form

¢ = ¢ eiwt sin k2( -xq> [sin klz + c, cos klz + Co e-az

+ cg Pz 4 ey e"Tz] , (20)

where the c's are constants and o, B, and Y are real guantities,
Here ¢ approaches a double-sinusoid for large z, and the dynamic
edge effect 1s termed "nonoscillatory." On the other hand, if
p<pos Only two of the six roots are real, the solution of Eq, (11)
1s of the form
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¢ = c eimt gin k2< wx;)[sin klz+c1 coS klz-!-c2 e"&z

(21)

+c) e PZ gin Yzteg e P2z cos Yz] ,

and the edge effect is called "oscillatory."

Circumferentlal Edges

It 18 instructive to examine the edge effect for a circum-
ferential edge which is "clamped" with respect to flexure with
and without axial and circumferential constraints, The boundary
conditions corresponding to a fully constrained edge may be ex-
pressed as

U= VaWm=m (22)

e

i

o
o)
c.'..

N

]

o

.

whereas those for a clamped edge without additional constraints
may be written as

H
__r_]; w=%§=0 at z =20 3 (23)

= S

1 1

for the clamped edge without constraints.

Ed%e effect at large wavenumbers. If p2>>1 and g>po, the
edge effect 1s nonoscillatory and the roots of Eq. (18) are

a xpVitsin® , B xsino6Vpri , v =sineVp-1 . (24)

For a fully constrained edge, use of Eq. (22) permits one to
evaluate the constants of integration of Eq. (20), and to find
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-1/2

cy ® -cos 9[l+sin29]-1/2 » €, = cos 6[l+sin29] s
(25)
€3 ® (kl/a)(Fl[T]/El) s Oy = “(kl/a)(Fl[B]/El) ’
where
E, = B(?§+vﬁé)'{(é+y)72—kg} - (#§+vv?)-{(3+v Ba-kg} ,
(26)

7 (V) = (ﬁ§+a?> {v(a+{)<g§+v7?) -vv[(é+{)72-k§]} :

For an edge that is free of added constraints, one may apply
Eq. (23) to fing

-1/2 -1/2
cq = -COS 9[1+sin29] s Cp = cCOS 6[1+sin29] s
03 = (kl/Cl-) (Fe['y]/Ee) s> Gy = (kl/a)(Felal/Ee) 3
where
E, = Beve(v-e) s Fe(v) = (a-7v) 72(k§+a2) . (28)

By combining Eqs. (12), (20), and (25)-(28), one finds that
one may express the radial displacement w for both of the cases
treated above as
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iwt cos
w=_c, e sin kg(--x;)-{[sin klz - cos klz

1+81n20
(29)
y—co8 9 e"az] + [-0(—1-2 ) e"Bz+o( —1-2> e""-z]} )
1+s1n°6 P P

where O means "of the order of."

The expression in the first bracket [ ] of the above
equation is identical to the solution for-a flat plate clamped
at one edge. The effects of curvature and of membrane-type
boundary conditions (axial and circumferential constraints) are
indicated by the terms contained in the second bracket; and
they are negligible for sufficlently large wavenumbers.

Ed%e effect at small wavenumbers, If p2<<1 and p<pgos the

edge effects oscillate, and the roots of Eq. (18) are found to

be glven by

@ = p sin 9[}_@,&2] L by s [0 (aane)] . (30
2-sin™@

If one 1limits himself to considering only the case where B/p>>1,

one finds from Eq. (22) that the integration constants for a fully

constrained edge must satisfy

oy = BBy , op=Eg/By , o3 ™oy = (o'/B")(Bg/UE])  (31)

where
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o]
u

5 = 510 a(1098%)[14(14v)oos% |

[CHE

5 = B[1e(1v)eos?| (32)
B {[14(2+v)eos? | sine(e-sin®e) (v )a2a]t |

2,\"1/2 2 2
A = cosG<2-sin e R B = cose(%in 8-v cos™ 8 .

u

0]
u

u

Eg

The integration constant for an edge without additional con-
stralnts are found by use of Eg. (23) to be gilven by

¢q & - V 2-sin26/Sin6 s
3/2
e, = -(2-sin29) / /sin39 ’ (33)

ey ¢y = -(pl‘/eal‘)(l/sine '\/2—sin26) ]

By use of Egs. (12), (25), (31), and (33) one finds that one may
express the radial displacement w for the fully constrained

edge as

E 4
~ L sin 6
W o= co sin k2<%-xq>[sin klz + ir-cos klz +

2
3 (é-sin2é>

E 2
E? e~ %% "Eé e'Bz(éos Bz + sin Bz) + 0(-92 )] ,
3 B

(34)

Th



and for the edge without added constraints as

2 -~z

. 2-sin™6 s8iné e
LA 8in ke( -xé){sin k42 - —=37p— cOS kiz - —————-7;-
V 2-81n“6

(35)

—62[2(Sin Bz + cos BZ)] B; )
+ e + 0 .
siné V2-sin29 ( e }

The asymptotic forms of Eqs. (34) and (35) are not identical.
As a consequence, the natural frequencles for the two types of
edge constraint may differ significantly. This finding agrees
with numerical results obtalned by Forsberg (Ref. 3).

