THEORETICAL INVESTIGATIONS OF
BOUNDARY LAYER STABILITY

GIBBS S. RAETZ end W. BYRON BRGWN
NORTHROP CORPORATION

*** Export controls have been removed **%*

This decument is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be ‘made only with prior
approval of the Flight Mechanies Division (FDMM), Air Force Flight Dy-
namics Laboratory, Wright-Patterson Air Force Base, Ohio 45433,



FOREWORD

This report was prepared by Gibbs S. Raetz and W. Byron Brown of the
Boundary lLayer Research Section under the direction of Dr. Werner Pfenninger,
Northrop Norair, a Division of Northrop Corporation, Hawthorne, California,
and covers research investigations performed from July 1963 to August 1964,
This work was performed under Air Force Contract AF33(657)-11618, Project
Number 1366, Task Number 136612, "Application of Laminar Flow Control Tech-
nology to Optimum Superscnic Cruise."

The work was administered under the direction of the Air Force Flight
Dynamice Laboratory, Research and Technology Division. Mr. J. P. Nenni was
project engineer for the Laboratory.

Manuscript released by the authors December 1964 for publication as
an RTD technical report.

This report has been reviewed and is approved.

5'8 l"‘{"CW‘uf
el oyt

gy\ﬂuup P, MTOMS
Chief, Flight Mechanics Division

AF Flight Dynamics Laboratory



ABSTRACT

The mathematical analysis underlying a Fortran program for calculating
the proper solutions of the Orr-Sommerfeld system with sufficient accuracy
and economy for applying the resonance theory of transition is described.
This program covers spacewise growths, rather than timewise growths as in
previous computations, of mainly two-dimensional Fourier components of the
motion., It employs various innovations providing as much accuracy from
efficient single-precision arithmetic as would be obtained from awkward
multiple~precision arithmetic in previous calculation schemes. The source
programs and some sample calculations, for the principal mode of oscillation
of the Blasius boundary layer, are included.

The Lees~Lin stability equations for compressible flow have been
extended to include the terms involving the component of the mean boundary
layer flow perpendicular to the flat plate., At Mach 5 this more than
doubled the critical Reynolds number. Allowance was then made for the three-
dimensional aspect of the disturbance velocity. The final result was to
give good agreement with observed data in the lower branch of the neutral
stability curve at Mach 2.2 and Mach 5, fair agreement with the upper branch
at Mach 2,2 and large discrepancies with the data in the upper branch at
Mach 5,

Comparison of experimentally determined neutral stability curves with
those computed by simplified approximations have disagreed considerably at
high Mach numbers on the upper branch, even when agreement was fairly good
on the lower branch. To improve the calculations, the complete set of three-
dimensional stability equations, including all three momentum equations and
also the component of the mean flow in the boundary layer normal to the
surface, are solved numerically. This set of equations can be reduced to a
set of eight linear equations with complex coefficients. The theoretical
solutions for Mach 2.2 and Mach 5 are compared with experimental data and
show good agreement in both upper and lower branches.
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PART 1
CALCULATION OF PRECISE PROQPER SOLUTIONS
FOR THE RESONANCE THEORY OF TRANSITION

Gibbs S. Raetsz
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BASIC NOTATION

a frequency ratio (streamwise/principal)

c timewise frequency

S amplitude coefficient (canonical)¥¥*

Bm amplitude coefficient (logarithmic)®#*

hy amplitude coefficient (globall)**

i unit imaginary number

P amplitude coefficient (pressure)

8 metrical coefficient denominator (local)

8p expansion coefficient of metrical coefficilient denominator
(local)¥¥

t metrical coefficient numerator (local)

tn expansion coefficient of metrical coefficient numerator

(local)¥x*

u amplitude coefficient {principal velocity component)
ug amplitude coefficient (original velocity component)*
W amplitude coefficient (normal velocity component)

X coordinate (local)

X, coordinate (Cartesian)

y coordinate (global)

Yo origin (local)

z coordinate (normal)

* ¢ =1,2,3 (terms summed over this range where same index appears

twice)
**m = 1,2,3,4
*%% n = 0,1,...,3M (M given)
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A spacewise frequency*

£
F amplitude coefficient (asymptotic)**
L formal series degree
R Reynolds number (local)
U basic flow veloecity component (principall
U, basic flow velocity component (original)*
o principal frequency
B frictional frequency
v phase velocity parameter (local)
& expansion radius {local)}
M secular determinant (local)**
W metrical coefficient {(global)
A metrical coefficient {local)
" viscosity (shearing)
€L fundamental solution (local)¥**
p density
o Reynolds number parameter (local)
T phase velocity
@ amplitude coefficient (local)**
r frictional parameter
e secular determinant (global)
A reference length
Tr reference velocity

* 4 =1,2,3 (terms summed over this range where same index appears
twice)
** m=1,2,3,4
-Xi~-



C) dimensionless wvalue
™ complex conjugate value
() total derivative

( )(M) fundamental solution**

** m = 1,2,3,4
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I. INTRODUCTION

The resonance theory of transition is a non-linear theory of boundary
layer oscillations intended to explain the principal motions during transi-
tion and to provide a practical technique for calculating such motions. Its
present form is described in detail in Reference 1.

This theory was deduced from the continuity and Navier-Stokes equations
using a decomposition of the whole motion into a perturbation series and then
a decomposition of each perturbation into a Fourier spectrum with aperiodi-
cally varying coefficients. The first perturbation is produced by boundary
irregularities such as wall waviness or suction uneveness and external tur-
bulence or sound. The higher perturbations are generated by a coupling with
lower perturbations through the non-linear terms Iin the Navier-Stokes equa-
tions. Each Fourier component of the higher perturbations is driven by a
pair of Fourier components from lower perturbations in such a way that a
partial resonance can occur in certain situations. During the stronger par-
tial resonances, the driven Fourier component undergoes a rapid and large
growth in amplitude and a gradual shift in phase. Otherwise, it somewhat
follows a trend indicated by linear stability theory. Altogether, the re-
composed motion is distinctly non-linear and, insofar as has been observed,
should explain various transition phenomena beyond the scope of previous
concepts,

In calculating the motion, the first perturbation spectrum is to be
ascertained directly from the boundary irregularities, and the higher per-
turbation spectra are to be estimated recursively from lower perturbation
spectra. For such calculations, precise proper solutions of the actual and
adjoint Orr-Sommerfeld systems or their generalizations are essential. The
actual and adjoint proper functions are required to evaluate the coupling
between the driven and driving Fourier components, and the proper values are
needed to determine the amplitude and phase modulations of the driven Fourier
component. Once such data are readily obtainable, the estimation and analysis
of various important phenomena should become relatively easy.

Thus, as an initial step in the implementation of the theory, a Fortran
program for calculating the proper solutions of the actual Orr-Sommerfeld
system with sufficient accuracy and efficiency was developed. The underlying
mathematical analysis together with the program and some sample calculations
are presented here.

In this particular program, to minimize distractions by secondary
details, just a flat wall, a two-dimensional basic flow, and an incompress-
ible fluid are considered. Also, only two-dimensional perturbations with
waves traveling in the same direction as the basic flow are covered. How-
ever, the proper values for three-dimensional perturbations with waves
traveling in all directions can be ascertained and, after minor extensions,
the corresponding proper functions could be cbtained as well. Contrary to
custom, spacewise rather than timewise modulations of the Fourier components
are allowed, since only the spacewlse variations are important in most actual
problems. Besides the principal mode of oscillation usually considered in
stability theory, some higher modes also can be investigated.

,la



In the sample calculations, a set of proper values which also could be
used in linear stability theory and some typical proper functions are obtained.
The Blasius basic flow, two-dimensional perturbations, and the principal mode
are considered.

Previous methods of solving the Orr-Sommerfeld system such as those
described in References 2 thru 6, which were developed for ordinary linear
stability theory, were not entirely appropriate for the present application.
As one example, the method of asymptotic expansions (References 2, 3, and 4)
neglects all but the first term of an expansion which probably diverges, and
it allows some excessive errors in that term. As another example, the method
of numerical integration (Reference 5) can entail a large accumulative error,
due to a spuricus solution which enters the numerical solution through trunca-
tion errors and then tends to grow excessively. As a further example, the

previous methods generally pertain to timewise rather than spacewise growths
of Fourier components.

The present method avoids such inadequacies and also utilizes some
innovations which further improve the precision. For example, instead of
finding the secular determinant from extremely slight differences between
fundamental solutions as in most previous methods, it employs a supplementary
differential system for the secular determinant. As a result, it needs just
single-precision arithmetic for calculations which in other schemes would
require awkward multiple=precision arithmetic. Analogous innovations should
be especially helpful in similar calculations for supersonic and hyperscnic
boundary layers, where the precision is even more critical. They should
reduce the computing cost substantially in some cases and enable otherwise
impractical or impossible analyses in other cases.

In developing and applying the program, the author was aided by
Mr. Lester Pickett and Mrs. Dorothy McHugh, whose assistance is acknowledged
with gratitude,



II. DIFFERENTIAL SYSTEMS

A. ORR-SOMMERFELD

The basic objective is to solve the approximate differential system
for resonance amplitude coefficients deduced in Reference 1. Starting from
Equations (114) and (115) of that reference and omitting superscript indices,
this system may be expressed as

in A, +ul=20
i3 3
. F] . - "
ipug (Al + ) + p’ = wluf - uzApay)
and

0

uj(O) u3(0)

]

u.{x) = u3(m) p(m) =0 (2)

]

where j,k = 1,2 and the primes denote ordinary derivatives with respect to
Xq. Here, Cartesian coordinates X, (2 = 1,2,3) have been used, with the
wall surface at X3 = 0 and the adjoining flow at x4 = ». The basic flow
velocity components U£ are toc be given, while the resonance amplitude co-
efficients u, and p, of the perturbation velocity components and pressure,
respectively, are to be sought. The density p and viscosity p are known
constants, whereas the spacewise frequencies A, and timewise frequency ¢ are
partly unknown parameters. Also, A3 has been eliminated from the system by
a transformation described in Part (G-3) of Reference 1, leaving just the
value A3 = 0 to be considered here. Consequently, if A3 really is non-zero
and the actual coefficients are needed, but not otherwise, the inverse of
that transformation must be applied to the solution. Dimensionless quantities
are chosen as

A
p=plp=1 L= woar = /R

A AL

Aj = AjA c = cpAT

A -

xj = xij Xy = x3/A (3)
A A

uj = Uj/T p = p/prrT

A A

uj = uj/T uz = u3/T

with the result that, disregarding the overscript, Equations (1) and (2)
apply directly to dimensionless as well as dimensional quantities.



