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ABSTRACT

Fixed- and moving-base flight simulator experiments and analyses were
conducted to provide data for use in substantiating, refining and extending
the hovering and low-speed-flight portion of MII-F-83300 - V/STOL Flying
Qualities Specification. For longitudinal and lateral control, the follow-
ing areas were investigated: +turbulence intensity, control lags and delays,
control-moment limits, control moments through stored energy, inter-axis
motion coupling, independent thrust-vector control and rate-command/attitude—
hold control. For height and directional control, the effects of damping
levels, control lags and delays, and control power limits were investigated,
Opinion ratings, pilot comments, and pilot-selected control sensitivities
were recorded in the flight simulator experiments; control-power-usage data
were also obtained.

The results indicate that the MIL-F-83300 Level 1 requirement for V/STOL
dynamic response provides aircraft dynamics which remain controllable for
nominal increases in gust intensity. The specification appears to generally
exclude pitch and roll control lags, and lags in thrust response, which cause
unsatisfactory flying gqualities; it admits lags for which pilot opinion does
not deteriorate. However, it also excludes directional control lags which do

_not degrade opinion, The results further indicate that the specification for
installed control moments provides levels which are satisfactory but not
excesgive. Control sensitivities selected by the pilots also generally fall
within the boundaries specified, but are much closer to the lower limit than
to the upper. Finally, data from the height control study show that minimum
Zy levels of -0.25 to -0.35 are necessary for satisfactory flying qualities
with unlimited T/W.

Results for unconventional control techniques evaluated indicate that
roter-propulsion system stored energy can be used to offset limitations in
installed control power. Independent thrust-vector control can be used for
hovering and maneuvering when properly implemented. Rate-command/attitude-
hold control does not appear to provide benefits for hover and low-speed
flight. '

The exceedance data show that speed stability and damping are the
configuration parameters having the greatest effects on control powsr usage.
Contrcl system lags have little effect on pitch and roll control-moment
usage, but they incresse yaw control-moment and thrust usage somewhat. The
largest amounts of control moment were used for the quick stop task; the
smallest amounts were used for hover and turn-over-a-spot. The data indi-
cate that the installed total moment for piteh plus roll control must be
sufficient to account for simultanecus usage by the pilot; it cannot be
assumed that pilots make independent pitch and roll contrcl inputs.
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SYMBOLS
Basic V/STOL aireraft configurations 1 through 6
{see Table I)
Coefficients used in nonlinear representation for control
moments available through rotor-propulsion system stored

energy (see Eq. (1))

Maximumm pitch, roll and yew moments available for control,
rad/sec®

General notation for control moments available through
stored energy, rad/sec®

Average pitch, roll and yaw control moments exceeded
5-percent of the time with unlimited moments awvailable,
rad/sec?

Time delsys in pitch and roll response, respectively, to
control inputs, sec

Time delay in thrust response to coilective control input
Gravitational constant, 32,2 £t/sec®

Designates hover subtask ’

Moments of inertis in roll, pitch and yaw, slug-ft2

VT

Roll control moment commanded by pilot and SAS divided
by I, rad/sec?

Maximum evailsble Lo, rad/sec”

Reference value of Lo, rad/sec®

Averaged L, rad/sec?

Roll rate damping divided by Iy, per sec

Rolling moment due to pitch rate divided by I,, per sec

xvi



Lga

Lae

Lo

Maa

e

SYMBOLS (Cont'd)

Lateral speed-stability parameter divided by Iy, per gecd
lateral control sensitivity divided by Ix,(rad/seceyin.

Rolling moment due to longitudinal control stick input,
(rad/sece)/in.

Roll attitude stabilization divided by I, per sec®
Aircraft mass, slugs

Designates entire maneuvering subbask, i.e., motion in
both the x and y directions

Pitch control moment commsnded by pilot and SAS divided
by I, rad/sec?

Increment to pitch control moment available through rotor-
: z
propulsion system stored energy, rad/sec

Maximum aveilable Mg, rad/sec?
Reference value of Mg, rad/sec®

2
Averaged Mc,, rad/sec

Pitch control-moment level exceeded S5-percent of the time
with unlimited moment available divided by Iy, rad/se02

Pitching moment due to roll rate divided by Iy, per sec
Pitch rate damping divided by Iy, per sec

Commanded rate-of-change of pitch control moment for thumb
switch input, (rad/sec®)/sec

Longitudinal speed-stebility parameter divided by Iy,
per sec

Pitching moment due to lateral control stick input,
(rad/secg)/in.

Longitudinal control sensitivity divided by Iy,(rad/seczyin4

xvidi
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PR

Prr,

SAS

SugsSv,

SYMBOLS (Cont'd)

Pitch attitude stabilization divided by Iy, per sec?

Yaw control moment commanded by pilot and SAS divided
by I, rad/sec2

Yaw control-moment level exceeded S-percent of the time
with unlimited moment available divided by I,, rad/sect

Maxtimm availsble Ne, rad/sec?
Yaw rate damping divided by I,, per sec

Yaw-due~to-lateral-velocity parameter divided by I,
rad/ (ft-sec)

Yaw control sensitivity divided by I, (rad/sec?)in.
Pilot opinion rating based on Harper-Cooper scale
Degradation in pilot rating

Percent time commanded roll moment exceeded installed roll
controel moment, percent

Percent time commsnded pitch moment exceeded installed
pitch control moment, percent .

Percent time commanded yaw moment exceeded installed
yaw control moment, percent

Percent time simultanecus pitch and roll moment commands
exceeded the sum of the installed pitch and roll control
monents, percent

Percent time commanded thrust exceeded installed thrust,
percent

Designaties entire quick-stop subtask, i.e., motion in both
x and y directions

Laplace operator, 1/sec
Stability augmentation system

Power spectrum of longitudinal and laterasl turbulence
components, respectively, ft2/sec

xviid



SYMBROLS (Cont'd)

téﬁax’ﬁﬁmax’qﬁmax Time interval following control input for pitch, roll

TS

(T/W-1)s
AT/

UL

and yaw, respectively, within which MIL-F-83300 (para-
graph 3.2.4, Ref., 1) stipulates that maximum initial
angular ascceleration shall occur, 0.3 sec

Thumb-switch thrust-rotation command, O or 1 (+1 is aft)
Designates £180 deg turn subtask

Thrust-to-weight ratio

Five-percent incremental T/W usage level, g's

Increment to thrust-to-weight ratio, g's

Notation for effectively unlimited control moment or
thrust level

Mean wind from the north (000 deg true), 10 kts

Conventional longitudinal axis notation in the bbdy-axis
system, £t

Degignates x-direction part of the maneuver subtask
Designates x-direction part of the guick-stop subtask
Iongitudinal drag parameter divided by W, per sec

Conventional leteral-axis notation in the body-sxis
system, It

Designates y-direqtion part of the maneuver subtagk
Designates y-direction part of the gquick-stop subtask
Pilot model transfer function.for height control loop
Pilot model transfer function for pitch control loop
Pilot model transfer function for yaw control loop
lateral drag parameter divided by m, per sec

Height velocity damping divided by m, per sec

xix
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SYMBOLS (Cont'd)
Notation for aserodynamic, stability augméntation systenm
and total Z,, respectively, per sec
Height control sensitivity divided by m, (Pt/sec®)/in.
Thrust-vector-rotation rate, deg/sec
Thrust-veétor angle per inch of control input, deg/in.
Collective control displacement, in.
Damping ratio of osecillatory roots

Damping ratics of second-order lags in roll and pitch
response to control inputs, respectively

Euler pitch attitude angle, rad
RMS longitudinal turbulence, ft/sec
RMS lateral turbulence, ft/sec

Time constant for first-order lag in roll and pitch control
response, respectively, sec

Time constant for first-order lag in thrust response to
eollective control input, sec

Time constant for decay of incremental control power
available through stored energy, sec

Time constant for first-order lag in yaw resgponse to
pedal input, sec

Fuler roll attitude sngle, rad
Euler yaw sttitude angle, rad

Damped frequency of the esircraft attitude (pitch or roll)
oscillatory roots, rad/sec

Natural frequency of the sircraft attitude (pitech or roll)
oscillatory roots, rad/sec

Natural frequencies of second-order lag in roll and pitch
response to control inputs, respectively, rad/sec

XX



SECTION I

INTRODUCT ION

A specification for V/STOL aircraft flying qualities, MIL-F-83300, has
recently been developed under Air Force sponsorship (Ref. 1). It is based
on the results of an extensive evaluation of previous V/STOL flying quali-
ties studies as well as the findings of recent experimental and analytical
research funded by the Air Force, Most of the latter was conducted as part
of the VTOL Integrated Flight Control System (VIFCS) program. The specifi-
cation and its supporting documentation provide guldence in the design of
V/STOL aircraft control systems as well as e standard for flying qualities,
They also are the culmination of research which represents a major advance
in the understanding of V/STOL flight characteristiecs.

Additional research is required, however, in the V/STOL hover and low-
speed flight regime, 1In particuler, general informetion is needed on
requirements for installed control power, i.,e., control moments and thrust-
to-welght ratlo. Providing appropriate levels of control power for hover
and low-gpeed flight is a critical part of the design of V/STOL aircraft.
Despite its importance, there asre little genersl data available which relate
flying qualities to instelled control power (Refs. 2 through 4). A related
factor which has received almost no attention is the incremental control
moment or thrust which can he obtained from rotor-propulsion system stored
energy. By temporarily converting a part of the rotor-propulsion system
angular momentum to control power, it is possible to supplement the in-
stalled control powers. Other general areas which should be investigated
furthg}-are control lags and delays and inter-axis motion coupling. Motion
coupliﬁé\in'particular has not been given adequate attention. Control and
rate coupling, for exsmple, exlst o some degree in almost all V/STOL air-
craft and thelr effects can lead to & slgnificant degradation in flying
qualities. In general, however, the specification treats motion coupling
only qualitatively.

An uncertainty also exists over the level of height veloclty demping,
Zyss needed for satisfactory height control characteristics, MIT-F-83300
indicates that helght control will be satisfactory providing that Z, 1is not
positive, i.,e., not destabilizing. Results which support this contention
can be found (Ref. 5), but data which indicate a requirement for a signifi-
cant level of negative Z, are also aveilable (Refs. 6 and 7). The height
control portion of the specification slso assumes that & tradeoff exists
hetween the level of height velocity damping present in the alrcraft and
the required installed thrust-to-welght ratio. Although there are results
which support this assumption, it merits further substantiation. Finally,
MIL-F-83300 would be more useful if its scope could be extended to encompass



some unconventional V/STOL control systems. The specifications may already
apply to many aspects of hover and low-speed flight with such systems.
However, its limitations in this regard are not known and i1t would be hene-
ficial to examine V/STOL flying qualities with several unconventionel systems
that might be used on future aircraft. Exeamples of these types of systems
are rate-command/sttitude-hold or "stick steering" control and thrust-
vector control independent of slrcraeft attitude,

The study described in this report provides additional information on
the hovering and low-speed flying qualitiles of V/STOL aircraft. The objec-
tive of the program was to provide experlmental flight simulator data and
analyses which wlll be used to substantiate, refine, and extend the hovering
and low-gspeed flight portion of the V/STOL Flying Qualilties Specification.



SECTION II

BACKGROUND OF EXPERIMENTAL PROGRAM

This section contains a description of the studies conducted using the
UAC V/STOL Flight Simulator and a discussion of the equipment and procedures
used in the experimental program, Most of the equipment and many of the
procedures used for the experimental studies were similar to those described
in Refs, 7 and 8. Also, the flight simulation for this study was designed
to correspond as closely as possible to that implemented at Norair for their
previous VIFCS study (Ref. 9). Table A-I is a summary of parameters for
cases evaluated and a key to tables in Appendices A, B, C and D that are
tabulations of all the data discussed in Sections IIT through V. Additional
details of the flight gimlation are contained in Appendix F.

A, Flight Simulator Studies

The experimental program wae designed to provide data to substantiate,
refine and extend the hovering and low-speed flight portion of the V/STOL
Flying Qualities Specification. Tt included studies of longitudinal and
lateral flying qualities, height control and directional control., Emphasis
was placed on obtaining information related to requirements for installed
control power. The dete obtained generelly consisted of pilot opinion
ratings, pllot-selected control sensitivities and measured control moment
and/or thrust usage.

1. lengitudinal and Lateral Control

There were seven different Investigations conducted in this part of the
program, They were concerned with the effects of (1) turbulence intensity,
(2) lags and delays in the response to control inputs, (3) limits on the
available control moments, (4) incremental pitch control moment through
stored energy, (5) inter-axis motion coupling, (6) thrust-vector control
independent of aircraft attitude, and (7) rabte-command/attitude-hold con-
trol. 8ix basic V/STOL configurations were selected, A range of values of
the parameter being considered was then evaluated for each basic configura-
tion. Alsc, longitudinal and lateral control were geherally evalusted
together; only one pilot opinion rating was given for a test case, and this
represented the pilot's assessment of the combined longltudinal and lstersl
flying qualities. In addition, control moments were effectively "unlimited”
and pitch, roll and yaw control-moment usage was measured for each study,
unless noted otherwise.



a. Bagic Configurations

The six basgic configuratiocns had conventional rate and attitude sta-
bility augmentation, and each was similar to configurations evaluated in
the previocus Norair and UARL studies (Refs. 7 through 9). They also were
symmetrical in thet each lateral stability derivetive had the same value as
the corresponding longitudinal derivative. The directicnal and vertical
stability derivetives were the same for all six configurations. Table I
lists their stability derivatives and root locations; rcots are also plotted
in Fig. 1. It is apparent that the bagic configurations span a wide range
of dynamic response characteristics. They encompass all three of the levels
(1, 2 and 3}* used to characterize aircraft flying qualities in MIL-F-83300,
in addition to exhibiting a range of responses to turbulence.

TABLE I

STABILITY DERIVATIVES AND ROOT LOCATICNS FOR UARL BASIC CONFIGURATIONS

conf. | revel Stabllity Derivatives > Root Locations
e | % | M| oM | ooon | -l e
BCl 1 0.33 -0.05 -1.7 -kL.2 -0.13 -0.81+ j 1.85
BC2 2 1.0 -0,05 | -1.1| -2.5 | -0.5 -0.30 £ j 1,47
BC3 3 1.0 -0,05 -2.0 0 -2.2 0.08 = j 0.68
BCL 1 1.0 -0.20 -3.0 -1.7 -2.5 -0.35 = j 0.64
BCS 1 0.33 -0.20 1.7 | -h4.2 -0.29 -0.81 + j 1.85
BCE6 2 1,0 -0,20 | -1.1 } -2.5 | -0.65 | -0.32 + j 1.48

1. Symmetrical configurations - lateral derivative has same value as
corresponding longitudinel derivatives.

2. Directional derivatives for all configurations: ¥, = 0.002, N, = -1,
N5, = 0.20; Vertical derivatives: Zy = -1, Z5 = -3.2, T/W > 1.15.

*Level 1 flying qualities are "clearly adequate for the mission"; Level 3
are such that the "aircraft can be controlled safely but pilot workload is
excessive or mission effectiveness is inadequate, or both"; and Level 2
flying qualities lie between these extremes.



Configurations BCl, BCh and BCS are Level 1, but BCYH exhibits a larger
attitude response to turbulence (Mﬁg = -Lg = 1.0) than BCl and RCS
(Mg = ~Iyg = 0.33). Also, BCH and BCS have greater position responses
to turbulence than BCl (X, = Y, = -0.20 versus %, = ¥, = -0.05). Configura-
tions BC? and BCH are Level 2 with large speed-stability parameters. This
feature, combined with the lower levels of damping, results in significant
attitude disturbances due to gusts. Configuration BC6 also has the large
drag parameters and the attendant large pogition responses to turbulence,
Finally, configuration BC3 is Level 3 with lightly damped dynamics, large
speed-stability parameters (Mg = -L,g = 1.0), and large attitude distur-
bances from turbulence. Tt is important to note also that all of the rate
damping and attitude stabilization represented by these derivatives in
Table I (i.e., My, Mg and their lateral, vertical and directionael counter-
parts) was assumed tc be provided by a stability augmentation system (SAS).

b. Turbulence Intensity

This study was conducted to provide information on the sensitivity of
aircraft with different level flying qualities to changes in turbulence
intensity and to obtain control-moment ugage data. The flying qualities of
Level 1 aircraft should be somewhat insensitive to gust level. That is, the
MIL-F-83300 definition for V/STOL Ievel 1 dynamlc response must be formulated
such that flying qualities remsmin acceptable for commonly encountered turbu-
lence intensities. Greater deterioration in flying qualities would be ex-
rected for Level 2 and 3 mircraft. Each of the six basic configurations

~was evaluated at three levels of rms longitudinal and lateral turbulence
intensity, 6, =0y, = 3.4, 5.8 and 8.2 ft/sec, The wind simulation also
included & mefn win Uy = 10 kt (=~17 ft/sec) from the north. Note that
only for this study were rms turbulence intensities other then 0y _ =0, =
3.4 ft/sec evaluated. For the rest of the program the wind simulation &on-
sisted of ¢y _ = 0y _ = 3.4 ft/sec and Uy, = 10 kt. Details of the wind simu-
lation are d%scrib%d in Section II.B.1.

C. lags and Delays in Attitude Response to Control Inputs

Pitch and roll control lags and delays were evaluated to test the
adequacy of the MIL-F.83300 specification for such effects (paragraph 3.2.%,
Ref. 1). These lags and delays only operated on the pilot's control stick
inputs, i.e., the stability augmentation system (SAS) commands were not
affected. The location of the lags and delays in the pitch attitude control
loop is shown schematically in Sketch II-A. The implementation was identi-
cal for the roll loop. In the specification pitch, roll or yaw lags and
delays are presumed to be within acceptable limits if the time to reach the
initial maximm angular acceleration is no grester than 0.3 sec. To span
this requirement with both acceptable and unacceptable values, first-order
lags having time constants of 0.1, 0.3 and 0.6 sec were evaluated for each
basic configuration. Also, the longitudinal and lateral lags were always
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SKETCH IT-A. ILocation of Lags and/or Delays Simulated
in Pitch Response to Control Inputs

equal (7e = 75) for a given test case. In addition, pitch and roll moment
delays, dg = dg, of 0.1 sec were evaluated with and without a combined first-
order lag of Ty = T4 = 0.3 sec. Configurations BCL and BC2 were used for
these test casges., The effects of second-order control lags were also inves-
tigated with configuration BCl to further test the specification. The signi-
ficance of amplitude versus phase effects was examined by varying the damping
ratic and natural frequency of the second-order lags.

d. Limits on Available Control Moments

The purpose of the control-moment-limit study was to investigate the
effects of alrecraft configuration and control system paremeters on the total
control moments (i.e., moments commanded by the pilot and the rate damping
and attitude stabilization derivatives or SAS) necessary for pilot accep-
tance. Ancther objective was to examine whether these required installed
control moments correlate with the control moment levels exceeded some glven
small percent of the time with unlimited moment available, e.g., the 5-per-
cent level. Information on the adequacy of the MIL-F-83300 specification
for piteh, roll and yaw control power (paragraph 3.2.3.1) was algo provided
by comparing it with the results of this study.

Configurations BCl, BCY, BC5 and BC6 were considered initially without
control lags or delays. Three to five levels of avallable total control
moment were evaluated for each configuretion, and pilot opinion ratings
were used to indicete the sufficiency of the levels, Filots were not aware
of the control.moment limits except as they affected flying qualities. The
moment limits were applied on an analog computer, not to the physical con-
trol stick motion and the meximum control travels available were such that
the limits would always be exceeded if the maximum travels were used. The
control moment versus moment command characteristics simulated in the moment



limit study for pitch, roll and yaw control are shown in Sketch II-B. Note
that the moments available in the pitch, roll or yaw axes were never identi-
cal, The reference limits or starting points for the installed control-
moment levels (pitch, roll and yew) were averages of those levels exceeded
5 percent of the time (CM5) with unlimited moment available. The limits
for the remaining test cases were developed by increasing (or decreasing)
the reference levels by integral multiples of 10 percent.

Control
Moment

Maximim
Moment
Aveilable

Total Moment
Command

SKETCH II-B. Piteh, Roll or Yaw Control Moment Versus
Total Control-Moment Command Character-
istics for the Moment Limit Study

The effects of control-moment limits were next evaluated with control
system lags and delays present. Configurations BCl and BCS were used with
pitch and roll response delays of dg = dg = 0.1 sec in combingstion with
first-order legs of either 7, = 75 = 0.3 sec or 0.6 sec. The moment Iimits
evaluated and the procedures for this investigation were unchanged from
those for no control lags or delays.

e. Control Moments Through Stored Energy

Several types of V/STOL aircraft derive pitch and roll control moments
from cyelic and/or collective changes of rotor system blade angles. Momen-
tary incremental control moments above the installed moment levels can be
obtained for such systems by abruptly increasing blade angles to values
larger than the normal cperating limit. Of course, the sircraft's powen
plant will be unable to maintaln engine rpm at this large blade angle, and
rpm will decay. However, the brief increase in moment may be sufficient



to cdnpensa.te for deficlencies in the installed contrcl moments. This study
was undertaken to examine whether the stored energy in typical V/STOL rotor-
propulsion systems could be used to such advantsege.

Preliminery analyses indicate that it may be possible to approximate
the control moments available from stored energy, CMgp, by

d(rpm) 2
—at + G (rpm)~ = Co

(1)
CMgp = C3 (rpm)2

where coefficient C; is related to the blade drag, Co to the available engine
horsepower, and Cg to the blade 1ift coefficient. Also, coefficients C; and
C3 both change when the pilot moves his control stick. For this study,
stored energy effects were similated for pitch conftrol moments only and a
linearized version of Eg. (1) was used to represent stored energy (Eq. (2)).

d d
A gt (CMp) + CMgg = 74 35 (ICommended Momenti| - M, ) (2)

In Eq. (2) the parameter 7, is the time constant associated with the stored
energy decay and Mc, is the steady-state or installed control moment. Also,
the meximim control moment increment available from stored energy is defined
as AM, and the function (|Commanded Moment | - Mop ) in Eg. (2) cannot be
larger than AMC In addition, the stored energy :anreme=nt was available for
both positive and negative control commands as indicated in Eq. (2). The
piteh control-moment step response for the stored energy study is shown in
Sketch II-C. The moment response shown there is similar to the maximum pitch
control moment the pilot a.nd/or 8AS could command if & large, rapid control
input was made and sustained. The total moment available, then, consisted
of & contimuously available installed moment, Mgy, plus a transient term
which was excited if the magnitude of the total command exceeded Mep. The
transient gave an abrupt increase related to the | Commanded Moment | - Mem
(up to the maximum increment of AM;) that decayed with time constent 7, .

Moy, and AM, are considered to be positive functions in this discussion. The
increment from stored energy could be used at any time, but after it decayed
the pilot (and/or SAS) had to reduce the commanded moment and wait until the
stored energy simulation recovered (the recovery time constant was also T V.
This effectively simulated the time it would take & propulsion system to
restore rotor rpm. A logic diagram jllustrating the stored-energy simlation
is shown in Sketch II-D. Representative velues for the increment and the
rpm decay (and recovery) time were determined from an analysis of the XC-142



£

T

Magnitude of
Maximim Steady-State
Moment Available, Mcm

}
Magnitude of

the Tobal Pitch| |y -y 4 Ay o,

Control Moment,
| Mcl

Time Following large,
Step Control Input

SKETCH II-C. Step-Response %&rdcteristics of the
Simulation of Incrementsl Control
Moment Available Through Stored Energy

ITCH| -M, < 0, M} = | oM

Magnitude of 1TCH| - Mcm>0
Total Commanded-———m Comparator Comparatar
Moment (]'TCM])

Mcm am,

1>0 M| = Mo+ AM, st

<0 (U] = Moy + (lTom] < w7

SKETCH II-D. Schematlc Showing Switching Loglc for Stored

Energy Simulation

propulsion system. IL appears that a moment increment of 30 percent of the
ingtalled moment is possible with asgsoclated decay time constants of Ty =
0.05 and 0.10 sec. Values for 7, of as much as 0.2 sec may be possible for
helicopters because of the greater rotor-system inertia.

The effects on flying qualities of pitching moment available through
stored energy were investigated with the same basic configurations considered
in the control-moment limit study, i.e., BCl, BCH, BCS and BC6. The install-
ed pitch control moment, M, , for each configuretion was set at & low level

/o



which yielded unsatisfactory pilot rabtings without stored energy effects.
All other installed control moments were set at satisfactory levels. The
effects of the incrementsl pitch control moments supplied by stored energy
were then evaluated for different combinations of ANE and Ty Pilot ratings
were used to assess the effects of stored energy. As for the study of
control-moment limits, the pilots were not aware cof the limits on pitch
control power except through asircraft flying qualities. Control-moment data
were not meagured during the stored energy investigation.

f. Inter-Axis Motion Coupling

This study was performed to determine acceptable values of attitude rate
coupling {Mp and Iy) and control coupling (Mﬁa and Lﬁe)' An analysis was
conducted initially to determine appropriate polarities and magnitudes for
these parameters. The sign convention used for the attitude rate coupling
(Mp positive and Lq negative) was derived from a simple analysis of hinge-
less-rotor aerodynamics. When the rotor tip-path-plane shown in Sketch II-E

SKETCH II-E. Top View of Rotor Tip Path Plane

undergoes pitch rates, cne effect gives rise to net rolling moments. For
example, if pitch attitude is increased by a positive pitch rate, the

angle of attack of a blade in arc DAB will alsc increase, while that in

arc BCD will decrease, causing e negative rolling moment (Lq negative).
Similarly, a positive roll rate (increase in roll attitude) results in a
positive pitching moment (Mp positive). Data in Ref. 10 indicate that rate
coupling levels ranging from M, = 0.3, Ig = -2.7 to My = 1.5, Ig = -14 can
be present in uncompensated helicopter control systems, depending on rotor
desgign.

The sign convention for control coupling can also be interpreted by
reference to Sketch II-E. The maximum control moment for an asrticulated
(hinged) rotor oceurs when the blade has moved an additional 90 deg after
a blade-angle (cyelic) change, i.e., the maximum pitching moment occurs at
peint B if the blade angle ig changed at A. For s hingeless rotor the
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maximm moment occurs after a smaller phase lag, e.g., somewhere in the

arc AB for a blade angle change at A. Therefore, a positive pitch control
input gives rise to a negative roll moment (L e< 0) and a positive roll
contreol command results in a pogitive pitch moment (Maa:>0). It should he
noted that, with the sign conventions described, the effects of attitude
rate and control coupling are additive, For example, a positive piteh con-
trol input yields = positive pitceh rate and, since both Lq and Lﬁe are nega-
tive, the induced rolling moments from both sources are negative. However,
in the flight simulator evaluation of coupling effects, coefficients having
signs which resulted in cancelling moments (Lq< 0, Lje>0 and M; >0, Mg < 0)
were also evaluated.

Configurations BCl and BCZ2 were considered in this study with rate
coupling levels of M = -Lq = 2 and 4 and control coupling up to Mda/Lﬂa =
Iﬁe/Mﬂe = 0.50. The different types of coupling were evaluated separately
and in combination,

g. Thrust-Vector Control Independent of Aircraft Attitude

Independent thrust-vector control (ITVC) enables the pilot to maneuver
aircraft having large drag parameters without large attitude changes. Also,
with TIVC, large aircraft can be maneuvered near the ground with a reduced
probability of tail strikes (and wing strikes, if lateral ITVC is also
available). Only longitudinal ITVC was investigated in this study and it
was implemented in two ways. In the first approach the longitudinal thrust
vector was rotated using a thumb switch which commanded a constant rate of
rotation., Pitch attitude was controlled using the conventional control stick.
This technigue for thrust-vector control was identical to the implementation
of the wing tilt (or thrust-vector) control which was used by the evaluation
pilots to trim the effects of mean wind acting through the longitudinal drag
parameter. - The wing tilt capabllity was available for all test cases eval-
uated in the UARL study. However, only for the ITVC study was the pilot
permitted to use this device for genersal position contrel. The second method
of implementation involved proportional control of the thrust-vector angle
using the control stick while pltch attitude was controlled with the thumb
switch, The thumb switch commanded a fixed rate-of-change of pitching
moment (ﬂ@s). In general, the thrust.vector angle was displayed on the con-
tact analog displsy with a symbol that moved vertically., Thrust-vector
angle was elgo displayed on the instrument panel. For some of the experi-
ments only the instrument panel display was used. Two Level 1 configurations
(BCL and BCK) and a level 2 configuration (BC2) were used in the ITVC study.
These configurations provide a range of position response characteristics
with which to test ITVC. Configurations BCl and BCZ2 have low drag param-
eters (X, = ¥, = -0.05) and, consequently, low position stability and low
position response to turbulence., Configuration BCL has large drag param-
eters which give it greater position stability but alsc larger gust-induced
position disturbances. Attitude control moments were unlimited for this
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study and the fhrust-vector angle could be rotated through +90 deg. Pitch
and roll control-moment usage and thrust-vector angle were measured in the
IVC study.

h., Rate-Command/Attitude-Hold Control

The rate-command/attitude-hold or "stick steering" control system has
two significant attributes. Filrst, it will hold trim attitudes while allow-
ing the pilot to center the stick and, second, it provides a rate-command
control response for higher frequency control motions. A representative
attitude transfer function (pitch) for such & system is given by Eq. (3):

) M
gl(s) = Be (3)
e 5(32 + 2l s +-a5?)

This transfer function can be obtained for & rate and attitude stabilized
V/STOL aircreft by integrating the control stick input to the attitude cone
trol system. This is the feature which enables the pilot to hold trim atti-
tude with no steady-state control input. The attitude stabilization must
then be increased to values which drive the real root of the attitude dynam-
ics, 1.e., the real root of the hovering cubie, towards zero, where 1t will
be cancelled by the first-order zerc related to drag perasmeter. If the
natural frequency of the quadratic term in Eq. (3) is then sufficiently
large, the transfer function GAEe at and below the pilot's crossover fre-
quency (W, ~ 2.5 to 3.5 rad/sec, Ref. 8) will effectively be

%(S) ~ Mée/s (4)

However, the dynamics still retain the attitude stebilization features. The
lead compensation that must be gupplied by the pilot for pitch and roll con-
trol and, consequently, the longitudinal flying qualities of this control
system, are very dependent on the damping ratio, I, and natural frequency,
W,, of the quadratic in Eq. (3). The rate-command/attitudenhold control
system for pitch attitude (and also roll) was implemented as shown in
Sketch II.F for this study.

For this study the basic longitudinal and lateral sirframe derivetives
of configurations BCl and BCht were used as a base and the rate damping (Mq,
IP) and attitude stabilization (MG’ L¢) parameters were varied to provide a
broad range of ¢ and wy, for the pitch and roll dynamics. The initial param-
eters chosen were baged on a closed-locp analysis of the pilot-aireraft
dynamies. Values for { andw, that could not be obtained with simple
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SKETCH II-F. Implementation of Rete-Command/Attitude-Hold Control

‘attitude and rate feedbacks were not evaluated in this study. Again, the
pitch and roll attitude dynamics were identical for each test case.

2 Height Contrcl

The height control program consisted of four studies. They were con-
cerned with the effects on flying qualities of (1) height veloeity damping,
Zys With effectively unlimited thrust, (2) the interaction between Z; and
the installed thrust level, (3) thrust lags and delays, and (4) thrust
available through stored energy. The longitudinal, lateral and directlonal
characteristics were defined by the basic configurations and are shown in
Table A-I., Pitch, roll and yaw control moments were effectively unlimited.
The data obtained consisted of pilot ratings, pilot-selected collective
control sensitivities and thrust usage. The measured thrust usage was made
up of that which the pilot attempted tc command, Zﬁ +bcs and that actually
commanded, Zg.§ o + Zyg' W, Where Zws is the height damplng resulting from
stability augmentation.

8. Effects of Height Veloeity Damping with Unlimited Thrust

This study was undertaken primarily to provide more information on the
minimm acceptable level of height velocity damping, Z,. The MIL-F-83300
specification (paragraph 3.2.5.4) assumes that level 1 flying qualities for
height control can exist for Zy; = O provided sufficient thrust is available
(T/W>1.10). A previous UARL study (Ref. 7) contains data which indicate
that a level of Z,% -0.5 is necessary for satisfactory height control. A
secondary objective of the study was to measure thrust usage dats with
effectively unlimited thrust-to-weight ratio (T/Wd>l.15). Levels of total
height damping, ZWT’ ranging from 0 to -0.8 were evaluated with configura-
tions BCl and BCY. The total damping was assumed to consist of equal aero-
dynemic, Zy,, and stabllity augmentation system (SAS), Ziys components.
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b. Interaction Between Z; and Ingtalled Thrust Level

The height control power portion of MII~F-83300 (paragraph 3.2.5.1) is
based on the premise that increased height velocity damping reduces the
necessary installed thrust. The study described here was conducted to pro-
vide more information on this effect. Height control was evaluated with
configuration BCl for six or more levels of ZWT’ ranging from -0,1 to -0.5,
at each of three installed thrust-to-weight ratios {(1/w = 1.02, 1.05, 1.10).
The T/W ratios considered are pertinent to the definition of level boundaries
for the height control power specification. Generally ZWT wes composed of
equal parte of aerodynamic, Zwa, and SAS, ZWs’ damping. However, the effects
of all Zy, or all Zy were also investigated.

c. Thrust Lags and Delays

This investigation was designed to test the specification for thrust
magnitude control lags (vparagraph 3.2.5.2). First-order lags which result
in height comkrol response that spans the Level 1 and 2 requirements (rh =
0.3 and 0.6) were evaluated with and without O.l-sec delays. These lags
and deleys affected both the control and SAS thrust commands. Configuration
BCl was used and several values of ZWT’ composed of equal ZW& and Zy, com-
ponents, were simulated for each combination of control lag and delay. Also,
the installed T/W was limited to 1.05 for this study.

d. Thrugt Available Through Stored Energy

The effects of incremental thrust from rotor-propulsion system stored
energy were investigated using configuration BCl with height control charac-
teristics that were unsatisfactory without stored energy (ZWT = Zyg = -0.35,
T/W = 1.02). Two levels of incremental T/W representing momentary thrust
increases of approximately 15 percent and 30 percent, il.e., ATVW = 0.13 and
0.28, were evaluated with decay time constants of 74= 0.05, 0.1 and 0.2 sec,
Stored energy was simulated as described for pitch con*rol in Section IT.A.l.e.

3. Directional Control

The three directional control studies investigated (1) the effects of
damping on flying qualities and control-moment usage, (2) control lags and
delays, and (3) limits on the available control moment. Two of the basic
configurations (BCl and BC2) were used to represent V/STOL longitudinal and
lateral control characteristics, The height-control parameters for the
directional studies were as shown in Table A-I. Pitch and roll control
moments and thrust-to-weight ratio were effectively unlimited. Yaw confrol
moments were also unlimited unless noted otherwise. Pilet ratings, pilot-
selected directional control sensitivities and pitch, roll and yaw control-
moment usage were recorded.
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a. Effects of Yaw Rate Damping

This study was conducted to provide additional information on the rela-
tionship between yvew rate damping and flying qualities and tc obtain control-
moment-usage data. Yaw rate damping values which spanned the Level 1, 2 and
3 specifications (paragraph 3.2,2,2), for directional damping (N, = -1, -0.5
and O, respectively) were evaluated for basic configurations BCl and BC2.

For all test cases Ny was 0.005.

b. Control lags and Delays

The effects of directional control lags and delays were alsc investi-
gated to provide results with which to test the control-lag specification
{paragraph 3.2.4). First-order control lags (which affected the pedal
response only) with time constants 75 = 0.3 and 0.6 were evaluated with and
without 0.1-sec delays in control response. These lag and delay combina-
tions were each evaluated at Ni levels of -0.5 and -1. Only configuration
BCl was used in this study and N, remained 0.005.

c. Yaw Control-Moment Limits

The levels of yaw control moment necessary for satisfactory directionsl
control were determined (1) to provide comparative results for the MIL-F-83300
control power requirement (paragraph 3.2.3.1) and (2) to evaluate the hypoth-
esis that acceptable moment limits correlate with a level exceeded some
small percent of the time for unlimited avallable mements. Configuration BCl
was again used in this study and N, remained 0.005. The yaw control-moment
limits considered were Ny = 0.10, 0.13 and 0.16 and the effects of these
limits were evaluated for two values of Ny, -0.5 and -1.0., The smallest
limit considered, Ném = 0,10, vas based on yaw control-moment data measured
in the turbulence study (Section II.A.1.b). Tt was the average level
exceeded 5 percent of the time for the 3.1L ft/sec s turbulence intensity.

B. Description of Simlation

1. Simulation of V/STOL Aircraft and Winds

The six-degree-of-freedom equations of motion for hovering and low-speed
flight were programmed on an analog computer, They were written using a
body-axis coordinate system and were linearized assuming small perturbations
from hovering flight (Egq. (F-1), Appendix F; Refs, 7 and 8). Also, the angular
momentum effects of such spinning masses as propellers and jet engine rotors
were not considered., Products of inertia have also been assumed to be neg-
ligible and, with the exception of N, derivatives which couple motion be-
tween axes were generally disregarded, Fitch and roll rate coupling and
control coupling were examined in one of the longitudinal and lateral control
studies, however. The wind simulation consisted of a 10 kt (=17 f%/sec)
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mean wind from the north (000 deg true), U,, and turbulence which was intro-
duced along the aircraft x and y body axes. Turbulence was simuiated by
passing the oubtput of a random noise generator, which hsd a relatively uni-
form low-frequency power spectral distribution, through a first-order filter
with a break frequency of 0.31%4 rad/sec (Refs. 7 and 8). The sirulated tur-
bulence then excited aircraft rotatlionsl and translaticral motion through
the aircraft speed-stability and drag perameters and the yaw-due-to-lateral-
velocity perameter (see Eq. (F-1), Appendix F). The turbulence intensity was
always equal in the x and y axes, and, in general, an rms level of oy, =

oy, = 3.4 ft/sec was used., With this turbulence intensity, the wind Simula-
tion was the same ag that used for much of the previocus Norair study con-
ducted under the VIFCS program (Ref. 9). Turbulence intensity levels of

oy, = 0y = 5.8 and 8.2 ft/sec were also considered in the study of turbu-
lence effects.

2. Flight Similation and Display

Fixed- and moving-base VFR flight simulations were used, For any given
study, the moving-base simmlations were used to check selected fixed-base
data which had been previously cbtained. Generally, abcut half the test
cages In a particular study were evaluated in the moving-base mode. The
same flight simulator used in the rrevious UARL VIFCS studies (Refs. 7 and
8) was also ugsed for this program. A motion platform has been added to the
device, however (Fig. 2).

The simulator consists of a fully enclosed, two-place Sikorsky S-61
cockpit with a conventional instrument panel, a contact analog display for
VFR flight simulation, and the six-degree-of-freedom motion platform. The
control system for this simulation was made up of standard helicopter flight
controls plus a thumbeswitch device which could be used to change the longi-
tudinal thrust-vector angle (or wing-tilt angle) and thereby trim the effects
of the mean wind acting through the longitudinal drag parameter. The display
(Fig. 3) is composed of a ground grid, horizon line, clouded sky and display
gymbols. Attitude and cosrse position information are obtained from the
motion of the ground grid, horirzon and sky reletive to a cross symbol which
represents the nose of the aircraft., The cross mey either be the electronic
symbol shown in Fig. 3 or simply & marker physgically attached to the screen
surface. For the independent thrust-vector control and height control
studies, the latter method was used and the electronic cross wag moved to
the right side of the screen to indicate thrust-vector angle and altitude,
respectively. Precise aircreft position and veloelty information are ob-
tained from the motion of the square symbol which indicates a spot on the
ground, At the reference hovering altitude of L0 ft, the dimensions of the
contact analog screen represented a hover pad approximately 130 ft (longi-
tudinally) by 150 ft and the square symbol an area about 9 £t on a side.
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Similstor motion is provided by coordinated movement of the six hydraulic
actustors on which the cockpit is mounted (Fig. 2). The stroke position of
each actuator, commanded in response to the simulation equations of motion,
is generally computed using hard-wired analog circuitry. A PDP-8 digital
computer is used to set control modes of the motion platform and to monitor
system performance. The simulator motion capabilities are summarized in
Table II. The emplitude of the motion-platform frequency response is flat
to beyond 1 Hz for each type of angular (e.g., pitch, roll or yaw) or linear

motion, The phase lag for each type of motion is approximately 30 deg at
1 Hez.
TABLE IT
FLIGHT SIMULATOR ANGUIAR AWD LINEAR MOTION LIMITS
Angular Metion Linear Motion

Axdis Atti- Acceler- Axis Pogi- | Velo- Acceler-

tude, Rate, ation, tion, city, ation,

deg | rad/sec | rad/sec £t ft/sec g's

Pitch =45 =1 +] Longitudinal | %5 *6 £0.5
Roll +30 =1 +1 lateral =5 ) =0.5
Yaw +=]5 +3 1 Vertical +p 5 6 1,0

The platform's motion limits are too small to permit duplication of all
low-frequency aircraft motion commanded by the pilot, especially the linear
displacements. Consequently, & "washout" logiec has been developed to gelec-
tively attenuate motion commands which would ceuse the simulator to exceed
its limits (Appendix F; Ref. 11)., This system is based on measured fre-
quency response characteristics of the human's vestibular system. It alsco
orients the cockpit relative to the earth's gravity field to simulate low-
frequency aircraft linear accelerations which otherwisze could not be repre-
sented., GSeveral pilots have evaluated the motion system with this washout
logic for hovering and low-gpeed flight and have generally found that it
provides & realistic representation of actual flight.

3. Simlated Flight Task

 The flight task performed during the longitudinel and lateral and the
directional comtrol studies consisted of the following subtasks: vertical
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takeoff and climb to a 40-f%t hovering altitude, low-speed maneuvers (air
taxi; MAN, XM, YM), quick stops (QS, XQS, Y&S), turns-over-a-spot (TU)},
hover (HOV), and landing. The air-taxi maneuvers were conducted in both
longitudinal and lateral directions through similated distances of 165 ft
and 75 ft, respectively. The pilots followed a crosg pattern while hold-
ing heading constant (at 000 deg true) and hovered momentarily at the cardi-
nal points of the cross. Alrspeeds were generally less than 20 ft/sec
during the maneuver task. The pilots next performed the longitudinal and
lateral quick stops while alsc holding heading at 000 deg true. Airspeeds
were somewhat larger for the quick stops, and, of course, the aircraft's
velocities were arrested more abruptly than for the air-taxi maneuvers. The
pilots next performed +180 deg turns while maintaining hover position and
this was followed by a 60-sec precision hover at the center of the simulated
hover pad., The pilots then landed the aircraft.

The turn-over-a-spot subtask was deleted for the height control study
and a landing sequence (IS) subtask was performed after the hover. The
landing sequence consisted of relstively rapid changes in hovering altitude
from 4O £+ to 20 £t and back to 4O £t. This was followed by a vertical
landing.