It 1s important to note that the foregoing results imply
the possibility of large stress concentrations occurrlng at the
edge: comparison of the edge and asymptotic bending moments Ge
and G ylelds

(6,/6,) = 0(B%/p%) . (36)

It must also be pointed out that the foregoing analysls and
its results, strictly speaking, are valid only for cylindrical
shells without longltudinal supports., For cylindrical shells
that are stiffened by stringers, the asymptotlic form of the
solution may not be a simple sinusoid, and use of the asymptotic
method then cannot be Justified,

Longltudinal Edges

If one assumes that the solution of Eq. (11) approaches the
form

six

8
P = z Ay el®t gin kl(z-—zo) e (37)
1=31
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far from the ends of the cylindrical shell and near the boundary
line x=0, one finds that the coefficients sy must be the roots
of the equation

-2
@® = (sf-ki) + ki(%?-ki) (38)

if Eq. (37) 1s to satisfy Eq. (11). If two imaglnary roots are
+1 k», the remaining six roots may be found from

3
(%?) —pe<ﬁ+300529 sa+p400329<2+300329-p'400329>32—p6

00549<é+coszg>(i~p"€) =0

Since the discriminant of the above cubic Squation in s? is
always negative, the three solutions for s2 are all real and
either all are positive (1f p>l) or one is negative and two
positive (if p<l). Therefore, if p is greater than unity, the
edge effect 1is nonoscillatory and uniquely defined, no matter
how the edges at both ends of the cylindrical shell are sup-
ported,

(39)

2 Effect at large and small wavenumbers. For example, 1if
p >>1, then the roots of Eq. (39) are

82 = p2(1+c0326) ’ cos29(p?il) s (40)

and the cylindrical shell behaves 1like a flat plate [compare
Eqs. (40) and (24)].
However, 1f p<l, then the roots of Eq. {39) are
8 = "k3 3 a 2 B ; (41)

Equation (37) then becomes
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it
® = Cy © s8in kl( -zo>[A1 sin k2x+A2 cos k2x+A3 sin k3+Au
(42)

cos k3x+A e'ax+A6 eax4A e—Bx+A8 eﬁx] .

5 i

Clearly, Eq. (42) asymptotically approaches

e, eiwt sin kl<z'zé>[81n k2( -xq>+cl sin k3(%—xi>] (43)

which is a linear combination of membrane-type and bending-type
solutions,

¢

!

Degeneration of Dynamic Edge Effect

If Eq. (34) were the correct asymptotic form for p<l, tThen
the edge solution would need to have the following form instead
of that of Eq. (13):

® = eiwt[sin kg(x—xo)+c1 sin k3(x-x1)] ¥{z) . (44)

But substitution of Eq. (44) into Eq. (11) leads to

[sin ke(x-xo)D2-+c1 sin k3(x-x1)D3] ¥(z) =0 , (45)

where

i 2 4 2 2
Di = BI’_ 4 (aa % —k?) -CD2@'§ ”k?) s i=2,3 s (46)
oz z A

and the requirement that ¥ satisfy both Dp¥=0 and D3¥=0, with
kp#k3, implies that ¥ must be of the form

¥ = ¢ sin kl(z—zo) . (47)
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It thus appears that the asymptotic solutions for p<l are
neither slmple sinusolds nor linear combinations of simple sinu-
soids, unless both clrcumferential edges of a cylindrical shell
and/or both longitudinal edges of a shell segment are simply
supported. In cases where such sinusoldal asymptotic solutions
do not exist, Bolotin (Ref. 2) speaks of a "degeneration” of the
dynamic edge effect.

For the case where both ends of a cylindrical shell are
simply supported, one finds from Eq. (42) that the solution
takes the form

iowt t 1
¢ = o e sin kl( -zq>[sin k2x+Aé cos k2x+A3 8in k3x+A4,

cos kBXHﬂé e'ax+A%ue—ﬁx] s (48)

where the six unknown constants A}, A3, Aj, A%, AS, A7, and ko
may be determined from the four boundary cond?tions and from the
symmetry and antisymmetry of the asymptotic forms of the membrane
and bending modes. It 1s evident from Eq. (48) that the edge
effect is not degenerate in this case.
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APPENDIX IV

EXPERIMENTAL DETERMINATION OF DAMPING
AND ENERGY FLOW IN PANEL ARRAYS

INTRODUCTION

Previous lnvestigations of vibration transmission 1n com-
plex structures (Refs. 1,2,3,4) have shown that vibrational
energy i1s removed from a given element in two ways. The first
is characterized by the "internal" loss factor, which is a
measure of the inherent damping of a structural element; and
the second 1s characterized by the coupling loss factor, which
is a measure of the energy flow from the element to the adjacent
element., If a complete structure, such as an aircraft fuselage,
is subjected essentially to uniform excitation, the response of
each panel is determined by the 1nternal loss factors alone.

If, on the other hand, a panel of the complete strucfure 1ls sub-
jected to local excitatlon, the response of the panel depends on
the coupling loss factors of the panel, as well as on its in-
ternal loss factor. This dependence of the response on internal
and coupling loss factors points out the necessity of simulating
the effects of both of these mechanisms in sonic fatigue tests.

Since there exist at present no useful techniques for mea-
suring these two types of loss factors on intact built-up
structures (and one needs to know these loss factors in order
to simulate them), an investigation of possible simple measurement
approaches was undertaken. This investigation and 1ts results
are described in the present appendix.

DETERMINATION ON BASIS OF ENERGY SHARING AND
APPARENT LOSS FACTOR MEASUREMENTS

For the steady-state case where the panels of an array are
subject to independent sources of random excitation, one may
calculate the time-average vibrational energies from steady-~
state power balance relations (Refs. 2,3,4). These relations
involve the internal loss factor of each panel and the coupling
loss factors between adjacent panels; however, they do not pro-
vide one with enough information so that one may determine all
of the internal and coupling loss factors. Additional information,

81



as for example obtained from measurement of apparent loss factors,
is required before one can calculate all of the energy dissipation
and energy transport loss factors.

A study of an array of nine panels (Figs, IV-1 and IV-2)
was undertaken in order to determine the feasibility of the
aforementioned approach. This study 1is described in the follow-
ing paragraphs.

Energy Sharing Analysis

Consider the steady-state vibration problem in which each
of the panels of the nine-panel array 1s subjJected to an inde-
pendent source of octave-band random noise. The time-average
vibration energies of the different panels can be calculated
from steady-state power balance equations, which involve the
internal loss factor of each panel and the coupling loss factors
between adjacent panels. For simplicity's sake one may take the
Internal loss factors of all nine panels to be identical, and
the coupling loss factors between any two panels to be the same,
This assumption is based on the uniform geometry of the experl-
mental panel array, and is valid to the extent that the vibration
characteristics of the corner, edge, and center panels are
ldentical; it should yield good results for frequencies that are
well above the first few resonance frequencies of the individual
panels.