For definiteness, the basic flow is taken in the xl-direction, 80
that U; vanishes, and it necessarily is regarded as unseparated. The refer-
ence length A may be any characteristic thickness of the boundary layer, but
for the Blasius basic flow considered in the sample calculations it is chosen
as xllR. The reference velocity T is5 chosen as the adjoining flow velocity,
so that 91 varies from 0 to 1 monotonically as Q3 varies from O to «. The
streamwise frequency ﬁl is to be complex, whereas the crosswise frequency ﬁz
and the timewise frequency 2 are to be real. Otherwise, only dimensionless
quantities with the overscript omitted are considered further.

For present purposes, an alternate form of the differential system
is preferred, which involves the additional parameters

1/2

= (A.A,)
R
a= A /o

1 (4)
b= Ay/a
T= -c/Al
with Re{y) > 0 and the additional variables

Z=K3
U= U1

= A, (5)
u Juj/a
v = uy

Substituting these in Equations (1) and (2), the alternate system is obtained
as

iy +w/ =0

ipag(U - T)u + pal'w + igp = plu” - &?u) (6)
.1paa(U - mw+p’l = plw” - o)
ipacll - Thw + Lpabl’w = ply” - olw

and

u(0) = w(0)

wl0)

[}
[

(7)

wle) pla) = 0

u (o)

ljm



Clearly, the first three of Equations (6) may be solved for u, w, p independ-
ently of the fourth. As a result, the first three suffice to determine the
proper values and functions for two-dimensional perturbations (with Az = 0)
and also the proper values for three-dimensional perturbations (with A; # 0),
which are the quantities sought here. Hence, the fourth is not considered
further.

To reduce the order of the remaining system, u is eliminated,

vielding
W - Pul = ioR[a(U -« 7)w’ - al'w - igp]
2 (3)
p’ = -iga(U -~ TIw + plw” - gw)
and
w(0) = w/(0) =0
(9)
wlw) = p(e) =0
Elimination of p from this system yields the customary form of the Orr-
Sommerfeld system
W'V - 2a2wu + Ql'-w
2 (10)
= ipagR[(U - 7)(w" - W) - U'w]
and
w(0) = w'(0) = 0O
(11)
wiew) = wilx) = 0
(when p = a = 1) which however is not needed here.
To cobtain a first-order set of equations, the new variables
fl = w
£, =w’
2 (12)
f3 = w' - gw
£, = o’Rp
are introduced, whereupon Equations (8) and (9} become
L
£l =%
2
£ = f, + o°f
23 1 (13)
f:; = f4 + ipagR[(U - T)f2 - U’fl__]
£, = o [£5 - 1pacR(U - 1]

-5-



and

£(0)m £, (0)= O
1 2 (14)
flca) - f4(a) = 0

which are the basis for the ensuing analysis.

Outside the basic flow, as z approaches = and U’ becomes negligible,
Equations (13) approach the asymptotic system
I
fl = £,

2
£l m £, + o2f
273 1 (15)

fé = £, + lpack(l - 7)f,

2
£,= o' [f3 - 1paaR(l - 1) ]

with constant coefficients. This has the four fundamental solutions
F(1)

1
2
Fi“) exp(-gz)
(16)
(3)
F1 exp{+az)

(4)
F

exp(-pz)

exp(+pz)
where

g = [az + {ipagR(l - 7)]1/2 (17)
with Re{(p) > 0. The corresponding general solution is

- (m)
¥ E?BmFl (18)

where each By ie an arbitrary constant. However, to conform with Equations
(14), the restriction By m By, = 0 is necessary, so that the corresponding
complete solution is

(1) (2)

fundamental solutions which approach F as z approaches » (m = 1,2,3,4).
Thus, in that region, the general sclution is

4 (m)

*
fl - Elefl (20)

Ingide the basic flow, Yh?re U’ 1s signific?ng, Equations (13) have four
£" I

b



and the applicable complete solution is

_ (1) (2)
f1 = Blfl + Bzf1

Across much of the basic flow, at the more important conditions, both fil)

and f;2) tend to vary rapidly and greatly. Meanwhile, toward the wall, at

least in the Blasius basic flow, f1 tends to become an extremely slight

(21}

difference between components of those functions. These and other prop-
erties greatly hinder actual caleulations unless, as done here, special
procedures are employed.

At the wall, where z = 0, to comply with Equations (14}, the two
quantities

g =B i1 4 p gl
1 171 271
(D (2) (22)
£, =B + B £
2 1f2 272
must vanish simultaneously, where fgl) and féz) are the first derivatives
of f;l) and f;2), respectively, with respect to z. But in a non-trivial

solution this can happen only if the determinant of the system

o - fil)f(z) (2D (23)

2 1 2

called the secular determinant wvanishes there. Quite obviously, the secular
determinant is a function of the parameters of Equations (13). Thus, at
z = 0, the secular equation

e(Al,Az,c,R) =0 (24)

must be satisfied, which determines the proper value of A; as an implicit
function of As,c,R. This value is not unique but instead ranges over a

sequence of discrete values called the proper value spectrum. The corre-
sponding complete solutions are called the proper function spectrum, and

both spectra together are called the proper solution spectrum. Usually

only the proper value with the algebraically smallest imaginary; part and

the associated proper function, called the principal proper soclution, are
needed. In linear stability theory, this solution would represent the most
unstable and therefore the principal mode of oscillation, and the corresponding
variation of Re(A;) with R at Im (A;) = A3 = 0 would be the customary neutral
curve.

For the sample calculaticns, wherein A, = 0, the ranges of ¢ and R
are chosen as

=005 2z ¢ =2 -.100
(25}
125 < R < 2500,



80 a8 to cover the main regions of most actual tramsitions. Consequently,
the most difficult condition concerned here is at ¢ = -.100 and R = 2500,
where a proper value like A; = 0. 25 + i10.03 and therefore values like

0.25 + i0.03

o

[

B =19 + i2

are encountered.

At this condition, to illustrate an obstacle which often has been
overlooked, suppose that the method of numerical integration is tried. For
simplicity, assume that A; and fm(U) (m = 1,2,3,4) have been ascertained in

some way and that an integration for f1 across the basic flow, from z = 0 to

approximately z = 5, is sought. According to Equation (21), f, correctly

fgl) f(z), which vanish as z becomes infinite.

contains components of only and

But as the integration proceeds, tru?gﬁtion efzgrs unavoidably will occur,

introducing spurious components of E and f into the numerical solution.
Initially these unwanted components may be very sma%kj but eventually they
can become excessively large, since both £(3) and f grow unboundedly as

z becomes infinite. 1In particular, the components of f(a) finally will grow

like F§4) does, so that the ratios of the final to the initlal error magni-

tudes for 0 <z <5 will tend to resemble |Fi4)(5) ]a:(10)42 in magnitude.

Consequently, unless extraordinarily precise arithmetic is used, the numeri-
cal solution will become meaningless before the integration is completed,
although it deceptively may remain smooth enough to appear accurate. Further-
more, even if the necessary precision were provided, the integration then
would be too cumbersome and costly to be really practical. For such reasons,
a more sophisticated form of the differential equations, allowing a more
dependable and efficient method of solution, is deduced and applied here.



B. FUNDAMENTAL SOLUTION

Thus, to overcome various obstacles, fm (m = 1,2,3,4) are replaced

by the new variables

g; = log (£;)
g, = £,/f

2 2l (26)
83 = £3/f;

g, = £4/F;

whereupon Equations (13) transform to
8, =8,
By = "ByBy * Byt o
(27)

= -8,85 * 8, *+ ipack[(U - mig, - U]

ag
w
!

84 = -8p84 * o [8y - 1paoR(U - 7]

Here the last three equations can be solved for 82,838, independently of
the first equation, which for simplicity is not considered further.

The remaining equatlo?s are to be integrated from z = » to z ?29
for two fundamental solutions 8y and g(Z) corresponding to fll':l and fl s

%)

plying with Equations (15) and (16), the initial values at z = , for the
two solutions are taken as

respectively, which approach Fil) and F( as z approaches «. Hence, com-

ggl) = -8 g52) = g

(1 {2)

= =0 (28)

By r &

(1) _ 0 (2) _
g4 g{+ al’

where
I'= ipaoR(1l - 7} (29)

Also, § is replaced by the re-normalized secular determinant
= (e(2) o ,(2) _ (1)
C o/E; e g5 g5 (30)
so that the secular equation becomes
Q(Al,Az,c,R) =0 (3L

at z = 0.



Next, to obtain a finite interval of integration, the new coordinate

v = U(z) {32)
and the metrical coefficient

wly) = U’(z) (33)
together with the new unknowns

bp(y) = gp(=z) ‘ (34)
(m = 2,3,4) are introduced. Thereby, the last three of Equations (27) become

Wy = <hyhy + by + o

uhé = -hyhy + by + 1pacR((y - Tlhy - u] (35)

whj = -hohy + o’[hy - ipacR(y - )]

which are to be integrated from y = 1 to y = 0. The initial values at y = 1
for the two fundamental sclutions are

(1) _ (2) -

h2 = -B hz - =g
(1) 2 (2) _

h3 =T h3 =0 (36)
n (2) _

h4 0 h4 ol

and the final condition at y = 0 for a proper value isg

o w2 (1) _

o = h, h,"" =0 (37)

Now, in place of the original fourth-order linear system over an
infinite interval, a third-order non-linear system over a unit interval is
involved. Also, whereas the original unknowns f _(z) (m = 1,2,3,4) are

analytic and thus have only zeros over much of the complex z-plane, the new
unknowns h (y)} (m = 2,3,4) have poles at points in the complex y-plane cor-
responding to those zeros, as evident from Equations (26) and (34). However,
while £,(z) tend to vary rapidly and strongly in an oscillatory manner, hy(y)
tend to vary more slowly and weakly in a more monotonic manner except near
the poles, where they still vary rather simply. As a net result, in actual

calculations, the advantages of the new system substantially ocutweigh the
disadvantages.