L, ©Pilots

The two UARL evaluation pilots were the same pilots A and B who partice-
ipated in the previous VIFCS studies conducted at UARL (Refs. 7 and 8).
Both are licensed private pilots who have flown a variety of fixed-wing
alircraft and one has had limited helicopter experience. They alsc have each
accumlated several hundred hours evaluation time on the flight simlator.
For each study in this program pilot B genergally evaluated all the fixed-
base test cases and pilot A approximately half of them., These ratics were
reversed for the height control studies, however. Only pilot B performed
moving-base evaluations.

Two Calspan test pilots also participated at different times in the
UARL progrem, Iach has extensive experience in both helicopters and V/STOL
aircraft. Eleven moving-base simulator shifts of at least 4 hours duration
each were set aside for Celspan use. Results from the Calspan evaluations
are shown only for Calspan pilot B in this report.

5. Comparative Results from UARL and Norair Similations

The UARL flight simlation was designed to correspcnd with that used
by Norair in their previous VIFCS program (Ref. 9) and thereby provide com-
parable results, An indication of the success of this effort can be obtained
by comparing pilot ratings for similar test cases from the two simulations.
Comparable longitudinal and lateral control rating data for the six UARL
basic configurations are shown in Fig. L and Table ITI. The UARL fixed-base
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TABLE

IIT

COMPARTISON OF PILOT RATINGS FROM NORATR AND CURRENT UARL STUDY

Wind Simulation: Uy = 10 kts, 0, =0y = 3.4 ft/sec for Both Similations
g g

Simu- Longitudinal Iateral R
Basic| lation| Stability Derivatives Stability Derivatives
Confe | rose Me | X Mg | Mg | Le | ¥, I, | Ly | ¥B | MB
UARL 0.33| -0.051-1.7}| -4.2]|-0.33| -0.05| -1.7| -4.2 |2 2
T1
BCL
NgggIR 0.33] -0.05f-1.71-4.2 | -0.33| -0.05] -1.7{ -k.2 3.2
UARL 1.0 | -0.05]-1.1| -2.5]-1.0 | -0.05] -1.1]| -2.5 |k.5 |5
0 |-
BC2
NORATR 1,0} -0.05|-2.1} -2.5}-0.16] -0,10| -5.0| © 4,5
102
UARL 1.0 | -0.05]-2.0] O -1.0 | -0.05] -2.0| o 5 6
T16
BC3
NORAIR ) 5 6| _0.05{-2.0] o }-0.16]-0.10}-5.0 o 5
117
UARL 15 o | _0.20-3.0} -1.7]-12.0 | -0.20] -3.0] -1.7|3.5 | 3
T7
BCH
NORAIR 1.0 § -0.20{-3.0|-1.7]-0.16] -0.10} -5.0] © L
147
UARL 0.33] -0.20}-1.7} -4.2}-0.33} -0.20] -1.7} -4.2 3.5 | 2
T4
BC5
NggﬁIR 0.33] -0.20{-2.1]| -3.8}-0.33}-0.20] -2.1] -3.8 3
UARL 1.0 | «0.20}-1.,12}-2,5]-1,0 | -0.20] -1.1} -2.5 k. 7516
T13
BCG
NgﬁiIR 1.0 | -0.20-1.4] -1.7{-0.16| —0.10} -5.0} © 6.2
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dats are averaged over two pilots and the moving-base results are for pilot B
only. The Norair ratings for each case have been averaged over several pilots.
In general, the ratings from the two programs agree relatively well, generally
differing by only about one unit or less. Note, however, that only for con-
figuration BCl were the Norair and UARL test cases completely identical. The
comparable longitudinal stability derivatives were always quite similar but
the lateral derivatives were generally not.

C. Data Analysis

1. Reduction of Experimental Data

&, Flying Qualities Results

Pilot ratings and comments were obtained for each test case. Corres-
ponding pilot-selected control sensitivities were also recorded. For some
of the test cases, however, control sensitivities were preset at acceptable
levels to gave time., The pilot ratings were based on the Cooper-Harper
scale {Table IV) and the pilots’ comments consisted of responses to the appro-
priate parts of the questionnaire shown in Table V. The rating scale and
questionnaire are very similar to those used in the Norair VIFCS program
{Ref. 9). For presentation in the figures the UARL fixed-base rating date
and control sensitivity results were each averaged over pilots A and B. The
corresponding moving-base data from pilot B are shown separately. Also,
Calspan pilot evaluation results were never averaged with the UARL data.
Except for height and directional contrel, the Calspan pilots did not reach
the level of control proficiency on the UAC simulator which is necessary to
provide valid flying qualities data. This should not be interpreted as a
reflection on the capabilities of the Calspan evaluation pilots who were
both highly skilled in the control of V/STOL aircraft. Rather, the inabil-
ity to become proficient, in the somewhat limited time available for Calspan
pilot training, was a result of the complex nature of the UAC contact analog
display (Pig. 3). This displey does not provide a great deal of visual
realism and in order to control properly one must rely on the relative motion
between the cross and square symbols. The Calspan pilots did not learn to
"lead" their control inputs properly using this relstive motion information.
They also tended to make control inputs of the wrong polarity, because it
was difficult for them to determine the proper correlation between the
symbol relative motion and the required control input. Valid flying quali-
ties data can be obtained with the UAC display, however, for evaluation
pilots who are familiar with its chaeracteristics (e.g., Refs. 7, 8, and 12).
For such pilots, the UAC display can provide visual cues (except for periph-
eral information) which are similar to those in actual VFR flight, and in
some aspects possibly better than VFR cues (Ref. 7).

20



TABLE IV

COOPER-HARPER PILOT RATING SCALE

ADEQUACY FGR SELECTED TASK OR \RCRAET . DEMANDS. ON THE PILOT PILOT
‘ REGUIRED OPERATION" AIRCREFT CHARACTERISTICS = |y spi pCTED TASK OR REGUIRED OPERATION® [RaT:
. p -
Excellent . Piigl compensabion nat a foctor lof
Highly desrable desred  performaonce :
» Goed Filol campensoiion nol o tactor for 2
Neghgdile deficiencies desired  performance
For - Some mildly Mirmol piol compensation required  for
Lunpieosont deficiencies dessed. pertormange 3 J
L)
r w r’h."\u-\o:)r bul oanoying . Desred performonce reguires modergle )
: gehciencies pilat compensahion 4
s it
Tehbfactony wthou! No D’:‘S:::"“ Moderately objactiongble Acequote performaonce requires 5
mprovement ? impravemeat deficiencaes consigergble pilol compensahion
Very ogeclionobie but hdequate performance requires exlensive 5
L y _toleroble deficiencies * plot compensalion
r \ r Adequate performance nol cHtawmable with B
Major deficrencies . maowmum toleroble gilol compansaton. 7
s odequal Conlroliabilily nal in guestion
perfarmance Detivrenciey
require Ma 1 Considerable pdot compensanon s required
pio! workinad? mpravement por delicencies for conirol 8
Major deficencies Intense pilot compensalion s required 1o N
g Y relGIn  ontral
Is ; .
Improvement ) Coniral will be Jost o some porhon of required
1T conirotigble ¥ mandalory Moor deficiencies + o L g qui o

*Definition of required operation involves designation of flight phase and/or subphases with

Pilat decisions occampanying tondilions,

A1l the rating and control sensitivity data for the UARL pilots are
surmarized in Appendix A and the corresponding pllot comments are contained
in Appendix B. Similsr results from Calspan pilot B are presented in
Appendix D.

b. Ccntreol Power Datsa

The total pitch, M, roll, I,, and yaw, N,, control moments (pilot con~
trol inputs plus that from the rate damping and attitude stabilization
derivatives, i.e., the stability sugmentation system commands) were measured
for each test case in the longitudinal and lateral control and the direc-
tional contrel investigations, Pitch control moment and thrust-usage data
were megsured during the height control study. A representative schematic
showing the point at which the piteh control-moment-usage date were measured
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is shown in Sketeh II-G. Control moment for roll and yaw control and thrust
usage for height control were measured at corresponding points in the appro-
priate control loop. These control power dats were reccrded on an FM tape

Foint at Which
Mement Usage
Measured

Degired
riteh Fiteh Control Piteh
Attitude Lrror Pliot Tnput Lag and/or Airframe Attitude
5? - Delay Dymawmics
Stability F‘J
Augmentation

SKETCH II-G. Representative (Pitch) Aireraft Control Loop
Showing Polnt et Which Control-Moment Usage
was Measured

recorder, Control power usage for the experiments in which effectively un-
limited control power was available was characterized by the percent time
given moment levels were exceeded for a particulsr subtask. For those
investigations in which control power was limited, the percent time that
total control power commends exceeded these limits was of interest. The
exceedance percentages were computed off-llne from the recorded control
power data using an anslog computer. Exceedance computations were performed
on the magnitudes of the pitech, roll and yaw control moment data; IMbI,

|Lel, |N.|, respectively, and the combined pitch and roll moment results,
M| + |Ly|, from the longitudinal and lateral studies and from the directional
control investigetions. As indicated by the relationship ([Mg| + [Iy|) the
exceedance percentages for the combined pitch and roll signal were performed
on the sum of the magnitudes of total pitch and roll comtrol moments., For
the height control date, the exceedance computations were performed on le]
and on the negative or "up" collective part of Z; .. §, and Zg, dc + Zyg V.

It was felt that exceedsnce percenteges computed from the thrust used to
mscend or arrest sink rates would be more significant than percentages based
on both positive and negative thrust usage about the trim level (T/W = 1.0).

Representative plots of exceedance resulte are shown in Fig. 5. There
the percent time that |M,|, | L.l and M| + |L.| exceed the given reference
levels are shown with subtask as a paramebter. These date are for one pilot
and are plotted on a probability grid. TFor the type of plots in Fig. 5, a
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gtraight line indicates that the data can be characterized by & Gaussian
probability distribution. There 1s gome tendency for the curves from the
hover and turn subtasks to exhibit this characteristic.

To simplify the task of evaluating the effects of & variety of aircraft
and task parameter changes on control power usage, the control power level
exceeded 5 percent of the time was chosen for comperison. The S5-percent
level was selected because it is generally near the upper limit of control
power used by the pilot and would presumably be related to the required
installed power. A previcus UARL study showed some evidence to support this
assumption (Ref. 13). On the other hand, it is not such a small percentile
that it would be an unreliable indicator of overall control power usage. The
datas in Fig., 5, for example, indicate that if the 5-percent level is used to
rank the subtasks as to control-moment usage, the results are consistent
with the trends evident over all percentiles. However, the 5-percent level
should be more sensitive to parameter changes than larger percentile levels,

The 5-percent level results presented in this report were averaged over
the two pilots participating in the study and over both moving- and fixed-base
date To provide the largest possible data sample for a given test point.,
Averaging the moving- and fixed-base data appeared to be valid since the
differences in these two types of data were less than the inter-pilot varia-
tion. That is, there was generally no dramatic difference between fixed-
and moving-base data. Representative results which support this conclusion
are shown in Fig. 6.

2. Analytical Investigations to Interpret the Data

Two types of analytical efforts were undertaken to interpret and
rationalize the experimental results. One invelved converting the param-
eters in MIL-F-83300 which specify satisfactory V/STOL response into func-
tions which could readily be compared with the UARL flying qualities and
control power data. The computations were performed to permit evaluation
of the MIL-F-83300 requirements for control sensitivities, comtrol power
and satisfactory levels of conbtrol lesgs and delays.

The second type of analytical investigation was man-machine analysis of
the different control loops (longitudinal, lateral, height and directional)
closed by the pilot when controlling a V/STOL aircraft. The results of
these analyses were used to select parameters to be considered in the experi-
mental studies and to interpret rilot opinion data in terms of the pilot
lead and gain compensation required. The closed-loop models and analytical
technigues used here are discussed in detail in previous UARL reports (e.g.,
Refs., 7, 8 and 1k4).
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SECTION IITX

RESULTS OF LONGITUDINAL AND LATERAL CONTROL STUDIES

This section consists of two parts in which the results of the longitu-
dinal and lateral control studies are discussed., Part A is concerned with
flying qualities data and Part B with control -moment usage data. Detalls of
the experimental design, the equipment and procedures and cther background
material are given in Section IT,.

A, Flying Qualities Results

I1let ratings and pilbt-selected control sensitivities from the studies
of (1) turbulence, (2) control lags and delays, (3) control moment limits,
(4) control moments through stored energy, (5) inter-axis motion coupling,
(6) thrust-vector control independent of attitude, and (7) rate-command/atti-
tude-hold control are discussed here. The data are interpreted using man-
machine analysis methods and, where appropriate, are compared with MIL-F-83300.

1. Turbulence

8. Pilot Ratings

The flying qualities of the six bagic configurations were each evaluated
at three turbulence intensities (Uhg = 0Oy, = 3.4, 5.8 and 8.2 ft/sec) to
determine the sensitivity of representative Ievel 1, 2 and 3 V/STOL aircraft
to changes in turbulence intensity. Pilot ratings from these evaluations
(Cases Tl through T18, Table A-IIL) are presented in Fig. 7. The pilots were
not aware of the turbulence intensity level present for a given test case. As
might be expected, the ratings generally deteriorated as gust intensity
increased. However, it appears that the rate of deterioration may have been
greater for configurations with the less stable (Levels 2 and 3) dynamics.

For example, there was no degradation in ratings for the Level 1 configura-
tions as rms turbulence intensity was increased from 3.4 to 5.8 ft/sec. A
general increase in rating for the ILevel 1 configurations is evident, however,
at the 8.2-ft/sec intensity, although the ratings all remain in the acceptable
region (Fig. 7(a)). A much more definite deterioration in ratings is evident
for the Level 2 and 3 configurations, especislly for the change in turbulence
intensity from 3.4 to 5.8 ft/sec.

The degradation in rating is shown more clearly in Fig. 8 where it is
plotted versus configurstion flying qualities level, with the change in turbu-
lence intensity treated as a parameter. The degradation in fixed -base ratings
for Level 2 and 3 configurations is much greater than that for Level 1 config-
urations over the turbulence intensity interval 3.4 to 5.8 ft/sec. Except for

as



BCh, which is Ievel 1 but relatively responsive to gusts, this trend is also
evident (to a lesser extent) for the intensity interval 3.4 to 8.2 ft/sec.
There is not sufficlent moving base data to permit a complete comparison
between levels., However, over the turbulence interval 3.4 to 8.2 ft/sec, the
degradation in moving-base ratings for Level 1 configurstions BCl and BCH is
less than the corresponding fixed-base degradation. The moving-base degrada-
tion for BCS is greater than its fixed-base counterpart but still gmaller
than the fixed-base degradation for the Level 2 and 3 configurations. In
summary, the pilot rating data would tend to indicate (but by no means
confirm) that the MIL-F-83300 Level 1 requirement for V/STOL pitch, roll and
yaw dynamic response (paragraph 3.2.2) provides aircraft dynamics which
remain quite controllable for nominal increases in turbulence intensity.

The :=uing data can be interpreted by considering the aircraft attitude
and position response to turbulence and the phase lags cf the attitude dynam-
ics at frequencies critical to pilot control. It has been shown (Refs. 7 and
8) that pilot rating is related to both the workload involved in suppressing
turbulence and the lead compensation he must supply to provide good closed-
loop attitude characteristics. This lead compensation is inversely dependent
on the attitude phase lags over the frequency interval from about 1 to b
rad/sec {(Refs. 7 and 14). The frequency domain characteristies of the open-
loop attitude and posgition response to turbulence for the six basic config-
urations are shown in Figs. 9 and 10. The phase lags contributed by the pilot
and the open-loop attltude dynamics for these configurations are presented in
Fig. 11. The pilot's lags are assumed to consist of a pure delay of 0.09 sec
in combination with a first-order lag having a 0.2-sec time constant (Refs. 7
and 14)., An examination of the rhase lag and turbulence response curves will
indicate why the level 1 configurations BCl and BC5, and to a lesser extent,
BCk, have generally better flying qualities and are less affected by turbu-
lence than the level 2 and 3 configurations. The phase lags (Fig. 11) for
BCl, BCk and BCS are all apprecisbly smaller than those for the Level 2 and 3
configurations over the critical frequencies (w = 1.5 to 4 rad/sec, Fig. 11).
This indicates that the pilot need supply less lead compensation to provide
good attitude control characteristics. Also, the normalized open-leoop attitude
and position power spectral densities for BCl and BC5 are appreciably smaller
than those for the Level 2 and 3 configurations. The power spectral densitles
for BCH, the remaining ILevel 1 configuration, are comparable to those for BC2,
BC3 and BC6 over the lower frequencies but are smaller at the higher frequen-
cles which are more difficult for the pilot to suppress. Consequently, the
opinion ratings for BCL might be expected to exhibit a somewhat smaller
sensitivity to gust intensity than BC2, BC3 and EC6.
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b, Control Sensitivities

Longitudinal and lateral control sensitivity data are shown in Figs, 12
and 13, respectively. For most of the six configurations, the longitudinal
control sensitivities, Mgo, tend to lncrease with turbulence intensity. This
trend reflects the pilot'’s requirement for more rapid attitude and position
responses to control inputs as he tried to maintain performance in the
presence of increasing gust disturbances. TFor some of the configurations
(Bck, BCS and BC6) the lateral control sensitivities (Fig. 13) tend to
increage with turbulence intensity, but this trend is not consistent for all
configurations. In fact, the control sensitivities selected for BC3 tend to
decrease slightly for the larger gusts. Such inconsistencies are not
unexpected, since previous studies have shown that a fairly broad range of
control sensitivities are acceptable to most pilots (Refs. 7 and 9). Figures
12 and 13 also contain boundaries for the maximum and minimum control s=nsi-
tivities permitted under the MIL-F-83300 specification for aircraft attivude
response to control inputs (paragraph 3.2.3.2). These sensitivity boundaries
were back-calculated using the attitude response specifications and the known
aireraft dynamics. It is apparent from the distance between these boundaries
that the specification permits appreciable latitude in the installed V/STOL
pitch and roll sensitivities. The values of Mge and Lga selected by the UARL
pilots generally fall within these boundaries, but are much closer to the
minimam acceptable level than the maximum. In fact, for the Level 1 config-
urations (BCl, BC4 and BC5), most of the lateral control sensitivities are
somewhat below the lower boundary. Larger minimum values are reqguired by
MIL-F-83300 for lateral control sensitivities than longitudinal, assuming
the pitech and roll dynamics are symmetrical. In studies at UARL, however,
L§s has generally been found to be smaller than Mge (Refs. 7 and 8).

2. Contrel lags and Delays

a. Pilot Opinion Ratings

Pilot rating data from the three parts of the control lag and delay
investigation are discussed in the following order: (1) first-order control
lags, (2) first-order control lags in combination with a 0.l-sec delay, and
(3) second-order control lags. The test cases evaluated in these studies were
LL1-L127 and results of the evaluations are gsummarized in Table A-ITIL
(Appendix A).

The effects of the first-order control lags on ratings are shown in
Fig. 1k. These lags affected only the pilot's control stick commands and not
the SAS inputs. Also, the lags were identical for both pitch and roll. A4s
might be expected, the ratings generally deteriorated as the lag time con-
stant, 7, = Ty, increased. However, the sensitivity of a given configura-
tion's flying qualities to the lag time constant appeared to correlate with
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the flying qualities level {without lags} of the configuration. For example,
most of the ratings for the Level 1 configurations at 7, = 7, = 0.6 sec were
within one unit of the ratings given for no lags. The level 2 and 3 config-
urations generally show a noticeable deterioration in rating at 7, = Ty = 0.3
sec., The degradation in rating is plotted versus flying gualities level in
Fig. 15 with the change in lag time constant as a parameter. There is
considerable scatter in these results, but the fixed-base data generally show
that the degradation in raeting was greater for the Level 2 and 3 configura-
tions.

The Level 1 configurations should be somewhat less sensitive to control
lags. The primary effect of the control lags is to introduce phase lags
(Fig. 16) which increase the need for pilot lead compensation. They do not
affect the aircraft response to turbulence. The Level 1 configurations
require little lead compensation without lags because their open-locp phase
lag is small (Fig. 11). Pilots will tolerate nominal requirements for lead
compensation without & significant change in rating (Refs. 7 and 14). Conse-
quently, the ratings for Level 1 configurations do not change appreciably
until the lag time constant reaches a relatively large value (e.g., Tg = Ty =
0.6). However, for the Level 2 and 3 configurations the requirements for
pllot compensation are at a relatively high level with no lags (Fig. 11). In
this situation the pilots appear to be more sensitive to the increased lead
reguirements, possibly because it is more difficult to supply the needed
increment. Note that the magnitude characteristics of the basic configura-
tion-lag combination, which will not be discussed here, may also affect pilot
opinion {Refs. 14 and 15),

The gpecifications for pitch and roll control system lags can be
evaluated using the pilot rating data in Fig. 14. The specification (para-
graph 3.2.4) is based on the time it takes aircraft attitude to reach the
initlal meximum angular accelersation, Comay 804 tg > after the initiation of
the control command. If these times are less than 0.3 sec the attitude dynam-
ics are considered satisfactory. Values of these times have been computed
with 74 = Ty = 0.1, 0.3, and 0.6 sec for each of configurations BCl, BCY and
BC5 and they are summarized in Table VI along with the associated pilot
ratings. These results show that the specification permits a 7, = 74 = 0.3
sec for the configurations evaluated; these cases were also generally rated
satisfactory. The specification would preclude Te = Tg = 0.6 sec although the
fixed-base ratings remained marginally satisfactory for these cases., However,
the moving-base ratings for the first-order control lag evaluation were
generally worse than the fixed-bage results. Conszequently, it would appear
that excluding control lags much greatef than 7, = Ty = 0.3 sec, as the
specification does, is prudent.
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TABIE VI

COMPARTSON BEIWEEN PILOT OPINION RATINGS AND THE
MIL-F-83300 REQUIREMENT FOR ACCEPTABLE ATTITUDE CONTROL LAGS

Time to Max.
Basic Iag Time Acceleration, Average Pilot Rating
Conf', Constant, tg =
mAx
T. =T s
€ a’ qﬁm&x’ Fixed Base Moving-Base
gec sec Mode Mode
0.1 0.19 2
BC1 0.3 0.31 2.75
0.6 0-38 205 5'5
0.1l 0.15 2 3.5
BCL 0.3 0.29 2.75 5
0.6 0.46 3.5
0.1 0.18 2
BC5 0.3 0.30 2
0.6 0.38 3.5 3

The effects of adding a 0.l-sec time delay in piteh end roll response for-
Level 1 and 2 configurations (level designation applies for no lags or delays)
are shown in Table VII. Such delays also increase the reqguirements for pilet
adapted lead compensation by increasing the phase lags in the attitude re-
sponse to comtrol inputs. However, as indicated in Fig., 16, a 0.l-sec delay
contributes relatively small phase lags over the frequency range (~1 toh
rad/sec) most critical to pilot control of attitude., Time delays greater
than 0,1 sec were not congidered since the specification {paragraph 3.2.4)
excludes them. 1In this study the time delays (de = dg5 ) were added separately
and in combination with first-order lags (Té = ra) having 0.3-sec time con~-
stants, For one of the cases (indicated by the superscript 2 in Table VII)
the time delays and lags affected both the pilot's control inputs snd the SAS
commands. For all other cases the time delays and lags operated only on the
control input. For the Level 1 configuration (BCl) the 0.l-sec time delays
in the pilot's pitech and roll control inputs had little effect on pilot
rating, whether or not the 0.3-sec lags were also present. For example,
adding dg = dy = 0.1 sec with 7o = 7, = 0 did not change the pilot's rating
(FR = 2 for both cases). Also, adding de = dg = 0.1 with 74 = T4 = 0.3
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TABLE VIT
EFFECTS OF TIME DELAYS AND CONTROL SYSTEM LAGS ON PILOT RATINGS

BCl is Level 1 and BC2 is Level 2 Without Lags and Delays

Basgic Lag Time Time Ratings from Pilot B
Conf. Constant, Delay for Fixed-Base Mode
T’e = TB, de = da,
sec sec
0 ] 2
0 0.1 2
Be1t 0.3 0 2.5
0.3 0.1 3
0.3 0.1° 82
0 0 p
1 0 0.1 5
B
c2 0.3 0 5
0.3 0.1 7

1. Symmetrical configurations - lateral derivative has same value as
corresponding longitudinal derivative; pitch and roll lags and
delays equal.

2. Tor this case the lag and delay operated on both the control input

and the SAS command. For all the other cases only the control input
was affected.

resulted in s pilot rating deterloration of only 0.5 units relative to the
rating with only the 0.3-sec lags. However, the results In Table VII show a
dramatic chenge in rating when the lags and delays were relocated so that they
affected both the control and SAS commands (PR = 8 versus PR = 3). In this
case, the stability augmentation was much less effective and, as & result, the
configuration was very difficult to control. The pilot's chief complaint
(Case L1125, Table B-II, Appendix B) was that large pitch oscillations
developed; it was nearly impossible to damp them and stabilize pitch attitude.
The results for the Level 2 configuration (BC2) also show little change when
d, = dg = 0.1 were alided with T¢ = Ty = O sec. However, when the same delays
were added to BCZ with T, = Ty = 0.3 the associated pllot rating was two

units worse than for the lags without the delays (PR = 7 versus PR = 5).

Note, however, that the rating for the lags alone was somewhat better than
would be expected. That is, it is the same rating (PR = 5) as was assigned
to BCZ2 with neither lags nor delays present in the control response. The
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results in Table VII, although limited, would tend to indicate that 0.l-sec
delays in the pilot's pitch and roll control responses are acceptable, at
least for level 1 configurations. That is, the specification (paragraph
3.2.4) which permits delays in the pitch or roll attitude response to control
inputs of up to 0.1 sec, appears to be reasonable.

Second-order lags were also evaluated during this study to provide some
information on the generality of the MIL-F-83300 specification for control
lags., The specification is based on the results of studies with first-order
control lags; however, because it is phrased in terms of an angular accelera-
tion response which must be achieved within & reference time interval, it may
also apply to more general lags., Four sets of perameters for the second-order
lag were evaluated (@n, =@, = 3.33 rad/sec with (g ={g = 0.22, 0.50, and
1.0 and @pg = @y =0.23 with [, = {, = 1.0). Ag for the first-order lag
study the lags only affected the pilot's control response and they were
identical in pitch and roll. The initial combination of parameters was
selected to have the same breek freguency Gvn = 3.33) as that for an accept-
able first-order lag (1/7e =@y, where 7 = 0.3). The damping ratio, &y = &g,
was adjusted to give the same phase leg as that from the first-order lag in
the region of the pilot's crossover freguency (W, = 2.5 to 3 rad/sec; see
Refs. 8 and 14). Consequently, the lead compensation requirements for the two
lags would be similar. However, the nature of the control stick response
would be quite different because of the lightly demped ({, = {, = 0.22) oseil-
lations present for the second-order lag. The megnitude and phase character-
istice of the open-loop pllot and attitude dynamics, without pilot lead or
gain compensation, are shown in Fig, 17.

Results from the evaluation of second-order lags with configuration BCl
(Fig. 18) show that the combination of parameters ( {= 0.22, w, = 3.33)
selected for equivalence with 7¢ = Ty = 0.3 resulted in a pilot rating of 10.
Pilot comments indicated that the oscillatory pitech and roll motion was
completely unacceptable. The ratings improved with increased damping ratio,
but a satisfactory rating was not obtained even with {g = §a = 1.0. Here the
oscillatory dynamics were not a problem, but lead compensation wes needed to
compensate the phase lags. Pilot rating was satisfactory for this damping
ratio, however, with the larger natural frequency, ®Wng =@, = 8.23 rad/sec.
The attitude phase lags in the region of pilot crossover freguency (2.5 to
3.5 rad/sec) were somewhat smaller with these parameters. The pilot rating
results from Fig. 18 are compared with thmax = 'bﬁbmax values computed for the
second-order lag test cases in the following tabulation:

Wn, “Wn,» rad/sec {o = ¢q tbﬁax =ty

3.33 0.22 0.61 10
3.33 0.50 0.58 7
3.33 1.0 0.55 I
8.23 1.0 0.33 3



The only case rated satisfactory a&lso had a time to maximum angular
acceleration which was nearly equal (0.33 sec) to that required by the
specification (0.30 sec). However, tfp,, = t¢max Was almost twice the
specification value (0.55 sec) at Wp, = Wpy = 3.33 rad/sec and Cé = Ca =1.0
for a test case rated marginally satisfactory (PR = 4). These very limited
resulte indicate, then, that the control lag specification may not be suffi-
clently general to apply to second-order control lags.

b. Control Sensitivities

Longitudinal and lateral control sensitivities from the investigation of
first-order control lags are presented in Figs, 19 and 20, respectively. It
might be expected that pllot-selected control sensitivities would increase
somewhat with lag time constants since the lags result in slower attitude
response. For the longitudinal sensitivities, Mgg, there is little evidence
of this except possibly for configuration BC3 (Fig. 19). The lateral sensi-
tivities, Lg,, exhibit some tendency to increase with 74 aqd, again, this
effect is more pronounced for BC3, Configuration BC3 iz Level 3 and very
difficult to control as the lags become larger. The pilots may have increased
sensitivity in an attempt to more quickly attenuate the large attitude excur-
sions which tended to Qevelop for 7, = 7, = 0.3 and 0.6 sec.

Boundary values for acceptable minimum and maximum longitudinal and
lateral control sensitivities developed from the MIL-F-£3300 specification
for attitude control response (paragraph 3.2.3.2) are shown for the Level 1
configurations in Table VITII, Both the minimum and maximum boundaries
Increase with 7¢ = 75 because the specification is written In terms of an
acceptable response after a given time periocd. Because the lags slow the
attitude control response, the sensitivities must increase to satisfy the
gpecification. For the small lag time constants the pilot-selected latersal
and longitudinal sensitivities are close to the specification's lower
boundaries (MSe and Lg are averages of fixed- and moving-base data). TFor the
larger time constants %he sensltivities fall below the minimum bounderies.
Note also that the maximum sensitivity boundaries are very much larger than
the UARL selected values. It may be appropriate to lower the minimum bound-
aries somewhat and it would seem that the maximum boundaries also could be
reduced. The maximum allowable sensitivities would, in general, result in
extremely "touchy" aircraft pitch and roll response to eontrol inputs and
could cause the pilot to overcontrol.
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TABLE VIIT

COMPARISON OF AVERAGED LONGITUDINAL AND IATERAL CONTROL SENSITIVITIES
FROM THE CONTROL LAG STUDY WITH THE MIL-F-83300 REQUIREMENTS

lag Time MIL-F-83300 MII~F-83300
Bagic Constant, UARL Mﬂe Boundaries UARL Léa Boundaries
Conf. Te = T& s Mde L&a
sec Min. Max. Min. © Max.
0 0.291 0.233 1.560 0.271 0.312 1.560
Bo1 0.1 0.303 0.261 1.740 0.24L 0.348 1.174
0.3 0.311 0.342 2,278 0.223 0.456 2.278
0.6 0.372 0,490 3.268 0.312 0.654 3.268
0 0.342 0.258 1.721 0.302 0.344 1.721
sk 0.1 0.404 0.291 1.940 0.334 0.388 1.940
0.3 0.403 0.384 2,561 0.321 0.512 2.561
0.6 0.412 0,552 3.683 | 0.384 0.737 3.683
0 0.293 0.233 1.560 0.243 0.312 1.740
805 0.1 0.30L 0.261 1.738 0.2 0.348 1.738
0.3 0.283 0.343 2,288 0.220 0.458 2,288
0.6 0.324 0.489 3.263 0.301 0.635 3.263

3. Control Moment Limits

In thig study the installed control moments required for pilot acceptance
were determined for several of the basic configurations (BCl, BCH, BC5 and
BC6). The correlation between the requirements for control moment and the
levels exceeded some given small percent of the time with unlimited moment
available, i.e., the S-percent level, was also examined. This study was
performed with and without control system lags and delays. Also, the pilots
were not aware of the control -moment limits except as they affected flying
qualitiea., Results from this study are listed for Cases IM1-LM25 in Table
A-IV in Appendix A.

The effects of control-moment limits on pilot rating of the flying
qualities of configurations BCl, BCh, BCS and BC6 are presented in Fig. 21.
The reference limits or starting points for the installed control-moment
levels (pitch, roll, and yaw) were averages of those levels exceeded 5 percent
of the time (CMs) with unlimited moment available (see Section III.B.1.d).
These averages were computed over all subtasks, pilots and modes of simulator
operation (fixed- and moving-base). The control-moment limits for the remain-
ing test cases were obtained by increasing (or decreasing) the reference
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levels by integral multiples of 10 percent. Also, the limits were applied
to the total control moment aveilable for -both control inputs and the SAS
commands. Note that §ﬂ5 ig different for each configuretion and its magni-
tude scales approximately with the configurstion's speed-stability parameters
(see Table C-T, Appendix C).

Only for configuration BC5 did control-moment limits equal to the
average S-percent exceedance level, 5ﬁ5, result in ratings equivalent to those
of unlimited moments (Fig. 21)., Configuration BCS5 is a very stable, Level 1
configuration with little response to turbulence. For configuration BCl,
which is identical to BCS except that its drag parameters are one-fourth as
large, contrcl-moment limits at lemst 1.2 times the reference 5ﬂ5 level were
needed to obtain ratings equivalent to those for unlimited moments. For the
configurations which were more responsive to turbulence (BC4) or both less
stable and more response to turbulence (BC6), control-moment limits of 1.3
times the 5E5 levels were required for equivalent ratings. For all the
configurations exemined, a deficlency in control moment was most evident as
a momentary inability to control piteh, and to a lesser extent roll, when
performing the maneuver and gquick-stop subtasks, Pilot comments indicated
that the limits on yaw contrcl moment did not affect flying quelities.

Table IX conteins a comparison hetween the control-moment limits found
to be necessary for pilot acceptance in this study and the control-moment

TABLE IX

COMPARISON OF UARL ACCEPTABLE CONTROL-MOMENT
LIMITS WITH MIL-F-83300 REQUIREMENTS

2
Control Installed Control Moment, rad/sec
Conf. Moment Piteh, Roll, Yawr,
Source Mém Icm me
Bl UARL 0.40 0.46 0.13
MII-F-83300 0.57 0.b7 0.31
Bel UARL 1.07 0.79 0.23
MIL-.F-83300 1,26 0.81 0.31
BC5 UARL 0.38 0.36 0.15
MII-F-83300 0.57 0.48 0.31
BCG UARL 1.16 0.98 0.22
MIL-F.-83300 1.18 0.71 0.31
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requirements in MIL-F-83300. The control moment specification (paragraph
3.2,.3.1) stipulates that suffieient control moment must remain at the maneu-
vering airspeed to simultaneously produce aircraft pitch, roll, and yaw
attitude changes of 13 deg, uil deg, and S deg, respectively, within one
second. The specification values shown in Table IX were computed assuming
longitudinal and lateral maneuvering speeds equivalent to those used in the
UARL task ( =~ 15 ft/sec). Combining these airspeeds with the mean wind
increases the effective longitudinal airspeed to =~ 32 ft/sec. For the UARL
simulation, then, the alreraft must have sufficient pltchlng moment, Mep, to
trim the 32-ft/sec airspeed and also to provide the -3 deg pitch change
within one second. The roll, Lcm, and yaw, Nﬁm, moments need only be suffi-
cient to trim the 15-ft/sec lateral airspeed and provide the reguired attitude
changes (%4 deg and %6 deg, respectively).

The results in Table TX show that for all the Level 1 configurations
(BC1l, BCY, BC5) the pitech and roll control-moment requirements from
MIL-F-83300 equalled or exceeded those found to be necessary in the UARL
study. For BC6, a Level 2 configuration which is quite responsive to gusts,
the specification value for Le, was about 20 percent low. However, the UARL
level for M., agrees well with the corresponding MIL-F-83300 value. Also, all
of the specification levels for N, were well in excess of the UARL results,
Tt would appear from these relatively limited data that the MIL-F~83300
requirement for pitch and roll control moments is adequate. However, the yaw
control-moment requirement seems somewhat excessive. Pilots never noticed a
deficiency in yaw control moments during the UARL study even for levels of
Mgy, considerably lower than the UARL date shown in Table IX. Limitations on
piltch and recll control moment were predominant in the formation of rating.
The MIL-F-83300 yaw control-moment requirement is discussed in more detail in
Section V.A.3.

It was pointed out previously that another objective of this study was
to determine whether the required levels for installed control moments
correlated with the percent time given pitch and roll moment levels were
exceeded with unlimited moments available. 1In particular it was thought that
the S5-percent exceedance level might be sufficlent. The results in Fig. 21
de not appear to substantiate such an hypothesis., However, it may be that
the meximom of the 5-percent exceedance levels measured for the different sub-
tasks should have been used for ﬁﬁé instead of the average over all subtasks.
These maximum values, averaged over both pilots and fixed- and moving-base
simulator modes (Table C-I, Appendix (), are listed in Table X along with the
pitch and roll moment levels necessary for pilot ratings approxlmately equiv-
alent to those for unlimited control moment (Fig. 21).
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TABLE X

COMPARISON OF MAXTMUM FIVE-PERCENT EXCEEDANCE MOMENT
LEVELS USED FOR ANY SUBTASK WITH ACCEPTABLE LIMITS
ON INSTALLED ROLL AND PITCH CONTROL MOMENTS

Bagic . Control Maximum Accepbable
Conf, Moment 5-Percent Level Moment ILevel

M, 0.34 0.43
BC1

L, 0.45 0.50

M, 0.45 0.38
BCS

Lo 0.50 0.36

My 0.90 ’ 1.07
BCL

L. 0.62 - 0.78

M, 0.93 1.16
BCE _

L, 0.94 0.98

The results in Table X show that only for configuration BC5 were the
meximum S-percent exceedance moment levels equal to or greater than those
levelg which were acceptable to the pilot. It appears, then, that the 5-
percent exceedance level, whether it is composed of the average over all sub-
tasks or the maximum for any subtask, does not provide acceptable levels of
installed control moment. If configuration BC5 is considered an anomaly, the
fact that control-moment levels of 1.2 to 1.3 times Eﬂ5 were acceptable may
imply that a lower-percentile exceedance level, e.g., the 1 to 2 percent
level, would provide acceptable installed control moments. Results related
to this possibility are discussed in Section III.B.2.

The control-moment requirements with control system first-order lags
(Te = Ty = 0.3 and 0.6) and delays (dg = dg = 0.1 for all test cases) were
also evaluated in this study for configurations BCl and BC5. The procedures
used and moment levels congidered were identical to those for the evaluation
of control-moment limits without lags. The effeets of the control lags can
be seen in Fig. 22. The necessary control -moment levels were increased by
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the ecntrol lags and delay. For example, control-moment levels for BCL

equal to 1.4 Eﬁ% were required with 7¢ = 74 = 0.3 and 0.6 and dg = dg = 0.1
for ratings equivalent to those with unlimited control moments. Control
moments equal to only 1.2 Eﬁé were sufficient for BCl without lags and delay
(Fig. 21). For configuration BC5, 1.2 CM; was required with 7 = 7, = 0.6 and
de = dg = 0.1. Without the lags and delays the corresponding required moment
levels were equal to L.O Eﬁé. The control-moment specification (paragraph
3.2.3.1) will account for the additional control moments reguired with control
system lags and deleys. It is stated in terms of minimum attitude responses
within = certain time and, eonsequently, requires more installed control
moments when control lags or delays are present. It should be noted, however,
that the control moments required by MIL-F-83300 for no lags are generally
equal to or greater than the UARL levels necessary with lags and delays. This
is illustrated in the following list.

MIL-F-83300 UARL Acceptable
Basic . Without Iags With lags
Contf.
Yo, Ley, Ney, Yoy jfﬂg me
BC1 0.57 0.4y 0.31 0.7 0.54% 0.16
BCS 0.57 o.48 0.31 0.46 Ok 0.18

Only Ley, for configuration BCl from the UARL study is slightly greater than
its MIL-F-83300 counterpert. If the control moment specifiecation for Ley 1s
computed with 74, = 0.3 under the sirspeed conditions dlscussed previously, the
MIL-F-83300 requirement for Lep becomes 0.62 rad/sec®, an increase of about

35 percent. If the 0.1 sec delay was algo considered the percentage increasge
would be even greater. For 7, = 0.6 the corresponding level for Lo, is 0.8L.
In fact, the specification control moment reguirement for control systems with
acceptable lags may be excessgive. For example, a control lag of 0.3 sec is
permissible under MIL-F-83300 for both configurations BCl and BC5. However,
such a lag will increase the specification control moment requirements by
approximately 35 percent to levels which are much greater than those the UARL
results would indicate asre necessary.

L, Incrementel Control Moment Through Stored Energy

For this study the pilot could command & pitch control moment (stored
energy effects were not simulated for roll) greater than the installed or
continuously available totsl moment. It was assumed that thls additional
moment was provided by converting angular momentum from a rotor-propulsion
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system into an increment which decayed with time (as the angular momentum

was dissipated). A more detailed discussion of this effect and a description
of the simulation procedures used are given in Section II.B.l.e. Representa-
tive values for the present increment and the rpm decay (and recovery) time,
determined from an analysis of XC-142 propulsicn system data are AMp = 0.3 Menm
and 7, = 0.05 to 0.10 sec. Values for 74 of 0.2 may be possible for heli-
copters. (ases LS1-183 were evaluated for the stored energy investigation and
flying qualities results are summarized in Table A-V in Appendix A.

The results in Fig. 23 were obtained using values for Mg, which resulted
in fly1ng qualities that were glgnificantly worse than those for umnlimited
control moments. The effects of stored energy were then evalusted for dif-
ferent combinations of AM. and Tp - Data are presented for basic configura-
tions BCLl, BC4, BC5 and BCh {Mcm wes different for each). Some general
improvement in opinion is evident in Fig. 23 for AM, = 0.30 Moy &and 7, =
0.10. Definite improvement is evident for all configurations with U 0.20,
although- the ratings are poorer than for unlimited pitch contrecl moment.

Note that for AMg = 0.50 Mcm and TA = 0,20 the flying gualities of BCl are
rated equal to those for unlimited pitch control moment.

Time histories of M., the total pitch control moment, which show the
effects of stored energy are presented in Fig. 24. These results were
measured for the maneuvering subtask with configuration BCL and Mgy, = O. 36.
The stored energy parameters considered are AMy = 0.3 Mg, (O 11 rad/sec‘?)
with 74 = 0.1 and 0.2 sec and AM; = 0.5 Mg, (0.18 rad/sec ) with 7, =0.2
gec, These are the parameters used with BCl to provide the pilot ratings
shown in Fig. 23. The stored energy contribution is evident in Fig. 24 as a
peak which decays relatively gulckly to the Mém level. DNote that there is a
reduction in the amount of time that the control moment is limited as the
contribution from stored energy is lnereased.