The steady-state power balance equations applicable to the
nine-panel array may, by use of the foregoing simplifying
approximations, be written as (Ref. 4):

— ey — J—

w2 - 0 B 0 0 0 0 0 Eq Py/wo
-6 ™38 -B O -8 O 0 0 0 Eo P5/w,
0 -B mop O 0 -8 0 ) 0 Eg P3/wg
-8 0 0 M3 -p O -0 0 Ey Py/w,
0O - 0 -B W48 B O -8B O L E5 | = | Pg/wg
0 o0 -8B 0 -B W38 O 0 -B Eg Pg/wg
0 0 0 -0 O 2B -B O E7 Prr /g
0 0 0 0 -8 0 ~-p M3 -8B Eg Pg/wq

__9 0 0 0 0 -B 0 -B n+%E- #F@J _fg/w3J

(1)
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where Ei denotes the time-average vibratory energy of the ith
panel, Pj the time-average power supplied to the ith panel from
an external source, Wy the center frequency of the octave band
under consideration, 7N the internal loss factor of the panels,
and B the coupling loss factor for any two adjacent panels.

By summing all of the Egs., (1) one obtains the additional
relation

9, 92, |
2J Py = 050 2J E; (2)
=1

which expresses that the total time-average power input from all
sources must in the steady state equal the total power dissipated
in the array.

Center panel excitation. For the special case where only
the center panel (panel 5 of Fig. IV-2) is externally excited,
all input powers except P5 are zero, From symmetry, the
energles of all four cornéer panels are equal and the energies
of all four edge panels are equal; that is,

E E E

3 7 E. = E

9 ¢

1
(3)

i
]

Ey = By = Eg = Eg

For this case Egs. (1) and (2) yield three distinct ex-
pressions for the loss factor ratio 71/B:

/B

2(Ee/Ec-l)
/8 = (2E+E-3E.)/E, (4)

n/B

!

(ES-EG)/(EC+EE) .
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By combining Eqs. (4) one may obtain some relations which
govern the distribution of vibrational energies among the panels,
and which are independent of the values of the internal and
coupling loss factors, These relations arise from the symmetry
of the nine-panel array and the excitation, and are of no interest
for the present purposes.

Edge panel excitation. In the case where only an edge
panel {e.g., panel 6 of Fig., IV-2) is externally excited, all the
input powers except Pg are zero, Because of symmetry, E =K1,
Eg8=Ep, and Eg=Ea. Here Egs. (1) and (2) yield six distinct ex-
pressions fof the loss factor ratio 7/B:

/B = (Eg+E,-2R, )/E,
/P = (E1+E3+E5—3E2)/E2
n/B = (E2+E6-2E3)/’E3

/B = (E5+2El—3E4)/Ea
n/B = (2E2+E4+E6—4E5)/'E5

7/8

(3E6—2E3-E5)/(2E1+2E2+2E3+E4+E5) .

Corner panel excitation. If only a corner panel, such as
panel 3, is externally excited, then all input powers except P
vanlish, and because of symmetry Eg=Ey, E9=E1, Eg=Es, In this
case Eqs. (1) and (2) again yield six di8tinct expressions for
the loss factor ratio 7/B:
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/B = (Ejs+E),-2E;)/Ey

/8 = (E1+E3+E5-3E2)/E2

/B = (2E3—2E2)/(2E1+2Eé+2E4+E5+E7)
(6)
n/B = (E1+E5+E7-3E4) /By,
/B = (2E2+2E4—4E5)/E5
Ve = (2Eu-2E7)/E7 .

Equations (4) — (6) constitute 15 distinct expresslons for
the ratio of coupling loss factors obtained from Egs. (1) and (2)
for different excitation cases. However, it is evident that none
of these expressions permit one to calculate values of the coupling
or internal loss factors separately from known values of the
steady-state energies.,

Apparent Loss Factor Analysis

Center panel exciltation. If a panel which 1s part of an
array is exclted, and the excitation is then removed, the rate
of decay of the energy in the panel then 1s proportional to the
energy. Lf the center panel, panel 5, of the nine-panel array
is the panel of interest, then one may €xXpress the aforementloned
proportionality as (Ref. 1):

B /dt = -0y My oo By - (7)

Here Tapp5 represents the apparent loss factor of the panel,
which can be determined experimentally. This apparent loss
factor depends on the internal loss factor and on the coupling
loss factor between adjacent plates.

The power balance of plate 5 during decay may also be
written
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1 dE5
- ET'YEF = ﬂE5+4B(E5"Ee) = [ﬂ+45(1'ae)]E5 (8)
O

where Eg denotes the energy of the edge panels and
ag = E /B, . (9)
By comparing Egs. (7) and (8) one obtains

n = H4p(1-a) . (10)

app5

By setting all Pj's, except Pg, equal to zero in Egs., (1),
and using Eq. %3) one obtains the steady-state power balance
relations, which may be wrltten, with o, defined by

a, = E /B (11)

as

(n+25)dc—26 de = 0O
(n+3p)a 28 @ -p = O (12)

4B -4B a, = P5/&O E5 .

One may solve the first two of Eq. (12) for ¢e and substitute
the result into Eq, {8) to find

1 .

o Rhat2

where

a=1/8 . (14)
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Edge and corner panel excitation. The apparent loss factors
for corner plates and edge plates can be derived similarly. One
obtains

Napp.c _ 4 . g(z5+13a4+59a3+113a2+84a+16 (15)
0 \a”41h0 4690 5+1 440541140416
and
Napp.e _ 304469a341760°4+32204192
=1 + 5 iy 3 5 . (16)
1 +1h40 700 +1510+128a+24

Energy Sharing Measurements

A nine-panel array, as shown in Figs, IV-1l and IV-2, was
constructed by attaching aluminum bars by means of epoxy to an
aluminum plate. During the tests the panel was suspended from
long strings attached to its two upper corners.