In the present method, the integration is performed by expanding
the unknowns in power series and then finding the coefficients of the series

-10-



from the differential system*. However, at the conditions of interest, gen-
erally at least one singularity of hm(y) is close enough to the real interval
0 =y =1 to prevent a suitable representation over that interval by a single
expansion in y. Therefore, a sequence of local expansions, adjoined to pro-
vide an analytic continuation across the interval, necessarily is employed.

In each local expansion, the local coordinate
x = (y - y,)/8 (38)

is used, where y, is a local origin on the real y-axis** and § is a local
expansion radius chosen so that 0 £ x < 1. Also, the local parameters

v = (1 - 3,076
(39)
g = ipacyR.ﬁ
along with the local metrical coefficient
Mx) = uwly)/s (40)
and the local unknowns
gp{x) = hy(y) (41)

(m = 2,3,4) are employed. Substituting these quantities, Equations (35}
become

"Gy * gy o
7% + A + c'[(x - 'Y)sz - .7\] (42)

>
NeS
il

5.
i

A, = ~Gppy, * dzfcp_c, - olx - y)]

For the first expansion (with Yo = 1), the initial values (at x = 0) are

(1) _ (2) _
Al = -p 42 = o
(1) (2)

= =0 (4)
P r ® 3
(1) (2)

=0 =
qh qh al’

*For integrating from y = 1 (or z = &), this process seems to be preferable

to the simpler method of numerical integration, which would entail a trouble-

some numerical instability at the start of the integration unless excessively

many steps were taken there.

**Recent experience suggests that use of a suitable sequence of complex rather

than real values of y, could substantially reduce the required number of local
expansions.

-11-



whereas, for each subsequent expansion, the initial values are the final
values of the preceding expansion. For a proper solution, the final values
of the last expansion must satisfy

= . (2) (1) _
e :pz sz 0
At the more important conditions, at least for the Blasius basic
flow, the two fundamental sclutions tend to become almost identical toward
the wall, even in quite improper solutions. Indeed, near the wall, the
secular determinant often amounts to such a slight difference in those solu-
tions that it cannot be evaluated at all by just the single-precision arith-
metic used in most Fortran programs. In previous techniques, such as the
method of numerical integration, this obstacle or its equivalent sometimes
is partially overcome by utilizing double-precision arithmetic, which how-
ever is cumbersome and costly and still is not adequate in many important
situations. Here the obstacle is overcome simply by deducing and applying a
supplementary differential system for the secular determinant, which generally
can be sclved with adequate accuracy by just single-precision arithmetic.

(44)

Therefore, only the more gradually varying fundamental solution,

found to be (l), is obtained directly from Equations (42) and (43). Then,
using that sépiution in the secular determinant system to be derived, @ rather
than qéz) is determined.

“12-



C. SECULAR DETERMINANT

To deduce the secular determinant system, the supplementary local
unknowns

(2)
ﬂn = G - €n {45)

(1)

(m = 2,3,4) are introduced, where €0 = Gm and T =@. Substituting these

in Equations {(42) and noting that £, satisfy those relations, the supple-
mentary local equations

Kﬂé = '§2ﬂ2 = gzﬂz = ﬂZﬂZ + ﬂ3
ATg = =3T3 - E3Tp - Ty + Tl + olx - v)Tp (46)
AL = -EaTy, - 4T - Tl + 0Ty

are obtained, in which £ are to be regarded as known. For the first expan-
sion (with y, = 1), the initial values are

T =P -«
'ﬂ3 3 -1" (47)
ﬂ4 = ol

whereas, for each subsequent expansion, the initial values are the final
values of the preceding expansion. For a proper solution, the final value
of the last expansion must satisfy

B=1=0 (48)

As Rn and thus & become small, Equations (46) approach linear

equations with variable coefficients, which vary rather gradually in the
critical situations concerned here. Consequently, with due care for a
rather abrupt transition from large initial values at y = 1 to very small
final values near y = 0, the supplementary system can be solved quite satis-
factorily by just single-precision arithmetic#®,

*To cover the wide ranges of Th more easily, a further transformation to
unknowns of a more logarithmic nature perhaps would be desirable.
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111, EXPANSION SYSTEMS

A, BASIC FLOW

For the integration, the basic flow must be ascertained in a suit-
able form, which as an illustration now is done for the Blasius basic flow
considered in the sample calculations. As explained in Reference 1, this
flow is governed by the Blasius differential system

zxﬂf‘ + xxﬂ = 0 (49)
and

X(0) = X' (0) =0
(50)
x’(m) =1

where X is a dimensionless stream function of z such that U = X', Here z and
X are replaced as variables by y and y, yielding the more pertinent system

2un” + y=20 {51)

and
w'(0) = (1) =0 (52)
The latter system may be solved by expanding x in the formal series

3n
M= Zg ”3ny (53)

where N is a sufficiently large integer and, by a rather elementary process,
evaluating the constants y n (n =0,1,...,N) from the system. This series is
quite simple, and as N incTeases it converges over the whole interval

0 sy 1. Thus, at least for present purposes, it is preferable to previous
representations of the Blasius basic flow, which involve either a more compli-
cated series as in the method of steepest descent (Reference 4), two adjoined
series as in the method of Blasius (Reference 2), or tabular data as in the
method of numerical integration. However, its rate of convergence is quite
slow, due to the presence of a weak singularity at y = 1.

Therefore, a more efficient representation in the form of the Pade
approximant

o 3n/M o 3n
= ):‘;I t3ny /L, sy (54)

actually 1s used, where sg =1 and M is a sufficiently large integer. The
constants tgn (n=0,1,...,M) and Sgn (n=1,2,...,M) could be evaluated

from %3n (n=0,1,...,2M + 1) by the method of Pade (Reference 7). However,
to satisfy the boundary conditions more suitably, they actually are ascertained
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more directly from the differential system, so that the numerator series of
the Pade approximant rather than the formal series vanishes exactly at y = 1.

The resulting coefficients for M = 3,5,...,13 are listed in Table 1,
and the corresponding approximants are plotted against y3 (which presantly is
more convenient than y) in Figure l. Also, the numerator zeros in the y=-
plane, which will produce singularities in the fundamental solution and sec-
ular determinant, and the denominator zeros in that plane are listed in
Table 2. These zeros all occur in the real interval_l < ¥” < @ and become
more dense as M increases, the approximants in the y~-plane evidently con-
verging to a solution with a branch cut along that interval. Meanwhile, as
M increases, the smallest dencminator zero approaches 1, and the slope
nw'(y) at y = 1 approaches -, which is the correct value. As a net result,
even with relatively few terms, the Pade approximant is quite accurate over
the interval O sy s 1, although its slope u'(y) is finite at y = 1 and thus
is not entirely typical near that point., Ordinarily, this slight deficiency
will not significantly affect the proper solutions, which depend mainly on
the nature of the basic flow closer to ¥y = 0. 1In fact, the deficiency pre-
vails over only a tiny range of y, which may be regarded as merely the exter-
nal flow for the boundary layer in the y-coordinate in analogy to the bound-
ary layer for the external flow in the z-coordinate.

In the sample calculations, just the data for M = 5 are used. In
other calculations for other boundary layers, the basic flow generally should
be representable by similar Pade approximants. In some cases, such as for an
asymptotic suction boundary layer, the basic flow can be expressed exactly by
a finite Pade approximant.

Therefore, in each local expansion, )} is represented as

A= t/s {55)
where
3M
t =55 tpx
3M o (56)
8 = Zb SpX

and s, = 1. Substituting from Equations (38) and (40} into Equation (54) and
applying the binomial theorem, the local constants are evaluated as

tp = tm/shs
(57)
Sp = sk/sk
where
3M
th = (% tovoen)s™/ve 569
3M
sh= (s sovoen)s™/ve

=15~



Here gg are the binomial coefficients, which are obtained recursively as

g, = 1 (59)

form = 0,i,...,3Mand n = my...,3M. For the first expansion (with Vo =1
ty, = 0 from Equations (52); whereas, for the subsequent expansions, ta # 0

),
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B. FUNDAMENTAL SOLUTION

With the basic flow represented as a rational function, Equations
(42) now are expressed in the more convenient form

t(pé = S@z
t@é = 8%, - ot (60)

where

_ 2
hTrewm t et

= = + + - 6
@3 0,8 ¥ @, olx y)qb (61)

4= 0, o Ly - otk - )]

which will entail only quadratic products of series.

Next, the unknowns are expressed as the formal series
- n - n
2 Zﬁpnx % = Z%an

Py = Eiqnxn ¢

L n
ZQx (62}
o™n
n
= iﬁnx
where L is to be a sufficiently large integer. Substituting these relations

and Equations (56) into Equations (60) and (61) and then equating coefficients
with the same power of x, the expansion system

Fr

=]
[

A

n+l n

Zo n-k+1kpk h stn-kPk =0
n+l
o tn-ke1Mk - TospiQk * oty = O (63)

+1 _
% tnetr1KT - ToSpoiRy = O
where n =2 0 and
n
Pn * zbpn-kpk " 9n

= of (n = 0) (64)
{cont. )
=0 (n = 1)
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n

Q, * LoPp-k9k - Ty * OYP,
=0
= “Ph.1

R + n 2

n t ZoPp-kTk -~ @ 4p

= uzcy

-o%c

=0

(n

(n

(n
(n

{n

2

0)

1)

0)
1)

2)

{cont.)
(64)

is obtained. Both the case t; = 0 for the first expansion and the case

t, # 0 for each subsequent expansion necessarily are considered.