5. Inter-Axig Motion Coupling

a. Pilot Ratings

Attitude rate coupling (Mg, Lq) and control coupling (Mg, , Lﬁe) were
evaluated to determine acceptable limits for such effects (Cases LC1-LC8,
Table A-VI, Appendix A). A related objective was to determine whether changes
to MIL-F~833OO are needed to account for motion coupling. Background infor-
mation on this study is contained in Section II.B.1.f. Results from the
evaluation of motion coupling are shown in Fig. 25. Pllot ratings and con-
trol sensitivities are plotted there versus the level of rate coupling with
econtrol coupling shown as a parameter, Configurations BCl end BC2 were
evaluated. For most of the resulis the coupling effects were additive. For
example, 8 positive pitch control input ylelde a positive pitch rate and
since both Lg and Lg, were negative, the induced rolling moment was also

33



negative. For one test case coefficients having signs which resulted in
cancelling moments (Lq < 0, Lge > 0 and Mp >0, MSﬂ“ 0} were also evaluated.
Note that the pitch and roll rate coupling levels were always equal as were
the values for longitudinal and lateral control coupling.

Pilot rating showed a significant, congistent deterioration with rate
coupling (Fig. 25(a)). There were no threshold effects evident in piloct
rating as control coupling was changed from zero to M? = -Lgq = 2. That is,
this level of coupling brought about a deterioration in rating of 2 units and
the trend continued as rate coupling was increased. Without rate coupling,
control coupling ratios up to Mg,/Lg, = -Lg /Mg, = 0.5 brought about only &
1 unit decrement in rating (a value of 0.5 indicates a large amount of con-
trol coupling). As rate coupling was added the increase in rating {deterio-
ration) caused by control coupling also became somewhat larger. It appears
from Fig. 25(a) that & control coupling ratio of 0.25 could be expected to
produce a 0.5 to 1 unit deterioration in rating while a ratio of 0.5 results
Ina 1 to 1.5 unit increase. The deterioration in rating for configuration
BC2 caused by Mp = -Lg = 2 and MSa/LSa = -Iga/Mge = .25 was equivalent to
that for BCl with the same coupling parameters. Also, no change in rating
occurred for BC2 when the signs of MSa and LBe were changed such that the
rate and control coupling compensated somewhat for each cother.

Attltude rate coupling appeared to have & greater effect on rating than
control coupling for the levels considered in this study. The results in
Fig. 25{a) would tend to indicate that MIL-F-833%00 should restrict rate
coupling to magnitudes less than about 1 per see. Also, control coupling
ratios greater than about 0.25 should not be permitted.

b. Control Sensitivities

Both the longiftudinal and lateral control gsensitivities generally tended
to increase with rate coupling (Figs. 25(b) and 25(¢)). The pilots apparently
felt they needed a more rapid attitude response to control the coupling
motion., Also, the control sensitivities for the 0.5 control coupling ratio
were slightly larger than those for no control coupling. However, as indica-
ted by the MIL-F-83300 reference lines (Fig. 25(b)), the longitudinal control
sensitivities for BCl are within the specification (the maximum boundary is
well above the limits of the plot's ordinate scale). Also, the minimum bound-
ary for BC2 is even lower than that for BCl {not shown). The lateral BCl
sensitivities (Fig. 25(c)) for low rate coupling are somewhat lower than the
minimum boundaries. However, the pilots would have had no difficulty con-
trolling with sensitivities corresponding to the specification minimums. The
effect of rate and control coupling on control sensitivities is not specifi-
cally accounted for by the MIL-F-83300 paragraph on response to control inputs
(paragraph 3.2.3.2). However, the range of sensitivities permitted by
MIL-F-83300 is sufficiently large that the increase in MSe and LSa caused by
control coupling does not result in their exceeding the upper boundary.
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6. Independent Thrust-Vector Control

Pilot ratings from the evaluation of longitudinal thrust-vector control
independent of aircraft pitch attitude (ITVC) are shown in Fig. 26 and
summarized under Cases LI1-LI15 in Table A-~VIT in Appendix A. Iateral ITVC
was not considered. The pilots were instructed to rate aircraft flying
qualities based on their ability to perform longitudinal-position control
tasks using thrust-vector-angle rotation with a minimum of pitch-attitude
changes. Note that for the other parts of the UARL program the pilots could
change the thrust vector to offset the effects of the mean wind acting
through the longitudinael drag parameter. However, he was not permitted to use
it for general position control. For the ITVC evaluation he was required to
attempt to control longitudinal position exclusively with thrust-vector-angle
rotation.

Two Level 1 configurations (BCL, BCY4) and a Level 2 configuration (BC2)
were evaluated with ITVC.

For configuration BCl, with thumb-switch thrust-vector control and
control-stick piteh control and the thrust-vector angle displayed on the
contact anslog (Fig. 26(a)), the best retings obtained were nearly as good as
those for conventional thrust-vector control through attitude changes (FR =
2 tp 2.5 for BC1l with conventional control). The pilots did not find it
difficult to contreol aircraft position with the thrust-vector angle while
regulating attitude. The lack of extensive experience with ITVC may have been
the major reason for the slightly poorer ratings compared with thoge for con-
ventional control.

Pilot B also evaluated ITVC (thumb-switeh thrust-vector control) for
configuration BCl with only an instrument-panel display of thrust-vector
angle, For this case his rating was somewhat poorer because sliernating his
attention between the contact analog and the thrust-vector-angle panel display
increased the difficulty of the control task., With the thrust-vector angle
on the contact analog (the cross symbol moved vertically on the right side of
the screen to indicate angle) the pilot could derive both longitudinal posi-
tion and thrust-vector-angle information simultaneously. Tt should be noted
that a thrust-vector-angle display was essential to the performance of the
longitudinal maneuvering task. Without such & display longitudinal pogition
could not be staebilized. The pilots apparently controlled thrust-vector
angle as an inner loop and aircraft position as an outer loop. Thig is
similar to closure of the pitch-ettitude loop as an inner loop for conven-
tional V/STOL aircraft control systems (Ref. 8).
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For configuration BCY the best pilot ratings for ITVC with thumb-switch
thrust-vector control (FR ~ L4 for ¥ = 20 deg/sec, Fig. 26(a)) were slightly
poorer than those for conventional control (FR = 3 to 3.5). Configuration
BCY (& high-drag configuration) is Level 1 but more responsive to gusts. The
larger position disturbances associated with BCU appear to be the reason that
the best overall ratings for this configuration were assigned with ¥ = 20
deg/sec. Rapid thrust-vector angle rates were needed to control position.
For BC2, the level 2 configuration (with conventional control), the best
rating for thumb-switeh I'™VC (PR = 4) was slightly better than thet for con-
ventional attitude control (PR = 4.5 to 5). Configuration BC2 is Level 2
because of its lightly damped atitltude dynamics. It may be that contrel of
thig configuration was improved with ITVC, because it was not necessary to
change attitude to move the aircraft longitudinally. As s result, attitude
motion was not excited to the extent that it was for the conventional control
system and the pilot's workload may have been reduced.

Results from the evaluation of stick thrust-vector-angle control and
thumb-switch attitude control are shown in Fig. 26(b). The thrust-vector-
angle change per inch of stick input (or sensitivity) was varied in this
study, but the rate-of-change of pitching moment from the thumb switch was
fixed at a predetermined satisfactory value. A O.l=zec lag in thrust-vector-
‘angle response wag elso simulated. For configuration BCl this method of ITVC
was satisfactory (Fig. 26(b)), i.e., ratings were similar to those for thumb-
switch thrust-vector control. Recall that BCl has very stable attitude
dynamics and little attitude or position response to turbulence. However,
configuration BCY could not be controlled with the stick ITVC and thumb-switch
attitude control system. This was due to the difficulty in controlling
attitude with the thumb switch for this gust sensitive configuration. The
pilot could not pay the necessary attention to attitude control and still
control position with ITVC. The result was eventual loss of control. The
same comments apply to thls type of control for configuration BCZ2.

The UARL evaluastion of thrust-vector control independent of alrcraft
attitude indicates that it could be an acceptable substitute for conventicnal
attitude control, when properly implemented., For large aircraft with Level 1
dynamics the use of ITVC should provide satisfactory flying qualities while
enabling the pilot to avoid pitch (or roll) attitudes that could lead to
ground gtrikes. For aireraft having large drag perameters (Xu’ Yy ) ITVC
would also enable the pilots to control position without the large attitude
angles that result for such aircraft with conventional position control
through attitude. However, the results from this study for an aircraft with
large drag parameter (BChH, X, = Yy, = -0.2) indicate that position control
for such aircraft remaing moderately difficult even with ITVC,
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7. Rate-~Command/Attitude-Hold Control

The attributes of rate-command/attitude-hold control are that it
(1) provides a pitch (roll) rate response proportional to pilet stick
commands, and (2) maintains aireraft trim attitudes while enabling the pilot
to center his control stick (see Section II.B.l.h. for background). Rate-
command /attitude-~hold control can be developed with a conventional rate and
attitude stabilized V/STOL, by inserting an integration between the pilot's
control inputs and the aircraft attitude response., However, to provide
satisfactory flying qualities the rete damping and attitude stabilization
must be increased to offset the phase lag introduced by the integrator. This
can be accomplished by increasing the damping ratio, { , of the aircraft's
oscillatory roots (with rate damping) and increasing the natural frequency,
@, of these roots (with attitude stabilization) beyond the attitude-loop
crossover frequency (“h’B 2.5 to 3.5 rad/sec, Ref. 8). Representative effects
of changes in { and @, on the magnitude and phase characteristies of the
open-loop pilot-piteh attitude (with no pilot compensation) transfer function
are shown in Fig. 27. These results show that increasing @y, reduces the
phase lags near the crossover frequencies @, ~ 2.5 to 3.5 rad/sec (and,
correspondingly, the pilot lead compensation)} more than increasing { . Cases
LR1-IR15 were evaluated in this study. Flying qualities results for the
case are listed in Table A-VIII -in Appendix A.

a., Plol Ratings

The pilot ratings in Fig, 28 for a configuration having the basic air-
frame dynamics {i.e., speed stabilities and drag parameters) of BCl show the
effects of both { and @, for rate-command/attitude-hold control. Ratings
are shown in Fig. 28(a) for @, = 2.80, 3.4k4, 6.30 and 7.40 rad/sec. Again,
the pitch and roll dynamic characteristics were identical, Several values of
{ were considered for w, = 2.8 and 6.3. The data in Fig. 28(a) indicate that
for wy, in the region of the pitch- and roll-loop crossover frequencies, €.g.,
@, = 2,80 and 3.44, satisfactory ratings cannot be achieved even with {
values approaching 1.0. However, for ain 2 6,3 satisfactory ratings resulted
for { values of 0.5 and possibly lower. Configuration BCh was evaluated with
two natural frequency values (w, = b4 and 5 rad/sec) different from those for
BCL to provide a relatively complete map of the effects of natural freguency.
There is a algnificant difference between the moving- and fixed-base data for
BCk, but, again, ratings are better for the larger w,. It appears, also, that
damping ratios in the neighborhood of 0.7 are probably necessary to insure
satisfactory flying qualities for these wy values. A rate-command /attitude-
hold control system was also evaluated for hover and low-speed flight in a
previous Boeing study (Ref, 16). In that study an @, of 5 rad/sec with { =
0.9 resulted in good ratings for lateral flying gqualities (PR = 2 to 3 for
the optimum control sensitivity) and unsatisfactory ratings were obtained for
W, =2,5 rad/sec with { = 0.9. These results agree fairly well with the
UARL data,



Although the UARL pilots rated & number of the rate-command/attitude-
hold test cases satisfactory (ILR4, LR6, LR8 and IR15, Table A-VIII, in
Appendix A) their comments indicate that it provided no particular benefits
for hover and low-speed flight operation. For this type of flight the pilots
did not hold given alrcraft pitch and roll attitudes sufficiently long to
appreciate the fact that trim attitudes could be maintained with the stick
centered. Also, the UARL study was conducted without stick centering forces
and small offsets from the stick null position resulted in attitude errors
when the pilots attention was dilverted elsewhere. Finally, it should be
noted that the dynamic response portion of MIL-F-83300 (paragraph 3.2.2.1)
which stipulates the pitch and roll dynamics necessary for satisfactory
flying qualities does not apply to rate-command/ettitude-hold econtrol. This
paragraph excludes pitech and roll dynamice having an aperiodic root at the
origin and admits osecillatory dynemiecs with { = 0.3, providing wp is = 1.1
red/sec. The data from the UARL study show that rate-command/attitude-hold
systems are acceptable, although they have an aperiodic root at the origin.
However for them to be acceptable, their w, must be much greater than 1.1
rad/sec 1f { is only 0.3. Of course, it was not intended that MIL-F-83300
should necessarily apply to rate-command/attitude-hold systems.

b. Control Sensitlvities

Longitudinal and lateral control sensitivities from the rate-command/
attitude-hold study are shown in Fig. 29. The control sensitivities increase
with @y, but do not show well-defined trends with {. The increases in Mse
and Lg, with w, are to be expected, since”larger sensitivities are needed to
offset the restoring moments resulting from this large "spring constant”.
Upper and lower boundary values for control sensitivity, computed from the
MIL~F-83300 requirements for control response, are shown in Fig. 29. Two
sets of boundary levels, corresponding to two different values of w,, are
shown for each of the configuretions (BCl and BCh) evaluated. All of the
sensitivities affected by the boundary limits shown lie within the acceptable
region.

8. ©Effect of Motion on Pilot Ratings for ILongitudine
and Tatersl Control

The results of a comparigon of pilet ratings for longitudinal and
lateral control from moving-base (MB) and fixed-base (FB) evaluations of
identical test cases are summarized in Table XI. There the FB-ratings for
the different test cases are categorized according to rating level, i.e.,
satisfactory, unsatisfactory, and unacceptable. The associsted MB ratings
for the test cases in a glven FB rating category sre then listed aecording
to whether the MB ratings were better than, equal to, or worse than the
corresponding FB rating. The moving-base ratings were consistently no better
than, and generally worse than, the fixed-base ratings for the same test
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cases. This trend holds for all three of the FB rating categories., Rela-
tively high frequency pitch and rcll control inputs must generally be used
1o control 1ongitudinal'and lateral position properly. There may have been
a tendency for the pilots to make more abrupt contrcl commands and also to
tolerate disagreeable attitude motions {observed on the visual display) more
for fixed-base operation. The addition of motion would have made the

pilot more aware of undesirable characteristics in test case dynamic re-
gponses. This effect c¢ould have overshadowed the benefits of added control
cues through motion and caused the poorer moving-base ratings.

TABLE XTI

EFFECT OF MOTION CUES ON PILOT RATINGS
FOR LONGITUDINAL AND LATERAL CONTROL

Corresponding Moving-Base Rating
Fixed-Base (FB) Better than FB Equsl FB Worse than FB
Rating-level, Bumber/Percent of |Number/Percent of | Number/Percent of
Number of Ratings Total Total Total
Satisfactory, /22 3/17 11/61
18
Unsatisfactory, 7/35 1/5 12/60
20
Unacceptable, 1/17 L /66 1/17
6

B. Control -Moment ﬁSQge

The discussion of the control-moment usage datae is pregented in four
parts. In part 1 the effects of & number of aircraft, control system and
task parameters on plitch, roll and simultanecus pitch and roll control-moment
usage (as defined by the moment levels exceeded 5 percent of the time) are
described. These results were obtained from experiments'in which essential-
ly unlimited control mement was available to the pilot. Specifically, the
effects of turbulence intensity, alrcraft speed stébility and drag para-
meters, flylng qualities level, control system lags, motion coupling, and
subtask are described., A comparison is also shown between actual simulta-
necus pitch- and roll-control-moment usage and hypothetical mexims and minima
for such simultaneocus usage. These results provide insight into the degree
to which pilots meke sirultaneous control commands. In part 2 results from
the study of control-moment limits are discusged. " The percent time that
total control-moment commands exceeded the installed limits are presented

Lh



and correlated with the pilot acceptance of the limits. Parts 3 and 4 are
concerned with contreol-moment usage regults for the unconvemtional control
systems considered: independent thrust-vector control and rate-command/
attitude-hold control, respectively.

In general, comparisons with the MIL-F-83300 specification for control
moments are not made in the discussions of control-moment usage. There are
two reasons for this: (1) control-moment comparisons were already made in
the discussion of the flying gualities results for the control-moment limits
study (Section III.A.3) and, (2) the control-moment usage datae are described
in terms of the S-percent-exceedance levels which were shown to be lower
than the control-moment limits required for pilot acceptance (Section
1I1.4,3). However, the S-percent-exceedance levels do provide a useful
measure for evaluating control-moment usage (see Section II.D.l.b.).
Additional control moment usage data are shown in Appendix E. Exceedance
plots bazed on control moment usage in the maneuvering subtasks are pre-
sented there which further illustrate the effects of a variety of aircraft
and control system parameters.

1. Effects of Aircraft, Conventional Control System apd Tagk
Parameters on Control-Moment Usage

a. Turbulence Intensity

The effects of turbulence intensity (Ohg = 0, ) are presented in Figs.
30 and 31 and also listed in Table C-I in Appendix C. The data in Fig. 30
are for configuration BCl which requires little pilot compensation or '"lead"
(Level 1) and is relatively unresponsive to turbulence. That is, the con~
figuration has a relatively high level of stability augmentation (Mq = =
-1.7 and Mg =Lg = -4.2) and the stability derivatives which describe the
moments and forces caused by turbulence, speed stability and drag parameters,
respectively, are small (Myg = =Lyg = 0.33, Xy = ¥y = -0.05). Figure 31
presents results for configuration BC6 which is Level 2, and more responsive
to gusts (Myg = -Lyg = 1.0, X, = Yy = -0.20).

For configuration BCl (Fig. 30) the moment levels corresponding to the
S~percent exceedance level generally increase with turbulence intensity for
all tasks, although there is appreciable scatter in the results. Also,
none of the 5-percent moment levels (pitch, roll, or combined) scale
linearly with turbulence. That is, there is a factor of about 2.4 increase
in rms turbulence intensity from 3.4t ft/sec to 8.2 ft/sec but the S-percent
control-moment levels at 8.2 ft/sec are not 2.4 times as great as those for
3.4 ft/sec. The reason the control-moment levels do not scale may be that
the control inputs necessary for task performance and the pilot's inadver-
tent inputs form a bias S5-percent moment level upon which the turbulence

45



effects are superimposed. Of course, the S-percent moment level for pitch
has an additional bias due to the 10 kt msan wind acting through M;. This
bias moment is approximately 0.18 rad/sec”.

The levels for configuration BC6 (Fig. 31) are significantly larger
than those for BCl. This is to be expected because of the greater response
of BC6 to gusts, maneuvering airspeeds and the mean wind. For example, the
bias moment in piteh for BC6 due to the mean wind is approximately 0.53 rad/
sec2. The 5-percent roll control-moment levels for BCS6 are generally some-
what smaller than those for pitch, probably also because of the increased
biag moment in pitch from the mean wind. In addition, the roll moment levels
for BC6 show more of a tendency to scale with turbulence than those for
configuration BCl. Turbulence has a greater effect on control -moment
requirements for BC6 than BCl because of the greater response of B(C6 to
gusts. Consequently, 1t might be expected that in the absence of gignifi-
cant mean-wind effects, as is the case for roll, the control-moment levels
for BC6 would exhibit a greater tendency to scale with turbulence.

b. Gpeed-Stability Parameter

In Fig. 32 and Table C-1 in Appendix C, contrcl-moment results are
presented for configurations BCS5 and BCY which show the effects of air-
craft speed stability (Mpg, Lvg). Both of these configurations have suffi-
cient stability augmentation to yield Level 1 flying gualities and each has
drag parameters of X, = Yy = -0.2 per sec. Their speed-stabllity parameters
differ by a factor of three, however (Myg = -Lyg = 0.33 for BCS and 1.0 for
BCL4). The levels in Fig. 32 show an appreciable increase with speed sta-
bility for all three control-moment categories. TFor the individual-axis
control moments the increment due to increased speed stability 1s greater
for pitch where the effects of the mean wind are significant. Also, for
ncne of the moment categories does the change in the 5-percent exceedance
level scale directly with the factor of three change in speed stability.
This would tend to indicate that the control-moment levels required to arrest
and initiate position rates and those caused by random pilot inputs are
appreciable, If they were not, we might expect 5-percent levels to scale
with speed stabllity because the remaining disturbance moments due to manea-
vering airspeed, the mean wind and turbulence all =scale with speed stability.
It is interesting to note here, also, that MIL-F-83300 accounts, to an
appreciable extent, for the effects of speed stabllity on reguired control
moments., This is accomplished by stating that the required aircraft re-
sponge mist be demonstrated at the airspeeds involved in task performance
(paragraph 3.2.3.1, Ref. 1L). Also, in the control-moment limit study the
specification was found to be adequate for configuraticns having both large
(Myg = -Iyg = 1.0) and small (Myg = -Lvg = 0.33) speed-stability parameters
(Section ITT.A.3).
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¢. Drag Parameter

The change in the réference control-moment levels with drag parameter
(Xa, Yy) are shown in Fig. 33 and Table C-I in Appendix C. Configurations
BCl and BCS5 are identical except that the drag parameters for BCS5 are four
times those for BCl (-0.20 versus -0.05)., The results in Fig. 33 show a
small general increase 1n the levels for configuration BCS5 which has the
larger drag parameters. Increased drag parameters result in larger position
disturbances from turbulence. However, maneuvering position rates are
generally smaller because of the larger drag forces and these rates are
easier to arrest because of the increased position damping. The increased
disturbances due to turbulence would probably necessitate larger contrcl-
moment levels while the other effects of drag parameter should not increase,
and could reduce, the required control levels. That is, the attitude angles
and rates-of-change need not be as great to arrest position rates for
configurations with larger drag perameters. It appears then, from the
results in Fig. 33, that the effects of turbulence may have been dominant
gsince the S~percent levels increased slightly with drag parameter. The
inecrease would appear to be relatively small, however, for a large change
in drag parameter. Certainly, the effects of changes in drag parameter are
less than those for the changes in speed-stability parameter that were
examined.

d. Level of Flying Qualities

The V/STCL Flying Qualities Specification (MIL-F-83300, Ref. 1) defines
three flying qualities levels. Level 1 flying qualities are "clearly ade-
quate for the mission,” Level 3 are such that the "aircraft can be con-
trolled safely but pilot workload is excessive or migsion effectiveness is
inadequate, or both" and level 2 flying qualities lie between these extremes.
The control-moment usage data observed for configurations with Level 1,
Level 2, and Level 3 dynamic characteristics are shown on Fig. 34. Resulis
are presented there (and also in Table C-I in Appendix C) for configurations
BCL, BC2, and BC3 {Level 1, 2, and 3 configurations, respectively), which
have identical speed-stability parameters (Myg = ~Lyg& = 1.0). The drag
parameters are not identical for each configuration, but drag parameter has
a much smaller effect on the 5-percent control-moment level (Fig. 33).

There is a general increase in these exceedance moment levels for config-
urations which fall into the three flylng qualities levels of paragraph
3.2.2 in Ref. 1 (Fig. 34) for all three moment categories. That is, as the
flying qualities are degraded through reductions in stability augmentation,
the control moments used increase. This would indicete that stability
augmentation does a more efficient job of compensating the aireraft dynamics
and attenuating turbulence inputs than does the pilot. It would appear also
that the reguired levels of installed control moments are decremsed with
improved aircraft flying qualities.
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e, Control System lags

Control lags appeared t¢ have little effect on contreol -moment usage.
Five percent moment levels for configurations having control system lags
are shown in Figs. 35 and 36 (configurations BCS and BCY4, respectively).
These data are also summarized in Table C-IT in Appendix C. The addition of
control lags to BCS, which is Level 1 and has low turbulence response,
resulted in a small decrease in the S-percent levels for pitch and combined
control -moment usage, buf the levels for roll de not show a consistent
change. The effects of control lag cn the 5-percent levels for configura-
tion BCk {Fig. 36) are even less consistent than those for B05. Configura-
tion BCH is also Level 1 but more responsive to turbulence than BCS.

f, Inter-Axis Motion Coupling

The effects of both rate and control coupling orn the piteh moment
levels exceeded % percent of the time for configuration BCl can be seen in
Fig. 37 and Table C-IV in Appendix C. Control coupling (Mﬁa/LBa = Lye/Mse)
is treated as a parameter in the three plots of Fig. 37 which correspond to
different rate-coupling levels (Mp = -Lq). The effects of control coupling
alone are shown in Fig. 37{a) where MP = -Lq = 0. These data indicate no
gignificant increase in Mc5 for a change in control coupling ratiogs from ©
to M§a/lga = -Lge/Mse = 0.5. Recall that for satisfactory pilot ratings
control coupling ratios should be kept below 0.25 (Section ITI.A.5).
Consequently, the results in Fig. 37(a) indicate that for acceptable levels
of control coupling, the control-moment usage is not changed significantly
from that for no control coupling.

However, the results in Fig. 37 shav that rate coupling does influence
control -moment usage. By comparing the fixed-base data for no control
coupling across Figs. 37(a), (b}, and {(c), it can be seen that pitch
control -moment usage increases with rate coupling level. Rate coupling
levels greater than M? = -Lg = 1 appear to be unacceptable if satisfactory
flying qualities are to be achieved (Section IIT.A.4). The results in
Fig. 37 would indicate that such rate-coupling levels could result in
approximately & 1C-percent inerease control-moment usage.

g. ©Subtask

Four major subtasks were performed by each pilot during the control-
mament -usage study =--- maneuvering or air taxl, quick stop, turn-over-a-spot
and hover., Two of these, the maneuver and quick-stop subtasks, could be
further subdivided sccording to the direction (longitudinal or lateral) in
which the subtasgk was performed. The effects of each subtask on the 5-
percent control-moment-usage level can be seen in Fig. 38 and Teble C-T in
Appendix C. These data were all cbtained for the 3.4 ft/sec turbulence
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intensity level and with the 10-kt mean wind from the north. Note that the
aircraft was always headed intec the wind except for the turn maneuver,

The subtask for which the pitch and roll S-percent exceedance level was
most often the largest was the quick stop (Fig. 38); the next largest values
were for the masneuvering subtask. The lowest levels (pitch and roll) were
most often recorded for hover and the next lowest for the turn subtask. The
quick stops involve somewhat larger maneuver rates than air taxi and these
rates are arrested abruptly. Consequently, it is not surprising that the
largeat control moments were used there. Hover, on the other hand, generally
requires smaller control inputs and the pilots tended to make fewer inadver-
tent inputs for this subtagk. This was generally the situation for turn as
well, except that the pilots at times introduced large piteh and roll atti-
tudes for lightly damped configurations, e.g., BC2 and BC3.

The combined control-moment-usage levels are shown with the maneuver
and quick-stop subtasks divided into their longitudinal (x) and lateral (y)
components, The lateral guick stops resulted in the largest S-percent-
exceedance levels for combined usage and the next largest levels were used
for the lateral maneuvers. The combined usege for lateral maneuvering and
guick stops may have been larger than that for the same longitudinal sub-
tasks becanse the lateral subtasks required apprecisble control moments
while pitch moments were also necessary to compensate for the mean wind,
For the longitudinal subtasks pitch moments were needed to perform the
maneuvers in the mean wind but rell inputs were small. The lowest levels
for simulteneous usage were recorded for the hover task.

h. Simultaneous Ugage

An indication of the pilot's tendency to make piteh and roll control
inputs simultanecuzly can be obtained by comparing the sum of the moment
levels used for the individual axes with the actpal simultaneocus usage
levels. If the 5-percent-exceedance moment levels for pitch and roll are
added, the resulting control moment is that level which would he exceeded
5 percent of the time if the pitch and roll control moments were used
simulteneously. The sum of these levels then represents a theoretical
maximum for simultaneous moment usage. Also, a practical minimum level for
combined usage can be developed if it is sssumed that the piteh and roll
inpats are independent, i.e., that the pilot does not intentionally correlate
his pitch (roll) inputs with the roll {pitch) control motions.

Curves representing the hypothetical maximas and minima for the simul-
taneous control usage S5-percent exceedance level are shown in Fig. 39 along
with the 5-percent moment levels for actual simultaneous usage. The results
presented for all gix configurations are for the hover subtask only (Table
¢-T in Appendix C). Similar data were not available in sufficient quantity
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for the other subtasks. The levels represeniting the upper curve indicate
the 5S-percent moment levels which would oceur if all the pilot's pitch and
roll inputs were made simultaneously. The points on the lower curve are the
square root of the appropriate sum of the squared S-percent levels for pitch
and roll. That 1s, it was assumed that the pitch and roll control moments
were independent and could be represented by Gaussian probability distribo-
tions (the nearly linear curve for hover in Fig. 5 indicates that the
Gaussian assumption is reasonable). Tt can be shown, then, that the square
root of the sum of the squares of the individual 5-percent levels represents
the simultaneous usage S5-percent level, The remaining curve in Fig. 39
shows the S-percent levels for actual simultaneous control usage. This
curve liez about midway beiween the itwo extremez. These results would
indicate that, for the hover subtask at least, the minimum total installed
control moment for both piltch and roll could be set somewhat less than the
sum of the maximum used for individual axis contrel. However, this total
level must still be greater than a level which would be satisfactory for
single-axis control.

e. Percent Time Control Moment Commands Exceed Limits

The control-moment limit study {(Section III.A.3) was conducted to
determine (1) acceptable levels of installed moments for several V/STOL
configurations (BC1l, BCk, BC5 and BCE) and (2) whether these 1limits
correlated with the 5 percent exceedsnce levels measured with unlimited
control moments. It was found in that study thet control moments greater
then the 5-percent levels were needed for pilot acceptance. The results
presented here give some indication of the acceptability of installed con-
trol moments in terms of the percent time the fotal control command
actually exceeds these limits.

Figure 40 contains plots of the percent time total pitch and roll
control commands exceeded the installed moments during the meneuvering sub-
task versus the magnitude of the instslled moments (Table C-III in Appendix
C). These maximum available contrcl moments, CMy, are stated as multiples
of the average moment levels exceeded 5 percent of the time with unlimited
available moments, Ci5. Note that CMy is different fer each basic config-
uration. As would be expected, the percent time the totsl moment command
exceeded the installed moments decreased as CMm became larger. However,
the exceedance percentages become very small as CM, approaches thoze levels
needed for pilot scceptance (CMy =~ 1.2 to 1.3 CM5 for BCl, =~ 1.0 CM5 for BCS
and == 1.2 to 1.3 CM5 for BCH and BCA). For piteh control the exceedance
percentages at acceptable CMy range from about 1.5 percent (average fixed-
and moving-base results for BCl) down to almost zero. For roll control the
percentages are about the same magnitude., It would appear from these limited
results that for pllot acceptability, installed control moments must be set
at levels which will not be exceeded often in flight.
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3. Control-Moment Usage for Independent Thrust-Vecior Control

Independent thrust-vector control might be expected to reduce the
requirements for control moments since it eliminatés the need to change
attitude in order to maneuver the aircraft. However, control moments are
still required to attenuate the attitude response to gusts and trim the
moments due to alrspeeds (developed from maneuvers and the mean wind) acting
on the speed-stability parameters. Pitch control-moment- and thrust-vector-
angle-usage data are listed in Table C-V in Appendix C.

In Fig. 41 the pitch and control-moment S-percent exceedance levels for
ITVC and conventional pitch attitude control are presented for configurations
BCl and BCk. For both configurations the value of M._. for ITVC is consis-
tently somewhat smaller than that for conventional attitude control.

Exceedance computations were also performed on measured thrust-vector-
angle data from the study of ITVC {(Table C-V in Appendix C)}. For the turn
maneuver with configuration BCl the S5-percent thrust-vector-angle exceedance
levels ranged from approximately 2 to 8 deg.

L, Control -Moment Usege for R&te—Ccmmand[ﬁttitude-Hold Control

Piteh control -moment-usage results for the rate-command/attitude-hold
control system are shown in Fig. 42 for three values of +he natural frequency
of the oscillatory dymamics (w, = 2.8, 3.44 and 6.3 rad/sec) and several
levels of the damping ratio,{ . These data are presented for test cases
having the basic airframe stability derivatives of configuration BCl., As
the damping ratio was increased for bothw, = 2.8 and 6.3 rad/sec, the
configuration became easier to control and the 5-percent exceedance moment
level decreased.. However, for the two test caszes yielding the best fixed-
base ratings (Wp = 3.44, £ =0.87, FR = L and wy, =6.3, { =047, TR =2.5)
the fixed-base S-percent moment usage levels were still greater than the
corresponding levels for BCl with conventional attitude control (see
Fig. b1).
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SECTION IV

RESULTS COF HEIGHT CONTROL STUDIES

The height control results are discussed in two parts. In part A, the
flying qualities date, i.e., pilot opinion ratings and control sensitivities,
are discussed and compared with the applicable paragraphs of MIL-F-83300.

In part B, the measured thrust-usage data are described. Background material
on the experimental design and procedures are contained in Section II. The
flying qualities dats, pilot comments and measured thrust-usage results from
the UARL pilot evaluations are summarized in Appendices A, B and C, respec-
tively. Results from the Calspan pilot evalustions discussed in this section
are summerized in Appendix D.

A, Flying Qualities Results

Four separate invesgtigations were conducted during the height confrol
study. These investigations were concerned with (1) the effects of height
velocity damping with effectively unlimited thrust-to-weight ratio, (2) the
interaction between height velocity damping end thrust-to-weight retio,

(3) lags and delays in the thrust response, and (U4) incremental thrust
through stored energy.

1. Height Veloeclty Damping

a, Pilot Opinion Ratings

The effects of height velocity damping, Z,, on pilot opinion for effec-
tively unlimited thrust-to.weight ratio, T/W >1.15, are presented in Fig. 43
and summarized in Table A-IX (Cases HZl through HZL and HZ25 through HZ28).
Data are shown in Fig. 43 for one Calspan pilot and two UARL pilots. The
Celspan pillot evalustions were conducted with no similated winds and with
the simulator in the moving-hase mode, while the UARL pilot results were
ohteined for fixed- and moving-base simlator operation and the standard
wind simulation (10-kt mean wind from the north and 3.4 ft/sec gusts along
the aircraft x and y body axes). The configurations simulated during these
evalugtions were BCl and BCYH which both have Level 1 longitudinal and '
latersal flying qualities, The ratings from all three pilots are unsatis-
factory (and quite similar) for less damping than about Zy = ~0.35 per sec.
For 7, = O the ratings ranged from 8 to 10 and the pilots all commented
that stabilizing aircraft vertical motion was extremely difficult. They
also indicated thet it would probably be impossible to perform any other
tasgk, such as & lateral alr taxi, in addition to controlling height (see
Appendix B, Table B-VIII). The improvement in rating with increased levels
of height velocity damping correlates well with the asscciated reduction in
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requirements for pilot lead compensation. The phsse lags in the helight
response to height errors are showm in Fig. W4, Pilots must compensate for
these lags at frequencies important to closed-loop height control (0.5 to
1.0 rad/sec; Ref., 7). It is apparent in Fig. 44 that the lead requirements
diminigh with additional Zg.

The specification for minimum height velocity damping (paragraph 3.2.5.4)
indicates that, for effectively unlimited T/W (T/W =1.10), satisfactory
height control characteristics can be obtained with Zy; = 0. The results in
Fig. 43 indicate that the flying qualities are unacceptable without height
velocity damping. If the pilot's only task were to control height he may
be able to stabllize the altitude loop with Z,; = 0. However, the UARL
results indicate that if he 1s alsc expected to perform tasks involving
longitudinal, lateral or directional motion, altitude errors of at least
20 £t could be expected., In addition, the precision with which the other
tasks could be performed would be seriously degraded by the attention which
would have to be given to helght control.

b. Collective Control Sensitivities

Filot-selected control sensitivities from the investigation of height
velocity damping are shown in Fig. 45. The sensitivities change little with
Z; although there is a tendency for them to become larger as damping is
increased, The minimim permissible MII-F-83300 boundaries for collective
control sensitivity are also plotted in Fig. 45. These boundaries are
stated in terms of achieving a climb rate of 100 ft/min 1.0 sec after an
abrupt l-in. control input. Consequently, the boundaries increase as the
damping is increased. The control sensitivitiles from this study all lie
well within the allowable range, but they are much closer to the minimum
boundery than the maximm. The maximum permissible collective control
sensitivities range from Z, = 12.5 to 18.1 as Zy changes from O to -0.8.

2. Interaction Between Height Veloeity Damping and Thrust-to-Weight
Ratio \

Figure U6 contains results which demonstrate the interaction between
Zws T/W and pilot ratings. These date are also listed in Table A-IX,
Cases HZ1 through HZ28. In Fig. 46 pilot ratings are presented on a plot
of total height velocity damping, Zym, versus T/W. Similar plots of the
results from other height control studies were used to formulaste height
control power requirements for MII~F-83300, The date on Fig. 46 were
obtained for UARL and Calspan pilots and for fixed- and moving-base flight
similator operation. The basic configuration evaluated was BCl. For most
of the data points, Zyn consisted of equal parts of aerodynamic {Zy,) and
SAS (ZWS) height velocity damping. However, as indicated in Fig. some
of the cages were evaluated with either Dy, T Zarg {but not both) set to
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zero, It should be noted that nrg ig provided only within the available
T/W. That 1ls, thrust used for damping is instanbtaneously unavailable for
control., Also shown in Fig. 46 are Level 1, 2 and 3 boundaries for height
control power from MIL-F-83300,

A definite trade off between the effects of T/W and on pilot opinion
is indiceted by the results in Fig. 46. For example, aszg;w is increased
at congtant Zapps ratings generally improve, Conversely, as the damping dis
increased for a given T/W, rating alsc generally improves. These effects
tend to justify, to some extent, the shape of the MII-F-83300 boundaries.
However, the date in Fig. 46 are not in complete agreement with these
boundaries. One notable exception occurs for the Level 1 boundary at T/W =
1.10 where the UARL results would indicate that total damping greater than
-0.25 is necessary for satisfactory ratings., That is, the boundaries in
Fig. 46 imply that a T/W>1.10 is required for a satisfactory rating at

Zyp = 0. However, the results shown previously in Fig. 45 indicate that
even an "unlimited" T/W will not provide satisfactory ratings for ZWT = Q.
The UARL data would indlicate, then, that ancther boundary line which
excludes damping levels smaller than -0.25 should be added to Fig. 46. If
this boundary were present the UARL data would also support the movement .
of the line separating Level 1 and 2 regions to the left. That is, it
appears that for a given ZWT less T/W is needed to place a configuration in
a Level 1 category than MIL-F-83300 requires.

The interaction between aerodynamic, Zy,, and SAS, Zyrg»> height velocity
damping shown in Fig. 46 merits discussion. A decelerating force which is
proportional to descent velocity is available to arrest sink rates in air-
craft which have Z; . ©Such force may have an appreciable effect on height
control for aircraf% with limited installed T/W. This increased decelerating
force is not available in aircraft with only Znpg e Ratings showing the
effects of Zwa and ZWS, with T/W as & parameter, are presented in Fig. 47.
For all the cases shown, the total damping was Zym = -0.25, but the relative
amounts of Zy, and Zyg were varied. For T/W = 1.02 it appears that the
improved ability to arrest sink rates resulting from increased Zyyg, had a
significant impact on flying qualities. As Zyre, was changed from O to -0.253,
pilot rating improved by two units. As T/W was inereased the decelerating
force from 7y, became less Important since the pilot had sufficient T/W to
adequately ascend and arrest descents. This is reflected in the smalier
change in rating over the same Vit interval for the larger T/W valueg., In
fact, the moving-base ratings for T/W = 1.10 show almost no variation with

Z’W'a,'

3. Iags and Delays in Thrust Response

The effects on pilot rating of first-order lags and a 0.l-sec delay in
the thrust response are presented in Fig. 48 and Table A-X (Cases HLL through
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HI8). Two values of lag time constant, 7, = 0.3 and 0.6 sec were evaluated
gt three levels of ZWT: -0,25, ~-0,35 and -0.50. The thrust-to-weight ratio
was held constant at 1.05 and configuration BCl was used for the longitudinal
and lsteral flying qualities. Fxcept for Zyp = -0.50, rating deteriorates
with Increasing 7). The decrement appears to be related to Zyp &8 well as
the change in 7, (Fig. 48). That is, rating is somewhat less sensitive to
Ty for the higher damping levels. The upward shift in the curves with ZWT
is expected since the phase lag in height response at any given 7, and
hence the pilot's lead compensation, decreases with increasing damping (see
Fig. 44). Note also, that the addition of a 0.l-sec delay had little effect
on rating (Fig. 48). Pilot rating for Zypp = =0.35 with dp = 0.1 sec and

Th = 0 is equal to that for no delay, and for 7, = 0.3 the rating with =
O.l-sec delay is only a half unit poorer than for no delay.

The specification for lags in thrust response (paragraph 3.2.5.2) is
phrased in such & way that, with no delays, a first-order control lag time
constant of up to 0.3 sec is permissible. For a 4, = 0.1 the specification
would permit a lag of 7, a~ 0.2 sec. The UARL date in Fig. U8 would indicate
that the speeification is reassonable, providing the aircraft has a Zag OF
at least -0.25 to -0.,35 per sec, This is the range of minimum values of
damping found to be acceptable in the height control studies with no lags.
The previous results {e.g., Fig. 43) would indicate that for ZWE = 0,

Ty = 0.3 would be completely unacceptable. Also, the specification does
not sccount for the reduction in phase lags contributed by Ty Or dp, and
the agsociated improvement in rating, which can be achieved with increased
levels of Zypp.  This effect is illustrated in Fig. 48 and is discussed in
detalil in Ref. 7.

4. Incremental Thrust Through Stored Energy

The effects of incremental thrust through stored energy (see Section
I11.A.2.4 for background) were investigated with a helght control configura-
tion that was unsatisfactory without the stored energy contribution. How-
ever, the longitudinal and lateral dynamics were quite easy to contrel
{configuration BCl)., For height control the installed T/W was only 1,02
and ZWT = Iyg = =0.35, i.e., the pilot had no additional decelerating force
from Zy, when descending., Without the incremental thrust from stored emergy,
height control was unsetisfactory (FR = 4). The change in rating was evalu-
ated for incremental thrust-to-weight ratios of AT/W = 0.13 and 0.28 and for
decay time constants of 7, = 0.05, 0.10 and 0.20 sec (Cases HS1l through HS5,
Teble A-X). With AT/W = 0.13, an improvement in rating was not evident until
Ta = 0.20 (Fig. 49). For the larger thrust increment, AT/W = 0.28, a general
improvement in rating occurred for T, = 0,10 sec. For both the AT/W = 0.13,
T, = 0.20 and.AT/W’= 0.28, Ty = 0.10 combinations, the ratings improved by
about one unit to PR = 3.0, For effectively unlimited T/W, the rating was
2.5. The results indicate that for Ty Values which might be typical for.
helicopters, i.e., T = 0.10 to 0.20 sec, the effects of incremental thrust

56



through stored energy can be significant. It should be noted, alsc, that
for height control the pilot probably does not use the stored energy effects
to their fullest advanbtage. Height control generally involves low-freguency
control motions; consequently, the stored energy in the rotor system is not
used as often ag it is for pitch and recll control.