In a typical experiment one of the panels was excited with
an octave band of noise via a small electromagnetic shaker, and
the mean-square accelerations at a number of points on the ex-
elted and the unexcited panels were measured In the same octave
band. The numbers tabulated in Tables IV-1, IV-2, and IV-3 rep-
resent the space-average values of the mean-square accelerations
measured on one panel, in a single octave band,

In the experiment in which the center panel was excited, the
mean-sguare acceleration of all nine of the panels was measured,
to test the assumption that the energies of the four corner
panels are equal and the energies of the four edge panels are
equal in this case, The results presented in Table IV-1 indlcate
that this assumption is realistic.

Substitution of the energies (or mean-square accelerations,
which are proportional to them) indicated in Tables IV-1, IV-2,
and IV-3 into Egs. (&), (5), and (6) respectively, ylelds the
average ratios of the internal to coupling loss factors shown in
Fig. IV-3. The curve shown in Fig. IV-3 for the case where only
plate 5 is excited represents the average values of the ratios
calculated from the three expressions of Eq. (4).
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Similz~ly, the curves for excitation of plate 6 and excitation
of vlate 3 represent the average values calculated from Egs. (5)
and (6), respectively. It should be mentioned that for each
excitation position, the values of 7/B calculated from the
different expressions showed quite large variation about the
average values. Since the internal and coupling loss factors
should show no dependence on the position of excitation, the
scatter of the results shown in Fig. IV-3 probably reflects in-
aceuracies in the measurement techniques, as well as shortcomings
in the mathematical idealization of the array and in statilstical
energy anclysis.

Apparent Loss Factor Measurements

The apparent loss factor of a panel of interest was measured
by the well-known decay-rate technique, which consists of exciting
the panel with octave-band noise until it reaches steady state,
then removing the excitation and observing the rate of decay of
the oscillations of the panel, Such measurements were carried
out on panels 5, 6, and 3 of the experimental nine-panel array,
and produced the results shown in Filg, IV-4,.

Internal and Coupling Loss Factors

By substituting the values of a=7/P indicated in Fig. IV-3
into Egs. (13}, (15), and (16), one obtains values for the ratio
Napp/M. Use of the measured Mapp values from Fig. IV-4 then
permits one to calculate 7, and once one Knowns N one may use
the 1/8 values of Fig, IV-3 once more to compute B,

Values of % and B resulting from such caleculations are
shown in Figs. IV-5 and IV-6, respectively. It appears that the
results obtained from the three sets of measurements (with three
different panels excited externally) agree reasonably well with
each other, but that the spread in the results, which amounts to
as much as a factor of 4,0 for B in the mid-frequency range, is
somewhat excessive,

ELTMINATION OF POWER FLOW BY ENERGY MATCHING

Since the flow of power between connected panels is (under
certain generally applicable random vibration conditions, Ref, 4)
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proportional to the difference between the (modal) energies of
the two panels, one may reduce this power flow to zero by keeping
the two panels at the same energy level,. With zero power flow,
the panel vibrations are affected only by the internal loss
factor, and not by the coupling loss factor, and one should then
be able to determine the internal loss factor by itself.

The results of a corresponding study are summarized in the
following paragraphs. Unlike the previous study, the present
investigation was carried out for a three-panel array, for the
sake of theoretical and experimental simplicity. Here the ex-
perimental array was constructed by a 1 ft x 3 ft plate, par-
titioned into three 1 ft x 1 ft panels by beams. All other
dimensions were the same as those indicated in Fig, IV-1. Beams
were also attached to the edges of the panel array.

Analysis

By a derivation similar to that which leads to Eq. (10)
one may find that the apparent loss factor of the center panel
of the three-panel array obeys

Napp.c = TeB(l-ay) (17)

where
o, = B /E, (18)

is the ratio of the energy in one (of the two symmetric) end
panel to the energy in the center panel,

If the end panels are relatively highly damped, then the
energy ratio ag is very small and

= 428 . : (19)

A similar argument, carried out for an end panel, shows that the
apparent loss factor of an end panel, 1in presence of a highly
damped center panel, obeys

Topp.e = B - (20)
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The two foregoing equations indicate that one should be able
to obtain both 71 and B from two apparent loss factor measurements,
one carried out on the center panel, and one on an edge panel,

The values of the internal loss factor 7 obtained in this manner
may then be compared with values measured when all three panels
are kept at the same energy levels. Such measurements and their
results are described below,

Experiments and Resultls

Two sets of experiments were performed. The first set
consisted of exciting all three panels equally, of observing
the rate of decay when all excitations were removed, and of
calculating the internal loss factor one expects to measure by
this means. The second set involved measurement of the apparent
loss factors of the end and center panels, and of calculating 0
and B from these measurements. Thus, 7 was determined in two
ways, which should yleld comparable results.

In the first set of experiments each of the three panels
was excited by a separate shaker. The similarity of the shakers
and of the panels leads one to expect equal power inputs and
equal energies in the three panels; measurements confirmed this
uniformity. Four decay rate readings were taken (at different
positionsg on each panel, The average of all twelve readings
was used to compute the loss factor values shown in Fig., IV-7.

For apparent loss factor measurements on the center panel,
the damping of the two end panels was increased by the application
of six additional 2-in X 12-in strips of damping tape to each
panel and of two 1l-in X 12-in tapes to the edge beams of each
end panel, Thils arrangement was intended to make oy of Eg. (18)
small enough, so that it could be neglected as compared to unity,
so that Egq. (19) would apply. The experimentally obtained values
of the apparent loss factor are shown in Fig. IV-8, For apparent
loss factor measurements on an end panel, the panels that were
not directly excited were also provided with high added damping,
in order to make Eq. (20) applicable. The experimental results
for this case are shown in Fig. IV-9.

Figure IV-10 shows values of the coupling loss factor ob-
tained by combing the apparent loss factor data of Figs, IV-8
and IV-9 (one at a time? with the internal loss factor data
shown in Fig. IV-7., One may observe that coupling loss factors
obtained from the two different apparent loss factor measurements
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differ by 10 per cent to 30 per cent, probably largely because
the energy ratios that were neglected in Eqs. (19) and (20),
on which the computations were based, were not small enough.