Later, in solving the expansion system, the summations

an = Soltn ye1kPk - 5poiPk)
by = Toltpweily = spoiQe)
cp = Tt ekt - SpoicRi)

where n 2 0 and

An =0

= -1

- ET Ph-kPk
By = -opp-1

- -1

- zrl' Pk
Cp = %o

= -1

- Z? Pr-k™k

along with

Dp = Egpn-kpk - dp

Ert
l

n = ngn_qu - Ty toyp,
- 2
Fp = ngn_krk s oqn

where n = 0 are used.

For t, = 0 and n = 0, Equations (63) and (64) degenerate to

~-18-
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(n
(n
(n
(n

(n

1

1)
2)
|9
2)
1)

2)

(65}

(66)
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o
Q=0 (68)
Ry =0
and
PPy = G * @
Polg = Ty = SYP4 (69)

2
poro = g (qo + cy)

which have four solutions corresponding to F;m) {m = 1,2,3,4). Here only
the solution corresponding to Fil} and thus ¢§l)
P, = -B
9 = T (70)
r,b=20

is needed, which also could be obtained by applying Equations (43) to
Equations (62).

For t; = 0 and n 2 1, Equations (63) and (64} become

ntlpn - s P = -5

o' n n-1

nt1q, = $,Q, & by - oty {(71)

ntiTh - Sofp = ~¢pop
and

P + + - = -

n o PoPan T PpPe T 9y An
Q, + Poln * Ppdp - Tp * OvPy = -By (72)
Ry # Porp * Pnfo - o' qp = -Ch

which necessarily are solved recursively for n = 1,2,...,L. For each value
of n, the right-hand terms are ascertained from preceding data, so that the
six equations always constitute an inhomogeneous linear system for the six
coefficients py, 9, T, Pp, Qs Ry
The determinant of this system is found to be

Ap = (T, + 2p ) [(T, + p)? - o? + p2 - p2] (73)
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whare

Ty = nty/sg (74)
For the particular solution concerned here, in which p, = -B, A, reduces to
b= (Tp - 2B) (Tn - B+ o) (T - B - o) (75)

and thus has zeros at n = 2Bs,/t; and n = (B £ a)s,/t;. However, in a normal
solution, which is the only kind considered here, none of these zeros coincide
withn = 1,2,...,= and the six ccefficients always can be determined, the formal
series then being valid over their circle of convergence.

In an abnormal solution, to allow a zero at one of the values taken
by n, the parameters g and § and therefore Ay, Ay, ¢, R must have special
values depending on t;, which itself must be finite because o and 2 are finite
in the pertinent situations. At these special values, the coefficients for
that and the higher values of n cannot be determined, the formal series then
being invalid unless generalized appropriately. For some basic flows, like
that in the asymptotic suction boundary layer, tj actually is finite and the
abnormal solutions perhaps have a physical significance. However, for the
Blasius basic flow, ty really is infinite and the abnormal solutions appar-
ently do not exist. hevertheless, if t; were too small in the approximate
representation of that flow, a zero of A, perhaps could occur at one of the
values taken by n, causing a misleading result.

Thus, solving Equations (71) and (72) with A, # 0, the six coeffi-
cients are calculated as

Pp = Tn/by
gn = -dn + (T, + 2po)p, (76)

ry = -ep + (T + pyla, + (pg - Bz)pr|

and
= -1
Pn - Tnpn t s;7ann
Q= Thdn * S;l(bn-l + oty) (77>
= -1
Rn = Thrp * 86 Cp-1
where
= - - a-1
dn An So an-l
ey = By - sgl(bp.] + otp) (78)
fn = ~Ch - 8o €p-1
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and
2 2
T, = [T, + pg)° - o Jdy + (T *+ pyley + £, (79)

Together with Equations (68) and (70), the resulting data provide the initial
expansion for the fundamental solution.

For each subsequent expansion, in which t, # 0, the conditions

= pk
P = Py

-k
96 T 9o (80)
ro = Tp

necessarily are observed, where pﬁ, q:, rg are the final values at x = 1 of
the preceding expansion. Then, complying with Equations (63) and (64}, the
remaining coefficients are caleculated recursively firom

2 .

P,=-D, + ¢« {n=0)
= -D, (n 2 1)
QG = -E, (n=0)
= -E, + op,.q (n 2 1) (81)
R, = -F, + ¢ oy (n=0)
= -Fn - Q2G (n = 1)
= -F_ (n =z 2)
and
Poep = "an/(n + Dt
ap+1 = -(by + oty)/(n + Dty (82)
Tl T —cn/(n + Dt

wherein n 2 0.
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C. SECULAR DETERMINANT

Using the expansion coefficients of both the basic flow and the
fundamental solution, the secular determinant is ascertained in a manner
similar to that just described. In fact, in the Fortran program, the same
subroutines are used for both the fundamental solution and the secular
determinant. Hence, just the counterparts of the main equations of the

preceding section, identified by the same numbers with an asterisk, are
listed here.

Thus, Equations (46) are expressed as

tTy = sHp
tﬂé = sHy (60%)
tTu = sH,
where
H =

2 = BTl < ST T, *
3= "B2Th - E3Tp - ThTy + T + olx - yIT, (61%)
Hy = -5y0), - &7, - Tyl * o,

jas
[

while the unknowns are represented as

n2 = Ziunxn H, = E%Unxn
Ty = T Hy = DV (62%)
'|']4 = Z:]c;'wnxn H4 = nxn

Then, along with Equations (56) and (62}, these relations are substituted
into Equations (60%) and (61%), yielding the expansion system

n+l

}:0 tn_k_‘_lkuk - )ngn_kUk =
ol - A - (63%)
Lo Cn-k+1®Vk T osn-kvk =0 3

n+1 -
25 tn-k+lkwk - Zgsn-kwk =0

where n 2 0 and

n
Up *+ ZolPp.ilx * PRlip-k * Up-kUi) ~ Vp

=0 (n =2 0)
n
Vo t Eb(Pn_ka + qEbp-x * un-kvk) - W, + ooyu, (64%)
{cont.)
=0 (n = 0)
= oun {n 2 1)
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2
Wy + L (p yw +ru . +u wl)-ov (cont.)
Zg n-k 'k k n-k n-k k n (64%)
=0 (n = 0)
As before, the cases t_ = 0 and t_ # 0 fcr the first and subsequent expan-
sions, respectively, necessarily are considered.
Later, the summations
* o It
an = Lo (tn peerky = sply)
* —
bn = Z:(tn-ki-lkvk - sn_ka) (65*)
ek = T lbnaank = Sy
where n = 0 and
A* = 0 (n=1)
n
- ¢n-1
- Z? (pn-kuk *PYn Y un-kuk) (n22)
* o=
BY = ou 4 (n=1)
- on-1
= z;‘ (P Ve + Ylipog * UpoiVi) - Mpp (02 2) (66%)
c* =0 (n = 1)
n
- on-1
B Z? (Pr-k¥k * Tkln-k ¥ Up-k¥? (n z2)
along with
*
Dp = Z:(pn-kuk + PiUp-k * Un-kUk) ~ Vp
E* = S0PV * Qlpok * UnokV) - ¥n * OV (67%)
* 2
FI‘I = i(pn"kwk + rkun__k + un_kwk) - ¥ Vn
where n = 0 are used.
For t, = 0, the solution &t n = 0 is
U, =0
Vy =0 (68%)
W,=0
and
U, = B -~ o
VO = 'F (70*)
W = ol
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whereas the recursive system at n = 1,2,...,L is

ntlun - SOUI‘I = -a;_l

= *
nt,v, - so¥n = ~bp.1 (71%)
nt *

1%q " 8 W. = =Ch-1
and
Un + Pu, + pu_ + uu

+ Ppp * Pplg + Ui, - ¥ = ~A¥

Vha + PoVp * 9pUn * UpVn

N (72%)
+ ppvg *t QU * Upvg - wn +ooyug = -Bp
Wn + poWp + Toup + ugwy
2
+ P W, * TRy +ougWg - o vy = -C¥
which is solved for u,, v,, W, Uy, Vi, Wy
Here the determinant of the system is
A% = (T, + 2pg + 2uy) [(T, + po + ug)2 -0 + (pg + ug)? -g2 (73%)
n n Po o n T Po ) o Po * Ug B°)
which for the scolution concerned reduces to
pk = (T - 200(Ty =~ o + B} (T - o - B) (75%)

and has zeros at n = 2gsy/t; and n = (o &+ B)sy/t). Again, only a normal
solution avoiding such zeros is considered, the formal series then being
valid over their circle of convergence. However, in singular circumstances
like those discussed before, an abnormal solution possibly could occur.