5. Effect of Motion and Pilot Ratings for Height Control

Fixed-base (FB) and moving-base (MB) pilot ratings for height control
are compared in Table XII. The FB ratings for the different test cages are
categorized by general rating level (satisfactory, unsatisfactory and un-
acceptable). The associated MB ratings are then tabulated according to
whether they were bebtter than, equal to, or worse than the FB ratings. The
results in Table XII are mixed and only for the unsatisfactory FB rating

TABLE XTI

EFFECT OF MOTION CUES ON PILOT
RATINGS FOR HEIGHT CONTROL

Corresponding Moving-Bage Rating
Fixed-Base (FB) :
Rating Level, Better Than FB Equal FB Worse Than FB
Kumber of Ratings Number/Percent Number /Percent Number /Percent
of Total of Total of Total
Setisfactory,
1/25 1/25 2/50
L
Unsatisfactory,
5/72 1/1k4 1/1%
f
Unacceptable,
0/0 2/100 0/0
2

category 1s a definite result indicated. For this category the moving-base
fatings were generslly better than the corresponding fixed-base data. It
would appesr that motion helped in the control of these more difficult test
cases. It may be that the motion was more beneficial for height control
then for longitudinal and lateral control because the visual display provides
legs information on height error than it does for these other two axes.
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Consequently, motion cues would have helped more for height control., This
effect may not have been evident for unacceptable FB ratings because the
rating scale becomes less sensitive to such effects due to its impliecit non-
linesgrities for the unacceptable region, That is, for test cases which are
very difficult to control the differences between 7 and 8 or 8 and 9 ratings
are not easy to establish and pllots tend to rate such cases similarly.

B. Thrust Usage

Thrust-usage data were cbtained which show (1) the effects of Zurs
(2) the percent time that pilots attempted to exceed the installed thrust-
to-weight ratio, and (3) the effects of lags. The thrust exceedance results
were computed using only the pilot and total thrust commends for which
T/W:>l. Thege are the collective inputs which are used to accelerate upward
and to arrest sink rates. Also, thrust usage levels are given in terms of
incremental thrust-to-weight ratio, i.e., (T/W-1).

1. Height Velocity Damping

The effects of total height velocity damping, ZWT’ on the level of incre-
mental thrust-to-weight ratio exceeded 5 percent of the time are shown in
Fig. 50 and listed in Table C-VII. Results are shown for both the collective
command, Zs.-dc, and the total thrust command, Zg.-dc + Zy, w. Three levels
of ZWT (0, -0.25 and -0.5 per sec) were evaluated for effectively unlimited
T/W (T/W >1.15), The data in Fig., 50 show that has & significant effect
on the 5-percent exceedance level, (T/W-l)5. The 5-percent level for

= O is as mich as six times that for ZWT of -0.25 or -0.5. Obviocusly,
the stability sugmentetion system makes much more efficient use of the
installed thrust than the pilot. Also, there generally seems to be little
difference between the exceedance levels for ZWT = -0.25 &nd -0.50. It
would appesr that increasing Zy,, above what is a minimum satisfactory level
(eegas Dypp ~ -0.25) does not lead to significant changes in thrust usage.
Note also that for relatively well damped cases, ZWT = -.0.25 and -0.50, the
largest thrust levels are used for the landing sequence. This is to be
expected, since for this subtask the pilot intentionally mskes several large
altitude changes. For Z, = 0, however, large thrust levels are used for
other subtasks in which the pilot 1s merely attempting to maintain constent
altitude, Normally, large values of (T/W-1) are not needed for such control
if the helght dynamics are acceptable to the pilot,

2. limits on the Installed Thrust-to-Weight Ratio

The effects of limits on the installed thrust-to-weight ratio ere dis-
cussed in terms of the percent time pilots attempted to exceed the incre-
mental T/W available. The collective control was not physically constrained
at the thrust limits for this sbudy. The thrust limits were evident only
in the way they affected height control. Conseguently, if the pilot felt he
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needed more thrust, he tended to move the collective lever accordingly,
whether or not the installed T/W had been exceeded. Results are presented
in Fig. 51 for two levels of Zyy (-0.25 and -0.50) with T/W as a parameter.
For ZWT = -0,25 (note that T, = 0.3 for the T/W = 1.05 data) the two types
of commanded thrust, Zg, de and Z4, dc + Zyg W, both exceeded the T/W = 1,02
level a large percent of the time. Fifty percent was not uncommon for
Zac'dc and 20 percent was typical for the total commanded thrust. However,
the percentages for T/W = 1.05 were much smaller. More often than not, the
T/W = 1.05 level was never exceeded. The results for Zy, = ~0.50 show the
same trends, but the percent time a given level is exceeded is smaller. For
example, the meximum percent time that T/W = 1.02 was exceeded for any sub-
tagk was 30 percent. Also, the only time that T/W = 1.05 was exceeded was
for the landing sequence and the percentage there was relatively low. These
results provide ancther example of SAS making more efficient use of thrust
than the pilot.

3. Thrust Response lags

Scme limited data showing>the effects of an acceptable first-order lag
in thrust response (Th = 0.3) are presented in Fig. 52. For these results
ZWT is -0.25 and T/W is 1.10, The 5-percent exceedance levels are generally
somewhat larger for T, = 0.3 (and eppreciably larger for the y-maneuver
subtask) than for the no lag case. However, these data are tooc limited to
permit the conelusion that significantly more thrust 1s needed for helght
contreol systems with lags.
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SECTION V

RESULTS OF DIRECTIONAL CCNTROL STUDIES

The results of the directicnal contrel studies are presented in two
parts, Pilot ratings end pilot-selected control sensitivities are discussed
and compared with applicable paragraphs of MII.F-83300 in part A. In part B
the measured yaw control-moment date are discussed, Background information
related to the directional control experiments is contained in Section IT.
The flying qualities deta, pilot comments, and control-moment data are
summarized in Appendices A, B and C, respectively.

A. Flying Qualities Results

Three different studies were conducted during the directional control
program. These studies consisted of evaluations of the effects of (1) yaw
rate damping, (2) control system lags and delays, and (3} limits on yaw
control moment.

1. Yaw Rate Damping

Pilot rating is plotted versus yaw rate damping level, N,, in Fig. 53(a)
for configurations BCl and BC2. Note that these ratings are for directional
control only. Three values of N (O, -0.5 and -1 per sec) were evaluated at
N, = 0.005, Pilot rating was marginally unacceptable (FR~6.5) for N, = O
and marginally satisfactory (FR = 3.5 to 4) for N, = -0.5. Ratings improved
to about 2.5 with N, = -1 for both BCl and BC2. Recall that BC2 has Level 2
longitudinal and lateral characteristics and such dynamics result in an
increase in overall pilot workload. Tt might have been expected, therefore,
that a degradation in pilot rating of the directional flying qualities could
result, However, this wes not the cage. The reason for the improvement in
rating with damping level can be interpreted in terms of the pilot lead
compensation necessary for good closed-loop directiocnal control character-
istics. As for height control, the directional lead compensation require-
ments are related to the open-loop phage lags of the directional dynamics
(and the pilot dynemics) in the frequency range of 0.5 to 1 rad/sec (Ref. 7).
These phaese lags are shown in Fig, 54. It is apparent that the need for
lead compensation is diminished as N, becomes more negative.

The MIL-F-83300 requirement for directional damping (parsgraph 3.2,2.2)
states that for Level 1 flying qualities the yaw mode must be stable with
a time constant no greater than one sec. This is approximately equlvalent
to specifying N, = -1 for Level 1 flying qualities and the UARL results in
Fig. 53(a) show that satisfactory ratings result for such a value. The
dats also indicate thaet a somewhat lower damping level of about -0.5 per sec
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mey provide satisfactory directional control for N, = 0.005. However, the
value of N, can be larger than 0.005 for helicopters and V/STOL airceraft.
Since directional flying qualities generally deteriorate with increasing N
(Ref. 7), the N, = -1 Level 1 requirement appears reasonable.

Control sensitivities selected by the pilots during the yaw rate damping
study are shown in the following list along with the minimum and maximum
values permitted by MII-F-83300. The UARIL data from the two pilots and the
moving- and fixed-base evaluations have been averaged.

MIL-¥-83300
UARL Boundaries for Nﬁr
N, 5, Minimum Maximm
0 0.207 0.210 0.80k
-0.5 0.236 0.24h 0.935
-1 0.299 0.282 1.080

The UARL control sensitivities almost match the lower boundary values from
MII-F-83300 and, consequently, they are well below the upper limits for Nﬁr'

2. Control lags and Delays

First-order lags in yaw response to the pilot's pedsl inputs having
time constants of 7u,= 0.1, 0.3 and 0.6 were evaluated with and without a
0.1-gec time delay. Two values of N, (-0.5 and -1) were used with configura-
tion BCl providing the longitudinal and lateral dynamics. Pilot ratings
from these cases are shown in Fig. 53{b). There is & consistent deteriora-
tion in rating with lag time constant for both N, = -0.5 and -1. Also,
the APR due to the different N,. values remains about the same for all 7,
i.e., the ratings for N, = -1 are consistently about 1 unit better. The
addition of the 0.l-sec delay did not change the ratings significantly
(Fig. 53(b)}. The effect of the lags and the different N, values can once
more be ratiocnalized in terms of the required pilot lead compensation. The
phase lags encountered in directicnal control increase with 7, which in turn
increases the requirement for pilot lead compensation and thisg causes pilot
rating to deteriorate. Increasing the damping level, N,, reduces the phase
lags and thereby improves the pilot's rating at a given value of‘ﬁp.

' The results in Fig. 53(b) show that for a Level 1 value of N, (-1),
first-order lags with time constants of up to qb = 0,3 are acceptable, The
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specification for directional control lags (paragraph 3.2.4) is written in

terms of an allowable time within which the initlal maximum yaw acceleration
must oceur (ty < 0.3 sec). The value of tmma for the lag cases evaluated
(with and witﬁ%%% dy = 0.1 sec) with N, = -1 are summerized in the following

list,

S N

-1 0.1 o} 0.2k 3
0.1 0.34 2

-1 0.3 0 0.51 3.5
0.1 0.61 3.8

-1 0.6 0 0.86 1.8
0.1 0.9 4.7

Without delays the specification excludes 7y, = 0.3 (thax = 0.51 >0,30)
although this test case was rated satisfactory. Also, the specification
permits a O.l-sec delay which the UARL date indicate 1s reasonable. How-
ever, if dy = 0.1 is present a O.l-sec increment is added to twmax‘ As a
result, some combinations of 4, and 7y, which are acceptable to the pilot,
.85 Ty,= 0.3 and d,), = 0.1 are made to appear even more unacceptable in
terms of the MIT~F-83300 requirement. That is, tyf,.. = 0.61 for Ty, = 0.3
and dy = 0.1 which 1s twice the allowable thay value (0.30), yet the
averaged rating for this case is almost on the satisfactory boundary

(FR = 3.8). The control lag specification (paragraph 3.2.14) assumes that
the time to maximm angular acceleration limit of 0.3 sec is applicable
to piteh, roll and yaw motion. It was shown previously (Section IIT.A.2)
that this requirement iz adequate for first-order lags in pitch and roll
responee. However, it appears that a longer time to maximum angular
acceleration is eppropriate for yaw.

3. Control-Moment Limits

Yew control-moment limits were evaluated to determine acceptable values
of installed yew moment for the UARL task. The total yaw control moment
was limited, but pitch and roll control moments were effectively unlimlted.
This eveluation was conducted for two velues of N, (-0.5 and -1 sec) with
configuration BCl. The reference value for yaw moment was the average
level exceeded 5 percent of the time for the turn subtasks conducted during
the turbulence intensity study (Wer = 0.10). Note that this value of ﬁE5
was appropriate only for configuration BCl. larger velues were recorded
for other configurations (see Section IIT.A.3). Pllot ratings from this
study are presented in Fig. 55. For the Level 1 value of N, (-1) an
installed yaw control moment of Ncma:l.3 Nbs was necessery for pilot
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acceptance, W}Fh N, = -0.5 the required value for Ném was considerably
larger (~1.6 Nec). If nominal lateral maneuvering velocities of 15 ft/sec
are assumed, MIT~F-83300 requires that the installed yaw control moment be
approximetely 0.31 rad/sece. This level is well in excess of the 0.13 rad/sec
found to be necessary with configuration BCl. However, as mentioned pre-
viously, the levels of yaw control moment used veried among the different
Level 1 configurations (Wo. = 0.175 for BCk and 0.15 for BC5). If it were
assumed that for configurafion BCL the required installed Ne,, = 1.3 Ters

then Ne, would have to be 0.228 rad/sec®. This value is also less thah

the 0.31 rad/se02 specified by MIL-F-83300.

2

L, Effect of Motion on Pilot Relings for Directional Control

Fixed-base (FB) and moving-base {MB) pilot ratings for directional con-
trel are compared in Table XIIT. The method of comparison is similar to

TABLE XTITI

EFFECT OF MOTICON CUES ON PILOT
RATINGS FCR DIRFCTIIONAL CONTROL

Corresponding Moving-Bage Rating
Fixed-Base (FB)
Rating Level, Better Than FB Eaqual FB Worse Than FB
Wumber of Ratings Mumber /Percent Number/Percent Number / Percent
of Total of Total of Total
Satisfactory,
2/h0 1/20 2/h0
5
Unsatisfactory,
5/62.5 1/12.5 2/25
8
Unacceptable,
1/100 0/0 0/0
1

that described previcusly for the height control ratings. The effect of
motion on the rating results ie also quite similexr to those for height con-
trol., That is, motion had little effect for satisfactory FB ratings, but
improved the ratings for test cases which were more difficult to control
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(i.e., those which were rated unsatisfactory and unacceptable with no motion).
Az for helght control, the reason for the improved ratings with motion may
have been the improved cues which resulted for heading. This effect would

be expected to be more significent for heading control than for longitudinal
and lateral control. This is because the visual display provides much

better control cues for longitudinal and lateral control than for directionsl
control.

B. Control-Moment Usage

Two of the three investigations related to yaw control-moment usage
were based on dats obtained with unlimited yaw momenit available. The
effects of N, and control lags were evaluated in these two studies. The
third study was concerned with the percent time the total yaw control
commend exceeded the installed moment, Only results for the turn subtask
were considered in the control-moment-usage investigations. Very little
yaw control meoment was used for the other subbtasks.

1, Yaw Rate Damping

The effects of N, on the 5-percent yaw moment exceedance levels are
displayed in Fig. 56{a). As was the case for pitch, roll and height con-
trol, the 5-percent level for yaw moment decreases with increased damping.
Again, 1t is apparent that with increased levels of stability augmentation,
more efficient use ig made of the availeble control moments.

2 Control Iags

The percent-time reference yaw moment levels were exceeded was computed
from the moment data for 7y = 0.3 with N, = -0.5 and for 7, = 0.3 and 0.6
with N, = -1. The moment levels exceeded 5 percent of the time are presented
in Fig. 56(b). For both levels of N, there was & significant increase in
the 5-percent-exceedance value, Npo_., when a first-order lag of 0.3 sec was
added to the control system. A further increase in N,. was observed for a
lag of 0.6 sec. The increase in Nor 1s approximately go percent for the
addition of 7y = 0.3 sec with N = ~1. The results in Fig. 53(b) indicate
that this combination yields satisfactory flying qualities. If satis-
factory levels of control lag can cause this large an increase in the yaw
control-moment usage, it would appear prudent not to change the MII-F-83300
gpecification for installed yaw moments. Without control lags the MIL-F-
83300 requirements appeared somewhat larger than the yaw control moments
found necessary for pilot acceptance in the UARL studies (Sections V.A,3
and ITI.A.3).
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3. Control-Moment Idimits

The percent time that total yaw control-moment commands exceeded the
installed moment limits are shown in Fig. 56(c). These percentages were
computed from yaw control-moment-usage dats for the moment limit values
evaluated in the study discussed in Section V.A.3 (me = 1.0 Nep, 1.3 T
and 1.6 ﬁ}s where Nor = 0.10). As would be expected, the percehtages del
creased as” the instailed yaw control moment increased. Alsc, these results
show that the yaw control-moment level which was acceptable to the pilots,
Ney, = 1.3 Wo., was exceeded 5 percent of the time. Recell that the refer-
ence, Ny = 8.10, was the averaged 5-percent exceedsnce moment level for
all the gata neasured during the turn subtask in the turbulence study
(Section ITI.A.l), when essentially unlimited control moment was available.
The larger 5-percent level from the yaw limit study, Ncm = (0,13, may have
resulted from the pllot's tendency to hold in large pedal inputs which
exceeded the yaw control-moment limits. This was done in an attempt to
command increased yaw control moment. For unlimited yaw control moments
available the alrcraft responded to these large inputs and the pilot did
not hold the pedal command as long.
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SECTION VI

SUMMARY OF PRTWCTPAYL RESULTS AND
RECOMMENDATIONS FOR FURTHER RESEARCH

&. Flying Qualities Results Pertaining o the Development of MIL-F-83300

1. Longitudinal and Iateral Control

8. Turbulence Effects

The Level 1 requirement for V/STOL piteh, roll and yaw dynamic response
(peragraph 3.2.2) appears to provide aircraft dynamics which remain quite
controllable for nominal increases in turbulence intensity. Pitch and roll
control sensitivities selected by the pilots at the largest turbulence in-

. tensities considered (0 =0y = 8.2 ft/sec) remained well within the
specification boundaries  (paragraph 3.2.3.2) and were much closer to the
minimum required levels than to the maximum limit. These results and pre-
vious UARL experience would indicate that the upper control sensitivity
limits would result in aircraft response which might be difficult to control.

b. Control Iags and Delays

The gpecification for control lags (paragraph 3.2.4) adequately separated
unsatisfactory levels of first-order lags in pitch and roll control response
from those which did not significantly degrade pilot ratings for Ievel 1 con-
figurations (i.e., those that met the Level 1 requirement of paragreph 3.2.2
of MII~F-83300) evaluated in this study. Pllot ratings alsc ghow that per-
mitting & O.l-sec delay in control response, as the specification does, is
reasonable. However, limited results for second-order control lags indicate
that the specification may not be sufficiently general to apply to second-
order control lags., Control sensitivities selected in this study were gen-
erally near, and sometimes below, the minimum MIT-F-83300 boundary. It may
be appropriate to lower both the minimum and maximum control sensitivity
boundaries somewhat.

e, Control-Moment Requirewments

The pitch and roll control-moment requirements from MIL-F-83300 (para-
graph 3.2.3.1) generally equalled or exceeded those levels found to be
necessary in this program for the Level 1 and 2 configurations considered
(without control system lags or delays). Also, the specified control
moments were generally not excessive. The addition of control system
lags and delays increased the control moments found to be necessary for
satisfactory ratings, and the wording of paragraph 3.2.3.1 also provides
for this effect. However, the specification control-moment requirements
may be excessive for control systems with acceptable lags.
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d. Control Moments Through Stored Energy

It appears that rotor-propulsion system angular momentum can be used
to offset, tc some extent, deficiencies in the installed control moments.
However, additional research is required before congideration can be given
to accounting for its effects in MIL-F-83300.

e, Inter-Axis Motion Coupling

Pitch and roll rate coupling and control coupling can cause an appre-
ciable detericration in V/STOL flying qualities. Results from this study
indicate that rate coupling levels must be no larger than Mp =1 and/or
LIg = -1 per sec for satisfactory flying qualities., Control coupling ratios
should be limited to My, /Ls. and/or Lg./Ms. less than about 0.25. The
control sensitivity specification does not have to be changed to account
for motion coupling.

f. Independent Thrust-Vector Control

Thrust-vector control independent of aircraft attitude can be an
acceptable substitute for conventionsl atiitude control when properly
implemented., For large aircraft with Level 1 pltch and roll dynemics, the
use of ITVC should provide satisfactory flying qualities while enabling
the pilot to aveid piteh (or roll) attitudes that could lead to ground
gtrikes. TFor aircraft heving large drag parameters, TIVC would enable

pilots to control position without the large attitude changes and trim atti-
tude angles that result for such alrcraft with conventional position con-

trol through attitude. However, position control for such alreraft would
remain moderately difficult, even with ITVC.

g, Rate-Command/Attitude-Hold Control

It appesrs that rate-command/attitude-hold control as mechanized in
this study provides no particular benefits over conventional rate and atti-
tude stabilized control systems for hover and low-speed flight operations.
Also, the dynsmic response portion of MIL-F-83300 (paragraph 3.2.2.1) does
not define characteristics which provide satisfactory dynamic response for
rate—command/attitude~hold control systems. However, the specification for
control sensitivities (paragraph 3.2.3.2) does encompass those sensitivities
needed with rate-command/attitude-hold control.

2. Height Control

&, Zy, and Thrust-to-Weight Ratio

There is & definite infteraction between Z, T/W and height control
flying qualities for T/W less than about 1.05, This result supports to
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some extent the method used in MIL~-F-83300 to specify Z; and T/W (paragraph
3.2.5.1). However, MII-F-83300 permits Z, = O for T/W 21,10, but results
from the UARL program indicate that a minimum Z; = -0.25 to -0.35 is
necessary for Level 1 height control. Also, if this Z; level is present,
it would appear that the T/W boundary separating Ievel 1 and 2 flying
qualities could be reduced. Helght control sensitivities from this study
were within the specification limits (paragrarh 3.2.5.3) but were much
closer to the minimum boundary than the maximmum.

b. Iags and Delays in Thrust Response

The specification for lags and delays in thrust response (paragraph
3.2.5,2) appears reasonable in view of the UARL results. However, it does
not account for the ability of increased Z;, to compensate for lag effects.

c. Incremental Thrust Through Stored Energy

Results indicate that the effects of incremental thrust through stored
energy can alleviate, to an extent, deficlencies in installed thrust. How-
ever, these data are presently too limited to permit consideration of changes
in MIL-F-83300 to account for ites effects.

3. Directional Control

a&. Yaw Rate Damping

Results from this program indicate that the directiconal damping para-
graph in MIT-F-83300 (3.2.2.2) which requires N, = -1 for Level 1 flying
qualities is reasonable. Also, the pilot-selected yaw control sensitivities,
Ngn, 8lmost matched the lower boundary values from paragraph 3.2,3.2.

b. Control lags and Delays

The control lag specification (paragraph 3.2.4) should be modified to
permit a longer time to attain maximum yaw acceleration, tﬁmax' For accept-
able control lags and delays, t@ﬁax was as much a3 twice the MIL-F-83300
limit (0.3 sec).

c. Yaw Control-Moment Requirements

The specification for yaw control moment (paragraph 3.2.3.1) requires
control moments which are without exception larger than those found to bhe
necessary in this program. However, the ysw control-moment requirements of
the specification do not appear to be excessive.
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B, Control-Moment Usage

1. Tongitudinal and Iateral Control

Pitch and roll control-moment usage increases with turbulence intensity.
However, the increase does not scale directly with turbulence intensity,
apparently because there is a minimum level of control-moment usage which
exists without turbulence due to the moment requirement for task performance,
trim of the mean wind, and inadvertent pilot inputs. Speed stability is the
aircraft/control gystem configuration parameter having the greatest effect
on control-moment usage. The change in the 5-percent-exceedance moment
levels for & threefold increase in speed stability was much greater than
that for a factor of four change in drag parameter. Drag parameter may not
have to be a consideration in the development of control-moment criteria.

The change in control-moment usage with speed stability was also greater
than that which resulted when aircraft pitch and rcll dynemics deteriorated
(accomplished by reducing the level of stability augmentation) from Ievel 1
to Level 3. Control-moment usage increased with decreasing level of augmen-
tation which confirmg that stabllity augmentation systems make more efficient
use of control moment than does the pilot. Control lags had little effect
on pitch and roll control-moment usage, and it may be possible to eliminate
them from consideration in the development of control-moment specifications.
Pitch and roll control coupiing also had 1ittle effect on control-moment
usage, but usage did increase with pitch and roll rate coupling.

The low-speed flight task required of a V/STOL aircraft has been shown
to have an appreciable effect cn control-moment usage. The 5-percent-exceed-
ance moment levels for the quick stop are as much ag 1.5 times as large as
thogse for hover. The expected task must be accounted for when defining
requirements for installed control moment. Also, the installed total moment
for pitech plus roll control must be sufficient to account for similtaneous
control usage by the pilot. It cannot be assumed that pllots meke independent
piteh and roll contrel inputs.

Finally, 1t appears that specifylng levels for installed control moment
by requiring that they equal those levels which the pilot would be expected
to exceed 5 percent of the time is not acceptable. However, it may be that
acceptable installed control-moment levels would correlate hetter with those
levels exceeded a smaller percent of the time.

2, Height Control

Thrust usage decreased with increased levels of height velocity damping.
lags in the thrust response increased thrust usage; thiz contrasts with the
effect of lags on pitch and roll control-moment usage. With satisfactory
levels of Z,, installed thrust-to-weight ratios of 1.05 were seldom exceeded
and T/W = 1.10 was never exceeded,
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3. Directional Control

Yaw control-moment usage decreased with increased yew rate demping for
the values of yaw rate damping tested, i.e., INJ<1.0., Moment usage increased
with lags in the yaw response to control inputs, however.

€, Effects of Flight Simulator Motilon Cues on Pllot Ratings

For longitudinal and lateral control the addition of flight simlator
metion resulted in poorer pllot ratings then those sssigned when the same
test cases were evaluated without motion. This trend was evident for all
cases, regardless of thelr flying qualities, i.e.,, whether or not they had
been rated satisfactory, unsatisfactory or unacceptable without motion.

For both height and yasw control, however, the addition of motion generally
resulted in improved ratlngs for test cases which were rated unsatisfactory
or unacceptable without motion. For ceses rated satisfactory fixed basze,
the addition of simulator motion appeared to have little effect on the
pilot's rating of height or directionsl flying qualities,

D. Recommendations for Further Research

It is recommended that the following research be conducted to obtain
information pertinent to the further development of MIIL-~F-83300.

(1) Additional fixed- and moving-base flight simulator studies of
control-power usage should be conducted. In these studies, the significance
of aircraft, control system and task parameters wotld be further evaluated
and the control-power specification would be tested in more detail.

(2) The ability of rotor-propulsion system stored energy to compensate
for limits in installed control power should be investigated in more detail.

(3) Additional unconventional control systems such as on-off (bang-
bang) control and velocity-vector (TAGS) control should be evaluated to
determine their attributes. Modifications to MIL-F-83300 to extend its
coverage to these systems must be explored. Independent thrust-vector con-
trol should also be examined in more detail; 1t appears to be a promising
coneept, but was only given limited study in this program.
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Figure 2. United Aircraft Corporation V/ STOL Aircraft Flight Simulator
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NOSE QF AIRCRAFT

 SENSITIVE
POSITION INDICATOR

Figure 3. Contact Analog Display for Hovering and Low-Speed Maneuvering Task
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SIMULATION UARL NORAIR

SIMULATOR MODE FB | MB MB
SYMBOL (o] ® [ |
o, =0, =34 FT/SEC Uy, = 10KTS FROM NORTH
0 [

*SEE NOTE ON LEVEL DESIGNATION SHOWN ON FIG, 1

1
oe SATISFACTORY
&
. 33— ® a
6] [ |
z F— =90 ——0— — — — — — —
K .
& D
-
Q9 5 UNSATISEACTORY . o o}
a
. ®
7 | | | H |
BC1 BC4 BChH BC2 BC6 BC3
- ~ - A N R anat
LEVEL 1* LEVEL 2* . LEVEL 3*

UARL BASIC CONFIGURATION

Figure 4., Comparison of Averaged Pilot Ratings from UARL and Norair
Simulations for Similar Configurations
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SUBTASK] MAN] Q8 | TU JHOV
)

symsoL| O Al D
CONFIGURATION BC1 PILOT B ng = 0“,g = 3.4 FT/SEC
(a) PITCH CONTROL MOMENT, |[M¢ {b) ROLL CONTROL MOMENT, |L¢
100 - 100
80 |- 80

Q2 60 60 [~
=]
w
G 40} 40—
x
L
—
S
o 20 20+
-
=
= w0k 10+
F 10
|_
&
O 4p af
&

2k 2

1 1 1

0 0.6 0 0.2 0.4 0.6

REFERENCE CONTROL MOMENT LEVEL- RAD/SEC2

{c) PITCH AND ROLL CONTROL MOMENT, {iMgl + lLgl )
100

80}

60

40 -

10

PERCENT TIME LEVEL EXCEEDED
ny
S
i

‘1

0 0.2 0.4 0.6 0.8
REFERENCE CONTROL MOMENT LEVEL - RAD/SECZ

FIGURE 5 Representative Exceedance Flots Showing the Effects of Subtask on
Control-Moment Usage
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TURBULENCE INTENSITY
INTERVAL 34-58 5.8-8.2 3.4-82
SIMULATOR MODE FB MB FB MB FB MB
5YMBOL o] e O » Fa\ A

DEGRADATION IN PILOT RATING, A PR

Figure 8.

*® LEVEL APPLIED TO BASIC CONFIGURATIONS ONLY. DUE TO PARAMETER VARIATIONS,
THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES,

-1 | | | | l

BC1 BC4 BCE BC2 BC6: BC3
S e, S
LEVEL 1* LEVEL 2% LEVEL 3%

UARL BASIC CONFIGURATION

Effect of Pitch and Roll Dynamics Level on Degradation in Pilot
Rating with Turbulence Intensity
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LAG TIME CONSTANT INTERVAL 0-0.3 0.3-0.6 0-0.6
SIMULATOR MODE FB MB FB Ma FB MB
SYMBOL [} @ O [ fa &

#* | EVEL APPLIES TO BASIC CONFIGURATIONS QNLY. DUE TO PARAMETER VARIATIONS, THE
LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES.

DEGRADATION 1IN PILOT RATING, APR

—2 [ I I | I
8C1 BC4 BCS BC2 8C6 BC3

P
LEVEL 1% LEVEL 2% LEVEL 3*
UARL BAS!C CONFIGURATION

Figure 15, Effect of Piteh and Roll Dynamics Level on Degradation in Pilcth
Rating with First-Order Lasg Time Constant
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40—

PHASE LAG — DEG

20 -

0.1

FREQUENCY, w — RAD/SEC

Figure 16. Phage Lags from First-Crder lags and Delays
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- 016, —db

MAGNITUDE OF Yp,

{o @, APPLY TO SECOND-ORDER CONTROL LAGS
€

100 |—

—100

—200

—300

PHASE ANGLE OF YP& * 8/6, — DEG

—400
0.1 0.2 0.4 08 1 2 4 g8 10

FREQUENCY, & — RAD/SEC

Figure 17. Magnitude and Phase Characteristics for Pilot-Pitch (Roll)
Open-Loop Dynamics with SBecond-Order Control ILsegs
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O PILOT B, FIXED BASE, CONF, BC1

NATURAL FREQUENCY OF SECOND-ORDER LAG,

wne= un: 3.33 EXCEPT WHERE INDICATED

IDENTICAL LAGS PRESENT IN BOTH PITCH AND ROLL
CONTROL RESPONSE

SATISFACTORY 8 Ma

o
a-
Q5
= [ UNSATISFACTORY
<
ot
,—-
O
-
A
UMACCEPTABLE
81—
| 1 l
T Nt
0 0.2 0.4 0.6 0.8 1.0

ODAMPING RATIO OF SECOND—CRDER LAGS, ge = éa

Figure 18, Pilot Ratings for Second-Order lLags in Pitch and Roll Control Response
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BASIC CONF. BC1 BC4 BCS RCE
SIMULATOR MQDE 8 MB FB . ME F8 MB FB mMB
SYMBOL O o a [ ] Al A ) ¢
FiVE PERCENT EXCEEDANCE LEVELS, CMg FOR PITCH, ROLL, AND YAW, RESPECTIVELY, WERE
BASIC CONF. BC1 BCa BCS BCE
PITCH ,in‘;:s 0.330 0.820 0.380 0.890
ROLL, Ly 0.380 0.605 0.360 0,750
Yaw, NES 0.110 0.176 0.150 0.170

{a) LEVEL 1 CONFIGURATIONS FOR UNLIMITED CONTRQOL MOMENTS

1

%)
|

>
o
Q
'_
o
e
LL.
w
"
oA e — ——— —
- >
9
= 3
|_
: g
5
EoE
2 3
& 3
w0
23 A
L
b B SRR N Y N S S |
0.8CMg 1.0CMg 1.2CMg 1.4CMg UNLIMITED

MAXIMUM CONTROL MOMENT AVAILABLE, CM, — RAD/SEC?

{b) LEVEL 2 CONFIGURATION FOR UNLIMITED CONTROL MOMENTS
- 1
jus
3
r—-
(]
<L
L
iz}
!...
g% [
G —
: 5
: .
- % 5+ *
a.
z /9\ N
—
bl
ZE
0 ! I I l ! L 1
0.8CMg 1.0CMg 1.2CNg 1.4CMg  UNLIMITED
MAXIMUM CONTROL MOMENT AVAILABLE, CM,, ~ RAD/SEC 2
Figure 21. Pilot Rating Results for Control Moment Limits

92



LAG TIME CONSTANT Te=7y =0 T,= T,=032 Ta=-7, =06

SIMULATOR MODE Fg MB FB MB FB M
SYMBOL Q L 0 o A A

0.1 3EC DELAY IN CONTROL. RESPONSE FOR AtL TEST CASES
mE: AVERAGED 5PERCENT EXCEEDANCE MOMENT LEVELS FOR PITCH, ROLL, YAW

{a) BC1 6!—\715 = 0.330, 0.380, 0.110 RAD/SECZ FOR PITCH, ROLL, YAW, RESPECT!VELY

—~—
o
o
[
(&)
: ~B
x 2
e Iz 3} ]
g 2
g — e ——
[ x
< D
€ 5
<
S g °f
E % A
w
=)
2
—_ —_————— —— e — ——
7 1 A | A k| H | I
0.8CM5 1.0CMg 1.2CMg 1.4CMg  UNLIMITED

MAXIMUM CONTROL MOMENT AVAILABLE, CM,, — RAD/SEC?

{b) BCS CTﬂs = 0,380, 0.360, 0.156 RAD/SECZ FOR PITCH, ROLL, YAW, RESPECTIVELY

ral
€

o

Q ——%
T B

,._

. = (0 T S A
o g 3
z—— }——-—-———--—. Jri—y
|_>-

< 5
T F
.__U

<
S 5 s

& -

&

= b

— — — emm mme o s - e o]

7 L I | ! H i L

0.8CMg  1.0EMz;  1.2CHg 14T UNLIMITED
MAXIMUM CONTROL MOMENT AVAILABLE, CM,, — RAD/SEC2

Figure 22. Pilot Ratings Showing the Effects of Control Mcment Limits with
Firat-Order Conftrol System lags
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Ms s =~ Lg Mg | 0 025 | 050

SIMULATOR MODE | FB|MB|F8|MB|FB|MB
SYMBOL ol DB |A| A

CONFIGURATION BCT EXCEPT WHERE OTHERWISE INDICATED

* CONTROL AND RATE COUPLING EFFECTS ADCITIVE, I'E,, CONTROL

INPUTS CAUSE ATTITUDE RATES WHICH INDUCE
COUPLING MOTION IN SAME DIRECTION AS CONTROL COUPLING,
UNLESS OTHERWISE NOTED

DASHED LINES INDICATE MIL—F—B3300 MINIMUM SENSITIVITY BOUNDARY, SEE NOTE ON FIG. 12,
(a} PILOT RATING
1

PILOT RATING, PR
o
®
0
N

BC2, Mg /L§ = —0.25,
a a

COUPLING EFFECTS
COMPENSATE*®

9 I ] J
0 1 2 3 4

ATTITUDE RATE COUPLING, Mp = —Ly PER SEC

b} LONGITUDINAL CONTROL SENSITIVITIES, Ms_ (c) LATERAL CONTROL SENSITIVITIES, L5,
0.5
z Z
~ o
5] Q
wi L
7] g}
(] ]
< <
o o
\ |
Q (]
= T o0t
_ 0 |
0 Z n 0 , 2

ATTITUDE RATE COUPLING, My = —Lq, PER SEC

Figure 25, Effects of Inter-Axis Motlon Coupling on Pilot Rating and
Control Sensitivities
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§=071,w, =28

£=035, wh=28
—20

MAGNITUDE OF Yp,- 8/6,~ db

(=083 w,=63
100 —

--100

~200
{=076, w,=28

§£=035 w,=28

PHASE ANGLE OF Yp, - 0/5, — DEG

—300 — {=0.16, W, =63
{=0863, w, =63
_400 | } | | ] ]
0.1 0.2 0.4 081 2 4 g8 10

FREQUENCY, «w — RAD/SEC

Figure 27. Magnitude and Phase Characteristies for Pilot-Pitch (Roll)

Attitude Open-Loop Dynemics with Rate-Command/Attitude-Hold
Control
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{a) SPEED—STABILITY AND DRAG PARAMETERS OF CONFIGURATION BCi

NATURAL FREQUENCY, @, 2.80 3.44 6.30 7.40

SIMULATOR MODE FB {MB| FB |M8|FB |mMB| FB [MB
SYMBOL =Rl BE-NE YK 2R BW-RY.

SATISFACTORY

5 UNSATISFACTORY

PILOT RATING, PR

UNACCEPTABLE

9 ] l | |
g 0.2 0.4 0.6 0.8 1.0
DAMPING RATIO.

{b} SPEED-STABILITY AND DRAG PARAMETERS OF CONFIGURATION BC4

NATURAL FREQUENCY, ¢, 40 5.0 7.4
SIMULATOR WMODE FB |MB|FB [MB|FB |MB
SYMBOL ol N RESHE BN

SATISFACTORY

o
a
0]
Z
I_
<
v
5 UNSATISFACTORY
=
e e e - e e - —m o - E— ——— a—— w— ——
7.—
UNACCEPTABLE
9 ] ] 1 |
0 0.2 0.4 0.6 0.8 1.0

DAMPING RATIO, §

Figure 28. Pilot Rating Results for a Ra.te-Command/Attitude-Hold Contrel System
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ia) SPEED-STABILITY AND DRAG PARAMETERS OF CONFIGURATION BC!

NATURAL 1
FHEGUENCY, wﬂ 2.50 3.4 6.30 740

3IMULATOR MODE [F8 [malra melre[velraime
SYMBOL DORA LIS &L £

DASHED LINES SHOW ML -F—8330d BOUNDARIES, SEE NOTE ON FIG, 12.

.7 7
Z Fw, - €3, MAX _ wy = 6.3, MAX]
s sl OFF SCALE £ | OFF SCALE 4
Q &
-
o8 4 0
€a gl 22 sk
E L )
5T T < 9
o , =T
4t ¢ 4 z 4tk i
| © 8 tm f.unzﬁ. AN
“D
z::g = 3 . - -‘:? . \ A/
. al - ' gk
g t ) é . 3 //I_/
E3 W, = 2.8, MAX W - o’
z = - A 4 E T /\-wn = 2.8 MAX
82 @y = 6.3, MIN 3 A
G - i 7 1[- wc
-G = 28, MIN ———
0 ! 1 I L 0 L ! 1 A
0 0.2 0.4 C6 08 1.0 0 0.2 04 06 08 1.0

DAMPING RATIO, ¢
{b) SPEED—STABILITY AND DRAG PARAMETERS OF CONFIGURATICN BC4

NATURAL
FREQUENCY, w, | 40 | 50 ] 7.4

SIMULATOR MODE [FBImB{FRMBIFRIMB
SYMBOL ole|njm|Ala

7
= b o, =5, max 7 J o, =5 Max
= OFF SCALE z OFF SCALE
& 6k = 6
o9 W, = 4, MAX P Y A,
02 P o (O =4 MAX .~
rg sk P A 2a 5 -~
zz - £ & -
£ =
&) |m4L = | 4+
. TN 9 1, =
= ?
=3 3 :(‘ - 3 A
St °I x > Wy, =5, MIN
& 2 DAD ES ®
O , . < 2 oL D/N
zE - JF 2
o @ Wy, =5, MIN - -
v TL— - ———— b 1F’ e -———
—_ T w4, MIN Wy =4, MIN
o 1 Jd ! 1 0 | | I I
0 02 04 05 08 10 0 0.2 04 06 0.8 10

DAMPING RATIO. ¢

Figure 29. Control Sengitivities from the Study of Rate-Command /Attitude-
Hold Control
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APPENDIX A

SUMMARY OF FLYING QUALITIES DATA
FROM UARL PILOT EVALUATIONS

This Appendix contains a detailed tabulation of the flying gqualities
date {pilot ratings and pilot-selected control sensitivities) obtained from
the flight simulator evaluations with UARL pilots. '

Table A-1 identifies the studies conducted in the UARL program and lists
the parameters for the cases evaluated In each investigation. It also pro-
vides a key to the tables which summarize data in Appendices A, B and C.
Tables A-IT through A-VIIT list results from the longitudinal and lateral
control studies in the following seguence: A-II, turbulence effects; A-III,
confrol lags and delays; A-IV, control moment limits; A-V, control moments
through stored energy; A-VI, inter-axis motion coupling; A-VII, independent
thrust-vector control; and A-VIII, rate-command/sttitude-hold control. Fly-
ing dualities results from the height control studies are listed in Tables
A-TX and A-X es follows: A-IX, veloclty demping and thrust-to-weight ratio
interactive effects; and A-X, thrust lags and delays and incremental thrust
throngh stored energy. Finally, pilot ratings and pilot-selected sensitiv-
ities from the directional contrcl studies are summarirzed in Table A-XT.
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TABLE A-1I

SUMMARY (F PARAMETERS FOR CASES EVAIUATED AND
KEY TO TABLES SUMMARIZING DATA
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APPENDIX B

SUMMARY OF PILOT COMMENTS FROM
UART PILOT EVALUATIONS

This Appendix presents edited pilot comments for ithe flight simuiator
test cases evaluated by UARL pilots. The comments are tabulated for each
ecase according to the subbasks performed by the pilots. For each subtask,
comment s were solicited according to the guestionnaire shown in Tabvle IV.
Filots alsc made additional corments as they felt necessary.