Because shakers are difficult to use on large structures,
and since their attachment to inservice structures may be in-
admissible, an exploratory attempt was made to excite the three-
panel array acoustically, by means of loudspeakers, A chamber
of 1-in X 1 ft x 3 ft, divided by 1l-in high walls into three
l f£t x 1 £t chambers, was used to house the apeakers, in order
to isolate the sound sources from each other, By use of this
device the sound pressure level on any panel due to the sound
source in an adjJacent chamber was about 10 dB lower than the
sound pressure level on the panel directly exclted by the source.
This represents an energy ratlio of 1 to 10, which may be too
high. Nevertheless, a series of measurements using speaker
excitation was completed, in order to compare the results ob-
tained by this very convenient excitation means with those ob-
tained with the more cumbersome shaker excitation, The various
experiments discussed previously were repeated, using speaker
excltation. The corresponding results are plotted on the pre-
viously mentioned figures, together with the related shaker
results.

It may be noted that the speaker experiments gave smaller
apparent loss factors, because of the interaction between the
panels and the sound field in the speaker chambers. Also, the
low coupling loss factors obtained at low exciting frequencies
in the speaker experiments are probably due to the leaking of
acoustic energy from the driving speaker to neighboring panel(s).

After completlion of all of the previously described ex-
periments, the end panels were cut away from the array, leaving
only the center panel and a frame of beams around it. The
damping (internal loss factor) of this center panel was then
measured. The results of this measurement are shown in Fig., IV-1l
together with the results of Fig. IV-7 obtained (with shaker
excitation) on the complete array. The agreement is quite good.

Thus, determlination of the internal loss factor by the
energy-matching approach appears to yleld good results. However,
uniform excitation of all panels is required, and this implies
the use of a multitude of shakers. Use of sound sources instead
of shakers was found to be unsatisfactory here, but further
efforts to obtain improvements in the technique (better 1isolation
between chambers and reduced reverberation time of the chambers)
may make 1t an acceptable one.
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BLOCKING OF POWER FLOW BY STIFFENERS
AND MASSES AT PANEL BOUNDARIES

If the flow of energy from the externally excited panel
to its neighbors can be blocked effectively, measurements of
the apparent loss factor of the excited panel should yield values
that approach the internal loss factor of that panel. Some ex-
ploratory experiments were performed to investigate how well
added reinforcing beams and masses can block the flow of energy.
These experiments and their results are discussed below.

The configuratims used in the experimental series are
shown in Fig, IV-12, In the first configuration, four 5/8" x
5/8" x 12" brass beams are epoxied to the aluminum ribs of the
previously used nine-panel array (Fig. IV-1), to form a stiff
frame around the center panel. (The beam-rib composite 1s ten
times stiffer in bending and six times more massive than the
rib alone.) In the second configuration, six 5/8" x 5/8" x 2"
brass blocks are attached to each of the four ribs, as shown in
the figure, This arrangement increases the mass by the same
amount as in the first configuration, but has little effect on
the bending stiffness. In the third configuration, a rigid
frame of four aluminum tubes (0,053" x 1" x 1" x 12") is attached
to the ribs. These tubes ilncrease the bending stiffness by a
factor of 14, but have little effect on the mass.

For all three reinforcing configurations, the apparent
loss factors of the center panel were measured by means of the
decay rate technlque., Corresponding results are presented in
Flg. IV-13, together with data on the internal loss factor of
the center panel and on the apparent loss factor, as measured
with no reinforcing, It appears that none of the three rein-
forcing schemes result in the desired energy blocking, since
addlition of the stiffeners and masses is seen not to shift the
apparent loss factor data toward those pertaining to the internal
loss factor. The failure of the added elements to block energy
flow may be due to: (1) the added elements! providing additional
damping, and/or (2) the attached elements' improving the coupling
between the center panel and its nelghbors,

In order to study why the added structures resulted in in-
creased apparent loss factors, a further series of experiments
was performed, iIn which six damping tapes were added to each of
the unexcited panels. The apparent loss factor of the center
panel was agaln measured for each reinforeing configuration.
The results are shown in Fig. IV-14, together with the apparent
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loss factor measured in absence of added reinforcements (and with
six damping tapes on each of the unexcited panels). The internal
loss factor of the center panel is also shown for comparison.

In Fig, IV-14 the apparent loss factors of the reinforced
panel are, in most cases, lower than those of the unreinforced
panel — indicating that some ener%y blocking effect is present.
By comparing Figs, IV-13 and IV~14 one may also note that the
addition of damping to the unexcited panels resulted in only
minor increases in the apparent loss factors of the reinforced
configuration; this comparison indicates that some energy blocking
has occurred due to the reinforcements. One may thus conclude
that the relnforcements in the first series of experiments pro-
vided enough additional damping to offset the effect of energy
blocking.

The results of all the reinforcement experiments indicate
that attaching additional elements is very likely to introduce
additional damplng to the system and/or increase the coupling
loss to the nelghboring panels. These additional energy losses
appear to be large enough to offset the gain in energy blocking,
so that the desired aim of total energy blocking is not achieved.

ENERGY TRANSPORT ALONG RIBS

Some exploratory experiments to determine whether a signifi-
cant amount of vibrational energy travels along the beams of a
beam-panel structure were conducted, also on the nine-panel
array. Experiments were carried out with two different loads
added to the beams, as shown in Fig, IV-15, The center panel
was excited by a shaker in each experiment, and the power inpust
to the shaker was held constant in all the experiments, If
energy 1s transported along the beams, the beam lecading should
be important and the vibration levels of the center panel should
be different in the different experiments.