Accordingly, for the first expansion, the remaining coefficients
(at n 2 1) are calculated as

up = TR/AR
vy, = -df + (T, + 2p, + 2ugduy (76%)
W, = -ef + (T, + Pg * uglvy + [(py + uo)2 -szun

and

Up = Thup + Salaﬁ-l

-1
Vy = Tpvp + 55 B% (77%)
Wp = Ty + sylick
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where

dﬁ = 'Ai B S;IH:-I T UoPn T UoPp
en = -Bj - Salbg-l * VoPn - Uodn (78%)
f: = *Cﬁ N Sélcﬁ-l T WoPp T UgTh
and
Fg = [(T, + py + u0)2 —az]dg + (T, +p, + u,lek + £% (79%)
For each subsequent expansion, wherein t, # O, the conditions
uy = u¥
vV, = v: (30%)
W, = wg
are observed, where ug, v:, wg are the final values at x = 1 of the preceding

expansion, and the remaining coefficients are calculated from

u, = -D} (n 2 0)
v, = -E: (n=0)
= -E: + ou, g (n=21) (81%)
W, = -F} {(n =z0)
and
u = -ah/ln + 1)ty
Vol = “ba/ln + 1)t (82%)
Vel = mcp/ln + 1tg

wherein n > 0. For a proper solution, the final value u* at x = 1 of the
last expansion, which is the value of ® at y = z = 0, must vanish.
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1v., AUXILIARY RELATIONS

A. RATIONAL EXPANSIONS

In each expansion, whereas the origin y, is predetermined, the
radius § is somewhat flexible and can be chosen best only after the expan-
sion coefficients for a trial value have been found. Therefore, in the
Fortran program, the expansion coefficients first are computed from the
preceding relations for a tentative value of §, which is selected sc as to
avoid troublesome truncation and overflow or underflow errors and to keep
the expansion interval within the applicable range of y. Then, a conver-
gence test is applied to these coefficients to f£ind a preferred value of §,
which would provide a moderate rate of convergence at x = 1. Finally, the
expansion coefficients either are left unchanged or are scaled down by an
elementary process to the preferred value, according to whether the tentative
value is smaller or larger than the preferred value. Thereby, the final
formal series always converge at least moderately over O £ x < 1.

However, to accelerate the convergence and thus minimize the number

of terms required for a given precision, the formal series subsequently are
converted into Pade aspproximants. Thus, representing each final formal series

as
n
z’;fnx (83)

where £, (n = 0,1,...,L) are known constants, the rational function

£

f

+u+l
(Zspnxn + eoxu vt %/qunxn (B4)

always is constructed. Here y =L -1 - pand q; =1 whereas p is an arbi-
trary positive interger and p, (n = 0,1,...,u), q, (n = 1,2,...,v), and g,
are constants determined from £, (n = 0,1,...,1). The last numerator term
is the leading term of the truncation error and is omitted in the actual

evaluation of the approximant, the coefficient ¢, serving only as an error
index.

To determine the rational coefficients, Equations (83) and (84) are
multiplied by the denominator of Equation (84), and the resulting coefficients
with the same power of x are equated. This process yields

Ng

Py = Ly £o9 (85)
for 0 < n <, where ny, = min (n,y), and

v
£
2yt k%

for p+ 1 €n <y + v together with

= —fnqo (86)

_ v
so - Eofn_qu (87)
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for n=y + y + 1 =1L, Equations (86) constitute an inhomogeneous linear
system for the unknowns q, (n = 1,2,...,p), which is solved by the elimina-
tion method (Reference 8) assuming that the determinant of the system does
not vanish. Then, using that solution, p, (n = 0,1,...,u) and g, 8re com-
puted directly from Equations (85) and (87), respectively.

In the complex x-plane, as L increases, the formal series converges
only within the circle centered at the origin and extended to the nearest
singularity. Meanwhile, as y and y increase, the rational function (even
though constructed from the formal series) converges over a much larger
region, which apparently includes the whole finite plane except for infinites-
imal regions arocund the poles and around the rays emanating from the other
singularities to infinity. Furthermore, the superior convergence of the
rational function persists into the circle of convergence of the formal series.
As a net result, in the present computations, a given precision can be attained
more economically by obtaining and using the rational function, despite the
extra relations entailed. Tn fact, in place of a sequence of local expansions,
just a single rational expansion at y = 1 would suffice theoretically, since
it would converge at y = 0. However, in most cases of interest, the rounding
and other errors then would be too troublesome, the procedure followed here
being a practical compromise.

In the present Fortran program, to limit the calculations and errors,
the restrictions L = min (L, ,L.) and v = min (6,p + 1)} are imposed. Here, L,

is the maximum degree of the formal series, which is chosen from 3 = L, < 29,
and L, is the minimum degree of that series providing moderate convergence,
which is calculated along with the expansion coefficients. In the sample
calculations, the value L, = 24 generally was used, and the condition L = L,
commonly occurred. As a result, the number of local expansions varied from
about 11 to over 30, depending on the values of Al, Az, c, and R,
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B. ROOT EXTRACTION

As indicated earlier, when Aj,c,R are specified, the proper values
of A; are just the zeros of @ at z = 0, to be denoted as 6*{A1). However,

these zeros cannot be expressed explicitly in a tractable way, owing to the
intricacy ofé?*(Al). Therefore, to ascertain a proper value, first a local

polynomial approximation ofé?*(Al) is established. Then, the pertinent root

of that polynomial is located and used as an approximation of the proper
value.

Thus

.5 for each proper value, a small set of adjacent values of Al,
denoted as A;J

(j =0,1,...,n ~ 1) where n is the number of such values, is

selected. To minimize the computations for a given precision, these values
are distributed equiangularly around a circle in the complex Aj-plane chosen
so that the center A; is as close to the proper value as possible and the

radius R; is as small as tolerable. Thus, the adjacent values are

(i) _
Al = Kl + Eij (88)
where each Ej is a unit circle value
E. = exp(i2nj/n) (89)

]
of another complex variable E. Next, the quantities QJ. =8*(A§j)

lated by the preceding method and used to construct the interpolation poly-
nomial

) are calcu-

_n-l Lk
8, = I cf (90)
where ¢, (k = 0,1,...,n - 1) are constants such that Oy = 65 at E = Ej‘ in
this construction, the identity
g1t = g (4= 0)
j=0 1 (91)
=0 (2 # 0)
for 2 = 0,21,...,+(n-1) is employed, yielding
o-1a o=k -1, n-1 _m _-k
RN = ( E,)E,
Ej=oeﬁ ] z§=0 zﬁ;ocm J) J
_ -1 -1,.m-k
= Zﬁ=0cm(ig=0Ej )
= an
whereupon
= n~lgtlg g7k (92
T E=0yYy o
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Except as limited by the precision of the arithmetiec, the resulting polynomial
approximates the first n terms of a complex Taylor series about E = 0 and
thus, as n increases, converges in the circle centered at that point and ex-
tended to the nearest singularity (generally a pole). This particular inter-
polation scheme, perhaps somewhat new, is a complex-variable counterpart of
the highly-efficient real-variable Chebychev interpolation scheme. At the
larger values of n, to further improve the convergence and thereby the accu-
racy of the resulting root (particularly near a pole), the interpolation
polynomial is converted into the Pade approximant

_ n..]_..v k/ Vv k
9**- Zo dkE /ZoekE (93)
Here, e = 1 and y is an arbitrary integer, while dk(k =0,1,...,0-1-p) and

ek = 1,2,...,p) are constants determined from ck(k = 0,1,+..,n-1) by the
method described in Section (F-1). Finally, the pertinent root E, of

zz“lcknk =0 (94)
or

z?‘l‘”dkak = 0 (95)

Q

as applicable is located by Newton's method (for simple roots) and, if within
the range of the adjacent values, is used in the approximation

—

A? = & + RE, (96}

for the desired proper value. Subsequently, as necessary, the process is
repeated until sufficient accuracy is attained. With due care for truncation
errors, particularly those inherent in each @ , all calculations generally

can be performed satisfactorily with just single-precision arithmetic.

In the present Fortran program, the root is extracted from the
polynomial if 2 < n < 4 and from the rational function if 5 <= pn < 16 {a maxi-
mum of 16 adjacent values being allowed). 1In the latter case, to further im-
prove the accuracy, a second extraction from a polynomial centered at the root
from the rational function is included (with 2 <n < 8). In both cases, as a
check, the value 0f69*(A1) at the final root, which in an exact calculation

would vanish, also is obtained. When this check value significantly exceeds
the inherent computational errors, the program is rerun, using the final root
of the preceding run as the initial center. 1In the sample calculations, for
many runs, the value n = 6 was chosen (with n = 3 in the second extraction).
For most runs, the interpolation radii were taken as rather small fractions
of the proper values magnitude.

Ordinarily, just the principal proper value, which has the algebrai-
cally smallest imaginary part, is sought. However, at least in principle,
several higher proper values also could be ascertained by the foregoing pro~
cedure. In general, the significance of the higher proper values has not yet
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been adequately assessed, especially in regard to the resonance theory of
transition. Some instructive explorations of such values for relatively
simple basic flows are described in References 9 thru 1iti.
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v, FORTRAN PROGRAM

As in most other methods of solving the Orr-Sommerfeld system, the
calculations entailed here are too extensive to perform manually in a
practical way, even for a single proper solution. Therefore, a Fortran
program (References 12 and 13) for conducting them on an automatic compuler
{the IBM 7090 data processing system at the Norair Division) necessarily
was developed.

At present, the whole program includes one main program (MPA) using
eleven subroutines (SRB thru SRL) and another main program (MPM) using the
same subroutines plus two additionmal subroutines (SRN and SR@). The titles,
common notation, and source statements of these routines are listed in
Appendix I. This information together with the preceding analysis and the
following remarks indicates the general nature of the program. Complete
details would be too lengthy to describe here¥,

In its present form, the program includes a few vestiges from earlier
programs that were tried without adequate success. Alsoc, it omits labels
from ocutput data, which therefore must be identified from the listed notation
and output statements. Moreover, various generalizations, such as to include
the useful bypassed equations and to cover the adjoint as well as the actual
Orr-Sommerfeld system, are underway or contemplated. Consequently, the pro-
gram is somewhat tentative and later may be refined and revised.

A, ADJOINTED POWER SERIES SOLUTION

The main purpose of program MPA (adjoined power series solution)
is to obtain the expansion coefficients of the fundamental solution and
secular determinant for specified values of Al,Az,c,R. When Al has a proper

value, these coefficients readily yield the corresponding proper function.

Another purpose is to provide the values of @ at z = 0 for sets of values

of A;,As,c,R from which the proper values can be estimated in a preliminary
1°%2

manner,

The principal subroutine is SRG, which is performed once for each
local expansion. It calculatesthe formal expansion coefficients of both the
fundamental solution and the secular determinant by the relations of Sections
(E-2) and (E-3), using SRH thru SRJ for the summations involved. Then, from
those coefficients, it calculates the corresponding rational expansion coef-
ficients by the relations of Section (F-1), using SRK for this purpose. In
turn, the last routine employes SRL to solve the complex linear system thus
encountered.