The comeent tables parallel the flying qualities data tables cf
Appendix A. That is, for each data table in Appendix A there is & corre-
sponding comment table in Appendix B. The comments from the longitudinal
and leteral control studies are swmarized in Tables B-I through B-VIIT as
follows: B-I, turbulence effects; B-II, control lags and delays; B-IIT,
control-moment limits; B-IV, control moments through stored energy; B-V,
inter-axis motion coupling; B-VI, independent thrust-vector control; and
B-VII, rate-command/attitude-hold control. Pilot comments for the height
control test cases are summarized in Tables B-VIIT and B-IX. Table B-VIII
contains veloclity damping and thrust-to-weight ratio. Comments from the
gtudies of thrust lags and delays and incremental thrust through stored
energy are shown in Teble B-IX. The pilot comments from the directional
control studies are summarized ian the last table, B-X.
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TABLE B-I (Continued)

Plot Commentis
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e ] obe3] 7 [seimctes to tomrul stbll Afficult to picfere mnesser pos- | Also AJEfiadt baceu Parfaraes thie mowurie | Coud hover fulrdy wall, § Oblevcionable feetured .
6,375 tude secillations and | claely, DLPMHCILL to ioad bba de- | of MSHTLY 14 b fairly waid, wlihovgh | W 8 ok ~f conteod wor-] larms attitude oecliia
g Riso sbbiuds TeaTonds b rirad aTh{todze 15 the porsewcs of | Zscired abtiote, thers ware Lirgs caclle | irrty was required snd | tlonr, Ligntly damped
s farbulence. Tow darping mad effacts of turmu. latirus fo col end “mvaload Large sttitade [ wttivude chioneieri=sics,
limor. Ctdn't deweoear sotthly Pltei. Drag via wmcll arf cacllleticon. Masaged ta § large attitule cadpolsn
wa stop praclealy Ayel eyl spat lard wlright Wt ageic & | bo turbulexce ncd som
ety wail, TistIs Jok of wrTk requirad, cwelilabtons 1o aLtlade,
11t control used. Mdn bt perform bha task
ndrguataly B

149



TABLE B-TT {Continued)

b

Flot Commenta

aeleozion of
Jomtral Sensitivities

Mareuvering

Quick Stors

Tarn. over-a-5pob

Fraciaian Hovar,
Vartioal Lapds)
Secondary Iyrazica

Zverell Evaluation

zraB

2,555
-

PR3
C.¥g

10

Sulectsd 1o &n attept tol
ntatiller pitch sad roll
abtitude,

Selscted to contral cs-
oillatcry charactardstice|
and respoase te burbu-
Lamea.

Mr taxt mawrowr vy difficult
becauss it wea extremaly difficult
to stabilics sttdtude. Whea etien-
tion wha diwierted from display evey
nomsctarsly frequently pitoh snd/of
rull wald b upest by @ gunt,
Arrewting thees largs whtitudas
difdeult que to control Lags mod
Foorly darped dymemios, Vary 4iffid
alt to stay within ground treck of
the wir tex! kod gontzol deflec-
tlons vere extremaly large.

Paaponss to control lmputs falrly
Zood. large ceillations ad &
alguiicant Terpoase to turbuleace
meke control seashat ALffoult.
ot able to atabilize Telosttles
o VBl a4 dwatred. Ability to
atop mecladly affectel acmetnt.
Low drag and cacillatory sttitude
crarastaristice eké preclalon
Decformance of tak dlffacult.

Vary difficult to cone
Erol aue to poor plteh
and rell contrul.

oan stop quickly but
Aan'e cire Jor wttitude
charactariztics.

Min artantion was de-
voted to stabiliping
sitch and roll, for thie]

Was vary poot dus to the
bigt pilot workicad.
Used very Littla wing
tile ecnteul.

Ably to rvesln cver &
sPot falrly well but

2aa't dlvart attemtdon
froe flaplay for very
long. Hwsd pore daspios
in Fitch snd roll.

Hower diffigult Decauss off
aiffiendty 14 stabilising
the inner locps.

Can't bower tco well,
aa0illatory wbbituda
sharectarintics und re
apomas to turimilsncs tead
to mke it Alfricult to
midntaln hover position,
Yertical lanaltg La alao
MTTimuE, Sone Lrten
notion betwsen pitch and
2011 id vick v, The
Iack of dwplig in cam
tands to lead tu uprata
in tha sthar,

Moat coieckionabls fes
tare wes Lightly denped
attitude Gypamiss in
ccmbinatilon with what
1ewoed Like fairly
Inrgs control Ligs,
Impravecsnt 18 PaDdS-
tory, it hes mejer
daliciencins, Near
wrmund foal certadn
that comtrol cocld be
loat,

Tha chfecticnahle fake

piteh and roll, At oo
time tauded to loss
santral,

3.0

©.295
C.e6

saleated 1 conteol aeri
tude buc not wo high aw
o exolte osrillations,

Vary d1rficult t6 perform with wny
arecinion, ALEitude Tesponas to
control Lnpute vary, very diffi.
eult. Attitude {mspecinlly 3itch)
in alacet constant motion. Ten-
Adéncy ta develcr PIC An laberel
emtrol, oaly wey oould Feay attd.
tude under oootrol was to perdod-
leally take hand off otick end let
piteh dag 1taal?. Coulda't per-
furs sir tari wwll bensuss of
ALPELIUALY with astimude.

Merierult o parfore e
oause of poce Btrituda
charectarisiics.

Hmged £o razaln over
apet Tadrly vall mt
whtltude diffiquls to
tabtrol [in acnstamt
cillatiso, Ueed m
Sittle wing tllt during
turns in oordinatden
with attitute changes.

Hovmr waan't cdffleult,
done baet by hulding
stdck susantially Tized.
WEanevEr Tried €0 clange
pesition devaloped oscil-
Istions that couldn't
demp out with cartrol 1o
pute. Game ictarsction bod
twsen plteh Wil rodd
AiAnicE.

Abtitude coarsctarintlcs
vary cbjseticnkbla,
Cano't daxp out csollla-
tlons mxcept te hald
atick fired, dot much
oopteel over this casa,

L2y

Golucted mAll cent
serattivitien Lo abtemr
o aveld extiting sthi.
tude. Gin't mmke ipput
withour exeibing sktitusy
wotion,

Contral must ta almot hands off
or very,very oall inputs, Wheo
e mAnwuver attempied 1088 con-
trzl, Bullt vy large viclet
odalllations.

oan't gowtrol thla
‘secause of inabllity
Yo cuppress whiitude
cnedlatione.

L2y

BFB

0,353
0, 310)

Sulacted to get the T
wPonae depired fo aver
coa effacts of the lags

Could parfors task fairly wall.
Fotfced sommhat irtitating
osclilations in pdteh aad roll
that had w tandency Lo marteln
thensslves, Alehough 1w leved
od falrly quickly darped.

Could stop Quickiy and

sttwetiog to Toll oot
aftar the ¥ guiek atop.

Guuld parfore task fajry
1y wa2l. Inouced riteh
and rell osclliadiong
that ware susthined Toe
& while. Staywd ower thy
apot faizly well, Row-
.

Could hover guite Fre-
cloaly. Verttosl Lauding
e 0o problen

Wisctimule fmtare
ver oLl saplitede
cacillations Lo plteh
and rali which wig
somswhat Lrritating.
Sanarally wall damped,
could comtrol stiltude
fatrly woll.

0.3:
o.75]]

solacted to glve Famporh
oeednd 10 attituda, No
problmce with ligs,

Could patTorm task prefty pracias-
1y, Noticed the affects of gurts
a 1#tle, but it wenn't 4Affficult.
Sould stabllize aod bold velo.
cities. Respouse to comtrol impts]
fuite prediotably. Ficely dewnsd,

¥o problem wiapping
Freclsaly ant conmrol
ling mttitude.

Could rmmdn cvar e
#jot Quste vall. Teak
fairly aeay tc pacform,
Ukid Wing tilt camtrol
furing the turm,

Hover RAd Landlng ke o
tlam.

%o el objéctlombtls
Tantiures . Huybe wttituds
wns alightdy raspoosive
to turtmlance. Sotdcsd
scme rmll csclllations. |
Attltude eoatrol wea

B-Fy

BH3

d. 307

i

Sulected to get deaiced
sttizude response.

Selectsd to get desired
2i%et apd rol) responss.

Response to gontrol loyuts quits
praddctanle, wall dicped. Vry
shaaty and noticed very few ascil-
latoan, Gould initiate motion
and wtabllize valooitles, stop
Frecisaly.

Inny ta perfors. iy to salet
1ired valucity and holf it. Can
#top preciaaly. No jroblmms,

ot Adffieuls.

Pertorned the teak quitd
rrecinaly. Nias pasitire
attdtude Tesponsa to
coptrol izputs. 2o bo-
tdcdmble lagn.

Could remain wer &
pok very wall, atti-
tude nicaly dazped, &
fpreblem with pltch and
reil ad oo prodles
atopping on prasslected]
neadings. ‘lasd some
mall wing tiit. Wing
L1t chinges ware oot
Large.

Coula pefure quita pred
alsaly and remir cver
apet. Wiog tilt control
although not critical,
e gocrdinated with
wLth hesding relative
to the okan wind,

Cab howkr vary preciaaly
Vertical landing ro uro-
‘vlem.

Hover aod vertical land.
irg oo problen Ho inter.
ROTICH MMOTG Axdd.

AtLitude eoctral very,
vary good. Wicaly
darpsd, sasy to control,
vary vredictenle si
ntahla,

Favcrabls feaatures in-
cluded gaod, wel
damped, positive pitch
reaponse and roll yee
raspoase.

*FB

0,357
€. 374

Selected to gt Tesronsel
Gasired 4o cvercoms the

Lage which wars aotice-

woln.

TEX waan't parbloularly diffieult
but did notice the effects of laga
in reaponae tu comtrol inputs. Hed|
o be carsfil abmt making contral,
inmrta, fsd %o antdcipate changas
in attitude s little mors thas
would bave to without the lags.
HowAvar, could serfore bhak fairly|
wall.

Eourt Lmks vvarahot post-{
tlon s Little blt, Some
oncillations La vositleg
reriltes beckuss altn't
got attitide reverset
quiekly oncugh.

Could do thix fairly
well, 5o real problmm,
Courtinated wibg-tilt
cofitol with Adffarent
parts of tha turn rels-
tive to ran wind.

Howwr and vartioal land.|
ing oo problme.

Found the lig 1s rall
and jitch to ba aa
oijrctioable Fastura,
not really serious bt
14 484 ramlt fn per-
foralyg the task less
precissly than had
previously,
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TABLE B-II (Concluded)

Zase

Paranecers

i Lar j !

Sim.
Fode

de

Fllst Comments

tien af
ieraitivitien

Menmrvaring

Quick stapn

Turn-Over-a-Spat

Freciaion dover,
Verticai Landirg,
Secondery Jymazice

Sverall Paaluaticn

B
2 0.3
Ty = 0.
dy « Oid
4 - 0.

BF3

0.33
G, 290

Sulpctad in an atbespt t

Cauldn't peTorR DAnsner

partl-
820 ooutros of plteh wed sulaely wall becaure of constant

Tzl oscdLlatiood .

sall oanillstions. Some cacille-
tions in pitch, bub Foll waa moat
amwoying.

Pfficult to porform task)
wth any precision be-
omuse of ccnatapt roll
cas{liaticn. Heally largd
angles (10 deg or mare),
constant cactllation aad
ralatively high fraguency]

Oama cloaw to lowing roli
eatrel during oenerver.
Goulda’t do 1t particw-
lurly wvall beomuse of
rolt, ¥ing tilt control
used & Littls,

Comld atabilize sircreft
in hover falrly well, wut
couldn't hover Frecisaly.
Could manage to land it
ot not with prectelon.
Dufinttely sose dotar-
acticn batwoou pitch and
ol

Aol ad pltch oscdile-
tims very ohjection-
ble, unkadeptable.

L1
de v 4 -
ol

B-T§

KB

©.333
£33

0,36
o280

Selecied to galn control
of pitch Teaponss to
Turbulance mod epeed-
atabliicy effacts when
manmovaring .

Salected to gdn cantrol
af attifude oscillations
wad attitude reapones o
turh:lenca.

Mot too diffioult te perfors, e

to pay clona sttention to sttitude cowld perform task fmirly] again havieg io wateh

1¢ van ddeturbad by turalsece,
but fairly comtrolleble. Conld
stabliies and hold the valoribles
wel gtap yreclasly at the coriers
fairly well,

Cauld prrforn bnm
fairly wall, but sttituds Tesson-
sive to turbulanou. Som daley in
the LTtuds PeasoneD, Desds dam-
ing. Med to wtch sttitnde faivly
closaly to parform the maneuver
wall,

Weran't wxy real prosie,

wall tut hed Lo wabeh
attltade aa it wan quite
raspooalive to turtuleocs.

Tt ta Do naBhAL cau-
tiow in perforeing this
baak Bachiz Hn't wemt
to make too large an
xEEIbUAS chunge.

Could perfore quits well

attstuds, bob rezained
cvar the spct Tairly
well, Only & littlse wing
113 eomtrol uand an
drag separently mmil,

Terfored thin fairiy
wall, but poulda’t hold

ving tilt covbral te
eorrect fur min wind
affocts,

Hmld pogitien without. too

control avick, Vertical
landing ne groblem,

Feforaed bover quity
well, Vertloal landing
ot too Airfiult, ma
el to do it fadrly weld)
aly & littls

brtwaen. dynamics,

Obictivnabin festures

L wars the stiltuls e

yredictable b re-
quired n gond deal of
sttention &nd tontral
activity.

Objectionable fastiiws
are lack of wdaquats
attitude demping sod

ey

e

€. 383
C.33h

0.371
®.317

Seluctsd o guin cootrol
of oacillaticas In stti-
udm

Jelectsd Lo an attest
10 get MbEitody under
cottral.

Rowponse tc onmtral imputs unde
siruble, Rall and plich in alsoat
conatant zecillatdon of fairly
largs ampiituds. Alsost brgossible
te dewp, Touwld stop fairly well,
bt alfficult o sadntain vulur:jtﬂ

Very diffioudt to peform, Can't
POTory this masyuver precisely,
APrieuit 40 ooatral ettituds,
wrery now aad then tend to boild
up sttitude cacilisrione which
ure frightening.

Lot of wttituds aotion,
AUFTicult or inposaible
to damp large dmplitudes.
| AfTectod ability to stop
at dmireq hover pusition

can‘t ually parfors &
Quick stop for fear of
Loing attitude coptrol.

gt & large cecillstion
In rall too. Very dls-
ngressbls. Hul to can-
centTete ac muth on wb.
titude that it took eon-|
camtrutlon mmy from
howgring oaition.

KA this very alovly sad
the task Duir-|

1y well, but avtivocs

was 1 conetant cecilla-]

Could hovie fadrly e

ciroly, but fairly laree,
eonatant motion attitude
moursdens, Could land 1tf
alright. Same interaction)
betwrsm TOLL and pitch
dup 40 the ostillatary
oature of the dynamics.

Hot too bad, but had tz
be camelul not to make

vazlilation agaic. Oma
parfurm tha vartdsal landg
ing. Jmfinite intersstion
betiven roll ana piteh

gpamicy.

Found omedllatdoos in
Plich mnd roll very
angamtionable, very
undesiratla. Mo w1
dence of Lack of can-
#rol power.

Objeetionably Tewtures
includa leck of aamping
very cacillatory Light-
ly dasped response in
pitob and yoil, Very
Fadpcoalve to trbu.
Llencn,

*lag and dalay affect
both comtrol and EAB
ioputs.
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TABLE B-TII

PILOT CCMMENTS FROM THE STUDY CF PITCH, ROLL AND YAW CONTRCL MOMENT LIMITS

Flying Gpalities Results Given in Table A1V
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TABLE B-TII (Concluded)

oty y, Pilot Comucnts
nze - : Sl . Freclalon Bover,
MarAsAtart | te ::r.:;-:;!;::::ﬁnm [rrTa——y RQuick Btopa T var-e-Bpt Vartloks Laading, emvall Bratusticn
Sencidary Dyneatcs
ir= x5 REs [ 0,380 [3.5 | Selacted to gat respoass(lo proiles mnevoring, Attitods | Cowsectr wa for miowiverd Somewbab dlfffeult to | Oould perfovs this bask | dlightly objectiomabls
0.4z 0,323 duaired fn wttitude to  [nicely dempet aad hed wuffivieqt | ing, Temadn ovur the Aot Tub| fairly well, Bobed & Featurt weA 3 slight
""- N ‘ crarcoms daoping, comloal powws to peetora 1% well, thal wwe due to large slight deficiency in won- | dsficlancy in eceteol
1o =0 Mo dreg ratber than Aoy trol power which 58 wooepd pover. Good desl of
<0100 attitude charectaristioaiekle, ¥oula Laks to sev a | despics, ales response
Rey*0- 14 parform the tzak | 1ivsly bIt aora coctral | la attituds.
ToaT, =06 semmouably well tlough. | powsr hovever. Vertiosl
0.1 Wing tilt sontrel waa | lanaing oK, modersta
o - ueed & oo deal, wbwon of sontrol activits
lutaly earstisl for frmlysd dn Do,
thia configuraticn, Mo
itorsd viag tilt scgle
& good deal.
p-Fp | 0433 | & | Selwoted 40 cverrasc thsRexponsa to ecarirol ligmts wae Prod Caud prrfos the Gask | Bowmb worw difficult | Caly psrt or task taat hay Sojectiomitls femburs
0,336 damping and whot =y dctarde, well damped. Could daveld quite scsuratsly. Tar- ‘bectucs of high drag, soms tacervetiona wbout. | wes appareni lask in
. op & ROty coualvtewt veloodty Araeed o be & lag Llat | attsbude rerpouse wheo

have hown a lag in atki-
tuda rospanie.

oA STOD Frecicaly. Mo Apphiet

Inck aof goutrel powse,

Taatiy stceptable be-
baviar here.

wit1lude soabled perfar-
rknoe of task fairly

wall. Id have to cas
wing tilt e good deml.

Frevented douirad guisk
runpcoes in attituds oeedd
ad to overoumy iatE,
Landing porfar-ste Bdn
quate. Felr aoount of cood
troi ATivity lnmlved,

hewering which degradad
peyforoance £13ga%ly.
Artitude appsered to ba
well cxnpad.

156




TABLE B-IV
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a4 - altituds coutrol imrecise.
B-FB | 0,410 | 5 §Sslectsd to contrul atti-| could initiate ana hold velocities{oould atop quite quickly, |Could parfore quite well| Could bover rehwcmably Nasda attitude darping
0,258 tufe THAEORER t Turbu- | TRirly weld wut constantly attscn- [ o be cassful of tur- [Ms tendancy for pitch | wall bub fair kmownt of | oFf reducsd reapcnes to
lance., wted effacts of turbulenow, tulance sffects. ard poll wttitude to aamtrol activity required,| turbulence.
ar1ft off, Wing-tilt con- | Vertfcal landing could be
tral used & great dmal. |ecooplished acfurately,
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TABLE B-V

PILOT COMMENTS FROM THE STUDY OF LONGITUDINAL
AND LATERAT, INTER-AXIS MOTION COUPLING

Flying Qualities Results Given in Table A-VI

Fllrt Coomeats

Selecticn of
Certrol Sunsitivitien

Hanwvaring

dak Stope

DT Dkt - 3Pt

Praciaton Fover,
Vertical landing,
Secondary ymmatan

Ovarsll Ealastics

L

0.355
0.2

0.291

et for geiting sarived
THNpOREs for W17 hax!
—ckuveT .

Seloctad to pet demired
attitude Taieg.

Salected um 4 cospranisn
betvesn avoiding #xclta-
t4on of whiitude did-
turbarcd hrough oou-
ing and veing ebls to
contzol adeguately.

Perlommance during sir tazi waw
ool with & minlmms of pilat ef-
fort. Cofilrol daflectlons weare
tether wmall wnd low TREGIENAY.

Bot A1f1evlt. Attltude respoase
Telaxed, smaath, ReacRably pre-
Alcabln, wcke coupling svidsni
but Bo largs sttitude changes in
slther pttah ar roll Tesulesd.

Mo real d1fionty. Coupling
effect van thate as kind of & hig
Fraquney pertyrbaticn on contIol
nputs, but gemerally, it dldn't
alfraet ad1llty be conbrol.

Woblowd coupling betwsen
on and roll when KL
anrilar rates were davel
cped. Thim ves sogewvnet
acagyizg end requred
control eorrection

Denerally eould parfarn
Eairly well, however dtd
noticd Ehkt when teylng
to arvest velocities
temtnd Lo jokroduce rom
ArTorN d to attitvde
eoupling.

Cauld paeform thage pre-
cleely. MevEr got late
any troukle mad could
parfors them about &
Precimely s deaired.
Coupling =vident bur it
didn't desm to taks that
ek fforl te cootros,

Ferrormance war good and|
Pequired vury little
tarust tris.

fa ffcalty, Tid use
tow wing LLlE comtrol a
falr Agcunt. altbough Lt
wars't tou DECERRATY.

No problem. MMd ube thel
wing-tll% cantrol to
amall exmant.

Horer parfarmnce wei sy
gocd with wery 1iktle cone
tral effort required.

Contral debivity wes lew,

Preciuion hovwer wnd var-
tleal landirg nat
ALTout. T soll aod
Piren intwsmctioa 419
affast comtrol scseviat io
the quick atops.

FrecLNOr hoveE kad var-
tlead landing no problse.
AtLigode tnteraction
throvan the coaupling. The
coupling wes #vifent, fut
410o't Tequire too wuon
affort to cancrol,

)l quite good ex-
capt vim making rapit
attitule changes van
aanaped by croas eau-
pling batwewn plich and
Toll axna. Scvwed re-
Latsd o tha anguler
raty of the sireraft and
to the coutrol imput.

taly objertiomable
Jeature 1m roll =nd
Fiteh Loteraction In
qulok stops, howswer,
that's not & wign:Picant
prodlem,

Coupling wem evident ana
vequired woms ¥IFort 12
contral. MAGH Bomewhat
e b cortrel Inputs
to keap 30wm tha efTecte
of taupling, b smld
U111 parfors task 2l
atively wll,

0.38
035

0.37%
©.323

6.5

St to get desired con-
trol Tesponss for min.
LASRIRE wircrart abtie
tude

Selected Lo pet the
Kbtiteds Tespanes dewized
nod ales Lo nat exeite
the ooupling.

During air tazl was smoyvd by
coapling betwsen pitek wna Told
axan, Tols dagraded abillty to
mmintaln ground track apd te diop
with précision. Alsc, bascuse of
increnssd attantion requircd,
weight control ond d1MRCCLANAL
COREIOL Win dupraddd,

Could parfore task relatively well
but plten and Toll tn alookt con-
stant motlon.  Falr awount uf
EIfort %o kenp dweired attitude,
to bold velocity, and to wiop pre
e1nely.

Fsteh ani roll coupling
wnx —eally nggraveed.
Coatral of heading sae

Angrades boceuve ot tols

Langitudionl quick atop
W't too diMiadt
although tanded £n put 4
soowtnt Lover Twbea to
avold exzlting the cou-
pling, Lhteral quick
4\op somevhat more dif-
firult becaves of 2ou-
pling with piten setituie

Waan't too diffieult wady
only wokll wmount of
thrust rotation vam mm-
EAETH

Didn't pertarm thinm mn
preciesly as desired due
to sttitude oontrol aird
floulty. TI4 upe the
“iig t11+ contral.

Precinlon. baver parformwnd

wan Tal¥ly gocs tut had 1d

und care to vee low fre-
ssall control

Precislon hover mnd var-
tical lunding net too
difficult. Defioitedy .
cOUpllng I8 evidant.

Mot objectionable
Testus s tha coupling
HCWT the itoh wod
roll axsn. workload
van fairly high aod bad
to uwe relatlvely mull
control Liputs.

™e coupling tu obsc-
ticnsble and raquires

ook effort to attamate
it and gantral adequanaly|

AL
nl_f L

a,25

-0, 25

.92
0.2%]

Bilicbod to get desired
ALituds responds

Wotlokd sabr emil cacilleticne Ln
both plich and roll he to sppareny
Eontrel ooupling, but thip ves law
Level and o diffloulty. Could
pHrfors wusk preclisly without
wxcepulve attitude changes

Could be performed pre-
cissly, Coupling dida't
d=traor from ability to
perfora ta

ot aifficult. Cmild
freer attitude uster con-
ftrol quite well.

Preatatan hower apd vor-
tioal landing fet d1££1-
cilt. Gowk Lnteraction

tueen pltch end rell
motion hark, Wt b low
1ovel amd Aot aifficult
ta controd.

Ouly Kildly objection-
mbie fanture im the
coupling.

A-TB

B-FE

I-MB,

2.3
9,308

©.32
053

.26k
0,321

2,5

3.5

2.5

Bet o achfave dwe!rdd
Teaperiee for moburring

Salectsd to get dewired
mititude mtax,

Selectad to gat The
attitude Teapones Seslved
Coupling Aidn't meve any
areeat on comural wera-
iy,

Alr tazl pérformance way good.
Conld hald groucd treck wsd atem at)
denired potst quits ewplly. Con-
tml Anclections rather asall and
low frequency. Covtrol ebout all
Rxea wnn good.

Attitwds contral demms fadrly low
frequency snd relawsd, rao orzilla-
Tiond. Boos ooupling 4vident Wt
low obder &od fompn’t preent sny
real probles. AT mestuves Lnd
Nlop precimly.

Could perferm thin Fraeisely in boty
f mtd Y directiona. Fo preblem
balding velaitd Fo large attid
tudes develophd.

Framoted uo partloular
prohlems -

fvery 11ktle trim required]
for turn onr & et

Praciaton haver parfor-
mance vy Jood wikh
mimiml et effort ra-
quived. Tow dymaat ¢v Eod
softrol inputd of =oe mal
414 ot affaci another
axin.

hover 4wt ver-

Can parfors Lte quick
atop preciesly. Eom
szl piteh and roll
oacillutiana but they ars)
luw tregquency, lov wa-
plltude,

Can #tep quickly nd pre
cinely both ln X aad Y
Fotias the alight sou-
plicg Mt it readly
doemn 't afrest control
Inguty -

i quite
lacenrately. Uned wing
Lise cantrul o some wa-
[tent .

piot drroae,  Can turn
leapidly wnd stay relatd vel
1y c:oen Lo toe mpot.
Iwing tilt voatrol wes
juned & wows extest,

tlenl Janding no protlsm.
| sacondary ayemicn - -
| quentionsbly sos Inter-
aitlen batwidn dypamics
hare mut low level, not
d1ffucalt,

Precimlon hower sod k-
ticle landing oo probles
Decondary ayaalos -
Coupling 2 evident, dut
gt 4 61z problem.

Tarsll the conligore-
+ien van very good mod
Tt good Sonto) riporss
and Low Rust stnaltivip

Some wlnor ckjection to
£ ¢oupliug but this 1a
ot u Dig problem.

Wo real golactiomble
stures. Coupling fa
actiodeble, but dosen't
presemt woy gremt dif.
Fionlth omly
dawped corfigurtion,
suby Lo central.

a.313)
0.299

3as for mmuvertng ro-
wonee of the mirawir.

Bad good coatTol charecteriutics
dnring aif texi. Could hold ground
track quite well and 47cp at do-
aipmed podct. Contral motlona vere
raiatively lov emplitale and low
Trequency

Anscyed & 1itile bLe by
coupZing vetwnn pLL
and roll dering ragdd
comtrol npets aed Righ
angular retes.

varforoance wad good,
11btle cotbre] effort red
qQuired and very Iittie
inrust trio sequired.

Frecisice hover perfer-
mance goed and 1izle con
Erol etivity requized.

Hoxn ekgecticmable
fastire wan the control
eoupling dur og rapld
attituse changes snd
rapid sontrol lapots.
WLth sacoth eenbrel
inpite ane reletivly
LoW afgular Tatés,
acotrel soupling haraly
notiomble.
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TABRLE B-V (Concluded)

omf,
Tase -
Paraneters

Pllet Cowrweria

Celaction of

Consrol Saunit{vities

Menpuvesie]

Quigk Stops

Turn-Over-a-8pot

Trecislon over,
Vtical landing,
Secondhry Jranica

OQuarall Bvmiuakior

0.310;
0.360|

Salected Lo gt oensd
attitods responm.

Solocted to awt tha re-
sponen desired snd Lo
help oomtrol the effecta
of oupliny.

Attituls respanss fairly relaxed,

b apprecilenle wmount of coupling]
prament, Isprolally ratiodd pitch]
Lnputa when 1olilog ard Tice rrrwey

dietusblng wnd required sore sttsnjanncyleg.

tion. Could perform the task
ndrquately, Lut sttitude vontrol
Twquized aum ettecticn.

Genezally not too Asffiewil. Could
manwuver longitudioally wed later-
ally with preclalon, but very
&rfinitely tcms coupling effects
that heedel correcti izguta.

though not too precisely.
Couplleg imtroosd at-
titude motions that wer=

Coupling quita swvident,
eapacinlly varp making
Faa1d sbtituds obangws.

Parformad fuiriy well, minfSidn't do thie very wll

for moma remacn. Bot tod
ALtficult but should havd
beer. sble b perfors xare
Frecisety.

Hat dlffiends.  Could
partove Lt replaly &d
pragiply, Used the wiog
%L1t guntrol to o Limd ]
LAt .

Frezision hover and land-
1og ro pmoalea. Pitch
carscteristics affected
costrol of rall and vies
varsa.

Precisicn hover and ver-
tical landing not diffi-
outt, Coupling efina talbd
aftrcted control, althagh
1t g4dn't appesr to en
» deteriaretion ln par-
furwancse.

Coupliag wad aignifieard]
anough to dlaturb air-
araft ot require or
attantion to sttituds

control than woull Mike

Trs caupling betwsen
roll and pltch vas
objeationatls; locked
1ike rate couplirg.
This vaa amnoying, but
it dian't ad to & losd
of grecialon

ek

0.l
0,358

Selacted us & comprrales
betwmen that pesded to
somtrel mttituds mationa
and that vhich dida‘t
wxcite pLEan aud roll
N

DAFFCULE 6o parform. Lot of some
what umpredictsble sttitose motion
both tn pltch aod roll. Apparrotly
@ Int af 1t la dua to pitch and
roll retes. Oot tato scme farily
large attitudes. Can't parform
this with wch preciesen.

Annzyed by soupling. Ca'd
pertare t2in Capk Dree) o
Iy,

Also aiffieult o prrform

Got 14to 4okt large at-
tituss meticow, & lat
af Wnieh wHsms alrowt
YAPFAALETALLS . Tend to
Thange attitude very
aTUptl,. DAfficult tz
ababilies attituds.

Fracision rover asd var-

einfon. Saema ta ov u L
of interction wetween
pitch and roll WRick iZ
quite dirturning.

Chjsctiouable features
are tre large eacunt of
caupling end the rapld,
falFly udpradictable
réaponse that St brings
about in pitek and rull |

b-FB

0. k2]

0.373

[

Belected £3 help gat cond
tral of attitude ancil-
latiane.

Difficult to partorm precisely.
Pitch and rall lu aonstant oecll-
1rtion. Higuificant amsunt of
Crmpanastlon required to maSntais
eound velesltlas Ard to stop
afenrately. Sl HILT{WIy une
FROA10tarly metlon 16 pLEER wsd
o)l dur to acupling,

DifTLoult to parform pred
cimly, muat be vesy care
ful about comtrol inputs
Have to watoh sttituds
closely vhen arrcsting
quick etops. Gt into
falriy large sttitods
osatllations.

Iematned ovar tie spat
Talrly well, but went
fato largs pitch and ref)
aEcillstions vhile doluy]
az. Wng tilt comtypl
used 1o limited extémt,

Can perfare hover, it
Bt thw wttitude cxour-
alcnn e ssgmifioact.
Falk kmount of {moter-
action ot coupling 4ul tcf
tha light comgring.

Sbjectianable fentures-
coupling respotes to
torbulence acd lace of
dumping. D Efieult
Bedd to cantrol.

el

L /W, =0.25
al ’l

Belectan ta get costrol
of the Fltas and roll
asctllatioan.

Fuirly Mffioult tesk. Lot of
attantion surt ba paié toattiteds
contral. BLffimult to ctabilise
valooltles «nd atop praciesly, bud
ann be dane sdogeachly

fan perform task, stop
Trecisaly, but wnd to
intraduos » ot of pitah
auticon asd roll motion.
Hara to worty sbout wup-
FvanLag those caallle-
tionm.

Difflaull to perform
becanns car't look awey
fros aktitude and aheck
tbe heading indicktar
without introducing
faiely significact at-
tituda aevors. Uk tha
wing tilt to mderate
extent.

Precision hover and land-
ing not too &iffLeult,
but both Tequired attes-
tlon.

Dbjwaticonble fextures-
Reaponad to Larbulunew,
eoupling, lack of deup-
ing. fAffleult cmde.
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TABLE B-VI

PILOT COMMENTS FROM THE STUDY OF LONGITUDINAL
INDEPENDENT THRUST-VECTOR CONTROL

Flying Qualities Results Given in Table A-VII

Pllot ovmmts
T Lt . e Leton HEVer,
Tusi o im, b electdcr of . . - Orrrene g b Vartiocsd lendlrs, varall Evglustion
IS | e Ly Soraitivitles ranrvine Ontoh Stops e = decoriory [ymacicy
. = . 3 HOT SMLETRE Qoud cortrel wod 1ow pust sanel-  [Relsrivaly sasy s e |Porformence verr gocd | Precirion hower pfor | Jmall, vas goce cun-
i e Rt i s " tivity about nil axms. Loagiind.  |guires mntizipatiss £3 (a2 eeqiired very 11ktle | ance quite good with vary | figuration, resuired
Fxr dagloeei 0.2% Ll adr teel sanouver fairly may|otcop at dseirsd poind.  [effork. Ving $ilt comteo® litkls effort requi-el. | veey 1ittle afisd.
with wing tilt eamyol slthsuch 1t uaed sparingiy. Hed vary ullgnt Teadsecy
required scwe waticipation ta wtee o gat Lane Longltudlan
u dnatred poiot. Relsrivaly swil ponition saziliation while
i et retations yemcired to @R arsbrollicy poedtdon wig
! wver leagitudically, wing thrust tiiz.
Yer 03] W Could perform $his mack redatively|iot dxbo e 1itvle trounle| Performed tass rale Bob giffieult, mor was | Gusctionils Sesbure
' will. Bothaved by alca Tebe of  [here becsuss of plow Tats[tivaly well out esasd | vertisal lerdine privacily oy ok of
ek potataon of thrurt veotor wngla, [of rhruet rotation. Jast [= & LiTtie on combrol Sl G Rt e
but 1f mravaeing rates Bept tovard and uf momore s nogle,
unall ddn't bave tos ok and lost hovesing posie
HArfiemlty. tion, br puaily
Stared e apoh Ealee
iy wels.
38 | o AN b MsToruring Tot M°Ticult with  [Datosr ASPficult fus to Tuk vaaa't adffrouil | Brecasion hower pot &4f. | Dhjectiosl faatoe -
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teadpquats but dn generss dldo't | thoust vecter anels coo-
affact ability bo mmnmuver. 1ol 4o ebop viars -
pired, At timse rewulted
in long perded of ogedlo
lating back sat farth tm
pondcion,
Lz EL B-FB | O30 & Codd wnpamer DAl well Atk Jors AUfticult to §eforu | RAlAt vely wedy usiug NI pover quite wall Caleciiona'de Tmrares -
PR P Prvcision, Hal o Le sommiet dre-gh o air taed. Koaged to | bTont vector angle.  |asing only thresi vsater |Wonld 17ha to aee n
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quats roletion rate of thrust. back ana forlh got off 1n Img valooities bed to
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larger rate. LIt baomusw of 1M Koo
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1 TEltirey, - AbLILWE
l olealy damped
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1 e
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Guick. Cud nter pracimi and held |with lome ret clonracen 1 Frecinion wity whizh
PrPad b, postion quite well, Lca't | San wmst undll wimcat thrurt vestor Angle oau
Houromos attimds changes coer | ines momere votil el de- T conmanded, W it
fhruat rotated bk can fea! longi- |eired jostclo Fod the oz, 14 4001 g3
I hatnal nocalymkti s, rreata thrusc angda. J'fuu:nm.
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Hictoe Hghee Beust 1otatiod rate. i
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il wrrors with this alov rate.
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TARLE B-VI {Continued)

Flst Jommants

. fenz. de | Traziaion Hover,
- etars oo 5 ™ - t Verhizal Zanddng, verall Doluaticr
Trameter "8 Trudeel Gevsirivities taauvering ek oo e ves-a-po Secondary Dymanies
L1 ah a-FB | 0.329( 5 KO SELETTED Quite guat sensitive in #1) wees. |Honevering lorgitwidn. |Workload guits high dus | Prévisicn hover perform |Woat chisctionable fea-
; . Alr tax! mansuver somiwbat fArfi- |ally required comnides.  [to guat and meen wind #naw Crirly good; however,[twre wed high suxt sen-
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TABLE B-VI (Concluded)
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TABLE B-VII

PILCOT COMMENTS FROM THE STUDY OF LONGITUDINAL AND
LATERAL RATE-COMMAND/ATTITUDE-HOLD CONTROL

Flying Qualities Results Given in Table A-VIII
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TABLE B-VIII

PILOT COMMENTS FROM THE HEIGHT CONTROL STUDY OF THE INTERACTICN BETWEEN
HEIGHT VELOCITY DAMPING AND THRUST-TO-WEIGHT RATIO
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Culy chjsctioptle fem
ture is that it i very
Aiffienlt to clinb to
aay wltitode. Response
in much too slow aad
vy dom ahfTieulty
arrasting sink retes,
bt this 19 not & eignd-|
ficast pecblem.

Joly cbjectiookbls Ped-
ture e ek of Howrt

which Testricts ke of
olimb, but well demped

03 oen arrest dascests
Trecisaly.

Kl

z'l‘z'l,
~0.025
T/M=1.05

BME

Selacted primrily 1u
attmpt to control
height omedllstiona.

Could perfarm the 1
mnmver fuirly scourstaly sod
£old bover within 410 ft. loat
praciaion in latarel mosuver be
shopn of congentration pequired onl
holding badght. Deflnlte letareo-
ticn betwsen heisht countrol wod
ability to comrol laterslly.

Aguin il
a0t too oad. [atarslly
43dn't bulld up too many]
largs weears brt Ebidl
Tasl that beight control
i mueh 100 poarly demp-|
wd to control sdequstely

Hover wain'f too Aifficult, Hedalt resslied in
constant osciliation, bt not to particularly
large saplitudes or #2 large s they were during
the manmovmring portices of the tasks, Could
tescend to about 20 £t asd hover there with rals.
tivaly samll altitude osolllations and them go
baok up ko 40 ft. Feight dyosmios definitedy
affacted wbility to coutrol laterel positicn.

Dafinitely needs more
height dsaping to re-
4duocw sttention regquired
on haignt cogtrol.

®l
1'-';.'
-0.05

T/=1.05

E-MB

3.0

Jelected to et Gepirad
rate of change of baighl
and to dalp gt the
hatgat oacillations
under corkrol.

Mr taxi not alffioult. Folding
haight within Y10 £t wEile meneu-
wering longitudinslly, tut when
masrvering laterslly bended to
dsvelop larger baight cscillationa)
as mch & 390 7t or s0. Thiok
haight control Atd affect ability
to partors mneuvering task to
#omey wxtelt, Diffieult to acabi-
1iee hedght, Helgnt wee Lh flmoge
cantipnous osslilation,

Lemgitudinal quick stops|
oould be parTarsed b
ter than latersl oned,
nowwrsr, in both lotro-
duced scme upsets iz
beight. Thase were
erpacially pronaunced
for aterel quick atoyp
whan altitude diverged
by about 30 ft, Unfor-
tusataly, badght wea in
Tretty Wulh consteat
oselllstion doring per-
formpece of guiok shops.

Hewver not Goo ddfficult, (ould kesp the balght
opoillatioos to whthin 15 ft, Sad sufficlest cao.
trol power to perform landing saquercs, but sesdsd
Moo AMPIDE. HRA t0 lend Daight contral to arrsai
alisb and dazsent rabes, Jould perforw vertioal
landing sefsly. Helght dynamios did affect #bility]
to contTol during tha lsteral quiok #top. Todmicy)
£ 1ot helght &iverge and conowntrate on the Later]
wl mowver.

Objactickble feature
was the lsak of belght
darping. Control power
sommed sdnquata.

z'I. z'l.
-0.125

TAi-1.05

L3

Thrurt sdequate for takeaff ant
dl4a't beve too much trouble stop
ping st the desired ltituds fol.
lowizg ciimb out. Helght coatrol

required u little bic of attantion
while performing the conataat al-

tituds aansuvars, but botn thrurt
ant daaping eaemed to ba adsquate.

Ar taxi could be parformsd resco
ably wall, but had to pay sLgnifi-
cant amcumt of mttestion tc alti-
tuda. Taided to drift mwsy aud had]
to covract and lsad contral carrady
tiona te mtabilire on ltituda.

Mo problem with thias
teak.

Could b performed fair-
1y well, Could go to
largs sttituds changes
without sbrupt changes
in altitude. Howwrer,
sgain altitvde tecded ¥q
cresp off and nesdsd
atadilication.

Frecdsion hover parformncs ves quite good and fa-
quired very little attwrtion. During tha landing
asquscos manncrers semmed to have adequete torurt
for arresting sink rete and for climbiog baak to
the bO-ft altitude Bover,

Could bover fairly well it had to pay fair amount
of attention to altituds, Hed scme d4fficulty ste-
biliring oa sew altitudes whan desceoding ant in
aomlog back wp to 40 2%, Med ta lesd control iuput)
tc rtabilize haight. Alsa had to approsck the Land]
ing nowewhat cwutiously.

én't feal that aiti-
tude could be caenged
sasily ancugh. W to
b womptat cayaful
with wititude conteol.
Lk TO ddd wore Dedght
ameping,
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TARLE B-VIIT (Continued)

iarAmeters

HMlct Commonts

tian of
ensitivities

o ITE

adck Shops

Freclalon Hover, laniing Sequencs
tof EeOGDiary marics

Iverell Bvalaavice

-2.125
o/R-1.0%

Salectéd to gat daeired
helghi ceaponme.

Ho Froblem parlordag momver
1onattuainally; Latarally might
have axelted & Little baight mo-
tien, but aprarentiy belght 1
nafficlently well daxped thet did
rob get dnto amy cignificsnt
Reight position aheg

Coudd perfore both lasgld
tudinal and datersl quicy
wtops Catrly well withoud]
upswiling indght, Belaht
14 reletively saxmy to
control, stabls,

Fo jrnblee holding bover prslticn or wltitude. Ro
Froolen performing landing sequance. Cou'ld ntop
abruptly with unly s sllght sscunt of companasiion.
Halght poattion wall damped. vo real nterwctlon
Tetwesn ALfMfaret A

o real chisctionatls
Cwatirse, 3ufficiant
Admplog, 50 apperani
iack o comrol povar,

LS

A-FE

Bacous of inAdeqiate thruat,
takectr wun ralstively nloggisk,
but hed ne Apfficulty swablishing
dusired skiewveciog liituas.
Turing rorstant 3liitide maneuvdry
porforvance w tairly good, Dack
of nltitule dwRpiag wee ot &
Tartizyler problme, Hovering turn
raquired only o moali dmoant of
wing tilt vrde.

Uptet al<ituda somavhar
wut the only deficleacy
da & lack of thrusy for
seresting thuse nltitude
#4sturvances.

Feacisicn hover Cerformmics whs saellers and va-
udred vy 1ittla aftert. Daplag wa Talely goot
curdng the landing soquence; 1k k¥ jevilem wa.
wrresting hign aich rates Quickly, this requirsd
epution to Aswnior only xinimel eink YmTas.