In the first experiment the beams were extended and loaded
with eccentric masses., In the second experiment two of the
extended beams were submerged in sand buckets to dissipate
energy. In the third experiment the beams were unloaded (con-
ventlional nine-panel array),

The space-time average responses of the center panel in all

three experiments are presented in Fig. IV-16. It can be seen
that the response variation in the different experiments is
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wlthin 1 dB 1in most frequency bands. This minor change Iin
response for different beam loads indicates that no significant
amount of energy is transported along the beams.
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TABLE IV-1

STEADY-STATE ENERGY SHARING MEASUREMENTS WITH
PANEL (8) EXCITED WITH OCTAVE BAND NOISE

Frequency Band Acceleration Levels

(Hz) (aB)
PANEL (D PANEL (@ PANEL (®)
75-150 Tl 78.3 72,6
150-300 71.6 77.3 70.6
300-600 86.6 88 80.6
600-1200 86.6 84,6 87.6
1200~2400 84 82.3 83.3
2400-4800 81 80 80
4800-10,000 62,6 62.3 63
PANEL (@) PANEL (5) PANEL (6)
75-150 74,6 79.3 72.6
150~300 73 81.3 72.3
300-600 87.3 93 85
600-1200 93.3 92.6 QDEXCFT 85.6
1200-2400 84,3 92,6 83.3
2400-4800 81 92 81.6
4800-10,000 63.3 75 64
PANEL () PANEL PANEL (9
75-150 73 76 71
150-300 72.6 76 71.3
300-600 83.3 83.3 87
600-1200 87 84 82.6
1200-2400 83 84,3 83.3
2400-4800 80 81.3 79.3
4800-10,000 63 62.6 63.3
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TABLE IV-2

STEADY-STATE ENERGY SHARING MEASUREMENTS WITH
PANEL () EXCITED WITH OCTAVE BAND NOISE

Frequency Band Acceleration Levels
(Hz) (aB)
PANEL (D PANEL (2 PANEL (@
75-150 79 71.6 76
150-300 75.3 77.6 76.3
300~-600 84,3 82 83.3
600-1200 84,3 83 83.3
1200-2400 81.6 82 82.6
2400-4800 81 82.6 82.3
4800-10,000 61.6 63 65.6
PANEL (@) PANEL (5) PANEL (&)
75-150 75.3 75.3 80.3
150-300 T4 76 81.6
300-600 85.3 83.3 92.3
600-1200 88.6 84.3 93.3 X
1200-2400 82 86.6 91 ExCi
2400-4800 82 82.6 93.3
4800-10,000 63.3 63.6 T4 .6
PANEL (7) PANEL PANEL (9
75-150 79 71.6 76
150-300 75.3 77.6 76.3
300-600 84.3 82 83.3
600-1200 84,3 83 83.3
1200-2400 81.6 82 82.6
2400-4800 81 82,6 82.3
4800-10,000 61.6 63 65.6
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TABLE IV-3
STEADY-STATE ENERGY SHARING MEASUREMENTS WITH
PANEL C) EXCITED WITH OCTAVE BAND NOISE

Frequency Band Ac celeration Levels

(Hz) (aB)
PANEL (D PANEL (@) PANEL (@)
75-150 60.6 62.3 70.3
150-300 58 59.3 67.6
300-600 74 72 78.3 &)
600-1200 4 75 79 ExcIt
1200-2400 68.6 71.6 77.6
2400-4800 67.3 70.6 81
4800-10,000 50.3 52,6 64,3
PANEL (@) PANEL (B) PANEL ()
75-150 59.3 56.3 62.3
150-300 56 57 .6 59.3
300-600 72.3 76.3 72
600-1200 71 69.3 75
1200-2400 68 71 71.6
2400-4800 66 66.3 70.6
4800-10,000 50.3 49,6 52.6
PANEL (7) PANEL (8) PANEL (9
75-150 52 59.3 60,6
150-300 55.6 56 58
300-600 70 72.3 T4
600-1200 73.3 71 T4
1200-2400 67.3 68 68.6
2400-4800 64.3 66 67.3
4800-10,000 49 50.3 50.3
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FIG.TV-1 BEAM AND PANEL DIMENSIONS
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FIG.I¥-2 CONFIGURATION OF EXPERIMENTAL
NINE-PANEL ARRAY
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APPENDIX V

NOTES ON THE DESIGN OF SUPPORTS TO
APPROXIMATE IDEAL BOUNDARY CONDITIONS

INTRODUCTION

Research tests whose purpose is to check theoretical pre-
dictions require test fixtures to simulate the ideal boundary
conditions employed in theoretical calculations., The usual
designs of such fixtures for dynamic tests are based on experience
with static tests, and therefore often fail to take proper account
of parameters related to vibration. This appendlx considers some
proposed flxture designs for ideal free, clamped, and simply
supported boundaries from the dynamic polnt of view, and evaluates
thelr feaslbility and performance,

SIMULATION OF FREE BOUNDARIES

The most common method for simulating free panel edges in-~
volves suspending the test panel from long strings. This method
is useful as long as the strings do not interfere significantly
with the panel motion — that is, as long as the impedance of the
plate at the string attachment point(s) is much greater than the
impedance of string.

If one considers the generalilzed force which a string exerts
on a plate edge to be composed of a bending moment Mp and a
force F normal to the plate, then according to Eichler (Ref, 1)
the edge admittance matrix ¥p of a (semi-infinite) plate is
glven by

A A
v = 1 11 12 (1)

p
V pphpDp Axqy Ao

where Yp 1s defined so as to relate the generallzed force to the
generalized displacement as
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3,
T 3% Mg
1L
Wp

and where

]

Ay, = (0.08-0.275 1 4n ka/3.5)k"

A A

10 = Ay & -(0.276+0.263 1)k (3)

A 0.403 + 0,0065 1 .

{4

22

The expres ions of E}ﬁ (3) apply in the limiting case of ka=0,
where k—[w denotes the flexural wave number of the
plate, and a tge string radius., (The condition ka=0 is approached
1f the string radlus 1is much smaller than a plate flexural wave-
length.) In the foregoing expressions Wp denotes a plate normal
mode, pp the density, hp the thickness, and Dp the flexural
rigidity of the plate, and x 1s a coordlnate perpendicular to

the plate edge belng considered.