The local expansions are adjoined by SRE, which also provides the
local basic flow coefficients and the local parameters for SRG by use of SRF,
The latter routine uses basic flow coefficients and binomial coefficients
supplied by SRB along with parameters computed in SRD. The secular determinant
at the wall is calculated by SRC.

*Further details can be supplied upon request.
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B. PROPER VALUE LOCATION

The main purpose of program MPM (proper value location) is to find
the proper values of A; when Aj,c,R are specified, which are needed to eval-
uate the resonance growth functions of Reference 1. Another purpose is to
find the proper values of R when Aj,Aj,c are specified, which are needed to
evaluate the resonance coefficients of Reference 1.

Here, the primary subroutine is SRC, which employs SRD thru SRL to
provide the value of @ at z = 0 for each adjacent value of A; (or R). From
these data, the proper value is extracted by the relations o% Section (F-2),
using SRN for the interpclation polynomial coefficients and SRK for the
rational function coefficients together with SR® for the zero location.
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vi. SAMPLE CALCULATIONS

To demonstrate the method and provide basic data for research on
transition, some proper values and functions for the Blasius basic flow
were calculated. The principal mode, for which Im (A;} has the algebraically
smallest value, and two-dimensional perturbations, for which &3 = A3 = 0,
were considered. To otherwise cover the main regions of most actual transi-
tions in an efficient way, the wvalues of ¢ and R were selected as

1§

c -.005 exp[log(20) sin?(jm/2n)]

i
Ry = 125 exp[log(20) sin®(kn/2n)]

(97)

where j,k = 0,1,...,n and n = 6. These 49 points encompass the ranges of
Equations (25) and are distributed so as to allow Chebychev interpolations
in the logarithms of e¢ and R.

Each point required an automatic computer time of about 0.1 hour or
more and thus was rather expensive, which emphasizes the advisability of
economizing throughout the program and calculation., In previous computa-
tional schemes, some of the points would have required double- or triple-
precision arithmetic, which perhaps would have increased the time for those
points about four or nine times, respectively, or more.

The accuracy of the resulting data varies somewhat, being least where
¢ and R are greatest, Near ¢ = -,100 and R = 2500, which is the most criti-
cal region, the error in the proper values apparently is of the order of
0.001 percent of the absolute value. The accuracy of the proper functions
should equal that of the proper values, since their greatest error tends to
occur near the wall where the proper values are determined. However, in
previous computational schemes, the proper functions evidently can be less
accurate than the proper values.

4. PROPER VALUES

The proper value of A, as a function of ¢ and R is listed in
Table 3 and plotted in Figure 2. Here Ay is complex while c and R are real,
unlike conventional linear stability data in which ¢ is complex while Ay and
R are real. Thus, these data pertain to spacewise modulations of Fourier
components of the motion, which are needed in most applications, whereas the
conventional data represent timewise modulations of those components. In
previous analyses, the spacewise variations usually have been merely esti-
mated from the timewise variations, which sometimes can be done without ex-
cessive error (Reference 14), However, at least as ordinarily performed, such
estimates become poorer as the phase velocity of the Fourier component de-
creases and in fact are invalid where that velocity vanishes, which happens
when stationary waves occur.

For the particular basic flow and conditions considered here, the

proper values near and inside the neutral curve, on which Im(A;) = 0, agree
reasonably well with previous double-precision calculations (Reference 15).
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However, the proper functions themselves may differ more substantially,
especially at the larger values of c and R, the present data presumably
being the more accurate. The proper values further cutside the neutral
curve cannot be compared, because they have been omitted from the previous
calculations. Nevertheless, such values are somewhat important, since some
resonance growth can occur cutside the neutral curve, contrary to linear
stability theory which predicts only damping in that region.

B. PROPER FUNCTIONS

The fundamental solution gy and secular determinant T, composing

each proper function, for the values of Equation (97} with j,k = 0,n/2,n
only, are represented as functions of y in Figure 3. For convenience, in
place of nz, the more tractable parameter y log(nz) is plotted.

Clearly, as anticipated, £, generally is remarkably smooth, whereas
the original variable

¥
£41) = exp j £,dy/n (98)
1 . 52

varies greatly in an oscillatory manner, particularly at the higher values
of ¢ and R. Contrarily, T, itself varies rather strongly, although the param-
eter representing this quantity in Figure 3 is almost as smooth as €y- These

relatively simple and mild trends facilitate the calculations and thus help
to justify the elaboration of the method. They also suggest that useful
asymptotic approximations, differing from those of the familiar method of
asymptotic expansions (References 2 thru 4), perhaps could be established by
further investigation.

~34-



VII. CONCLUDING REMARKS

Insofar as observed, the Fortran program described here should be
satisfactory as a basis for implementing the resconance theory of transition,
and it incidently should be valuable for extending the linear theory of in-
stability, To fully exploit the possibilities, though, various generaliza-
tions are desirable. The most urgent is the incorporation of the pertinent
bypassed equations and the adjoint Orr-Sommerfeld system, so as to evaluate
the resonance coefficient of Reference 1. Others include extensions to
three~dimensional curvilinear coordinates, for handling curvilinear phenomena
like Goertler and crossflow vortices, and to compressible and real fluids,
for investigating supersonic and hypersonic transitions. In general, the
present technique should be somewhat more economical and dependable than pre-
vious techniques, and it perhaps could be improved significantly by further
development.

Meanwhile, continuaticn of the present calculations to broader condi-
tions and additional basic flows would be appropriate. 1In particular, some
higher modes and the three-dimensional perturbations should be covered.
Indeed, as mentioned in Reference 1, the proper soluticns for Re(Al) = Aq = 0,
which represent streamwise (not crossflow) vortices, may provide insight into
the nature of turbulent wedges. Also, systematic data for special basic
flows such as the Hartree flows with suction and viscoelastic walls would be
valuable for general reference. In this connection, the proper values for
the asymptotic suction profile, as obtained by a predecessor of the present
methed, are included in Figure 4. For these calculations, just single-pre-
cision arithmetic (8 decimal places) was used, but the accuracy exceeds that
attainable from quadruple-precision arithmetic (32 decimal places) in previcus
schemes. Altogether, considering the growing importance of transition in
technology and the wide range of conditions encountered, such calculations
could be continued in a worthwhile way rather indefinitely.

Also, separate programs are needed for actually evaluating the resonance
coefficients and growth functions of Reference 1 from the proper solutions.
To indicate the significance of such growth functions, the downstream modula-
tions of a typical Fourier component of the motion according to the resonance
and linear theories, as estimated from Figure 2 in an approximate way, are
compared in Figure 5. In this particular case, the two theories differ
greatly near the lower branch of the neutral curve. In other cases, they
would differ substantially in other ways, yielding greatly different whole
motions.
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A'

TITLES
MFPA
SRB
SRC
SRD
SRE
SRF
SRG
SRH
SRl
SRJT
SRK
SRL
MEM
SRN

SRQ

APPENDIX

SOURCE PROGRAMS

adjoined power series sclution
basic flow and constants
secular determinant

parameters

adjoined expansions

basic flow and parameters (local)
formal and rational expansions
first summation

second summation

third summation

rational function approximation
linear system solution

proper value location
polynomial coefficients

simple zeros near origin

930Ta
930TB
930TC
930TD
930TE
930TF
930TG
930TH
930TL
930TJ
930TK
930TL
930TM
930TN

930T@



B.

COMMON NOTATION

Subscripts used below:

B (1)=a4

1
B (2) = A2
B (3)=c
B (4) =R
B (5) = az
B (6) = o
B(7) =o'
B (8)=a
B (9) =0
B (10) = ¢
B (11) = iR

B (12) = iaaR

B (13) = iaagRc

B (14) = T
B (15) = g2
B (16) = B
B (17) = of

B (18) = vacant
B (19) = vacant

B (20) = vacant

expansion number
i+ 1
k+1

root number
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C (1,1) = y
c(1,2) =¢
c (1,3) = yo
C (1,4) = azc

C (1,5) = a?vo

C (1,6) = vacant
C (1,7) = vacant
€ (1,8) = vacant

D (1) = n$t (0

(2)
h,

D (3) = O%

D (2) = (0)

D (4) = vacant

D (5) = vacant

D (6) vacant
D (7) = vacant
D (8) = vacant

D (9) = (S2,HM)*

G (J,K) = g?