Aoout coly obisctionzble
faature soussd Lo b
Inck of theunt for
Arvarting alnks rated wdl
tor developlog oesired
elizh rats Ruquirer
axtamaive agtantion ko
eoid gettiag dete prow
blewa during high alng
rates,

Ty 70028
RS
Tiw=l.08

Thrash moTe than adequats for
Tabaofi. ReqaiTed s little antdes
pation to shcp AL dsairad mog.
vastng cltituds, oing sl taxi
ARt LTI Cver- - 003t ondeTite
FALOV attention wms rRGILTed o
contrnl aleibude, i performhron
e et degraded

Some tendenay to apaat
altitude, but Lad wore
bhaii adequata thrust Lo
srront the motico,

Adkquate tRrut wol dmping fom powsitiad hover .
Nerlng lainding segsacs hed sdequate toust to
arrest aink tate <nd dld not have to plack any
Limitation b wiok =ete for fear of nor belng scls
to arresc 1t,

Mly wodwrataly chjwe-
tioneble Feaies Wha
vhet it could cas »
littie more helgit
Aanping.

w17

Ty B
Thel. 25

k]

Falactad to gt deslr-l
responde in fedght.

conmtant »1titods DADEUVETE. ALY
tado roqiired amall ammur of
attenticn tub semead tc have sde-
Ukt drepiog wrd turur for eaind
taintog onstart sltitude.

Hot mch WfCiculty in p.rfnﬂh\:l

Oould yparfosh ir bard orith poe-
claton knd nold albitude quite
accurataly, Altitide vary atiien,
sy to correct mnd gensrsily 444
nov. stray mch ETon desired alti.
tudu, Ho D 10 Lead drpata.

Mansuvnring no rrobise. Coudd pare
fun the iask recisaly and hed uwo
Vel proliles with holding bmight
furiag slther the lovattuddsl o
etarnl muimneL.

¥ altitnde ccotrol pro-
Tlws,

Could partorm thid tadk
wrslly wrd Trecissly end
could aEs falrly Targe
artitude comiges withaut
affecting qulght eoa
L3N

0CWld parforn ihase T
clnaly, M4 s soma de-
crvaan 10 wltdtude whau
miing vy ehTUpS lnterd
AL wtops vith lavgd boll
anier, but ehatly
corTectdd.

Fracinlon hover pRefocmbicE wes Tery good ADA re-
quired yary 1ittle pllut eomseniration, Thers wes
nitguats thrust Yor elimbing wub etemplng st de
aipsd albltude required nome pllat antietpaglon.

Could hover vary preoigely, very littly pesd to
morducr altitude. [n the lavdiog menseysn sould
duncend quits mecisely o 70 £t and coms BASK up.
Ths iartlcal response wes posiiively gosd, iido't
dewn to lack codeol powst and tne Aamping wes
o s then addquata. Xa ALTficllty arresting sink
vala, oo great veed €6 Led wititode igorka. Could
land oudte preciasly.

Frecislos hover oo proklem. In larding saguencd
cowdd ehange pltlbuds very siruptly sad sbep quite
precicely with oo nobleestle overahoct, Could also
clink fairly papidly.

At thls campdog level
Thrust sesmal sdequatd,
tat & sJtle more

L

Swaturen bo tale om

Hight ii%s tc et &
ittle mes eoatiol
pourT, but pob i,
e pecd objestionabie

fratured.

AP

Duriky CASeTT bad sdbguaiu tet
Yor clish ent, Bo ALSfloulty riope
Piog 0t mererering altdteds of
Lo f§. During wousbent altibulde
mmreuTany wltirus required vey
iltvie affort &3 control wod al.
tituda eatrol was good. Halght
dyremine sesmad well dazped ot to
Fh¥e 8 rave-typs Tespooss.

Ro Taoblew wHh ek,

Howirlng JATTOTEADCR gt A04 TAqUire? viry 1ittls
effort. Could met tavelop Taal tigh rate of rlish
o rate of Jescert due io Hmitation oo thrast
and/or g darping. A litile rore thruet would
Iave Tear Ceairrhls to develop highor Melas of
16 E6) 4o Ufrure wTesting sLA rate Luoing

3
Aescent.

Duly algutly ob#sticn-|
atla festire whn cor-
bap bateg w little
alugglen ir resgpouss

40 altituda due ko the
Lack of copiwol jower.

e KD

Seletlsd ta nell 35 sted
Tlleiag taight owslind
ticra,

Could mamminer Longltodinziiy wits,
Mk $00 Dl troubla, WaEn M-
~aring lateraliy ingrodused n fwir,
1y large loog tudinal dlsplecomet
arer wiile sancantesting on
Detalt. Holght requized & Lot of
Filot eompemsation £z ptabllize,
waz in Almout constewt ssciilailcn
un wnd dmey, as kush ve 20 ¢k,

teagitadined, quirk stops
partorsad 2adrly well
whiin holticg huight
wlthla 1% vo T10 TH.
eteral Fick piond Quit
AL bacduke of Lhe
Inex of nediit dmgdrr.

o 4lfficulty bevering. Could Gap helght oecills.
tiona sokil whils hovering scmOwtely, Cnuid pers
form lunling requense Fairly sccurscwly, fould
Leansod relatively qulckiy o 20 T6 ad sabilice
and rien 4gatn to 4 o, then land gembly, Helgat
¢yDaMics fafindtaly arfates anllity to contrcl
otkar wres (partlsularly ralll.

Belgil dymaten GE;ees
tionabla, meat mare
omring.

yuRe

Z |
2.€2 3
an [
1.0 5
3.0 b
3.2 2.5
16 2y
30 3.9
2k &
EPT N
I
S

md aors than sisquate theim for
“axeoff and bed liitle ALM€Lloulty
Ftupeiog wt dosired altitude fol-
lowleg SLimS wat. During 163 coie
Fhant Albitrds meneveTs DAd ta
dsvobe miy 3 szall smmct of
attentiss to the uanérol of alti-
e

Ta genaral trudd pardure et tod
Talativls well, Ni4 Fave bo pay
attamtica tv Rltltuwe, DoFwveT,
Wl wake falzly cunntant correc.
tivnm. Hod o Sake Lonueobracion
nky TT0d DOTEETTSML pONIELOR 4
gerd dml to monltor wltitudu.

1) to lead wltinde ccutrul nome
wEAL. Would Like So wme & Littls

aory Altirude dasplug. Rad adeqiatd alittude weald tasd to

coatrol power.

Gundd pirfore this e
it witbout tos weh
aiffimultiy. Hla‘'t wtiod
% ABsk Of comtrol Dowar
ant wyl t0 ralativaly
large attituden w=itomt
affecting altitude weo
wuch, Rrtharel ocokalon.
ully by the fact taat

Frestaton boves Segired very 1tzle coxsobred i
of tamirol estivity. Turing landing segisnce man-
wornr bad po HPrioulty wrreaiing ~jur sace, how.
Frer, Emll oot of amticipatisn vequized bo
=t deslred elfLiude,

&os pacforned quite accentely, but altiTude Fe-
qQuze sttenticn, 1anding te3aece perfsreed fuiriy
woll. Could zansver wircically ot satisfagtory
rutee, but hed o land dapets dotewhet weao arrertd
‘ng vartickl rates

change uncoticed,

nly laprovwmant Ae-
wired wigat b & alight
Inorecse 1o Altltuie
4ergicy. Ctzerwiss con.

rimoation Le @uice
1

tefactasy.

¥ruld licg to et &
144008 hore Eititude
dsaping, although 1% e
not w1) bart ted. Thiok
camtrol padar im ode
quata.
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TABLE B-VIII (Continued)

Pilen Coemmnts
ot
s e | ® . Aaicu Heve:, !
racaters M::':tim“i“". Parvaricg Quick Stona Pre ot Mm‘k-r)‘mf:::i::*n' overail
w Y B-¥B | 2.52 | 3 |[salected to get deaires | Mot 00 auch Aiffioulty with Lorgitked to be cerelul withs | %o problms, could hold heighe fuirly =ell, #2 to | Slignt luck of he'ght
hedght control rsapames. | tudinel wepesvwcicg. i latersl | letared rell outs to makel 3 f1, Could dussend to 30 Ft and atop repldly. Sove| dewping, mt seeesd to
IR aneuvees notlced pome coupling  [avrs that height waan't [control cospensation reguired, but cruld stabilies | be plenty of thrust.
0125 batwown pltitude Bnd 2all, Kad to |dlaborted, hed to yatch |relativaly wall at Griired helght sl then clish to
/41,20 by kiod of caveful meneuvering kalght cleaely, defipita-|bo ft without oo much difilculty.
Jatarally besiuss could Wild up |ly some coupling betweas
wome fEIFly wubstential lwight (Lol sod beight.
varlations If vot wetced clowsl;
45| 30 fas Hore thas cisquate thust for *apdwd %o upsst aititude | Precisi~o bover performancy war yery good end Te- | Only ctjsctlonsbls Tea-
takecff. Hei goud rata of climh |but had adeqrate thrust |quired very livtls sffoet v conzentretian, Mo weoo| Sure vas s sllght de-
but had to wikiolpats dusired man-|mrgin to aFeest wink | Plem arebiling aloc Teter §E bhers Wag T than Pletancy (= altituds
suvering artitude a 1% Tur1ag razee. sdequute EhTust Mad aven Gidn'C wve tod such diffil damping. tul thrust
iy taxi wnd hoverleg turn mmnes- tulty aterFing At dualred adtitudn, resoed mors Lian
ver el performnce was Tuirly sdaqate
@ood bt had to diract saderety
Nitaution 1o sontral of Altituds.
Bre| 30 |3 ALELTUAR tended to vandsr When | Perfovaante feirly good, | Could hewer precissly, hed to wondter altitude Mo more wltitude
sacwrowing and when perCorming | bub altivude mesded RgAln, Wt witituds eoptrol mec too ALMdeai. aming,
quick stops, Hed to mordber alti- [abtetion end twuded to | Tra lant’ng ssquance ¥Rd farforaed falrly wall. ed
tada 3 good bit dn order to hals |owarahoot perlodloally | soms daifficulty arresring attitude, sore tendmicy
altituiy precizely, Could perforn |when ming corrections, | to ovaahoos desived altituce,
Lhe e fatrly wsll
BHE| 2.82 (3,51 Sedacted to get dasired | Mo problmm xith aav taxl, Hed to | Ha to Keep abtention on } #orer no probiem. In landiig sequence cvuld changs | swyhe woull 1Zes to
nalgnt redpanre. whteh haight while marsuveedng | haight vhen sacing Ietard albitude fairly sbruptly sad £3p without 300 such | eee & 1ittie more damp-
latwrslly, bub could control tuis | Bd quick stops and maxe | 4iPfimulty. SM4 to oponaste for cvarshocte m 1ng, but the enes 1s
to uithdr mbork £3 % womt compensating dnpute Littly pub dldn't require toe mich effrt, rolntivaly smay to
tut bulght duin't change Suntroi,
ragidly. %o Froblem wit:
Jongitadinal quick +37p.
vz a FRIIEE R Houd birupt Tor takectt w3d dwwal Thean KAMGUTErT upsat Pracisicn naver perforoance ves vy god knd re- | Only annoying feture
oped good Pate of elimk, stopping |altiftude the mosb and ¥eq geired viry Litsle affort. Hed oo ALTficulty at 01l sewssd 8o be attention
at destyad Rltituds was oot too | udred the most sitwmitiod Meresting Eisk ewts or stopping ab dsaired alti- | 3squUiBH t3 sostrol
1 wuch of & problme. Consbant-slti- tuden, altitude durisg oo
Tial. 10 T Ewpeuvae Tequirad motenate Wiand wltitsde mnrs-
attantig to rdiitudo coutrol but va.
perTormance was fairly good.
BBl 2.0 5.5 Snlectad £o gat dewired | Ry problem with longitatinal e | Could perfes feirly Hovar no problem, Could dessend relstivaly rapdaly | Mignt Like to séw ¢
hrlght Tawpotus. ey, Cowd parfooD tash fre- wall, ntroguced Blight- | ane srvest demosnt kccursbel, and qui Hd tn 2attis wore heignt
o1asly wpd hold hover alaitods | Ly leveer Befght wrrord | wake vome swdi compormating sontrel Laputs but Samping, tut this e
Telatlvedr wail, -2 %o 3 . %l | dueing laterel than foirly wkdy to do. nor b tad s
0 PAY AcEAAY wore sttentica 10 | longitudiel maacavers,
Eatant during lateral mingsvers, | ot Pelght didn't chasge
Tapldly awd At ws se-
sorably sess to orrent,
23 =1 | 30 o8 Wure than adequats theut for B probles, Precieion biver parformnis wks Yoy good and Te- | G004 conflguestinn.
takeofT and had wo &AfTIculty sf quiTed vary Iittle effort, Brth thrust xud hwight
all ctoppiny &t dssired altiiude danping nefced Riequake. DPARg Bha landing Beguerc
tailowins elirh ouh. Adcituds com eaneuvars bad ne ¢ifficulby areesting n*nk rate or
wrol during eil of the constamt stopping nt desired adtituis.
altituds mmpecrers vea Felstlvelyr
AaCY ATy Paquired very littls
of ot
= 3.0 4 W toxt could ba parformed wita | Uould peefors this task |Not ffficult, but kad tc pey ettwatiou 4o Mitabulor Needs o Iittle wws
#air prectuing, althougn 1t would | celabively well. Could [coadd changs eilitude veistively giickly wod atap
havs Taen wited by & Little mers | 40 b0 fairly bavgs wtti[REAout too mek ALfficuliy, ¥eeded to lesd ipputs
altituae alwing, Altitute twmisd | tods acgles withost a 11 bup aot £ Eeat Asa), lanting done Dreciess
o coeay Away perlotinelly. Alti- | having ltitede chengs |1y, Gearally, hed mo complrint about suility to
t3an comtrol ragiired nows Lad. | abraptly, St sltitedds jmeseccer vertlctily, but wme butharsd by lack of
flowsvar, aort disgresatie factar to dr1f owmy.  Jaitlends etenllity. Dou't thisk sltitude held anv
wms tBAL Lt tended iz dpify Sff betuer tian sbout 15 £ ar sare.
St
2 201 abe| 25 los AT Tax: mAZduver mnd turr-ovan-ve| Beletivaly sy to par- [Preclalon pover required very littie sffort snd 7304 coafiguration,
apot Tolabively cany to purfarm | lare. el contec all axdw guits vull. Rlegeats st
LA rod hag pelatively goud perfore fin tlimning kad chazging ltisude a2 asmbeting
- smnca. Cotkrul of altitude re 4lbX Tate. Thers may have deen vary P
T/uel e qalred vy Iittle whhant los. l st i Lioh ragired 1o Hhop GIPERATY mt daadwd
Qe sowmsd atugratey dnmged a1tytida,
Boft £0 heve adaquabs thrust Tar
vontrol.
wzs B0k APE] 36 |26 | e reage of senstrav- | Hhd an ertzemly 4171zl Tim Tt is mndarory thau
1tiec in ap atbmpt t3 | controlling wititude, 1% Tvmirsd thia ceafiguretion heve
ERE sbratr clomd-100 con-| actraen artlolation to arzas: e FALENL creping.
o Al v WInitude, vertlesl mtine ent xt tisma got Control would te Lot
TSl imko vicleoe PIC'S thas upualuy At lng pome portion uf
24aulted in hittang the grourd, tne ceouived {aak.
Faund 4% o %o feponslble b0
cItitale coutrsl loat altituds
i emtzol through eitier pra Siver-
b L1ur, o FTO Umadancies, {
4
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TABLE B-VIIT (Concluded)

Hlet Cotrente

SHE

£ 1 Zelected fn an Bttwnt

4 n.arilice Redgnt con-
broa

to ghin comtrsl of alti.
‘tude caclllaticos,

of attemtion nesdst to staullize
nalght. Couldn’t parform wny mn-
suverlbg tish precisely vecauss ot
coucstt SLAT [unsible grount
strile, Eelght serurelocs ouet e
baen vy ¥0 460 o TO fu. Yery ALf-
Ticuit o keor hedght usder o
<rol and att-zpt 1o perform task-

Laey diffienls to parform. Can't
a0 it with any preciaion. must
eopwartrate ca altitude comtral,
thet this dagredes sAtuvar por-
foruance, Altituls coatrol no bat-
tac than T40 Pt

farm the task with kw
Trecision becauss of
vary pooe hedght coatrol

Bad sindator serqency
auricg tha lataral qaick
atop becsuss of tay dif.
floulty in coateslling

albitude. Oho't pefors
any tagh with precigica.

but tad som: AAFTiculty stabilising helght. The
landing wequeacs v nwct o impesaivia to parform,
Couldn't atabiline so sither 20 or W-rt altitudes,
Tha vartical lsulisg wleo Airricults, got closs tc
Chw grosnd and hem jurt &ropped 1t §u ta preveri.
cacilleblng anes FeTe.

CoLlAn't hover pPeclasiy or hold havering positinn
while iandlsg, Tonderued manly with belgal, ton-
trol and atabiiieing it to wowe achoub. The laoding
sequence vep & Wik end mies operatim. Fist bad to
let huveedng oraclslon deterimuta and very odo-
tioualy gt altitude down tc 20 £, HAd tc lwed
rontrol inputs b gyeat daal,

®
“eimztion of . - - Precieion Hover, Landing Sequancs :

L Ieeaitivities Aecaring Qudek Geopa e Sevondary Tuamica Ovarali Bvmlcatien

& | salsctwd tn an svtemt [Very df7iculn to poTorm becsuss | Vacr Aiffieuls %o pav- | Teds wwen't quite wa bed, oould Jever Tairly well | efiniteiy oeels mre

amping in helght; this
1n tompletaly uracosst
#hia.

Diftaulr to control
baight -- certainly the
#ort obinctionahle Ye.
ture, Bxtremly 4irri
Al to kee helgnt woy-
vhare in borpda, Nesds
heigat daxping.

B-FB

1.28

Sut beight cqutrol Fen-
sitivity for otk alei-
tude raEponss and &lti.
tuds stavility.

selected for dewired
acntrel Tespoane i
neight.
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PILOT COMMENTS FROM THE STUDIES OF HEIGHT CONTRCL SYSTEM
IAGS AND DETAYS AND INCREMENTAL THRUST THROUGH STORED ENERGY
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ault,

No grohlwn wven in It
wal quics atops. Could
#top abruptly ana hoid

altitude q1its precisaly

Could hover rreciaely with only s:all varise
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affectad sbility to pav-

forn different subissks
wan Lo Jutersl mueswr,

ovar oot GISTIoult. My
Tsally noticeabln fntew-
artics berwwen dymulca.

Hovee perfertance whs Kooty

Most stjectiorable fee-
fum vas the Al
offacia oo oeding,
Thtnk & Ji410 mook
damplrg nnAeT thara
onditions world be

th wakn &

inwcemaary
{astiafactary confipars-

tizn,

Would liac 65 wer &
1ittla morw demping iz
haaling, wlthoogh head-
ing 1a not particularly
Alfricult to pemtrol,

Mot 11X o now ®
ttle more Zmplng,
lat the arping ie
wagate.

A-FE

0,266

o.e98i 2.5

Sab ta get deaired re-
panae in reading to
peicl Legute.

adueu to pwt resgoasd
Ln byeding nestsd ior
turning,

Afr taxi relativaly eauy Wt Suring
latwrs)l Woesrers 4°4 have @ oo
et for Gocupliag of Jsteral Yauo-
41ty b homdsng. Could bold hewd-
ing iwdrly wel) during maevwa.

Cocld partere ta widls hoiding
usding vey wrourstsls, KaLling
dzdn't Antrmou from abLlity to per
P t513 tamk, Cruld Nesp heading
within 12 or § 4. Sutloed some
Lataral-direstiooal couplicg while
oAby latedlly bt 1t wma
oaxy ta haniia,

Fosed na pucticuler nro-
hlem birt Tamirdd 4
Hetle potlcipatiom w
Flap st deaired polnt,

Bo faefimiley d6 conteus
2ing henting VBLLE pes-
formlzg quick sbeps.
Inading contrel dide't
dutract fram sbilicr to
porfors. uiel stare.

Hed good dfpectiooel
zeptrel, required very
little ml:amt:u to

Hove: parformncs ws yard
Eout. end Adrectlooel Toa-
trol astivity et rary
Ll

Cruld maver azourabely.
Could hold nmsding pie
cixnly vhile hTvariza.
Fase 15 true for wertiowl
Landtig.

Ondy #1081y ohjot! ob-
AbGe fustures vmen tha
Uit affcots oo Cire--
tion &ad the copling
of alrstlon to dateed
valucity duing latersl
manevering “zzke.

o chysctinoabile fas.
bures, Hmding well
doped, nits rate re-
aronas, very controls
1ghde.

B=1.0
Ry =T
T2 %lﬂ

B-FE

someviet CAfTLOUIL to parfom be

caces of retupml Awmping 1n yoll

aDS nibnb WLd Nigher sperd ste-

DL13tie0, Hendlnug ta Woll deapid

ok can take astattion swsy from

¢t mffiauantly loay Lo sastrol the
.

Headdng contral is waay,
WITiclently wall Semped
that oar mmomitiste oo
“be other axra,

tan parfore subtask pees
cisaly. Guite wewr o
comtral. Ming tilt con-
teol e usal to take ot
wffaate of wedn wiad,

o prohlen 1 hover s Ted
g Lo hmiing oBtro),
Teak La somewhat S4rfi.
it beckuss of loy dasp-
i7a in ritek wnd rFali.

ia lepding aist ceercles
consrdcemnls smtral of
pitru mad roll, it an
hold kyeslng.

Funirable fsaturs L&
irat beeding e muite
sy to gmRIch,

oo
Up=-0.5
Yog-Us
7w0.1

d‘.‘-o.

-re

. 208

Salactad to gekrel
ing owcillations.

mmmmum

T ta oorcextryte o6 bend-
lumn-un-mu-’mw'ls

Haading oontrol de-
Lenctad from ANty

2eacad to be abls to
Artaslieh # bouding rets)
Puirly vell, tut hed to
be cwcefu) aswat stop-

hold bover prasttan.

Magel borer ratriy wellf
ut thw+ w'e como hawd-
ing recillmtions aod hed
%0 concentrets & falr
WALAL o8 Desding, IAsd.
1ng 30 problom. Heading
d/namice affectml abiilty|
to perfors tasks in othey
azee,

Objeckiocitle fentwres -
lack of heading cazpang
and thw lag sffecta 1o
naading.
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yr-a e

wenty

Tarareters

Pilote

aim
mode

Pllot Compenta

gelectizn of
Contyal Sanmitivities

Hanwuvering

Quick tops

Turbe var-u-Spot

Fracision Aover,
Vertical landing,
Eecandeary manice

Cverall Evalustion

N, =ul

L

01

E-FE

3.5

EBxlected to g4t desired
Zaadicg rebe of ohange.

wading. Had 1o MXS Kkh SorTeO-
tive beading ioputs when mmomrver-
ing Iaterally but heading wea wall
damped. Dldntt swwmiop sy besding
apctilations.

b probles. Bulatinaly saay to hold Bo difficulty in pertw

ing thems tagks. Boms

Balatively saay to ast
up w64 hold & heading

ti1t aontrol wes usd &
mail ik

Fover oot Siffiguit. o
intersction Detween bad-

%o objecticomble fear
tures, thin fs & good
cnse, Hmuling s well
aamped, oo wvidest
lags.

X =0.5
LA
o3

A-FB

BME

0.273

0,235

h.s

b5

Set. to mintatn dirse- |
vional eontpol in
Pramecy of gusts aad
lags dn tha dirsetionl
oontrol.

Salected to control
hemding cacillations,
aspecially whan trying
to bald beadicg pracise
1y doring meuerver or
hover,

Ealpcted bo pet Daading
rete responas and elso
to sootrel heading
owaillaticns.

Ferformance fairly good, tut bad
acua AITiculty controlling heed.
oy during lateral minssvers dum
to gast offects wod dirsctiossl
coupling to letaral spasd,

AbI1aty to manmcver whp RPfactad
Ty diffioulty in halding haeding.
Heading tunded to cscilisty 35 dng,
almost coostantly, Heedlng wes
ever relly sbable. lateral ma.
wrver especially Qiffioult.

In latersl seoever bad B tesdasay
to davalop hesding arrord snl
owdllations. Oacillatlons generall
Lr wars low Level #nd not boo &Hf-
floult to eamtrol, tub sanoying.

is lateral velaoity,

Codld parfars thiss
taake, But heading re-
quired g feir eacust of
sttantion, MPleult to
cootrol helght eosuse
of sttertion required
for hamding.

In laters) quick stops
had to vatch beading
tairly closaly aad mks
oarvections whick tould
duvalop it osciliationg

Eealicg wer TERY reapon-
slve to peols bub Te-
quired auticipatice to
#top 4t dasited heeding
dua to 1agh In dlres
t1onal acetrol, Uved &
mmll amunt of wing
+L1t acntrol,

Coulq dura orer the
Tuirly well and stop
fuirly preaissly. DMan'y
e Lo gut loto Dakde
1og cecillations. Wing
tile eontrol wisd to
s wxtaznt.

cimaly, but Af hakding
rates il Up and triey
49 arreat

Hover performince good but
414 Tequire atteatica o
direction,

Had nom$ Qffioulty bover-

Koat cbjwcticonedle fea
Tures were related to
slightly low samping
in afxwetion, pust
uffecty on ddrection
an lag i respooEn

#o firectional coo-
trol dmuta,

Objectionitls fentures o
the Laak of smpiog in
bondiog wod/ar the
laga.

Ohjedt ioouble Testures -
Don't 1ixe the caeillu.
1oy chareaveristica in

B-FB

B HE

a.280

0.2

0,235

5.5

Salwated to get dumired
tarn Tate Cor heading
control,

Selwtried to gambrel
hasding cscillaticea.

Brt for desirel respcnes
*hile maXing hesding
changen.

Found 1t difficult to stabdlise

Levalopes hasding oacilletioos
when mineuvering both latecally
sad Lovgitudinally. Bueehat d1ffid
mult to control heedizg. Tends to
stvay wny, very oueillatery.

Relativaly saay wacert Latmrel mn
wrvwe required stzedtica to mise |
tatn herding, Parfarmnce ralative-
Ly good howwver,

Only laterel guick step
war iffieult, Awlity

Bipeolally Aring et
al quick stops hasding
Whe opcillatory kol Fee

Quired elgnifioant
amoant of atyention.

Regaired & littls mew
attantion om hesding.

wod rbabllising it. Wing
t11% oontrol ukd to
soxm mmll pxtent.

Ml to be chraful not
to slide by deaired
heasing. Very sasy to
do with ki cess.

Parformacs falrly good
Alfnough oouldo’t malin.
o & constant surn [
mte very acourstelr.
quired » Lttle st
pation to stop &b de-
airsd neading and some
Arrwulty stabilising
.

%o prodlas with bover,
Baa % be Light en Hhe
GOEECLa t0 Keep buading
asailllations relatively
smll. landing ac aiffi-
culty, Besding oamtrel dad
Cinitely affseted nbility
o parfors Leteral mute
™,

Eovar mnd vertioal laod-
08 ot ALTHIPadt. Hesd-
ing comtrol Lffacted
abilaty to gootrol piteh,
Tol) 4ol to scum exteat

Precision hover wod land-
ing performnce good sad
[requived very Littla
azrars,

Heating comtral objec-
tlomable, tha lags wre
simply too lavEw.

Zard to devalop oazil.
latioms.

Objecticoatle features -
lask of demping azd
1ag in besding ccatzal,

anly objecticoable Tee-
tore vaa that direc-
tloml deeicg v
alightly lov.

B
£=-0.5
o UL
-@.-u.ﬁ

=0,

o5

Zalncted to grt aesirsd
tare rete Tor an acowpi-
sbie pel St And
s 1o an wiept to
hold acutral beading
caesLlations,

Fecformocd affected by lack of
dasping ana Lugs in besding. Tend-
ad bo davelop Fadrly comatant hasdd
ing oecillations during mnerear,

AbLiity to perform thin
subtask slso affectad by
the lack of damping ¢
hendlng.

Cowld trn Pairly well
i qontrol bura vate
withork muar d1ffieulty.
bt (t wna tough €0 hold)
& nending, Wing tdle
waed & 1itile,

Walle hovering vy csodl-
latiny in bewding. Coald
bowa Eafrly well, but st
timss horer poniticn wa
wffected by Attemiion be-
ing diverted to hesdisg.

Feads dime wre damplng
1n heading or reduction
in lags. Almost im-
possibla to demp art
nemding opcdlistions;
ability to comtral
other Axes 1s affected.

503
=05
AL
o6
qﬁ-ﬂ.l

EBalacted to prt turn

rata dasired for m g1t
Tedal it

Could parform tha Longltudiml
suver ralativaly wall, but lsteral
TanesTar was more &ifficuit. Hd b
Uh vwry asveful to svcld sxoiting
beading cecilistions, Cowld not
control bamling too tightiy. Fary
aatinite tenteocy to Wlla cp
FIO's in heading.

Hfrieult to perform.
Aad to be dereful mboxt

baading sooteal.

ot too dAfficalt, Wt
4t va kough to rhap on
o pivan angle presleely,
o orotilate
%o Pairiy large beedlng

azglas,

ing affwet, KDILIEY to

Tos FIO Swxdsmay in
Raadiog dur to g aad
dalays are Sbjecticssle,
ALL cades with Jarse
laga wre pomewhal un-
wrael in thet 1f con-
trol dapute xept mall
they aren't thet bad,

oLl

0.3%

Selwgted to gut the de-
nirac turn pkte.

Cowld perfarm thid mneuver quits
wall, heading somtral oo protlem.
Toticed poms very slight osollli-
tians in hesding, btut oot AlTfi.
qult to cootral.

Could turn precisely,
salact turn rite deaire)
without 0o mnoh troubls
Wint t11t control used
& Yittls to corrsct the
wffects of wan wind,

AAfFlalt ta contecl.

|
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rararatars

Tim,
Foie

B4zt

Hlot Cemmaria

selecticn af
fortrol Senaitivities

MusIveEring

Qulck Btazs

Turn- Sver-a-5pat

Preziadon Faver,
vartical lanilng,
dncaniary Dynanmics

Crerall fealumticn

>l
A,=-1,0
Ita-xl‘I.
0.

ﬂw-ﬂ.l

D294

Salected to gat ieairet
turm Tets response to
pelal inprts,

Could perfars both latersl and

longitudical mmneuvers precisaly
while paying vwry Little stteniicn
to headiry comtrol, Pesding quite
Wble, 0o temdency toweris osell-
laticus.

No difrIgulty.

could forn Qiite pre-
ctunly, $op strwptly
end pemin thavs with-
out orelllaticn. Bowds
1ing costral e protlems

Ceuld hover quite ocou-
rately, hold position well
without having 1t vorry
Abcut: Tending,

% objecticoably fes-
tures. ALL sxen well

camped. Cowfortable
alreralft to £1y.

b3

M-l
ne-ul.
o
450,

ME

Q3

0,275 1.

a

S4t to get derirsd haad-
g "

During #ir taxi Seeding FASFORsE
e

Salectad to got Sasired
turn Fate TvepoEAN o
Dedal lnguts.

Sslectat to geb deeirsd
turn reten.

whay ol guat
affects sad coupling to lateral
wylocity wers rather mintwad,

could perform task fadcly well.
Amoysd wt tlmi by tha slight
oeallletion that Tallt cp o head-
i2g, say 13 deg. demmsd to aecite
1t noww oftan whon sanmivering

lsterally, raquired soms attantion
to demp 5t,

Ko problem sithar lacerally or
Ioogltutinally. laterally dii dav.
alop eass crall haading motlor but
o reel oscddlations ond eanily
Soatralled,

Requirad scas attaxiion
to powtro! Desdiza dus
to lacerel velocity
coupling duricy the lete
el quied recp mnw-
e,

Cauld parform whe quick
rtops rathar well W at
tinos had scte probless
Witk the Deeding cleti-
1stions.

to problem lougitudinei-
Iy, Iatarally ted to
watuh hesaing 2 llttle
ot 1b wed quite siay
to nthbiiise,

Iry to Emimbiis & eon-
wtaat turn cete and to

Wy have noticed & very

a1 reaponss but Decruss
of the TElativelr slov
eorrol 1 ddrectian
this wen ot ho particw-
lar protioe.

Could perform task quik
wall, Could tuen b de-
alred Tate, wiop pre-
ctaely, and held et
g withaut too much
trouble. Rennied cvar
e opot fatrly well.

8o real rroblem sl
l1eing hewding after
the turn,

utop &b desired Mesdingd

aiight lag o direction]

lhovaz wrd landisg 0o pro-
e,

Could BOwar QuItH Mezu-
rataly and leod vithout
oo much trouble, Seae
interaction betwwsr) the
huading conlrol require-
manta nd abIlity to fobe
tral cther sxes,

Pracinian hovee ead yer-
tical landing oot d1ffi.
rult. Hesding control &id
not alfect othar sxta.

Gocd Girecticeal con-
trol charectaristics.

Slight cacillation that
Wit w in heading
Pariodloklly Wss Pre-
bably the only chlece
tlonchle feeturs in

o slanSficamt objes.
tlonable feabures.
Fesding & litkle
onciUetory.

put]

A-TR

B¥B.

B-NE

2,238

0.30%

c.27m

St for deaired beeddrg
Tesposan to el lnpubs

Salactes vo oht dasired
Tate of baedfng changw.

Belacted to gut deslirsd
turs rates.

Aslativelr affortless bt had to
give & Little attextion to hmd-
ing control aurdlng leteral oanwu-
wwrs. Gret sffects mn directim
ware mirisel,

Taak oot difficult leagitadinkily;
Leterally ind srms Sifticudty
haldicg reating ead develcpad
hesddng osalllations that st times
affeurad AbALILY aomtrol lateyal
Adplacemsat.

Motdaed soss mlight heeding oacil-
Mticou Tor both tatersl snd long-|
Ludinsl weomiver, but 1R penerml
sould gomtral thew whils paying
cnly modsrats nttontion.

Tuak poasd 3 pasticuian
problems.

Latersl guick ataps s
quirsd sttestlon in

Hekdizg aeelliations
wars eridsmt for bath
lataral end longitudioal

erlt e =oztrol, Posal-
b1y wbildty to peefors
the tAak ves dagradad
sligntly due ko whten
o davoted %o bading.|

Turn rais comkrol quite
goed wud cruld atap at

ativary Lickls mmtict-
patdcd. Uned restively
MHtle wing *1il% con-
trol.

Could hold and dwvelop
& TWn rete falrly well
It tenasd to drvalop
soma ascillstions after
sttampting to arrast
the baeding. Wing tilt
CORLECL e band ®
Jri T

Nat too ALrloult, sowk
Lancency to Allde by de-
ired hesding and then
drvslop ouci Llations
whaa attapting to ree
covez.

deasred hamding vith Ted

Parformance was good and
ragulred vary Livile
wftort.

Hover and landing rro-
mted no problems. Head-
ing &ymamice 3id affect
wbility to ecntrol lat-
wrally scmevhat.

Frectason hovee od vertl-
eal landing mot wifficult.
Beading oynamics d41a
affect ability to contral
Pien and roll to sces
mall wxtant.

Mildly amcying shere-
teristics here were
elight qust wffecta
and contral laga 1n
headdng, hewever, oaly
a11ghtly poticesble und
1ittle atisntlon re-
uired.

hjectionabie featurs
Wi the lax in hesding,
although it conld have
e worse.

‘Would like more damping
SP Less 18 in heading.

Ls

1
K10

ID.-U'..

g6
LS

BB

0.271

0.237

0,258

B ta get dsalred hesd-
1r TEEPOLES.

Salacted to acmtrol saeed
what unstable hesding

whim attespting to 2old
1t glopaly, used reduced)

Fad to glve aome attetion to
dlyectlooal soptrol, ewpecinlly
during latersl muoenver dus to
sama gurt effects apd dus to
dtrectiooel coupling to latersl
valooity.

coals be performed, bt besdlog
attpetad procision, this wes
wipaaially Crus Wit Banesvering
Iatmpally, Coulsn't Aesp from es-
alting beading apdllations whish
warre about 110 deg.

Duoring hbeal maneuvers bad to
watah beedisg ut dSdn't esem to
get Lubo axy larps cacillations.
EBomm winoysnow sinoe had TO pay
more atbentica to 5t then msired

During the lstacal trens-

Too much mttenticy 2mo.

essary far oo
trol to kmip it from
oacillating.

Turn Inbe fairtyol wean't|

and it requived & 13t
waticipation ta ctop at
desired remding, lige
wars oot particularly
notiadsabla,

Couls parform ths? el-
right. Turn was peofors-
«d ralatively slovly but
quite soourstaly, Wing
£41t comtral wau uswd.

quite ha gocd ke Amiradfonly dirsction regeired s

mmll smount of mttemtion,|

Couid hovar fasriy well,
Jaddn't bave too much dif-
£1eu26y holdlog heading

hover and Landirg. lesdire
Aandcs wiTeoted RbALLLY
o contro} during lataral
maneuvers and quick stops,

Feaclsion Mver and vrtl-|
cal landing oo probles.
Heading dynapian affected
sadlity to ecatrol pome-
what .

Hont chiwtlenably faa-
bure samed 60 b 8
slight daficiency in
asnping in dirsction
mesded 1o Fuppresn guat
disturbences and aini-
ajze dinfurtencas dis
ta lageral mneuvering
valogity.

Objecticnabls features
ware lack of hesding
daaping wod/or the lags
5n heading.

The lag in hesding con-
trol which led to hewd-
sog oacilistions during
the turn and leteral
TanwNErs van ohjwi-
Eictable,

Kps-1.0
(AT
fw-ﬂ.S
gl

o.%6

Belacted to abavilise
bebding ooctrol,

e noms tooible during Lateesd
mhnwvers bolding basding kol At
timar almast bad & FIG-typs aitna-
tion 1z cmitvolling heading. iwedd
ing was diwharbed 1o scae bt

ing without cveeshocting the
dsaired hekdlng,

Hed Baeding oontral pro-
tlem wiallar to thcse
iz adv taxi,

Ween't too dafficule,
Wt L raquited woms
to etop at

Rover wum't %00 bad, al-
Whough hed 1o provide sced

desired beadirg. Very
littls wing %11t comrol
assd.

o beading
ta bold wikhin 15 dag.

1ing At desired heade
og. Jemad 1o b sam
lag {n the Tesponss
and o tises aimart
g0t Lt & PIO-type
situation,
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Toar,

“wraneterc

.
Hedw

ek

Pllot Cormanin

selection of
cortral Zenatbivisies

Mansuvering

Quick stope

Tusn- Ovar.a-Epot

Frocislzn fover,
vartical Laading,
Secondary Dymanjce

Overall Bualomkion

2uE

vl
ﬂr--] .0
HanL.'L
vw:e.b
e

7B

P-ME

0.284

L.5

[serestes to pet dumired
‘uro rata recroned.

Selagtad vz get denired
LI TRLe .

Had eoma alficulty atebilizing
tmnddng. Mekiing would teml e
oecillste trough Madrly largm
aoqQular ewricgs, 110 %o 15 dea,
duricg latertl mimecvers. fad to
Xoep rackl dnpaite ae Faell as
posnibla,

¥o reud pooblan. Cruld parfurm
both Interwllr end loogitucioally
wtbost Sffieslity, Ml to watrh
bmading » }ittle ducing the lat-
sral mandrars and correth for
oma hesding uation,

laterel quick atopa 410
prasst soneebat of &
Zroblem, had to vetah
hwding sloaly Rod kewp
corTecting 1t ar it tenc.
l to caolllate som,

Agadn 0o protles. Had to
corrmct for hesdisg
changes urdng latwal
moerTrs Yot pot edrf-
owlT.

Could turn cwer the arok
fatrly aetursaly aod
itop faizly vail. Kisd o
dAPfiouls b bold turn
rale; ratey would teed g
WLl] up and hen teper
off.

Zould burn groclesdy and
Map futrly mickly,
Prory sov sl thwg dm.
aloped s mall oteflls-
tion ut nob MSFloult,

Precision hover and vertid
oul landing proswmied w0
problem, Larms g in
Taading affacted sbility
o sratrol latwrslly,

Pratiazon hover and vertid
oAl landing o problem,
Taading control d1an't
Affret wbility to contral
othe dxtn.

Tha cscilListory charace
tariezie 1o aeading and
the Iag 17 rervonss ws
onlwcticnula.

Cuiecticaatla featuces -
ammll omalllatory tan-
Qawy in hmding.

Fym0u5

Fop it

#

=3,

Ewiwcted to get drairad
b vate for a given
emdal Inpat,

Istariidy paa into difficulties,
D't have mcugh aoThrol poser
2 amuTeerect the erfecte of X,
woan manervering latarslly; this
oned Lad ta ascillstions. Hed £
ba vary careful to kedh Lituling ns|
2lose o 3aT0 ma poselble becsaw
LF m yww wTor devsloped thare was
00 way to gat besding vack turdng
s

s aitaaticn duricg tbe
lataral qQuitk sbome mad
once got gk EoBe moder-
abe oucdllstion Saring
the lateral guick wiem.

dot AIPPAEIt, At & iow
tura reta oar atop yre-
alsals asd hold hesding
relutivaly wall, Wing
tilt ocatral uaad o &
sl axtent

Bo roblen wlth heading
Murirg bovar or laniina,
The lack of contzol power
1in hending coupled with
the I dmmping ffecksd
sbliity te aontrol rell
anfl Jateral posttion.

Tha Jeck of dirsctional
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APPENDIX C

SUMMARY OF CONTROI~POWER-USAGE DATA

Control-power-usage data, which generally consist of the control power
levels exceeded five percent of the time, are listed in this Appendix. For
some of the studies concerned with control-power limits, the percent times
that the control power command exceeded these limits are also presented.
Date are shown in this Appendix only for selected test cases, i.e., the
exceedance computations were not performed on all the cases congidered in

the UARL program.