The corresponding admittance matrix Yg of semi-infinite stiff
strings may be found from the equation of motion (Ref. 2),

d”ws %Wy aBug )
E.I ~-T + pod = 0
STS g ax 2 5§78 442
to obey
B B
Q/ESIS 11 12z
-1 k
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where
B); = (ko+k3)
Byy = By, = i(kg+l ky) (6)
By, = ~1(k54K5) Ik,

and

K2 = o(r-1)  , k2 = o®(I41)

[
l

3
o
i

= 1+(ap)~2 (7)

of = /28I, 8% - m/ppae®

Here T represents the tension, Ag the cross-sectional area, Eg
Young's modulus, Ig the cross-sectional moment of inertia, and
pg the density of the string. Also, Wg denotes the string's
lateral deflection, and represents the radian frequency of the
vibration,

One may obtain the impedance matrices corresponding to
Eqs. (1) and (5) by inverting the admittance matrices. Then
one may compare the absolute values of the corresponding elements
of the impedance matrices in order to determine under what con-
ditions the string impedance is much smaller than the plate edge
impedance., However, this approach is too cumbersome, and one may
obtain useful results by assuming flexural effects in the string
to be negligible. Then the force components of the admittances
are dominant, and one need only compare the Appo and Bso elements
of the two admittance matrices. One finds that

1/2 1/2
E = 0O 403[pSAS T:l / l: 1+4a252 / (8)
Y00 PphpDp 4op Virale? )
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If tension effects in the string dominate over bending
effects, then a262>1; the term in the second bracket of the
above equation then is always less than or equal to unity. 1In
order for the plate impedance to be much greater than the string
impedance, |Yppo/Ygoo| of Eq. (8) must be much smaller than
unity, implying that the first bracketed term must be much smaller
than unity.

Thus, a string support generally can approximate free edge
conditions if it satlisfies

pghs T/pphpDp<<l . (9)

However, flexural effects in the string must be considered, and
additional limitations must be imposed on its design, if the
condition

2.2 2 2
a"BpT = T/UEIy pghg 01 (10)
1s not satisfied for the entire frequency range of interest,

SIMULATION OF CLAMPED BOUNDARIES

Clamped or "built-in" boundary conditions may be simulated
by supporting the test panel in two massive clamps (Fig. V-1).

In such an arrangement the lateral displacement of the panel
edge deviates from the ideal zero value because the shear force
exerted by the panel on the supports deforms the support structures
in compression and simultaneously causes the panel-support
assembly to deform in flexure. The compressional deformatlion of
the support depends markedly on the precompression of the support
assembly, as can be deduced by considering the stress dlstribution
in a right-angle wedge wilth a concentrated line load P applied
at the wedge corner (Fig. V-2). For two wedges that are pressed
together so that the stresses and displacements are continuous
across the interface (i.e., where one has essentially an elastic
half-space), the stress distribution along the free surface is
given (Ref. 3) by

O'rle ﬂ-ﬁ_? . (11)
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But for a single wedge (i.e., for an elastic quarter-space)}, one
obtains

L
g =
Tlo=0  m(1-4/1°)

H o

. (12)

The deformation of a wedge without precompression may be as much
as four times as large as the deformation in a precompressed
wedge, Therefore, 1t is clearly desirable to design support
clamps so that interface contact is always maintained.

Panel Edge Displacement in Clamp

If the supports are sufficiently precompressed so that con-
tinuity of stresses and deformations is maintained, then the
stress distribution in the supports 1s approximately that in an
elastic half-space. For a parabolic stress distribution across
the thickness of the test panel the stress function ¢ for the
support is given (Ref. 3) by

2
2 r
P = T—Sr[—lzgh G%he-3x2+y2 .6n<——-2—2 >+h B+% i—%(xe—Bye-%— h2>u
1 (13)
8 _Jsﬁ]
+ 3 h

where the coordinates X,¥, and the dimension h are defined as
in Fig., V-1, and

r? = (x-n/2)%y2
rg = (x#h/2)54y° (14)
~1 hy ) 1(; 2Xy. )
& = tan s B = tan
2 yeonl 2 2 n2
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and where S is the maximum shear stress in the panel at the
edge,

The corresponding stress distribution at y=0 is found to

be
23 X+2
cxl = ?F[e(x+1)-x(x+2)£n-—§—] (15)
y=0
where
- 22X

The corresponding displacement &g of the panel edge may be
found by integrating Eq. (15) over the support height H. One
finds

6 (E 2H (H +2) H +2
o800 4 4 in(1eH /2)-K2(14H,/3) ) (N

where

H, = 2H/h . (18)

The foregoing expression pertains only to the panel displace-
ment that is due to compression of the support. An additiocnal
displacement §r occurs due to bending of the support-and-panel
combination. Thls additional displacement may be computed
approximately by assuming the panel-support assembly to be
clamped rigidly at an effective distance D from its end (See
Fig. V-1), From simple beam theory one finds that

2
25p"s _ 16 D} (1-%) (19)
hS 3 (H§+12HO)+(EP/ES)(8+6H§)

where
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D, = 2D/h ,' (20)

and where Eg, Ep denote the Young's modull of the support and
panel, respectlvely,

: The total displacement &g of the panel midsurface at the
edge thus obeys

BrEs 46

RS T3 (i3r12H )+ (B, /Eg) (BH6H2

Dg (1-v%) +_2_[2H0(Ho+e)
y "3

(21)

+§ In(14H /2)-H5 (148 /3) m(Hﬁ:a)] .

Figure V-3 shows the results of calculations based on
Eq. (21) for various support widths D and support heights H.
One may observe that for a given support width D {or height H)
there is an optimum support height H(or width D) for which the
total displacement 1s minimum, Figure V-4 shows how the optimum
height and the corresponding minimum displacement varies with
suppeort wildth D.

Although at first glance the existence of conditions where
Increasing the support thlckness results in increased deflections
appears to contradict intuition, some additional thought convinces
one otherwise. For small thicknesses the flexural stiffness of
the support is small, and the compressive stiffness is large.