H(I +1,1) = ¢b(1)
H L+ 1,2) = g (1)
H(L+1,3) = ¢h(1)
B (L + 1,4) = T&(l)

*52 = Yo * § of last expansion
HM = maximum error index of all expansions
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(1
(1
(1
(1
(1
(1
(1

(1

(1
(2)
(3)
(4)
(5)
(6)
(7}
(8)
(9

(1)
(2)
(3)
(4)
(5)
(6)

1,5) = ﬂs(l)

1,6) = ﬂa(l)

1,7} = error index for 9y

1,8) = error index for N

1,9) = error index for 9

1,10) = error index for Ty
1,11) = error index for ﬂ3
1,12} = error index for ’n4

adjacent values (initial interpolation)

adjacent values (final interpolation)

unknown (streamwise frequency or Reynolds number)
roots sought {(each run)

iterations (root extraction)

printing (maximum or minimum)

interpolation (initial or final)

terms (in polynomial or Pade numerator)

roots calculated (each interpolation)

expansion number

expansion type (initial or subsequent)
n (term degree)

n + 1 (term number)

n+ 2

rational functions (1 to 6)
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(1) = numerator terms (basic flow)

(2) = denominator terms (basic flow)

(3) = expansions {(per solution)

(4) = maximum terms (per expansion)

{5) = printing (maximum, medium, or minimum)
(6) = vacant

(7) = vacant

(8) = vacant

(9) = vacant

(10) = maximum of M (1) and M (2)

(I,1) = expansion type (initial or subsequent)

total terms

(1,2)

(1,3)

numerator terms

(1,4) = denominator terms (assigned)

(1,K) =

o

(2,K)

n
n
w o

(1,1,K)

(I,Z,K) = qk
(1,3,K) =
(1,4,K) = u

(1,5,K)

(1,6,K) =
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Q

Lo O o L

(2,K) = Q

(S,K) = Rk

(4,K) = Uk

(5,K) = Vk

(6,K) = Wk

(I,l,K) = tk

(I,2,K) = &

(I,1) = § (tentative value)

(1,2) = Yo

(I,3) = Ao

(L,4) = § (final value)

(1) =a_ _, or a;

(2) = b1 + ot; or by + oty

(3) = ¢y or c,

(4) = a* or a¥

n-1 n

- Lk *

{(5) = bn-l or bn
_— *

(6) = ety or cp

(1) = dj or Dn

(2) = en or Ej

(3) = £ or F
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(4) or D¥*

i
[= %
=F 2

n
(5) = e} or E¥
(6) = £¥ or F*
n
(1,1) = E}/n (for initial interpolation)
(2,J) = E}/n (for final interpolation)
(I,J) = Qj
(2,5 = <4

(3,J) = polynomial coefficients or Pade coefficients {(numerator and
denominator)

(1,L) = initial root (unit~circle or actual)

(2,L) = final root (unit-circle or actual)

(3,L) = error in final root
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C.

SOURCE STATEMENTS
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PART 2
STABILITY OF COMPRESSIBLE FLOW
OVER A FLAT PLATE

W. Byron Brown
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Dimensionless

anntities

K2

xx

NOTATION

gas density
gas temperature
first viscosity coefficient
second viscosity coefficient
disturbance wave number
phase velocity of the disturbance
specific heat ratio
Reynolds number
Mach number

{R* gas constant per gram)
Mach number (M=Mcos ¥)

Prandtl number

angle between main velocity and the
disturbance velocity

thermal conductivity

length unit

distance from the stagnation point

=90~

Characteristic
Measure

O'il OD’!

r—-T_;J-




Dimensionless Characteristic

Quantities Measure
X non-dimensional distance L
v distance from the flat plate 4
W undisturbed velocity parallel to the plate ﬁg

in component boundary layer

\4 undisturbed velocity component in boundary U*
layer perpendicular to the wall

f velocity disturbance amplitude in x direction
® velocity disturbance amplitude in y direction
m amplitude of the pressure disturbance

r amplitude of the density disturbance

g amplitude of the temperature disturbance

A bar over a quantity denotes average value. A prime denotes
differentiation with respect to y. Subscript o denotes free-
stream value; subscripts r and i denote real and imaginary parts.
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1. INTRODUCTION

The exact numerical solution of the Lees-Lin equations (Reference 1)
at Mach 5.8 showed better agreement with experimental data (Reference 2)
than previous approximate solutions (References 3 and 4), but it was still
257 low at the critical Reynolds number and differed much more with the
upper branch data. An improved calculation therefore was attempted by
dropping the usual assumption that the flow was parallel to the flat plate
and that the velocity component of the mean flow perpendicular to the plate
could be safely neglected.

These calculations restored to the system of stability equations the
terms involving the velocity component of the mean flow perpendicular to
the flat plate. Calculations made with the more complete equations (Refer-
ences 5 and 6) showed that the expected increase in critical Reynolds number
was much too large and that, in order to preduce an agreement with experi-
mental data, the three-dimensional aspect of the disturbance velocities
would have to be taken into account. This was done by the method suggested
by Dunn (Reference 3). This report gives the new equations and the new re-
sults. Dunn considers the Lees-Lin equations as obtained from the complete
three-dimensional set (3 momentum equations instead of 2) by a transforma-
tion in direction so that the flow makes an angle ¥ with the x-axis. Then

M=Mcos ¥
Eﬁ= o M
(1)
EE=Q'R
c=c

The solution of the equations two dimensional in form yields eigen-
values for u and R, once a value of M has been chosen. The values of ¢ and
R (corresponding to the real flow) are found from the transformation equa-
tions (1).
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II.  ANALYSIS

The disturbance forms assumed are those of Dunn, Reference 6, namely

=1
It

L= v (y) + £ (y) exp [1 (ulx + aBZ - alct)]

Uy = v (y) + @9 (y) exp [1 (alx + @,z - alct)]
ug = h (y) exp [i (alx + @2 - alct)]
p=p (y) + r (y) exp [i (alx + ¥z - alct)]
p=p (y) + 1 (y) exp [1 (alx + Q3Z - alct)]
T=T(y) + g (y) exp [i (o) + agz - ayct)]
E; (y) i )
= — + -
by Ty (y) + T g (y) exp [ @ X, * @z - apct ]

In Reference 6, these are substituted into the equations of motion
and reduced to the two-dimensional form given by the transformation

Q|
th |
1

= alf + a3h
aB=uog
2 2,
Q“'Ql Q'3

A. EQUATIONS

2
By Reference 7 (page 37) o = = 3 Py This substitution has been
made in all the equations. Then the“first”momentum equation (x-direction)
becomes
o 8 kb 2] I’ 9&)
f[-T-i(W-C)"'gRCY +f’(pV-RdT
@ T' » dﬁ) il (vw’M2 io
*‘P("’" R Y qr/*tm2\V Tty
T dT Ml , (2)
ww',  loyade grd oy S
YO TRty R ar T Rar TR T g2
r d 2
' __W___IJ-)_ v B f(_E_-)
te ( R ar/ = f T 9r 1



The second momentum equation (y-direction) is
10 T'g du igh 10 op
f(lgTdT)+f’(-R+19R

EEE (w - ¢) + LA Egi + O (¥ V'Mz\
AL T R | M\ T / (3)

g

9

The energy equation is

2w’ ply - 1D M
£ lio (y- D+ %? 2y - o] + [ — ]

2iw ‘oM v (y - 1)M?
R

-+

P {a (4nT) ' - ] j% [ vMZ (4nT) + (y - 1) MY ]

+

dT

d2 2T’y dy
Y 2 Y Y 2 48 / el

- 2 d
8 [i% {w - ¢) - % (4nT)’' - XEX———llE— (g vi? 4 w’z) b (4

+

dT
(y - 1)
E oV IJ'Y Y MZ] + g Yu

cR

@ [- aly - 1) +

The continuity equation is

2
fi - ¢ (enT)’ + 1% M- (wv (InT)' + i (w - ) + v’)
M2 | o (5)

_L ( L - - ,) et Mo~ Y
+ 0 [QT 2v {(4nT) i (w-¢) - v ] 8 oT @ L

The equation of state has been used to replace r and r’ in the continuity
equation

T_ 9
r = = -
T 2
2 ! (6)
M ( ﬁz T - M% T’) e:TZ - zeT TI
r’ = 2 -
T T4

When ¢" in the second momentum equation is replaced by ¢’ as obtained by

differentiating the continuity equation, the term 'V occurs. This term

is dropped as negligibly small (r changes but very little through the
boundary layer). Thus a system of 6 first order differential equations
may be obtained.
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B. SOLUTION OF THE EQUATIONS

These equations are solved in the same manner as the abbreviated
equations of Reference 8, except that the characteristic equation is more
complicated so that it has to be solved numerically rather than by formulae.

In order to write these in the standard form, six linear first
order equations, the following substitutions are made

Zl = f

Z, = £/ =2/
Z3=gp
z,.-;fz-
25=B

Zg = 8" =23

Boundary conditions are

when
y =0 and Zl, Z3, 25 bounded as y = «

These may be written

—_ ! = =
Z— agy 2{ = Zbij 2, (1 =1, 2, ... 6)

where the row index is assigned to the six equations as follows

i Equation

1 Z{ = ZZ

2 First momentum (2)
3 Continuity (5)
4 Second momentum (3)
6 Energy (4)
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The 8 and bij are found from the preceding equations. They
are ]
8‘11 =1
a2 = % )
= _ lpa”
823 7 7 g
a3 = -1
_ o
a3y = -
- 8 b
a5 = -1 g ¥R
_ov 8Todys 8 gy
843= -7 *g R ar "~ 9 r L[-(T)’]
ag, = - g%[}{z |-v(£nT)" + ig (w-c) + v’l + v’M"'!- %
1
as5 = - %%[T IZV(,znT)’ - iy (w=c) - v"”
-8y
86 ~ 9 TR
8gg = 1
16 av’ 2
agy = - aly-1) + 9 "R Y (y-1) M
.
866 ~ oR
b2 =1
8
- o4 Sp 2
_v_Tdy
P22 =T~ R ar
b =W_’a- iT’QZQ.U:
23 T ) R 4T
b2y = VW;M +1a
Y e 2
bps = - WL, A0 vl dy Wiy wdl o,
3 T2 9 R 4T R dT R .2
dT
-w'd
bog = — —&
26 7 R 4T
by; = 1
M
bay = - [-v(gnT)’ + 1y (w-c) + v']

b35 = j,f [2V(£I'I.T)! - ia (W'C) -vI]
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10 T'q dy
Pal = 1 7 R gr
i
b2 = op-
9R
2 L
by3 = i%— (w-c) + g%— H%i + % o ﬁ [-(£nT) "]
nl
by, = WTM + %% ’MZ I-v’(znT)' - v (nT)" + igw’ + v””

_zvy’ iow’ds 8y’ du QE[:.T_'_ :
bas =72 "R AT -9 RdaT * 9 R (g2 [2v(eD)’ - ia (w-c) - v’