The control-power-usage data tables also generally parallel the tables
in Appendices A and B. Control-moment data from the longitudinal and lateral
control studies are summarized in Tables C-I through C-VI as follows: C-I,
turbulence effects; C-II, control lags and delays; C-IIT, control-moment
limits; C-1IV, inter-axis motion coupling; C-V, independent thrust-vector
control; and C-VI, rate-command/attitude-hold control. Thrust-usage data
from the height control study are presented in Table C-VII. Results from
the studies of the interactive effects of height velocity damping and thrust-
to-weight ratio and thrust lags and delays are shown there. Control-moment-
usage data from the directional control studies are contained in the last
table, C-VIII,
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TABLE C-TI

PITCR, ROLL AND YAW CONTROI-MOMENT LEVELS EXCEEDED 5 DPERCENT
CF THE TIME FROM THE STUDY OF TURBUIENCE INTENSTTY

Vertical and Directional Parameters Listed in Table A-T
See End of Table for Fxplanatlicn of Notes

Cnssl i Flxed Dase Mhving Pase
- Stebility b -
Basic Terivativer leuce, | dut- Pliot A - Pilot B Piict B rad
vonf. | Mg Xy Wy Mg Gy +asls Mcf Lc5 Biy' W“g MC:: I';:ﬁ ay g N05 I"‘cs LC'S anh !\‘,_.')
—
__XM C.33 0,38 0,35 45 .35 1.3a L__'
IL M a.22 {0.38 000 15,58 0.57 ] 0.43
- 5.3 20,0517 j-i.2 A4 Aqa G.3h 0,49 3.59 Q.50 .30 o.hp
jifes TGS S oSk .58 jao.70 D.3F | 2.5C
TU 0.28 Lo.3c Jobn [o.07 Vo33t ou8 lo6 10.05 .28 oz Lo | 0.08
L HOY 0.26 | 0.22 {o.u3 5,31 1 0.35 |o.57 0.2 ic.23 0.k
J &M o.ho 0.5
T2 ™ .39 | 0.57
- 0.23 1-0.05§-1,7 {-4.2 =.4 195 0.45 0.58
anl Toi 2,62 10,78
I ~u c.27 ekl Jo,6% 19,15
| E How Q.74 10,30 § 1.01
[ i 0,58 .70 3kl N0 ¢.h3 2.67
T3 Y4 Q.46 [0.060 0.457 10,80 0.3k | o.eL
- .33 F0.05 |17 |-h2 3 B2 xQ5 o.lL 0,62 0.56 ©.87 0. 0.60
BOL YA o.73 |c.6s c.he {e.é1 .38 0,65
i T C.37 003 o6e 1008 | oue Vo5 boorn j9-9900.37 Jo.es |ouse | caor
HOV 0.43 10.30 |0.EG 1.3B [ 2,38 01,56 .48 [U.36 | 0L
M 0.0 Oy .39 5,50 0.29 0.h3
Ty ™ .39 j0.97 2,35 10,55 0.29 | C.lbs
0.33 |-0.20f-1.7 |-4.2 a4 X33 0.53 0.57 0.45 0.59 0.37 o.ha
BCS o8 0.£3 |0.72 0.5L ) 6.73 .30 2,53
[ ATl C.bh 0,26 J0.55 [0.101 0.35 [ 0.38 |0.56 { 0.11]0.20 |c.20 [0.ko | 9.07
. ! Hov 0.35 [0-18 |0.k0 ot | o.3e |o.6s 0.4o j0.78 [c.53
\ ™ 0.68 1,15 0.85 1.95 .97 1.17
™ w 2.79 [1.32 .50 Y2.01 056 1.1
- 1.8 |-C.2¢|-3.0 |-1.7 3.4 | xes ¢.89 1.93 o.89 1,07 0.9 1.07
B ¥es .07 $1.58 o9 [1.03 0.LE (1,15
U 0,73 [ 0.65 1108 o,z nop2 [0y a2 | o.13fe.76 0.8 fo.ol lo.os
HOv 0.83 | 0.5 |1.16 G.7T ] 0.35 10.50 0,83 [e.kr | 1.15
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TABLE C-I {Concluded)

Casel Fixad Base Moving Bare
L;&Si(: B:i:iiﬁtesg i:;:: Sob- Filol & - Filat B Flot B
cont Prgs 1Ky | Mg [ Mg | oy, =y | teesd Yo, b stw! e, | Yo |Te Stat My | ey lTeg saat fe,
i ™ ] L.og 1.6 0.50 1.18 1,07 1.24
% w 0,75 |1.37 0.6 1.35 [o.?h 1.36
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HoV .87 |o.sh b1,20 G.98 [0l5] 1.0 0.98 |o.k3f L.18
: XM § 0,87 1.05 .o 1.30 2.90 1.7
)13 M o.al-T_'u C.65} 1.30 0.58]1.06
i- 1.0 |~0.20[-1.1 [-P.5 3.0 xQs 0.97 1.05 0.99 1.32 0.567 1.01
JEE::& ¥as 1,37 [1.90 .80 1.39 0.62]1.11
I il 0.81 |0.68 [1.08 t0.061 0.95 {0.79] 1.32] 0.13] 0.8 [0.52 | Lok | 0.13
HOV e85 (0,38 {1,320 0.77 |0.37] 0.93 0.7 o2 107
*M 1.13 1.60 1.09 1.50
1k m 0,924 184 | 0.53
- 100 =020 0.1 [-2.5 5.3 | xes 1.31 1.13 1.30
ueE piste) 0.BA 6,72 | 1.39
n 1.00 [1.13] 1.63] 0,13} 0.90 [0.70{ 1.27 ] 0.05
HOV 1.31 fo.97 1,03 [0.5k] 1,20
*M 1.17 1.50 1.08 1.85
5 ™ i.21 | 1.87 ©.93f 1.58 1
- 1.0 |c.zol1.1 [-2.5 8.2 | ¥GS 1.57 2.20 1.18 1.70
BCE Tas 1.51 §2.00 1.2%
T 1.53 f1.07 §1.90 |v.18] 1.09 f1.21 0.12
HOV 1.21 [1.14 f2.90 1,19 f1.ob] 1.87
™ 0.57 1.28 0,94 1.17 1.0k 1,31
156 ¥M c.82 f1.35 0.97| 1.k1 Q.55 | 1.33
- 1.0 {-6.05 2.0 o 3.4 | ¥as 1.02 1.27 1.03 1.21 1.24 1.50
BC3 Y0 1.32 §1.80 0.80( 1.24 .5k 11,18
Y 0.91 jc.Bo 1,35 lo,ual 1,35 [0.83] 250 0.23) 0.98 jo.Es ] 108 0,00
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1. Wind simuletlor included mear wind, U = 10 kts. Mrust vector contrel availabla to trim longitudinsl
steady forces,

2 Symmatrical configurations - lateral derivative has same value ms corresponding longitudinal derivetive.

4. Key: XM, longitudinal maneuvering; YM. lateral mancuvering; XG5, lorgitudinal quick stop; YQS, lsierel quick
stop; TU, = 18C deg turn-over-a-apot; HOV, precision hover. :

L, s5im.: Simltanenus cuntrol moment usage, excesdance conputations performed on the funciion (IHCI + ILCI 1.
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TABLE C-IT

PITCH, ROLL AND YAW CONTROI-MCMENT LEVELS EXCEEDED 5 PERCENT
OF THE TIME FROM THE STUDY OF CONTROL SYSTEM LAGS AND DELAYS

Vertical and Directional Parameters Listed in Table A-I
See End of Table for Explanation of Notes

cazel ’ Fixed Base Moving Base
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cont. [ g | X Mg M | %% [ Taskd Mj T, ,smlf Yo, Mcs e, stm’ N, |¥e, | Ie, stalt
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LLS ™ 0,37 0.48
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BCS Q8 0.58 | 0.69
™ 0.37 | 0.4 0.57 | 0,02
Hov o.kofo.uc) o.56
W |o.29 0.33 ©.33 0.h2 0.1 c.39
116 ™ 0.20 | 0.37 0.32| 0,49 7 0.20 |0.41
- 0.33 |-0.20{-1.7l4.2h 060 | o lxgs |[o0.36 0.40 0.39 0.42 0.33 c.ho
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T |0.29]0.28 |o.52 |0.02 Jo.28)0.36]| .50 | 0.02 | 0.32] 0.26 | 0.45
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m  |0.73 0.85 0.88 0.9
L9 ™ 2.7 [1.27 0.6kl 1,10
- 1.0 |-c.20f-3.0]-1.7) 0.60 | © | ¥%gs 0.68 1.1k ©.B8 1.08
Ack Ygs 0.68 11.13 0.69) 1.17
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Hov  |o.66 | 0.01 |o.8e 0.821 0.38| L.09
™ [c.T3 1.03 0.93 1.15 a.82 1.11
L1k Y™ o.82 |1.09 . 0.52 | 1.07 0.62 [1.12
- 1,0 |o.zo|-1.1]-2.5) 030 | o [Xes  |0.96 1.27 0.90 1.0% C.73 1.07
BCE Q8 0.8k 11.19 .6k 1.16 0.56 |1.1%
TU [0.87]|0.55 [1.09 |o.07 [0.79]0.63| 112 | o.o7] .79 0.69 [1.25
HOV 0.65] 0.k {0.94 0,90 0.bgf 1.19 0.75 | .k [1.12
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TABIE C-IT (Conrcliuded)

casel Fixed Base Moving Hase
masic i::;iiizzesg ne | meray| sun- mct s Pllot B Plov:
conf. [WE | To [Ty TG | Tema | ded, | 0akd Moo | L, a1zt A ES it Bo [ Yo | Teg Sim? Mo
¥ 0.81 1.12
LL15 ™ 0.59 | 1.28
- 1.0 p0.2c L1.1-2.5¢ 9.60 o} x8 : 0.78 1.04
BC6 ¥Gs 0.58 | 1.20
U 0.96 jC.7TR11.37 | 0.08
HOV .94 jO.58 11,18
XM 0.34 0.48
1L 23 ™ 0.29 j0.47
- 2.33 |-G.20 |-1.7 |[-4.2] © 0.1 fXQS 0.35 o.ke
ECL YR8 0.53 (0.67
TU 0.29 {0.3k jo.52 | 0.12
HOV c.31 |0.35 |o.57
XM 0.33 0.41
N —
IL-24 M 0.25 10.48
- 0.33 [-0.20 |-1.7 |-h.2| 0.3 0.1 |xQs 0.33 0.39 T
ECL Y58 5.37 }0.56
Ty .25 |oet o || | 7
- HOV 5.29 Jo.19 ol
i G.59 1.24
TL-25 ™ 1.10 §1.£9 o
- 2.33-c.e0|-1.71-+.2{ 0.3,00.1,0 | a5 0.85 s LT 7
Bo1 YQs 1.14 1,34
hui ¢,68 G.09 1T
KoV 0.55 [0.95 |1.27

1. Wind simulation included meen wind, Up = 10 kts. Thrust vector control available to trim longlitudinal
steady forces.

2. Symmetrical configurations - lateral derivetive has same value as corresponding longitudinel derivative.

3. Key: XM, longitudinal maneuvering; YM, lateral meneuvering; X385, longitudinal quick stop; Y35, lateral quick
stop; T, = 180 deg turn-over-a-spot; KOV, precision hover.

4, Sim.: Simultanecus control moment usage, exceedance computations performed on the function (lMcl + ILcl T
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TABLE C-III

FERCENT TIME PITCH, ROLL AND YAW CONTROL-MOMENT
COMMANDS EXCEEDED INSTALTLED MOMENT LIMITS

Vertical and Directional Parameters Idsted in Table A-T
See End of Table for Ixplanetion of Notes
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TABLE C-IIT {Concluded)
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BCG . Y03 0.6} "0 2.4 ¢
‘ ¢ nzfe.bf o )
i HOY L ol o
M G 2 o}
gl ™ 0 ] T Q
- ! 1.0 {-0.2 {-1.if-2.5h.0f8 0000 o208 © o b} o] 5] 2 o
el ¢ o o o o) 2.3 o
HOV c.R) O o] a o
)
| ¥ [0 o]
s ! Y 0 5}
- 1.0 |-0.2 J-1.2]-2.5(1.257f0. 975 jo.821] © o (¥ o [d
BTH ¥Q3 3.010

LU e i ) o] o]

HW |2 QO o

X a6 2 [
wo? it o |0 o
- o,33l-0.05)-L. 7 -2 jo.39sbosvloaasa ] o) o lugs 1.5 o 2.1
BCL i 1G5 8.8] 0 0
i o.3{ca| e o |ae o
Hov 1.2] 1.1 o ok oz
XM M
M8 ™ 0
- Q.53 [0, 05 |~1.7] k.2 o, sazfo.boB o 1k | G 0.1 | Kes 0.6
0L ws 0
burt o |o
oy 0.1 |2

i, Wind simulation ineluded mean wind, Uy = 10 kts. Thrusi vector control availuble Lo trim longitudinal
steady forces.

2, Sympetrical configurations - Istcral derivative has game vslue as corresponding longitudinal derivative.
3. Key: XM, longitudinel maneuvering; Y¥, lateral maneuvering; XQS, longitudinael guick stop: ¥YQS, leterel quick
etop; T, 180 deg turn-over-a-spot; HOV, precision hover.

Percent time that comtanded moments exceeded instailed limit on simultanecus contyecl mownent usage,
g+ ICM).
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TABLE C-IV

PITCH, ROLL AND YAW CONTROL-MCOMENT LEVELS EXCEEDED 5 PERCENT
OF THE TIME FROM THE STUDY OF INTER-AXTIS MOTION CCUPLING

Vertical and Directional Parameters Listed in Table A-~T

1

Crse Fotl nn
- Jtability Coupling tixed Base Moving Base
Basic Jerivatives® Paremeters Sub- FPilot A Pllot B Pilot B
cont, g xﬂ My | Mg [ty |Tq e |6 Mo | Task? Mo lo, 5% [ Hoy Moy |Log 51nc=.hiz\1¢E DA N BT
| ey 0.4 0.67 0.36 0,43
ss] i ™ .39 | 0,68 .24 0,49
- 0.331-0.05}-2.7|4.2: 2|2 [+) C [xgs 0.43 D64 .48 C.39
BT1 :‘ {5 ‘ 0,56 | 1.03 0,35 [0.78
| ™ .41 Jo.36 [ CE6 10,7629 [ 0,30 |o.bL
HOV 0.5 |o.b1 | G.86 0.37 [0.13 oy
! ™ C.61 0.88
k2 i ™ c.54 | 0,98
- 0,33[-0.05|=1.7|-k.2| 4 |-k a o |xgs 0,31 1.2%
BCL Qs 0.91 | 1.57
TU 0.57 |0.47 § 0.87 [c.15
HOY .68 JobT il !
b N [P 0.58 0.29 0.64 0,3k u.ke
1ch M o.bo [a.56 .38 | 0.5% 0.2% 10.45
- 0.33|-0.05]-1.7|-4%.2} @ | o] 2.50 | -0.50fXqE  O.58 0.79 okt 0.66 0.36 a,L2
BC1 o5 .70 |1.00 0.65 .31 0.5k

TU |0.36 p0.40 {0.58 ) 011 (028 [ 0.30 ) 0.47 (0.23{ 0,27 [0.2% jo.38

Hov |0.37 |0.29 |0.51 ©.37 [ 0.3 [ 0.85 0,29 {0.18 |0.38
W 10,37 0,47 0,43 0.57 0.35 0.48
LCS ™ 0,37 [0.66 0.39 | 0.69 0.33 [0.53
- 0.33|-0.05[-1.7]-4.2| 2 | -2} 0.25 | -0.25]X@8 [0.53 0.70 249 0.72 047 o.f2
BCL 8 0.72 |1.23 o.63|1.10 0.33 fo.51

U j0.32 |0.33 j0.53 | 0.0¢6 |0 ko | 0.39 ] 0.65 [0.17|0.29 [0.2h |o.L2 | 0,08

BV [0.39 | 0.29 |o.54 0.53 §0.39 | 0.78 ©.35 | 0.19 Jo.u6
XM 0.87 1.08
3 ™ 0,71 1.28
- 1.0 j-0,05[-2.5[-0.5] 2 | 2| -0.25 0.25 [¥GS 0.85 1.09
BC2 ¥as 0.76 (1.3
bl 0.90 |66 ] 1.34 |o.1T
Hov 0.77 {0.b7[1.03

1. Wind gimulation included mean wind, Uy = 10 kts. Thrust vector control savellable to frim longitudinal
steady forces.

2, Symmetrical cenfigurations - lateral derivative has game value as corresponding longitudinal derivative.

3. Key: ¥M, longitudinel maneuvering; YM, lateral maneuvering; XG5S, longitudinal quick stop; YQS, loterel culck
stop; T, * 180 deg turn-over-a-spot; HOV, precision hover.

4. 3im.: Simultanecus control momeat usage, exceedance computations performed on the function (FMQI + ILcl T
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TABLE C-V

PTTICH CONTROIL-MOMENT AND THRUST-VECTOR-ANGLE LEVELS EXCEEDED 5 PERCENT
OF THE TIME FROM THE STUDY OF INDEPENDENT THRUST-VECTOR CONTROL

Vertical and Directional Parameters Listed in Table A-T

Thrust-
Casel Sability gz:::;l Flxed Basge Moving Base
- Derjvatives Peraw. Pilot A Pilot B Pilot B
Beslc Suk-
cont. | e %, M, Mg pb % 2 Vipg | Task3 MCL ™ e, ™ Mo, v
il 3.33 0,29 0.25
L1l X08 0.29 .34 ©.33
- 0.33 -0,08 ~1.7 4,2 5 - - T 5.27 2.77 0.31 7.86 0.21 2.00
BCL HOV 0.29 ¢, 30 0.25
k XM 0.32 c.28
LI3 b 0.33 o.27
- 0.33 -0.05 -1.7 -b.2 20 - - Tu 0.22 5.50 0.24 2.50
BC1 HOV G.29 .27
XM 0.93 0.93 a.30
116 ¥Q8 0.88 0.89 c.86
- 1.0 -0.20 -3 -1.7 20 - - T 0.79 5.15 0.61 10.6 0.67 L.zo
Bol HOV 0.72 0.75 oL68
XM Q.38
LT12 *Qs 0.39
- 2.33 -0,05 -1.7 4.2 - 5 1 ] G.2G 20.6
BC1 HOV 0.32
1. Standard wind simaletion oy, = Oy, = 3.4 ft/sec, Uy = 10 kts.
2, Symmetrical Configurations - lateral derivative hes seme value as corresponding longitudinal derivative,
3. Key: XM, longitudinel wansuvering; XG5, longitudinal gquick stop; TU,*18C deg turn-over-m=-spot; HOV, precision hover.

4, Themb switeh thrust vector angle contrel, conventional attitude centrol.

\n

. Contrgl stick thrust vector control, thumb switch attitude control.
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TABLE C-VI

PINCH, ROLL ANWD YAW CONTROL-~-MOMENT LEVELS EXCEEDED 5 PERCENT OF
THE TIME FROM THE STULY OF RATE-COMMAND/ATTITUDE~HOLD CONTROL

Vertical and Directional Farameters Listed in Tablse A-T
See Fnd of Table for Explanation of Notes

oT irarn.ma. T (
i fer H |
Soz J Second— :
. ghabiiiiy (rder Fixesi Rege HNowlay Base __J
Feeiae lerivatives Iynamics S)ubﬂq Filot A E_lot B 7 il N :
Y . [y * . Taak- il - ; aimbti N a, [ ) !
nonf. Mg 1%y My tg | s wn | Task Mc‘i L,,S . 'h'c.; MCE Icf b ) e .'ICE i “Iij
¥ 5,58 2.65 i :
s N
&1 ™ . 5.58 10,30 i J'
i '
- .35 0,05 | -2 |8 10035 | 2.8 | xgd L | 0.83 .98 | J
. —
el e G.75 .01 | ]
- £ .T ! 1
. .54 bohs Lours 1010 ] j
N T H
HAV .62 {oa0 1 0u8h 1
M GLER 0,8k 0,30 .39 4}
'
R ayer . t
PRl L‘;:M E (ST ROIE BT | oUhe i
- 0.33 ] 005 -2 g-un 018 63 2GR .97 3,08 . 0L
1
M} ¥as 0.7k 11,17 ¢.ef loks :
) i i
™ 057 10, a7 | 0B ICIT 0.0k T 03k 30 by |
HY GesyoeBiaor D.TT 0.2 Gann
3
™ .45 .95 : ‘;
- 4
LE3 M L Guk2 0,72 !
- o297 -coes -l -8 Joa.7r 2.8 1 gD 0.5 .82
+ ST
ol Y55 GLEG ] 1,00 !
) c.37loas | o.es (o3 J
W . | o fouT [ ,
—
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TABLE C-VI {Centinued)

[ ATRNE . P
R | Tor }
Cuge™ Seaond — {
- Btenility Graer Fixed Baae Moving Base |
Basin Cerivetivas Dynamics | Sub- Pilot A Pilot B Pilgy 2
fant. Mg | X, Mo g | D Tw | Mesie [ Te | 3im. | 5. N ET Y A ENRL T Simas| N,
o K & ' SR 5 S T .
M a.44 0.58
;
LRY ™ 0.u2 | 0,60
- C.33 ] -0.0% | -6 §1-12 [0.87 | 3,44 Xe3 .43 0,60
BC1 ¥Q3 .81 11,02
TU 0.35 0.8z | 0055 | oue
Hov AN ReRS N NeN &)
W4 0.48 0,62 0.2k 037
LR M CLub | 0.69 0.28 fo.bp
- G.337 .08 |2 d-ho {ouuT f6oap] xgs 0.5G 0.55 C.25 5,38
BCL Tos .56 | C.77 0,20 ] 0
T ouab pnuas Josl {oadlo2r o2k o039
; HOV G.43 (238 1 060 7,291 0,20 L O.LG
i e o2y 6.35
|
LRE i } ™ .23 1 0.0
- o %I -0.08 ] -1g] So |- ¥a8 1Lk
Bel 1 iy cut | 0.5g
! T
| Tu c.ze | et 0,39 | 059 f
' :
b ‘ HOV 5,27 {o01e | oe.sr ]




TABIE C-VI (Concluded)

Params. T
for
Casel
Second— Fixed Base Moving Base
steoillty Order Filot A Filot B Pllot B
Paric Derivetives Dymemica | Sub-1 n - T
Jenf, ¥, X ¥, o [} Tesk? | Mg | Do |Sim.| W L sim! {m, VM Lo |8imtlw
o ué a pfafte |- % | bes o5 | Mog | Leg ST B
M 1.40 1.93
1R10 ™ 1,06] 1.60
- 1.0 |-0.20 ]| 2 -85 | 0.20] 5| xg8 1,37 1.90
RBCh es 1.03] 1.67
it 1.03; 1.01 L.61 |0.14
HOW 1.19) 0.83] 1.75
B 1.13 1.50 c.53% 1.6G
LR11 ™ cooo| 183 0,53 {1.13
- 1.0 =020 -4 | -16 | o.6c] 4 | xeE 1.15 1.49 0.82 1.02
Bk Y35 2,991 1.73 0,8 [1.08
™ C.BE9 0.79) 1.27 f0,19 062 [ 0.6h [1.09
HOVY 1.1E1 D.A4) 1.65 0.607 ©.29 [D.E2
t
WM 1.24 1.5% 0.80 203
Rl ¥M 0.92] 1.76 0.07 107
- 1o Yool -6 -2E b 0LAL) S5 F LS 1,05 1.28 0,75 0,90
BCh Yos 0,714 1.22 2,59 [1.13
Ti! .84 ¢.82) 137 {01 a.kal 0068 {102
Hov 1.0} ¢.69| 1.53 S.6T7 .30 [0
1. Wind simulation ineludsd mean wind, Uy = 10 kts. Thrust vector control availabls to trim longitudinal

stendy forces.
2. Symmetricsl configurations - lsteral derivatave has same velue as corrvesponding Jongitudinsl derivative,

3. Key: XM, lengitudinel maneuverlng; Yh, letersl maneuverinw: XQP, longituainal quick stop: 737, lateral guick .
cheop; TL* 180 deg furn-over-sa-snot; FOY, precisicn hover. SRR

toootimy Dlmultanecus ecnfrol rement ugage, excaedance computatlons perfnrmed on the Ponetlon (14,0 + 'L 1.




TARLE C-VII

PILOT COMMARDED AND TOTAL TIRUET USAGE RESULTS FROM HEIGHT CONTROL STUDY

Longitudinal, Iateral and Tirectional Parameters Iisted in Table A-I

See End of Table for Fxplanation of Notes

(a) Pive-Percent Exceedance Levels for Pltching Mement, Mﬁ5, and Incremental
Thrust Increase Ievels, (T/W’-l}5
case] . Fized pasc
N Filot & Pliot B
rasic Lereneters 1ag, Telny, Sub_3 " (T/W-1§5 for: " (T,v"h‘-l)s for:
tont. Ty = ™5 ™ &, beax K TN l Tye b2 P g s v | oA
™ 0,36 5,007 0,010 0.3 0.G23 0,22
T 0.0 c.0o%k 0,085 J.024
220 0,125 ozs | 1.1e s o XG3 0.36 0.009 ¢.D20 5,37 0,019 502k
BCL TR 0,034 c.035 0,034 C.034
HOV 0,30 Q.010 0,016 0,36 c,o17 ¢.023
L5 0.29 0.052 0.062 0.34 0.0k 0,033
bl 0.3% 0.03L 0.023 0.39 0.057 0.057
™ 0.055 0,057 C.04E 0,045
221 a 0.2 1o o s Qs Q.47 0.030 ©.029 0,37 0.026 0.029
il Yos 0,069 0,043 0,047 0,034
HOV 0,29 0,029 0,035 .33 0,014 0,023
14 0.69 0.067 .32 0,061 0.067
XM 0,36 o.024 0.018
M 0.057 0.054
@?,22 6,25 9 1.10 o o X3S o.47 0.0L7 0,047
BC1 ¥as 0,050 0,048
HOV 0,30 0.022 c.021
LS 0.30 0.070 0.060
Fi 0,37 0,008 0,006
¥ 0,015 0.007
23 1 oes | .02 | 120 | 0 o X | o.46 007 0,008
a1 Y48 0,026 0.018
HOV c.3c 0.009 0,009
15 0.3C 5,030 0,052
XM 0,39 0.042 0.0k2
M 6.123 0.116
}_12.1 o o 5115 g 0 xQ3 0.32 0.082 2.695
BC1 ¥Gs 0,108 ©.208
HOV 0,26 0,088 0,080
18 0,34 0.122 0,121
ot} C.34 0.00% 0,017
¥ 2,035 C.010
13 oon e | s1a1s o o XQS C.39 0.006 0.010
el ¥ 0.054 0,015
HOV .29 0.008 ¢.008
18 0,26 0.028 0.045

151



TABLE C-VII {Continued)

Casel Fixed pmse
- i Filot 4 Pilot B
Fasic Papensters 1ag, Delay, Sub—3 f_'.l‘,/w-l)ls for: (T/W- 1 g for:
ot g, 2"""s /% Tn &y et Mﬁ; Zigbethay V| 24, s MGS N PR s de
XM ' 1.027 0,059 0.091
o 0.13¢ 0.133
725 a o +1.15 5 5 X8 c.88 0,167 0,367
BCh s 0,137 G.133
HOV .75 0,098 0.0G8
18 .83 G.164 0,158
X a, 82 0,325 oot 0,85 G.029 C.O45
VM 0,028 0,029 0,021 [Tl
'r_izeé ~0.185 | cou125 | v1.1s o N X68 Q.98 3,015 0,015 0, Of 0,010 0,009
S0k Y35 0, 0l3 0,039 0,080 0,084
HW O.? O,034% 7,030 0,57 0,007 0,023
Iz . B4 G070 0.063 G.B7 U.G34 0,003
KM c.85 0,08%
E M 017 0.033 -
1::?,2 _a.os -0,25 1>1.15 a o Xa3 0,8k 0,00 0.03kL
oY YOS 0.016 0,038
1av O.f2 0,008 0,075 —
8 LT G016 0,079 ) ]
X3 2,30 .035 CL0hS
™
=2 20.125 ) o-oesy 110 |oca 0 R o-37 °.633
anl Y63 3,026
' ROV —-7-‘1 .30 6,023
1 _ e
; ! Lo .29 | CLCHE




TABLE C-VII (Concluded )

(b) Pive-Percent Exceedance Levels for Pitching Moment, My_, and Percent Time
Commanded T/W of Pilot and SAS Exceeds Installed T/W

C&sel Fixed Baase
” Pllot, A Pilot B
?Zixi‘c Pa.m:.up:ivat:m:-raE Iag, Delay, i‘:‘:;a PTL f‘cr PTL for PTL for PTL for
T, B, T T dy, Mg Loy dothuy ¥ | 25, dc Mo 24y b ug ¥ | Tp o e
et 0.36 19.0 27.0
™ 3g.0 65.0
t:zé 0,125 | -0.125 L2 a o p) a,L8 21.0 30.0
821 YOR 1.0 60,0
. 1oV 0.32 10.0 TR
& 0.3h 32.0 60,0
o 0,53 5.0 0.0 .
™ 3.0 2.0
10 025 0,25 Los 0 s A 0.39 0.0 2.¢c
BO1 ws 23,0 29.¢
HOv .29 2.0 1.c
i3 .28 17.0 16,0
™ Al 0.0 0.0
™ — c.C 0.0
25317 ~0.25 -0.25 1,05 5 o e 4% 0.0 b
Bl Yo 0.0 0,6
KOV ¢.36 0.0 n.0
13 0.3z 3.0 4.0
M 0.39 16.0 16.0 B
el C.0 0.0
- _
R ~0.125 | -0z L.08 | 0.3 0 xag | 0.43 0.0 0. a
ECL YOS 7.0 0.0
HOV 0.3k 0,6 0.0
15 C.3h 2.0 4.0

- Wind simulation dncluded mean wind, Uy, - )0 &bs. Thrust veetor control available to trim longitudinal
sieady Forces.

2. TGymnetricsl Jonfigurations - lateral derivative hes same velue as corresponding longitudinal derivetive,

3. Xey: Y, lorgitidinsl maneuvering; ¥, letorai mansuvering; X33, longiludipal quick steoo; Y95, lateral mquick
stov; L3, lending saquence; R0V, precision hover.
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TABLE C-VIII

YAW, PITCH AND ROILL CONTROL-MOMENT RESULTS
FRGM THE DIRECTIONAL CONTROL STUDY

Longitudinal, Iateral and Vertical Parameters Listed in Table A-T

See End of Table for Explenation of Notes

{a) Five-Percent Exceedance Control-Moment Levels

cagal Lirecticnal Fixefl Taze Moving Base
R 1];:; :::ter s Pilot A 7ot 3 ot s
Cont, BN o, |t st | N, Mo, |, St He, [ Mo [ e, Sim? e,
B e 0.bo 0.50
Il ™ 0.26 | 0.43
- ouos f o | W] n | xas 0.k3 0.51
BCL Yo c.27|o.kg
i) 0.30] 0.25 (0.4 | ©.1k
HOV 0.35] 0.18{ ¢.ko
Xl 0.39 0.52 0,52 0.57 .38 0.47
02 i 0.29] 0,56 0.38] 0.58 0.26 ] G.LB
- 0,205 [ -0.5] UL] O a | xQ8 0.46 0.55 0.k8 0.5¢ 0,38 a.u6
B YGs .46 0.67 0.37{ 0.61 0.30| 0.56
U 0.2¢1 9.29] 0.56 | 0,13] 0.31{ 0.33] 0.9 | 0.2k | 0.28) 0.22]| 0.39 | 0.1
HOV 0.35] 0,22] 0.45 0.381 0.38] 0.6k 0.37] 0.23] 0.50
x | 0.33 ok 0.40 a.56 0.46 0.55
o7 ™ ‘ 0.29| 0.4l 0.4 0.68 0.3 ] c.62
- 0.005 | -0.5) vnle.3l 9 | xas 0.30 0.kl 0.k 0.5¢ Q.6 0.58
BC1 ¥gs 0.38] 0.57 0.4k} o.62 0.32] 0,63
TU | 0.29) 0.29] 0.b3 [0.15 | 0.33| ©.37{ 0.59] 0.12 | 0.35] 0.27| 0.49 | £.17
HOV 0.26] 0.18| 0,39 0.38]0.33} 0.58 0.k0| 0.25] 0.62
™ c.lig 0.63
ois} ™ 0.314 0.64
- 0,005 | -0.5] uL| .3] 0.1] xes 0.ko 0.53
BCOL ¥qs c.29| 0.59
Ty 0.30) 0.24 | 0.45 | 2.16
HOV 0.39( 0.24{ 0.56
x4 0,43 0.55
D13 ™ c.28] 0.59
- 0.005 | -1 [ uL]o.3] o | xgs 0.39 0.53
BC1 ¥gs 0.29} 0.56
TU 0.35| 0.26|0.40 | 0.16
HOv 0.39] 0.27] 0.55
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TABLE C-VIII (Concluded)

(a) Pive-FPercent Exceedance Control-Moment Levels

cazal
CaGe
Birestional Fixed Zase Moving Baaze
- . . Paramecers
. L, Varied Sub- Pilot A Pllot B Pitot B
Cart, W, (oo ] 751 a5 1 Tesk? L 5 b
v [Hen Me {L Sim. | N L Sim. | N M, L sim! [ N
, o 5 | % o M [Ty S0 %% ‘5
¥H 0.z 0,56
D1k ¥M 0.284 0,50
- 0.00% | ~1 UL| 6.6] 0 xQs 0,42 B.87
3C1 Qs 0.30] 0.61
w 0.35] 0.25| o.bL | o7
HOV a.39| c.2e o.sez'
(b) Maps Lc=5 and Percent Time Yaw Control-Moment Command Exceeded
Ingtelléd Limit, PNL
-"a.sel Directional
0 irectional Fixed Base Movlng Base
- Nv Faremeters
Bagsle® Varied Sﬂb'ﬂ Plot & Pilot B Filct B
onf. D s Blw! [Py, [Meg Leg | 5te% [Bp [ Mog | Tes atat [rg
3 0.0 C.5C
D20 ™ C.o8 | 0,4
- -1 {010 |0 |0 | xes 0.38 .48
P vGE 2.3010.53
hui} 0.30] 0.22] o.be 13,20
HOV 6,38 o.26 | 0.5k
™M |0.39 0.36 0.45 0.3¢ 2,38 c,u7
D21 M 0.28 | ¢.L8 0.3k4 0.27 | C.8
- -1 feaz jo | o |vas |e.so 0.49 £.35 0,38
BCL YGs o.z2f c.lo C.33) 0.55
(o0 o.Es o7 F o750 0,33 0,31 1.00 | 0,287 0.26] 3,39 | E.70
Hov |o.32|o.22 fo.t7 0,39 0,367 0.25 | 0.50
4l Rl 0,55
D22 ¥H 2,281 a.s50
- jeas {0 | o A 0.L7 o.58
EC1 Y08 G.29 ) 0,57
L 4
™ [SCHY IO IR T B
i 10% 1 0.39] o2 | n.ss

1, Wind simlstlon inaluded mean wind, Uy = 10 kis. Thrust vector conmtrol available to trim longitudinel
steady forces.

2. Symsetrienl configuretions - lateral derivative hss same walue ne corrasponding lopgitudinal deriwative,

3. Koy M, lorgitucdinal meneuvering; , loteral manewvering; XQG, longitudinal quick stop; Y45, lateral quick
acor; TU, =180 deg turn-over-a-anoty KOV, precicion hever.

4, S8im.: Simultenecus contrel moment usage, exceedance vompukaticne performed on the functien (M) + \].c\ 1.
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AFFENDTX D

SUMMARY OF FPLYING QUATITIES DATA AND
PILOT COMMENTS FROM CALSPAN PILOT EVALUATIONS

Flying qualities data (pilct ratings and pilot-selected control sensi-
tivities) for the flight simmlator evalustions with Calspan pilet R =sre
summerized in Table D-T. Another Calspan pilot participated briefly in
the USRD program but 4dd oot pertorm flying qualities Investigatione.
Celspan pilot B evaluated both laterzl and lengitudinal control fest cases
and height control cases, Turlulence efferts, control lags and delays and
contrel-moment limite were evaluated in the longitudinal and lateral control
investigation (Table D-I{a)). The interactive effects of height wvelocity
damping and thrust-to-weight rstio were evaluated in the height control
study (Table D-I{b}).

Bdited pilet commentg from the Calspan pileol B evaluations are summar-
ived in Table D-JI. Comments for the longitudinal and lateral control tesh
cages are shown in Table D-II{a) and those for the haight control test cases
are contained in D-IT(b).
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TABLE D~ II
PILOT COMMENTS FROM CALSFAN PILCT EVALUATICNS

(a) Iongitudinal and Lateral Conbrol

Case CLI EC1 !-Tgm = 1T Loy = un Ncm = 1L = g T B M, - Q7 1‘56- s 0L, RRG FR = £
Jondrel sensitivities - I did got adequate roll contral; however, the conrimuratinn ic sucn that it's difficult to
step it whers you wanbh, so you have bo antieipate suite a hit, Adjusted sonsitivities to give enouph gquickness of
respense 50 [ would attemct to stop without haviag to anticipate gs mmch, Then there was o tendency Lo oseillate
a0 I Finally compromised asd accepted the sensitiviiies that I have sow, Afr btexl ercund the square - It's very
difficult to remzin over the spot on *he ground, rrimarily becsure I'm behind the airplane or I'm cverconirolling
in attempting to meintuir a position., It does seem that pitch response end bank angle response are guite good hat
the aircersft response in translation is very sluggish in both directisns, voth in trying o get it started anc in
stopping it., Oree you geu it started it's quite difficult to sbor it with any preecision at all, You approxinate
the tagk and that's abount all ynou can do. There is a low level of przcision bere, If I concentrate very hard I
con umally stsy within the 10-Tt scuure, Helding heading iz no problem. There i® some change in altitede, hut
not very much ~- maybe 7 or 5 ft., Guick stope - Don't really have any precision, yon just hava to maxe some
rretiy large inputs. T mAannpgzd to do it A eouple of times fairly well, but it wae strletly s hit-or-miss propoci-
tion. Turning over a spol ~ That's = problem; the big dif7iculty is tc stay within *10 to 20 1 of the center of
the square, lJover - The ability to maintain precision hover is quite pocr as fer as attitude and armuiar rates

are ccnuverned; however, it’s not bad, As wsual, have quite a bit of trouble laterally, Seems that I'm sliding
back and ferth sll the time, The motion storte quite subtly, bub omee it ssartes it is diffienlt to stop, OversIl
evalua*icn - The majeor objeciicnable featwres are the sluggishress in response and control of the displasements,
Faverable features include the fact that heigh® contrnl ic pretiy good, heeding ecntrol is no problem and there ara
really no oecillatory terdeneies &t &ll in any direction,

fase QL2 BAZ  HMop = UL Loy = UL Moy = UL oy =ow, = O Mg, = 0.380 Ly, = ©.300 IR 7
Case C13 B2 Mo = UL Lgy = DD Hep = UL oy, =ow, = L7 Mg, = 0,380 I, = 0320 -y

With turbulones {213) I would say, tor all practicsl purposes, that the alroralt is unfiyable, T con maybe zeep
it in the sk bubk the arcurcions are very large ard I get the feeling I really don't have much vontrol cver the
airerait., 1 didn'% eet a chance to dc anything in the way of maeavering, AlL [ was trying to do was to hover
over a spct, and T wacn't able to deo that, So T tried verious pains on the oyelic heth in plteh and rell aond just
didn™t feel it was very gmeod, @ think it Dmproved some waen I wenbt up to higher sensitivities, hut not suffi-
asiently thet I would accept the airplane, This cut down the level or magnitude of the excursicng, uah T still
didn't think it waz a flyshle ur aceeptahle airplane and [ couldn't do the taskx. 2o then T Tlew it without turbu-
lence (012}, #itheut the turbulence I was able to do the manevvers to some cxtent., T jebk the impression that,
cven without furbuience, thers are sun: external disturbasnees. These mey be inadvertently pilot-induced., Cer-
teinly it's ¢ tremendous difference between turbulence in and turbnlence out, With turtulence [CL3) T would have
to reject the configuration corpletely because at some point you prebahly will lose it, espeeially if the turbu-
lenee were auy Figher. HNow, in smooth air, it did seem there was some lag in response Lo control irputs, abont
2]l axes, in sapitc of the “act that the height control is pretty good. I'd kave to move the collective only s
mgrber of times. T think 1 was able to initlate the motion alright but precision of stabilizing velocities, cte.,
wasn't very good at all, I don't think my hover capalllity was real posd awltkowsh T 4id manage to make some turns
in both directions and most of the time zfayed within the square. There seems to he quite a bit of chanre in atti-
tude, ritch primorily, Tried some guick stops, The alrplane responds slugoishly: there seems to be a Tuir amount
ct lead required to either stop lateral motions or longitvdinal metions, Tn turning over o spot, re real prchlems
stopping on a heading. There is apperently no crass-compling betweer: the rudder and the ayelic, Frobably would
have been stle to land this, at least in smoccth a'r, In rerard to secondary dynamiss, in the higher rate
maneuvers there was sore cross-coupling. The major o ctionable feature was the lack of precision with which T
can iniftintec and stabilize velocity ang position over the surface, 7T d4id manarze to do come 300's Caivly rool in
never, bt that's about the only thing I was eble to dc feirly well,

Case UTh 303 Mo, = UL Loy = UL Ney = UL ey, = ayg = 0 Mge = C.320 Liy = 0.365 TR o= M
Gase €15 B3 Mo = UL Loy = UL Foy - UL Oy, = oy, = 1.7 (5o = 04320 Ly, = 0,300 SCOE I

Tried if with turbtmlence (C1S) and found it cenpletely unaceepteble, probably & 10 rating. T [lew 1t for a couple
of mim:tes. In smooth air (CLH) T tried guite a few pearings and I thousht that might help but it didn's, It
leoks like lightly damped rell modes end I'm not sure apbout piteh. There were times where it almoct felt like the
airplene wanted tc go on its own, buk in any case didn‘t have precision of control, I had more troukle in roll
than in pitch., Faneuvers not very successful, Regardiess of control sensitivities, I never really felt 1 had
gocid lateral contrel, T didn't have nearly as much trouble in pitch as in roll, Kot eble to establish any decent
bank amgle; very easy to overcentrol. T didn't like it, couldn't really stop or hover precisely, Mot really ahle
to stay within ground track limite. RQuick stops - Not really very good at all; I tried some but seems like the
airplane wents %o take off, especially in the lateral quick stops, Turning over a spot - Tidn't lock real Lad,

Tt does seenm that, cnce you get the airplane under reasonahle control and get everything steadlisd out reasonably
well, it can oe held reasonably well,
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TABLE D-II{a) (Continued)

B L, b Mg, - VL Ty, = Ty = 0 Mhe = De321 La, - 4365 a3
B Mo - UL Lo, = Wi Hg,, = UL My, = &y, = LT Mae = G321 Ly, = 0.363 FR o= bG

ot

[k woi nquite i bit more effort 4o try Lo dao the bask in turtulence (CLY) but T was able to do that and oven hover,
say, fair., 1 could even keep within the 7-T4 sguare, Lot of control activity in the turtuience, however. Thoe
confiruration does seem to hove ressonable stabllity and Samping and the responszs to control inputs appear to be
reasoratle with the partimular gearings 7 cohose, In smeoth sir the response to control inpute was fair. It doos
chill seen tha’ thaye are 2ome lags n the initial responscs to control ingits. I ales did w leir amount of
height cortrol power irputs. T was able fc establish displacements and velocinier with resscnable precizfor in
mocekh atr. llovering capability was reasonadly peod. Could do the turne over s spot reaseonably well., 1 raally
Acii't sne anybhil strengly oblectlionsbde; the hipggest thing prcbably are some lags in responge to conkrol inpuks,
Lt Lhey ar: not really fe bad. Could do it feirly well., Have sore fficulty with bank angie, bnbk it's probaoly
ne. 8o in smocth aiy [ would say the aircraft was ypretty rood, T think performance in smouth alr wasz 1
tory vithoub improvemend, Ln uobulence the work evel certainly goer up guite a Lit and mayhe this
ratter of proficiancy, 1n turbulence the pilot compensation and worklead are really fairly hich.