As one Increases the thickness one increases the flexural stiff-
ness, while reducing the compressive stiffness, Thus, the
flexural stiffness dominates at large thicknesses and the com~
pressive stiffness at small thicknesses; therefore at some inter-
mediate point an incremental increase in one stiffness is Just
balanced by a decrease in the other, resulting in a maximum stiff-
ness and in a minimum deflection.
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Bolt Tenslion and Spacing

In order to determine the bolt tension that is required to
maintaln interface contact (precompression), one must know the
distribution of interface pressure that is produced by a given
bolt head pressure Pg.

Rotscher (Ref. 4) has suggested the stress in an elastic
body under bolt pressure may be approximated as the stress in a
body llmited by two truncated cones with half angles of 450
(Fig. V-5). The corresponding average pressure P(z) at different
levels 1s found from force equilibrium to obey

2 2

b -a
2_a2 Py . (22)

P(z) = (b+H-2)

Rotscher's method is convenilent for the determination of the
average contact pressure and the average deformation, but un-
fortunately ylelds misleading results for the stress and pressure
distributions., An exact solution by Fernlund (Ref. 5) shows
that the contact pressure decreases exponentially with increasing
distance from the bolt center, and becomes vanishingly small at
the Rotscher's cone surface (Fig, V-6). A fourth-order poly-
nominal, as suggested by Fernlund, can be made to approximate the
exact contact pressure distribution closely for greater axial
distances from the bolt head, but falils to provide a good approxi-
mation near the bolf head, It therefore appears useful to develop
a modification of Rotscher's approach, which takes account of the
radial variation of stress, and to take (Fig. V-6)

PC for a<lr<b
r -r (23)
0
Pe 7o for b<r<r,

where
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r, = (H-z)4b
(24)

(b2-a°) (r,-b)

e = 's (H~z)[(H-z)2+3b(H—z)+3(b

c-a%)]

The correspondling minimum compressive deformation 8Q at the
panel edge (i.e., that at point Q of Fig. V-1) for the typical
case Wwhere b=2a is found to obey

E:%“Eﬁ - o3 ) (i) - 42 s (miii?l'ziea)} (25)

where, as evident from Fig, V-1,

ry = [(a+D)2+(L+a)2]1/2 . (26}

This minimum compressive deformation bq exceed or at least equal
the panel edge deflection &7, if the support is to remain in
contact with the test panel. Therefore, the minimum bolt tension
for a given geometry and panel shear force S may be computed by
equating Eqs. (21) and (25).

One may also show that if the supported plate vibrates, then
the maximum edge shear stress 8 1s related to the root mean square
deflection wppg of the panel according to

3/4
E; 2 (1-1»'7‘2)3‘/1jr EPh2

. (27)

Sample Calculation

Consider the case where Ep=Eg, D/h=10, h=a=b/2, Then from
Fig. V-4, the optimum support height and the corresponding dis-
placement obey H/h=25, (6m/h)(Eg/S)=1.75. Substitution of the
above values into Eq. (25? yields 2/6gEg/hPp#l1.92 and substitution
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into Eq. (21) and taking the ratio of the two values indicates

that the smallest acceptable bolt head pressure Py must satisfy
Pr/S = 1.82.

SIMULATION OF SIMPLY SUPPORTED BOUNDARIES

It has been suggested that simply supported edges may be
approximated by the use of short leaf springs or "flexures,"
as sketched in Fig. V-T. It is clear that such a flexure will
exhibit resonances and antl-resonances, and that at anti-resonances
the moment it exerts on the test panel may be considerable. At
anti-resonances a flexure thus falls to approximate the zero-
moment condition required of a simple support; the question is
whether the flexure can be designed so that its lowest antil-
resonance is above the frequency range of interest.

It is instructive to consider the configuration of Fig. V-7,
which shows a uniform beam supported by a short perpendicular
leaf spring. The vibratory lateral deflection wy of the leaf
spring may be expressed as

w, = A) sin k,x + A, cos k,x + A3 sinh k,x + A, cosh k,x , (28)

and the lateral deflection of the beam 1n the viecinity of the
leaf-spring-supported end may, by use of Bolotin's asymptotilc
method, be written as

-k

BY
Wy = B1 sin kgpy + B, cos kgpy + B3 e . (29)

Here kj and kp are the wave numbers pertaining to the leaf spring
and beam, respectively.

The integration constants Ay and By of Egs. (28) and (29)
may be evaluated by application of the boundary conditions
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= dwz/axl

wgl = wgl =0

x=0 x=0 x=k

dw ,/dx = dw dyl
£ |x=ﬂ B/ y=0

(30)

2 4.2
E,I, d%w,/dx |

2 2
= I dw./dy
et Eply d7wgp/ Iy=0

3y fav3
I, aw./a = -(E,A,/8
Eplp d7Wy y'|y=0 (Eghy/ )"B|y=0

Here E, I, A represent Young's modulus, moment of inertia, and
cross-sectional area, respectively; and the subscripts £ and B
refer to the leaf spring and beam, respectively.

One may then compare the bending moment at the supported
beam end to the maximum moment Mz in the beam (asymptotic) region
far from the support and find

MM, = 2(2-7)/D,
1/4
Y = (h£/2)2 63(xu) / /12
D2 = (148)2(17P)+(1-7)2(148%)-2(1-7) (148) (v-B)
i
B = kaT . a = /K (31)
& = Egly/Bply, 5 ko= pphp/pyh,
1/4
] = kol = (pgAgweﬂu/Eglg)
T = (1l-cos 8 cosh 8)/(sin 6 cosh 9 -cos 6 sinh 6) .
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The above function T takes on infinltely large values when-
ever its denominator vanishes (except for 6=0, where the numerator
vanishes also and T approaches zero). The smallest nonzero root
of the denominator is 9723.9; hence a flexure can be employed
usefully only for frequencles that satisfy

4 1/2
W<15(E ;T ,/p A ,L") . (32)
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