Bl Loy = b Hoy = UL = oy, = 0 Mg, -~ 0,370 Lig, = 04343 THO3
BoS Loy = W Me = UL = o, = L7 Mg o 0.386 Ly, - 0.ho2 PR = %

Flew this in smooth air firs®t (CLY) and un cxeellent confipuration.  The only thing 1
noticed was » tendency to beihle the airplene o little in piteh, Whetnor there iz lightly dampe-d plieh oscilla-
Liem bere T don't now. oould have just baen elosed-leop, Hoticed this particulsrly when I tried Lo 1make 3
Zgirly rapid atiltude charge. fThe control sensitivities seemed to be adequate in smootk eir., I then flew short
d I'elt the naed *c inerease the control sersitivity to ne zhle tc offset some of the
jucta. ot really M was bobser; without the higher sensitivity it seomed that T just Aidn't have ouffi-
cient contwol to keep the alreraf’t oxeursions mall eaough, n the other hand, with the bigher gesrince 1t did
sem that |'opot into mere Blegh-{rrgqueney FIC's. Wasn't sure which to take, but it did seem that this pearinec f
in turtulence (0I0) g betler siulted for rrecision cordirel in deine the kover, The Tollowins comments are
o control input ceemsd ho Lo yeoagonable, sltbonph thers woveo times when © felh it wos o
Zittle slumsd el poom to e avde to stop: the thing witheut nezdimg o lob of lesd, ie the damping
ir pretty peod,  The cortrollatiiity eof position and vzlooity seecrsd resgonable,  Could bowver very well. Could do
turne over ooopoh verv well.  Very rarely went ovutzide the 7=t sevare.  Junld 3o the quick cbops quife well
althourk 1t J1d seem thal | vaaldn’t renlly renerahe Righ encowesn veleoceitiicn with the control power ~ hud, 1In
clher woprds, JTor > quick stop [ would have expeched te goet A Little hivher ap2ed coing and make it mach qudcker,
qut this may e a funetion of the searine © chese oy 1t may 2urt be o Tunctien of 4re dymamics of the airersfi.

I any evert, 1 wna atle to Do a of the vasks with what 1 considered te be pretby good orecision.  The anly
ponstble objectionah.le fratore iz that the response, weybe init?al responae, te control lnpubs could be s little
slow and posaibldy cuntrol pover maybe war a 1ittle lew, This mey he my Tault, scine with the cesring 1 had, |
donthoprzlly ece that there i anything objecticnnble about 2+, Tn rmoeoth 2ir I certainly weulc rebe it ratis-
ivle delliciencics or sone mildly unpleacant
o oa b1t of trouble, The performance in turbwlence cerdainly was oot whal
Tane would o inte the deficiency-varrant-imerovement cstesory.

vima in turbulenes {C
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qaare - Responsz to control ingute geered B 1ittle slugeish ebout 21l ax
Jillee and helddlerired velsocities, Howersr, with tacze peariavs the rales were generally rather o
Yeirdly larse fapots, but 1o Pele comlortable with it,  Jome lag in initdation of ibe menicn. Wars akls
wobion rather ropidly bul it 23 take tairly large atbitude chanpes to do [t Could actualiy overcontrel auiic @
Lit end 56111 heo uplo %o whop the motion pretiy cluse te where T wanbed it. Wes able to come G0 a hover ai Hhe
corners fairly well, Abtlitwida changer requiroed were Tairly lerge, but meinly becavas T world wait gurte awhile
b Ii. ApilTty o remain within ground track wes profty road. Wae able tc 074 hewding
ections were Jery often o the Tairly larme side. Abislty 4o “ald Leading warn’t bad ot =11,
vore Peirly laree~, Turn over a spst - T thowht ny pe YMENCE WRf Very gocd an inp Ao making
3 heirht coptrsl was po particoniar problem.  Coald indtiate ard maintain the tern rate. It

welorn U owould try

well,  (ontrol i
Suntrol moti

£Eom atrieh ~enanical; you ousk the yadder in a certoain crmeant, = Wing ~f yau rebe and
thet's 1t, Yow esan vracticelly take your foot 17 the radder and it will just fhere, zpd when you pen within

Yoor 10 4 cf” where vou want to stop, Just pat in the cpposite radder, Pooan't sesm to he zny werbioular
frcuble as T ecar siop at w neeselreled heading very well, Nu wing tilt control wsed. Certainly ¥ couldd echablish

well, Conbrel was custe Tor vertizel Zanding, I wowld probably say Lhe mouat objectionable feature
war that the olrcval't wasr't wvery resgpoucive, The Taworoble festure Zs thaf [ cen de gll the mrmeevers with good
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TABIE D.II{a) (Continued)

Cage TL1P BGh Yop = UL Loy = UL g, = UL Gy = O = D Ty = Ta = 0.0 My, = 0,509 L = 0.237 TR =14
Cnee you establish a wvelecelity while menewvering, it car be held ressonably well. The prceblen was in initiabing it
in suck a way that the pilot didn't nsclllate or develop a FIO. Ability to stecp precisely was o 1ittle problem
tecguse of the dymamins and the necessity four the pllot to reduce his caine s he didn’t get lato m PIO, I *hinx
there are times when the attitude changes are rather large, especially in pitch, bsut in fact the attitude changes
arc really fairly small, Would vate the ability to remain within grourd track limite, tc hold headings and to
rold altitude as fair, Seemed like the sltitude control was rot quite at precise as desived, mainly because T was
concentrating more on attitude inputs becavse of this tendency to get into a PIO, Did seem that I was making some
fairly lerge control deflections in pltch and roll, To get large bank angle (15 deg max) rapidly and then try tc
stop it resulted in gelting behlnd the oscillaticn, That part of the problem was strietly pilot-induced, TFor
smull corrgctions, didr't heve that trouble st e1l. Really noticed this only in the large Inputs and when T
recuired lerege, high rates. Den't think I was sble to pcommplish whet you might consider s quick stop maneuver,
If T tried I Just fell thet I didr't know whether I eould stop the motion, becanse T got into e pilot oscidletion,
Don't think there were uny excvessive at{itude changes; was just cavtious atout getiing the mircraft to move
laterally and maintain vessconatle rates so I could svoid eseillatlion, Abiilty to hold heading and eltitude was
somevhat degreded, I think mainly becanse I was more worried ebeut storping it. Turning rcver a srot didn'i pro-
vide muet trouble, Would be &riftirg a 1ittle but conld make ceorrections, Cnly dine I felt in trouble was when
attitude rates got high. The cbjecticnable feature was thet large attitude chenges had tc e made slowly to avoid
getting into arn overcontrel situstion and PIS. Fowever, for small emziliudes and small correeticns, and when
things were falrly well stebilized, the precision of comtro) waen't bad st all, Specinl plloting technisue is to
make control inputs sc as to stay away from cscilllatory tendency.

Case 0113 BCh Moy = UL Lgy = UL Pp = UL Tuy = Oy = ¢ de ¥ dp = 0.1 My, = 0,355 Ig, = 0.3 FR = 2.0
Trisd higher lateral and longitvdinal sensitivities and repid, large swplitude maneuvers., With the hipher
sensitivities I could do a pretty pood job althewsk T cecued to hz & Zittle more csrillatory, so I declded to
reduce the gains to roughly the initial values., Air faxi around the sfguare - Resnonse Lo 2ontrol inpuis sseme e
little sluggish. Hewever, it's net reelly difticult te stetilize anf hcld desired velocities even though a little
on the slow zide, Ability to stop preeizely not fco tad, Ceomed t2 be a relatively easy thing tc stop precisely.
attitude changes may be e little an the high side. Ability to remaln within ground track 1imits wes cuite good.
Con1d held heeading and alvitude quite well., Control deflecticne at times se=med to be on the lorge side with this
gesring, For example, to geh 5 deg of bank angle reguires almost rull throw, slthough I'm pot hitting the stops.
IHdn't use any trim, Quick stops - Witk this gear raltio you don't really plck up very lerge veleceitics, after
making an input it tekes a Iittle while for fhe veloclty fto ek ur. T determine how much to lead it to shon
d4idn't seem tc te a very difficult thing. Avility Lo hold %eading and altitude wag guits acod, Coatrcl noticns
required sre substantial bt manageable, Ability tc hover over a spoi was very gocd, Helsght control me probliem,
Titeh and roll rentrel cuite goed, Ability €o initiate and hield turnm rates no probiem and stopping on e pre-
salacted heading no problem, 1 was very happy with the precisiem of the hover, precision of the turng, abiiily o
stop the metions; even though there sre scme lags in the system they woere etill quite ncticeable, Oohtrel sctivity
for wvertical landing is prekebly rairby normal tor a VSTOL eirplane, Tue basic geood Teature is that the perform-
ance is guite good without zxcessive workload, Ln particuler pilating technigues, I thiok iLk's sccoptable ond
ertisfuctory, prebebly doesn't nead any improvements wnless you are Jooking for a highly responsive airerafs,

Cage CLib 0L Moy = 0.00F Igy = 0.3FH gy = 0u0M8 myy = ow, < 0 Mg, = 0,604 Lfy = 0.7 PR - 10

Thewrs 18 nc guestion tiat this is an weccepteble confipuraticn, 7T tried & range of longitudinel control
sonaitivities hecause 1 got Into a longitudinel PIO whilch was so large amd T wng so far behing It that T in effect
lcet euntrel., CIrnersased the sensitivity; this seemed to improve things scmewhet ez long as * fMew the sirpluens
very tichtly ano with small amplituds displecements. Could ue the plfhch rate snd attitude both coupls in here to
ret me into trowble, T T got the airoeraft moving Terward pretty fest im trying fo quick sbop. it reculred very
larpe piteh attitude to stop it., Tals ie wien I eot inte what sppeared to be a very large ampritude situation
where, in etf'cet, I lost cantrol. Did this sbout thrse or feur times and went back tn initlal cenditions, Ine
can contrzl the alrzraft anl 4o the mmheuver task “ut you have te do it with small amplitudes and clow rate
piteh atbituvde, Onoe you ged into lsrge erplitude displacements and high pitch rates, then, effect, comtrol
was lost, Weuld heve tc vete ihis an umacceptable cordiguration, It felt 1iks control power was way Jdovr azd 5o
I ;just ean's aeczent the =ivplene,

in

Case CII3 BCL My, = G.216 Ly, = 0.PWB Mg, = OLU% Mg oend Ip Tnknowm PR o= oo

A pretty lousy configuration; nst nearly ac bad as the one 1 just had (CL24}, but hac similar rharecteristics,
althsush the biggast problem with this one zppeers te be In cuntrelling lemgitulinel peosition. DJon't seen to have
muchk 2ortrel of forward and ait velozitinss or of veinmg abls to stop it with any degre: of precision. Lateral cen-
troel is not very good, but does seer to be 4 litvle betier than lengitudinel, Initial respoase to contrnl lupass
seems to ke slow; however, cnoe you get 1t ebartea you dec seer Lo have dirficuiiy esiablishiay a particulsr rats,
% does seen S take & larce riteh attitude chenge o gzt it moving and tc step it, Ten't seen to heve any idea
when to make centiol reversals te stop It srecisely. Don't thlnk Ty ground track war ver: geod Lu amy casc,
Alwass had some hepding problems here baecmuse I'm very often inadvertently mutting rudder in vhen I'm sryinz o
turm or bank., Where 3% stopped in the guiclk stops wes unpredictebls, Jaen't stop 1t vhere I varted it. Than
trying +e hoid 2t was also s problem, Turning cver & 8pot wor quite reggad: erpors were on the order of =15 or
20 I from the conter, Tried flying it very tightly put just wasn't really «ble to accomplisi ih,  Ferfoermance
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TABLE D-I1(a)} !Continued)

war gaite ponr, Trying io malntain a hever resulted in position crrors on ths order of 110 ho 15 ft. Kot sure T
lave adequace control for veetical landipg., T osuppose you might bave some velocity, and just gc aheed and lend
it, It trying te Rit e epst s gquite difficuit., Tofs of cenbrel astlvity. Objecticnetle festures are the Inot
T just don't reem to hnow wial kind of fiputs ©o make {o stop motiens or initiete notionc of the aeznitude ard the
precieicn desirzd, Mo real special pilebing techrnlques except that you try to sccend-guess or mniicipate the
inputs, Bagieally i%'s a very poor confipursation from the standpoint of preclelen of control and perforrence.

c

fasa 7116 3N Hop = 0,716 Lg, = 0,7k oy = Q.006 Ty, = oy = 0 Mg, = o hEo Ly, = 0,361 PR = 3.5

T tried several contrel sensitivities, 2t the nipgher values, got inde some PTO problews and some overcontrol
rroblsms, a0 I reduced them s little, Trere is some lag in the response to control inputs and it does take & fair
gpount of ettitude change o get thinge moving, bt 1t's not excescive, Can meirtein velooitles once I've astaba
lighed them ac long as they are not too righ., T do seem to run Into some pecklens 1F I increase ry gain end maxe
ierger inpute) in cther worde, 3T the rates are fairly high and it fekes large smplitude attitvde changes to stop
the metion, Then I get into seme overoonbrsl ena oscillatory tenlencies, For low end nmoderately low velocities I
can stop fairly well on the corners. FPerformance on ground track wasn't too ted, Holding heading wes 0X. Guick
slops - Wonldr 't say these ave reelly pood guick stops., T™he main preblem 1s that I relate the gquick stop witt
Tigh rate velocities end large amplitude piteh or bank anegles, where T get inte trouble, $c J've haon o Little
heaitant o get it poing too Tast. 1 did get into some FIC lafierally one tine when I made a fairly rapic guick
stop.,  Twn over a spot - That actuslly went wvery wall as long as I aed a goed stable rate of turn and net too
fast. Was able to siey Just ebout in the conter ot the spot mosy of the time, At the higher ratec I went a
little sutside the square, miybe akout 5 £t or vo. [ was fairly happy with the hover mhd turng, fairly hepyy widh
the Iow rates, both leteral snd lorgitudingl, net too happy with the quick stop. Geeserally, it tekes a moderate
arount of concentration. 1 think I Aid Induece scme sort of lateral ocnillaticn at tirmes, espacielly when I feli
had Lo make some pretiy repid inpats.

fage (L17 BCL Mg, = 0,868 I, = C.337 T 0128 oy ey = 0 Mg, w C.b4T Ly, = 0u2fi0 PR =

T
Jidn't do too rmuch on the gearings, I seemed to be able te fily ithe girplane pretty well o I only changed the

TP tudinal sensitivity a little. Response to contrel inpubc seems to be pretty fair, Vas able to Inltiate
mokions but it's net as responsive as 1 weould like 1t, 25 Jomyg a: I naintain o and v Lo moderately low values,
there is no problem In meintaining desired velogitiez, 'There 1s a lag in the respeonse in u and v 4o control
inpubs, but the attitude changes reguired to get the alrplane to move in the » ernd ¥ directlon zeer to be only
modarete, Pinch attitvde chenges and roil attitude changes Lo £top the moliions seem what o would rete as moder-
ate, Jould prefer to have smaller changes requirved tubt it's not really toc tad. Precision to shtay wver grownd
“rack was Tair also. Jié take some effort, tut parformance was not toc bad, ¥olding heading was not a prodlen
and altitude control was good ahd cuntrol deflectione ware moderzte, Quick stops - Don't think it's as good es -
would like to gee it but it's really not too bad ~ither. Dees take pretty lavee attitude clanges to perform a
auick sten. Turr over & spot - Was Tair 4o gocd; at lesst T 3idn't have fo work too nard and 1 eould rrobably
stay within mbout 10 £t of the center < the sgquare, Ko problems initiatizg and stepping the turn, Again I did
not puch the rate. Tn the hover <he performenne was vretty geod. Did kave to work falrly haré bub not exces-
sively harn to do a remscnable jot, althouch you're slways maxing inputs. Cartainly sdeguate oy vertical Jlanding
and centrol activity would ve corsidered as moderate to moderetely high, S8ore clight croscs-coupline Letween
latersl and longitudinal modes, I guess the only objectionakble feature I could see was the lack of respensiveness
o the airplare in the u and v velooit es, ability tc stop precisely, and the smell lag in response of the air-
craft bo moderate control inputs.  Also, “he sttitude changes are maybe a little higker taen would iike. You cern
nake come improvements on the alrniane, Desired perfommence reguires moderate pllst compensaZinn,

fnge CLIE ROl He, - UL T § ey = UL Tig o

ja) Mg, = 0,147 L&, -~ s3] TR - &

“rived woveral values of control sensitivity, Increased bhe sensitivity and didn't partieularly like it “eoanze T
et Into nore fort of pilot-induced coceillation, maiwly in roll. There is still scme lag in the rescauée in the
disrlacements and velocities of the aireratt, This woe & sort of moderately Aiffiewdt confimurstion to fiy, Was
able to de some things with pretty good precisicn, but it did take a lot of concentration, T4 ¢id have o tendercy
to lag the contrel inputs; you had to anticipate stopping the motion of the aireraft laterally and longitucinally,
Fitch responsz, rell response, yaw response all pretty mcod. Hesponsiveness In the initiation of motion and the
stepping of the motion in the x and y directions was aftected by lags in the systen, Was difficult to stabilize
and nhold desired velocitiss, Then to try to stop it at any precise point wag also somewhat difficwli. I was etle
to hover pretty well, but “t 4id teke quite a bit of concentration, In doirg so, there were zome exsursicns in
height tut thet was easily compensated with collective inpubs. Helght contrc? was quite acequate; good demping in
height. There ’g gort of m corsserew effect when you start turning, depending on the rete at which you turn.
There is g tendency to drop down in altitude, Sure there is & loss of 1ift a8 it does reguire some notlieceable
power inmput t¢ melnbain altitnde. Had & tendency to iose altitude in the turn over a spot. Also seemed to te
power recuired when I rede some rapid lateral and longitudinel displacements, As far as precision around the
ground track, % and y was sort of rough, especially in tne y direction, I wasz either too far sheac or tco far
tehird the spot, Quick steps - It's sort of s hit-or-miss propesition, althougn I managed to stop at the epot
feirly well, tut trying to hold it there was not essy, Thers did seem to be some fairly large control moticns
regulred, Turning over a spot - T think the abilify to stay over the spot was only falr; I was always making
corrections. Didn't rake very fast turns. With these moderate turn rater I was able %o stop it within sbout

t5 deg of desired heading. Hover precisiorn wes fair, but I had to work fairiy hard at it, Certairly adeguate for
vertical landirg and contraol sachivity wag almort constant, Thers were some x oross-coupling effects bpetween longi-
tudinal motions and lsteral or tank angles:; T always had thai problem. I guess the most objecticneble feature is
the fact that you de have to anticipate stepping of x and y motions and piteh attitude changes, Fitch attitude
charges seem to be fairly large tc maneuver, Overall, it does require moderate tao ronsiderable pilot compensation
to dc most of the tesks, especislly the quick stops.
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Cnee CLLT BUOL b.c,,, = UL Lcm =1L No,, = UL U'ug =avg = o iviae = 0.500 Lg, = 0310 FE = T

T

™is was oot a very good configuration, I pleyed around g little with the gearings. but the Tinal valuas ere
sssentlaliy like the previous configuration, Even fur selatively smell amplitude displecementr end rates, I just
didn't think the precision of cointrol and thae preclsicon of the tesk were adequate. Don't telleve I ever felt T
completely leost control, bub there were times when very large sweurslone were nbvious, Quiek etops - I couid stop
it, but then I couldn't maintein position et the siopping votnt. Then twying to bring it back to hover was gulte
& protliem, Oould protably steop the turn on a heading within about 15 deg, Presision of hover was teir, but it
did lake & pretty ralr amoun'. ¢f concentestion. I wowld probebly be stle to land, although I'd kave *o be guite
zereful with it, Height control, however, didn't seem tc te a Lig problen, although there wrs one naneuver where
I tnirk I left the eltitude go vll the way down to 0 ft. I zuezs the priweey objecticn le the initietion of
‘ranelatisnal motion is sluggish end onve you get the motion started it's 3ifficult to stop it. Pitch control ie
zeriainly quite adequats. Tateral control seemed s little sluggish. The attitudes reguired to stop the afrplann
vace you get Lt moving ave fairly large, especially in piseh, Dildn't soe anything too favorsble aveut the oon-
flguration., There is ro piteh or latersl cacillation that is hichly objectionsble, s0 the damping in pltch aud
rell fs prehty good, The problem iz alsng the sxes in translation end 2l3c lhe large dlsrlacements in berx angle
and pitch attitude that are required to get the sirplane to move and stop.



TLBIE D-II(bH) (Continued)

(£) Height Cenbrol

absolutely ne stahility, no daezing in height control, co the o
very, very severe, I wee overcontrolling very. very rmch with the vcllective, 1 tried 1t agadr
1\111'; ard was actually abls lc et off <he prowrd and ecptablisk ehout 50 Tt and bad prettr good oot
tude furom chort bime, aayhe on the order ef a minare o twe, and vaf Rlsc aple o hover cver the spot at
Lime fairiy well, wew was epending much tine contirclling altltude, Bo everything looked gocd: ther ~ tried ‘o
gtart the raneaver. A3 socn af T 4id this, che altitude charged a l1itile, so [ tried 4o chase it withs lgrrer and
lurger oollective jrputs, Was foing down bo Aocut WGt and up to about B0 or 9 ©t., Thet'c pretiy toor. .t wen
thal practice 2oy time weuld have to ke devoted to height contre] and there woull be
tima t3 de anything else with the airersft, On the basis of heipht control alone, . woule heve to rate thic
fiprration cenpletsly wnccceptable.  Control will be lost in same portilon of required cperation,

aovicus

Tase Cl2 Gy = Tag ¢ -5 1 - UL = 3,00 PR -5
cegired s fsir cnount of monitoring of heipght ~antreil, The best T could do was to maintain altitude aboat 120

Lo +10 £f, but thic baok u fzir amevmt of effert, I 474 sl1) of the panewvers, Didn't renlly tilidk thet these

tos bed, Some degrading niskd have coourred in performeres due to time spent monitoring bejghd
control.,  Alusls che g for 25 7, tut ti time I deubled fhat on “hn averase to 210 £5. Alr taxi aromnd znle
snuare response o oonlrels really wasn'i beo had, Wes oble to initiste metion in each Alrection, Gaeneral
commenss - Badentislly, T had & failr amount of monitoringe on haight contral with wather large exowrsions,  Saw as
mck ag ZC £+ bigh end abont 15 £t low Trom the =merinel 50 £4 thut I'm rheotd frr, On the avaragss, howevsr,
heignt wonkrel was abeet *1C £, Recuired reasconable amount of menitoring, dntt dicose any control sencitivity,
Just acecepted what was here as being reasnsabia.  Jould do g1l the maneuvars yeasonebly well, However, dnring the
were ranid wnd lareer wrplitude mepcavers T hed tc meniter the heleht a littls mere carvernlly Tecause 14 would
ltend Yo either oliwh or descend as T made Lhese lerge smplitude lnputs, Moest ohjiectisnable featirs would be fhe
helgat oontr I would zertainiy like =2 have 1t be better, Fuvoreble Tecture, I think, was the fact that, in
snite of height continl, T was 3til) able tc do all mareuveers Tertonally well,

MALEUVEDF we

ass (103 Ty Bag = ~0.35 W UL Zic v GaE

Control sensitivity - Flnally otope this ene, which 1s & Jittle Zower gain than would have really iiked froo a
standpoint of Initisl responsc, With aicher sensiftivities, got into cther lLitile proloems 1ike a Lendancy to
overccntrol gome, o L linally btacked of f,  Taxl eround e fquare response Lo wits was fair, Abdilicvy e
chadilize and hold Jealred velnolfies wan fatr. Conld ctep zad come So & hover at the corners rrascnably well,
21thovgh again it tsker fairly lorge and repic inputs to stop. It does talte Tai large plteh apd rell atti-
wudes; the bank sngles are usaally jegs thun 5 oder and in lesn thar & dog deweysr ) was able to maintadn
grount trock cuits well and r. rraklem in holding hesding nse ¥eu juct keen sour tact of T othe rudders in

ety and the “riciion holds t once yeu establish that you have no rete of turn,  fltitude comtrol - Spent sonc
time on it: could meintain altitude if T wanted to within !5 4 for noms} wanzuovering, Mot true when L wenbt inte
larce ampliitude, very rapid or st least attempbed to make very ratid inputs to 2c*arlisk higher rales. FEarn
heighs cortrol preblem heeame s little xove ehvienc. Juick stopr - Tould efop quickly bat, consilering that rates
are fairly low, the attivude changers sppearcd to Le rairly hirgh., Jo abtituds 2ectrol doesn't seem %¢ be puch af 2
prohlam; aelaht cortral a Jitile hit ol & problor, derinitely roticeable that yoo de Lave to goend rame time or
i, {Can ieitiate and held turn retes without preblem; can shon on preselecled b 0y aven ad
Didn't um2 any of the wing tIlt contrel, Drecision hover - Vertical lending - - le to ertaolish and naintoin
rrecize hover ite wo31, a little skidoerish but not really too “ad; conld zenerally stay well within th
square, The dynanics of cne axic did not affest the evaluation of snother. Overall cvaluation - Senewngt o
tlenable vealuvre wac that you huve to look »t tle helght ccontrol, bub 1t really wasn™ thai
Teasonecly sphictied that I could mest oy eriterion of 25 i, bubt te 4o that it resuires mayhe
and croze revervence than is degirakle. Favirable feptures - "he fact that T -an dec all the man
able preciricn in a faivly good woy, No spacial piloting technique.

o

4 Teature,
LTigele 1

weers Wik rogsen-

-0.178 T =1,

Addad a0 11kt ioivity: 1t seemed bo be w Litile bebtrer. T would pay perrrally this
warsr g Tolr conliguration, air texd - Mhe precision of control is fEI11 not really ao good a5 T weuld lize if,
The smnll sensitivity chanee nelpod cone. I pet the fealing there ere ap iror cellective inpub
=nd in stopoing the vales of descent or rates of eliml T can £ind & fairly we ctalilized altitude with some
{ort, 1L teken several power iryuss and - L 1 oaltivetor to find L, After o
while you scrd of mechanicslly osut the power in and get tiwe vates of decent, Te sst the rates of desceont -nder
centrnT, Yok mAke o ar om ofecond o two and tfage wart ot ik oshoa + oA
Tt meemed To me that mayhe 7 rB/sce 1g shoub ox bich as 7 wonid
to sae or like o go o thing., Ome kine 1 had a J=lply hlgh rale of descent solng and got down e
1= 1f nn the albireter. Was -emdering wisthee [ would e shop the rote of descert bernre tourhnn
Touchdnwr is akout 4 fi, T ct7ll tnine thers ic come limitefisn hera, T4° miinetion of limited
thrast avellakle plivs acrofyrenic dapln? sna srisCiclel camping, 1 ean’ 1t's & zomkapation, 1
think. Awx far o5 nelght o coneernsn, you oamldd ue oa Talr Job o flyuns the airplane,  vom
guate performancs: is it ands
wst the
b2 oret

@l

then ercsa-chool

Canl fon 2 n

setory without dmuroviment? Foybe you have dume pr
e are afgain Uimits Lo how £ FOU ean o up 2an down and st312 e abliac Loocontrol
zr the rate of denzent.  rrecisiom of enteol, egadn, dees take o ceriain amount of wil-t o fory
Lo ot tae proper power fetting, ro frequeray of nollechive ingub iz mayie 2 irille bigher tran yoa wouls Liks,

arate piloch eonpensan’ or

T oorl ANt
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The hower perforrance wase reasongble,  Trield quite a control arnsitvivities, T was having some las
sontrel resvonse to collestive which 1 could dmprove hy dncreasing the sencitivity. T had & Lendaney
cvercontrol, so I went back toward the lower sensitt [ wasn't too happy with the precision or neipghth contral,
Hed 4o spend a Pair amount of time at it and alros® invarizbly when I (¢id T had trouble trying to mainbain ry
positlon over the speb, deowever, it was not reslly that horrendeus, It war one of those eonyiyguraticns that,
ke watez of chenge U izht wore Fept te B low level, 1 wor able to establisk o steady-siate heisht reazenably
well, tut agein with guiée a mmber of collective inpuks. At the higher rates, did overcentrel quize s hit, When
I reduced rates to Tairly low levels, waybe a hely-Tash per second or scmethd. r that order, it gets reascualle
ar o as precision, with some offurt jou maybe can esvwablich a hover helght abent 5 fE,  TE™s certeinly control-
lable, T can s adenuate performance with tclervable vorkload, I weuld think you wld Improve this somzp ]
warn't tow happy with the precision of contrel unly beewise it fock guite & bit of effort, a lot of collective
inpute to finaliy esbablish a stcady-state hover height, O woudd provubly think it*s at leasg a woderate compen-
setion required, T'm not really cuve whether T rap oub of thrust, Had the feeling that voseibiy at the hiphar
Tetes it tock s large amount of collective to stop the »ake of 2

)

Farg = Dug = -0,.00 T/ = 1,09 75, < D.20 L

Selecticn of the perring was nreélosted primarily on reducing overconirol fendzneics. Ended up I L1ink with the
minimw gearing available. [ tad gone up fairly high with it: however, there is o very strong tenduncy to over-
contral, sc I vwas going up and down like a yo-yo Tfor a while, = wes spending o fzir smount of time nn the heigit
amtrol 2 wee tryving to Le nmrecige with 1t; thet deterivruted the peyformance cn the XoV plane. The nverall
ivpression is thet it ic not a very gooed conflguratizn, I suspect that it's o éemping problem primarily, but T
ceuldn't care less whether it is damping or the Zact that I may havs lags in the pouer applicazion, or %nat there
iz & lack of excess thrust aveilable, The end remlt ie the seme, Toe preeision of height control Just not
there. I could probedly land it as long es I can keer the rates down, Have to work pretty nerd, though, to
entablish cxectly 20 ft or exactly L0 £t within, rey, i t; thet's & Tairly difficulb tusl, I Joes wurrsnt
improvement, It has very osolectiolgkle but tolerable deficiewcine.  fdrquate perfsrmarce recuires extensive nilot
2cmpensation,

SEse CHT Ty = Tagy - -C.170 Th - 1,08 wg o= 1,01 oy

I dida*f change the sensitivitizs on enllective, juclh accepted what § had, meiniy vscause it seemed adenquate. I
dtd a littic better in hover, but T'm still kaving tcugh time Clying Zeawpitvdinal and lataral rojes so 1 concen-
trnted more on the Lover in evsluating the helipght contrel. It's o matbt=r ol rates, 1 think, If I keed tre rates
reasenatly lew., ! heve some precision. If I try be opeed wp the responze, I plane in trving
to recever it, I think tlie ohijecticnai.ie Ieaturesz are the lesd time required ir atopping the motion cnee you get
it moving, the lag in getbing sume roticenble novement whos youw muks the Jnput and the fact thet the precision of
cenbrol in all axgs waz rather poor, IL I cet 2 oprates of deccent and hiph reter of olimb, then the preci-
sicn Junt ion't there. You get wn overshoot of af least J& 't or mcre in the climk divection, I'm & little mere
kesitant to alliow it %o drop below 20 7t so I tend to muke sharper. Tuater, larzor inputs when the rate of descent
iz falrly high and I'm approashing 2C T4, Ti's Iike bang-bane centrol, you just put it in and say take some of it
out beeanse you know you probably have overeonbrelled. Thisk it Sc ecomtrollable, Adeguate performance with a
telerable workload? Mot I yon've falking aoout the oversiy tasw,

way oehind the ais

Tage G T T/ = 1,05 2§, = L.23 FR & 2
It i3 #£311 nch very good, but I manamed to hover at times almost within the seware, wnich The
snme 5 nether me in longitudinal and lateral control: <he lazg, the turbulence, pooc the e ne is

irnvolved ia *iere alsa, n the presizion of vertizal econtrel, T was skle bn go down te 7C ¥t and rold it there
while T a*fcrptnd b do some manegvers, went back up to 40 £2 aud hit it feirly well, For 1o pewvinds of t7me
the heirkt rentrol regquired no attention., Also attempted sawe high rates of descent ar imh. The time that T
have %c concentrale on the height centrol 1s fairly minimal. Precision of watght control was tretty #oc +the
Taet that vou can pretty much set the colleetive and the height steys fairly close to where you put it, certainly
within the 0§ #4; that's pretty goold. 1t seemed that there was always zomewhzt of a lag, but [ think that's prac-
ably built Into the altimeter, Fossilhly some of this hunting Tor the nroper cellective posizicon moy ©e caused by
that lag in the aitimeter, Only minor or minliwa! pilot ~cmpensation reguiraed.

Case CL7 Ty = Iaeg = -0.05 Tiw = 1.1¢ Zhe = Fuub ED o= 7.5

I played arcund with the collective sensitivity gquite a bit and was nov able to find eaything T 13iked., 4as T
incvessed the ceugitivity, I overcontrolled very bedly. 1 had sbarted out with the sencitivicy to rhe minimom
position on the lsver and went up just o little, but thet gave me all kinds of +rouble. T picked something
helfuay betwesn. [ wes obill having troubles so I finelly settled on having minimm sensitivity mnd that still
grve me the same kinds of problems T had on the vrevious configuration {CH11) ercept more accentuated. To met

the thing meoving it seeme ic teke gquite a bit of thrwst; onee you get it moving, though, to stop 1L takes guite a
it of cecllontive change 3o [ suspect we huve some degradation in the height damping, pius the faet that possibly
we have low excess thrust swvalliable fTor helght contrel, Erd result is that perfommence on the taska, lengitudina).
and lateral, was guite btad. Didn't zven try the lateral displacouents; I wes having encugh trouble with pitech,
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llsed a good prrtion of tine just trying to keep the airplane at proper eltltude or et least trying to stay close
to the 20 £t or 40 £t altitude, I was overshouting at least 10 ft. Have a tendsncy to fly tighter when I'm
poing down than when I'm going up,  Main objection was that I did not have precislon off height control, T think
there weore times when T did manage o have the power lever just about right but then every time you meneuver the
airplane tr some extent vou do have cuite & bit of activity with the rollective.

iume TH1O0 Ty = Pegg = -0.1E5 T/W = 1,10 2§ = 1a51 PR = 5

T inZtial combrold sensitivity on the eollestive was a 1little high and I overcontrclied very kadly, sc [ out the
sensitivity down some. Was having more prctlems with hover than anything else on this confizuration. Seems to

pe substantial lead required hoth in pitch and »cll but 1t°'s nore cbvious in the pitch axis, The dynamics rre
ulso & problem, [ had to make ressonsble number of collective inputs te maintain 4C ft. However, it seemed to te
3 reagsoneble task. Cn the cther hand, whea I started to make climbs and desecznts to about 70 't end back ur to
G T4, #4111 had a tendency to overtontrel with {he collective because there seemed to be a lack o' thrust or
there was o lag in the respense of the thrust; either way you weuld get the seme effect, Overall perfcrmance of
tha tesks wee quite poor, especiully the hower; I really had troutle with that, as Jong as 1 did things ai
reagonebly iow rates, T could manage te do the task., If T tried to push the airplane eand force it 4o respend at
Migher rates, then everything seemed fn go to pet, I don't veally think I could do e quick stop with thie thing
tco well., I 4idn"t try any twmns over the spof, ZPreeision of hover, I thowght, was gquite poor erd T had diffi-
culty in establishing resecnable rates of descent and climbs so I 2culd stop the Lelght expetly where T wanted it,
I think it wee probably adequate for vertical lancéing as far es height conbtrol wuae concerned, btut I'm not too sure
atcut belng atle ta hit a spot with any degree of yrecision, Control activity was quite large; T was continucusly
raking Inputs.  Overall, there wasn't anything I varticulariy liked sbout 14, btut I thought it was flysble with o
Tairly large amount of effert. It takes quite g bit of concentration,

Jase CH11 Ty, = T, = 04175 W = 1,10 28 = £.30 PR =3

Don't have the Teeling I have very precise contrel of the alreraft; however, T managed to kenp reasonable contrel,
It's just concentrating on height control that's a problem. By using los rates for take-off and cherging eltitude
by 20 £t from 40O Tt to 20 £t and back te U0 ft, did zeem to have reasonable precision within about 1 or & I,
Howaver, - dic Ao a couple of maneuvers where . increased the rgtes Tairly high and cld have some overshoct pran-
ilers,. Get the wpresgion that it was because 7 needed more ccollective displacemont than [ would normally like to
uge; it seemed T wag uging quite a bit of power, The excess power gvailable iz not as muck as I would lixke, T
don't think it wae azsecistod with Adamping per se because generally I could stabilirze pretty well at LU 7t ané

20 £t with Just a modorate awount of hunting., Objectionable feabure - I think it was Just at the higher rates; tco
ruch colleckive displacement was reguired, Favorable features were that, by keeping the rates reasonsbly slow, T
was able to kave pretty precise control of mltitude. No speecial piloting techniques except that, because of lags
in the lateral and longitudina® dynamics, you have to lead the power applicaticn if your rates of lescent or rate
of elink pet too high, It's hard to say exactly what those rates are, but if you're going to cliange 20 Tt in move
than shout 30 sec, then you may et lnto some power applicaticn problems. I suspect it was probably lack of suf..
Ticlent excess thrust evailabtle for control.
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APPENDIX E

CONTROL~#OMENT EXCEEDANCE PLOTS FOR
THE MANEUVERING SUBTASK

Pitch, roll, yaw and height control power exceedance-data cocmputed Tor a
range of reference moment levels are zonbained in this Appendix. Initially,
exceedance plote ere present for piftch, roll and combined niftch and roll
control moment data measured during the mansuvering subtask., The effects of
turbulence intensity, sirceraft speed stability and drag psrameter, level of
aircraft pitch end roll dynamics, control lags, rate and control coupling,
and independent thrust-vector control can he seen 1n these excceedance data.
The change in thrust-usage exceedance values with helght velocity damping
are presented next, and the final figure in this Appendix contains the yaw
control-mement.usage exceedance results. In general, the effects of the
different parameters examined on control-power usage, as defined by the
exceedance data in this Appendix, are consistent with the effects noted
(for the maneuvering subtask) by comparing the S5-percent exceedance levels.
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AFTENDIX F

ADDITICNAL DETATILS OF THE UARL FLIGHT SIMULATION

This Appendix ig a supplement to the description of the UARL flight
simmlation contained in this report {Secticn II.B). Debtails of the eguations
used to represent V/STOL aircraft motion in hovering and low-aspeed flight
are discussed initially, here. The characteristics of the flight simulator
controls are detalled next and the motion washout logic is degcribed in the
final section of this Appendix.

A, Bguations of Motion

The genersl form of the six-degree-of-freedom perturbation equations of
moticn for V/STOL hovering snd low-speed flight are given in Eq. (F-1).

|

Mu + MBB + qu - q “Maeae - M, (ug + Uy, cosyr)
Lyv + Ly + Lpp - P

Npv + My - & = - Ny 8 - Ny (v - Uy sing) )

~Ls 88 - Ly (vg - U, siny)

g (sinf + sinY) - 4 = - Xy (ug + Uy, cosy) - Xaeae

X.uu - gw + v
- si )~V = - = L - :
Yv-ru+pw+gsinpeos(+Y) - ¥ ¥y (Vg - U sing) K >(F-1)

- 1 - % - - " = - 8
Zw - pv +gqa +g(l cogpeos@ - cosfeosy) - w Zac e

Y = 0.087 T8

6 = ¢ cosd - r sing /
<f; = p + g singtand + r cosdtand

§ = (a sing + r cos@) secd

The various terms and symbols are described in the List of Symbols. The
eouations are for & body axis coordinzte system and have been normalized
with aircreft mass and moments of inertis. Stability derivatives on the
lefit side of the equations describe the aserodynamic, propulsive and sta-
bility auvgmentation forces and momente. Terms on the right side describe
the forces and moments induced by control inputs, the simlated turbulence
and the mean wind. With the exception of I, the derivatives which couple
motion between axes have generaily been assumed to be negligible., However,
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pitch and roll rate coupling and control coupling were exsmined in one of

the longitudinal and lateral coatrol studies {Sections II.A.L.f. and
I1IT.A.5.}. For this investigation the terms Mbp and qu were added bto the
teft side of the pitch and roll moment eguations, respectively, and the

terms Mﬁaﬁa and Lﬁeae were added to the right side of these respective equa-
tions., Alsc, 1t should be neted that the mean wind, [, was from 000 degrees
true and it therefore aifected the lateral and directional [orces and momernts,
especially during the t18C deg turn subiask., TFinally, the relationzkip for

Y describes the rate-command, thunb.switeh control characterisztic for the
thrust-vector angle,?¥ ., The parameter TS was elbther O or F1 and, conseguently,
the pilet souid command & 5 deg/seac rate-of-change of thrust-vector angle
{or wing-tilt angle) to trim the effecte of the mean wind acting on the a
craft longitudinal drag psrameter. For the study of independent thrust-
vechor control the rate-of-change of thrust-vector angle was treated azs a
parameter (Section ITI.A.G.).

ir.

B, Characteristices of the FPlight Simulator Jontrols

A conventional fioor.mounted control stick (Fhe cyelie viich control
gtick of the S8-51) was used for attitude contrel. Tt was used without a
foree gradient and the interent friction present was negligihle. The full
longitudinal and lateral travels of the control stick were * 6.53 in. and
6,50 in., respectively. For height conirel, a conveational, floocr-mounted
helicopter-type collective control with adjustable fricticn was used
(7.5 in. totel travel). The rudder pedals (+3.2 in. tobal +ravel) Tor
vaw control did ncet have a force gradient and the inherent friction was
negligible. An on-off thunb-switeh control was also usgsed to conmand a
fixed rate-of-chaage of thrust-vector angle (5 deg/sec). For ths study of
independent-thrust-vector control (Secticn III.A.6.) different commanded
rates-of-change were considered. Also, for one part of that stugdy the
thurh switch was used to control pitch attitude and the cyelic stick con-
trolled thrust-vector angle (fection ITI.A.6.).

C. Flight Simulstor Motion Washout System

& gehematic flow diagram for the motion washout interface between the
simulated V/STOL aircraft motion (from the eqguations of motion implementerl
on an anelog computer) and the commanded flight simulator mobion is shown
in Flg. r-1. Thie washout system insures that the flight simulator remains
within its motion limits. The characteristics of the washoub system have
been tailored as much as possible to the frequency response features of the
human veghibular system (Ref. 11). First-order roll-offs (2C dB/decade)
are used to eftenuate the low-frequency flight simulalbor attitude motion,
This roll-off at low frequencies is similar tc the frequency response of
the attitude motion sensors in the vestibular system {the seami-cirvcular
canals)., Second-crder roll-offs are used for the translational mohion.



Croggfeeds bolween low-frequency longltudinal and lateral accelerations and
"

piteh 2nd roll abtitude, respectively, are used to gimulste thase accelera-
tiong with conponents of the earth's gravity vector. Because of this feature
low.frecuency eircrafi accelerations are alsc subtrachted from the simu.
lator translational motion commands, A more complete description of the
washout system is contained In Ref, 1]1.
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