+ % |2v’ (nT)’ + 2v (4nT)” - iow’ - v”l]
_ _8v'du 8
b= s T s |- v+ D]
bsg = 1
20

bgy = 1o {y-1) + 1 7 % y (y-1) M2 o

-2w’
bgy = _R_E y (y-1) M2

12

bey = alenl)’ - 1 L (yoy) w2
bg, = VM2 (gnT) ' + (y-1) M2 v

i (y-1) M2 d
bgg = %Ig (w-c} - }-I". (4nT) " - v _YR_(‘QS- viZ 4 w"z) E‘%

2
YH d d
+ R o? - é% T 3% + é% T2 E;%
21! dp

b, =2
66 T - gk Y dT

In order to obtain the Zj’, the system

1 0 o o o o {{z/] [o 1 v o o o |[z]
0 ap a3 0 o0 o ||z by; bap bag bay bas bag| | Z,
0 0 a33 a3 0 0 |Z3) =) by O  byz by, bys big|| 2y
841 O 843 B4y 845 a4 | % Bar baz baz bas bys bag || Z
Y 0 0 0 1 0] Zg 0 0 0 0 0 1 ZS
[0 0 a3 0 0 ag||Zf| | bg bey by bes bes bes| | %)
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must be transformed into a system

O

z/=)> C,. 2 (1=1, 2, ... 6)

/
i ij 7j

which may be achieved by simple elimination procedures. We have

Zi = Zo
1
¢ D I}
e (bas 2. = aqs Z24)
37 ay3 (P33 25 - 234 %4
PR / : /
Z! = Z6
Z} = -1 (b, Z Z4)
6~ agg 63 “3 T 863 “3

For solution outside the boundary layer, the determinant of the
characteristic equation is now

-\ 1 0 0 0 0

C21 Ca2=2 €23 Caq C2s C26

€31 €32 C33-x  C34 Cas C36

Cap Caz Ca3 Cag=  Cas C4p | =0
0 0 0 0 =X 1

%1  Ce2 Cé3 Co4 Ces  Cee~>

Expansion of this determinant yields the characteristic equation;

6
- *
K (033 + Cz4 + Cgé + ng)
4 * * * * * * % *x Ok
+ [ C + C (033 + 044 + 066) + 33 C44 + 033 Cﬁ6 + 044 C66

x - * * X - * C* * - * x o *
s CB6 g3~ O34 Ch3m Che C€u - C33 €5y - O34 Ch2 - O3 ng}

3 lc* C* * * - C* (Ck C* Ck C* Ck
M1 (O35t Cht CEe ) C5a (55 %t 53 Che t Chs CEe

- * - * * - - *x - *
C&s = C36 C83 - C34 Chs - Che CE4) - %3 Ch4 CBe * C43 O

%4 85 - C56 Ch3 CEu - C§4 Che Cf3 * C%g CF, CFy - C%5 CFy

+

+
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+ Ck Ok Ck +Ck Ok Ck - Ck Ok - C*x Cx
34 43 66 33 46 64 45 64 23 31

+Ck (- C*¥ Cx . (Cx Ck 4+ Ck Ck + Ck (C*x ) - Ck C*

32 26 63 24 43 23 66 23 44 24 41
+ C*¥ ( -Ck Cx - C*x Ck + C*¥ Ck - C*k oLk ) - Cx C*
42 23 34 26 64 24 33 24 66 26 61
+Ck (-Ck Ck - Ck Ck +Ck Ck +Ck Ck - Ck)
62 24 46 23 36 26 133 26 44 28
+ 32| cx (cx c* Ck Ck + C*% Ck - Ck Ck « Ck C*

21 36 63 34 43 46 64 33 44 33 66

- * * & C* o - * *
Chs Coe * Chs) * C3y (€33 €8, CFe - %3 CEs - ks CEs

* * * % -
* C%6 Chs CBu * O3y Che C83 - %6 Clu O3 * C%5 CFy - Cf, CEy O

- *x * W - +*
C43 Chs Cha * Chs Ch4d - (C33 Chy CFs + C%5 Cha CF, + €%, CFs CFy
- Ck_ Ck Ck_ - Ck ) + Ck (o

C*x C¥_ (* C*_ C¥
35 44 63 34 43 65 33 45 64 31 26 63

- Ck Gk o+ Ck CH +Ck Ck) +CE (CE G Ck - Ck C¥

24 43 23 66 44 32 26 44 63 25 63
* * * 1 * * ‘.3 * - 3 *
* €34 Chs %86 * 33 e %Bu ~ 33 %G Chu * C33 Es - O O, Gl

- Ck C*x C* + 0k (-C*% Ck - Ck Ck + Ck C* Ck C*
54 Cus S8’ a1’ 33 O3, " %56 Cou * ©24 33 * C54 CF)

+Ck (Ck Ck Cx 4+ Ck Ck Ck - Cx Ck + Ck C* Cx
42 23 34 66 26 33 64 25 64 24 36 63

wCk Ck Ck - Ck Ck Ck + Ck Ck - Ck Ck Cx)
26 34 63 24 33 66 24 65 23 36 b4

+ C*¥ (-Ck Cx . C*¥ Ck 4+ Ck C*¥ 4+ Ck Cx - C*% )
61 24 46 23 36 26 33 26 44 25

+ Ck (Ck Ck Ck 4+ Ck Ck Ck - Ck Ck + Ck Ck C*
62 26 43 34 24 33 46 24 45 23 36 44

- Ck Ck - Ck C* % C* Cx Ck - Cx Ck C*
23 C35 = 33 954 Che * U35 33 * O35 Chs - ©36 O35 Sl
- F Ck *
34 %36 i3’
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+ ) [C*
2

(Ck Ck Ck -Ck Ck -Cx Ck 4+ Ck Ck Gk + Ck C*x C*
33 44 66 33 65  4h 65 | 36 43 64 « 34 46 63
Ck Ck C% + Ck Ck - Ck C% Ck < C* C%x C* + C¥ C*)
36 44 63 | U35 63 34 43 66 "33 46 64 45 64
Ck (Ck C* Cx * Ck Ck + C* C% C% - Ok Ckx Cx
32 (C33 Gy Cfs * C35 O3 CFu * 954 s CE3 - 35 CUs CEs
*# Ok Ck - Ck Ck C*x ) + Ck (Ck Ck Ck o Ck Ck
Ch, Chs C&s - C33 Chs C&L) * C3) (% Cl4 CFs - O35 Gk
Ck Ck C* + Ck Ck Cx - Ck Ck Ct + Ck Ck - Ck Cx C*
o4 B3 66 23 46 64 23 66 44 23 65 26 43 64
* +* * & * * * * & * & * *
€34 Che CE3) * CFp (Cfg CF, CEs v CF, Cfy Cfs + O3, CF5 O3,
Ck Cx Ck - Ck Ck C*k -Ck Ckx Cx ) + Ck (Ck C* C%
23 44 65 25 43 64 - 24 45 63 AL "23 34 66
Ck Cx Cx - Ck Cx 4+ Ck Ck Ck - Ck Ck Ck - Ck Ck Ck
26 "33 64 25 64 T Y24 “36 Y53 T 26 “34 63 T Y34 933 “Ee
Ck C*k - C* Ok C*k * *  Ck Ok * Ck  (k
5. Cos T C53 C36 Cea) * Ch2 (€33 G54 CF5 * O35 C45 CF,
* Ck Ck - Ck Ck Ck ~Ck Ck Ck - Ok Ck Cx
34 %35 %63~ ©55 O34 %83 - 54 33 Chs - ©33 O35 C8s)
* * % * * * % - * * * * *
CE1 (C3¢ Cf3 O34 * %, C%3 Chg - O34 Cfs * C%3 C3¢ Ol
C* Ckx - C* (Ck Ck + C*x Ck 4+ C*x C*x - Ok C* C(C*
23 135 23 34 46 25 33 25 44 26 33 44
C* C* C* ) + C* (C* c* C* + Ck C* C* + %k C* C*
24 “36 43" T “62 “"25 “34 a3t “24 “33 Yas * ‘33 Y35 “as
Gk Ck Ck - Ck Ck Ck - Ck C Ck ) + Ck (Ct Ck Ck
23 34 45 25 33 44 24 35 43 21 "33 “44 65
Ck Ck C* + C*% Ck C* - Ckx C* Ck¥ - Cx (C*x C*
35 43 64 . 34 45 63 35 44 63 34 43 65
Ck Ck Ck ) + Cx (Ck Ck Ck 4 Ck Ck Ck + Ck Ck Cx
33 45 64 . 31 25 44 63 T 24 43 65 | 23 45 64
Ck C% Ck ~Ck Ck Ck - Ck C* Ck
23 4 %8s "~ C3s5 i3 B4 - 34 Chs O3
Cx¥ (C*k Ck Ck + Ck Ck Cx 4+ C% Cx Cx - C*x (%

41

%
23 34 65 25 33 64 24 35 63 25 34 63
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-Ck Cx Ck -Ck Ck Ck ) + C*k (Ck Cx Ck + Ck C*x Cx*
24 33 65 23 35 64 61 25 34 43 23 35 44

+ Ck Ck Ck -Ck Ck Ck -C*k Ck Ckx -Ck C*x C* )
24 33 45 23 34 45 24 35 43 25 33 44

The six complex roots A, (s = 1, 2, . . . 6) are found by a
numerical method.

Then outside the boundary layer where the coefficients are con-
stant, the solution of the system is (Reference 14)

6
- ' ABY
Zi— Zkis (Kse )
s=1

where the k. are the cofactors of the elements of the fourth row of the

is
characteristic determinant outside the boundary layer vy = & to y = .
These values are

(Cyy Co3 = Co3 Cgg) * (Cpg * Cog Ag) (Cgy Cg3 = Cg3 Cg4 - Cgy Ag)

k, = Ag K

28 ls
hg C32 + Cqp Cay4 C35 + Ag C3p
kig =|*s Ca2 ¥ Cap Cat, = Ag Ca5 * hg Cap
2
As Ce2 * Cey Cos4 Ce5 * A Cgp ~ Ag
Cy3 ~ kg Ag €3+ G5y G5+ Ag Gy
ks =|Cus Mg C42 + C41 Cas * Ag Cue
. 2
Ce3 hg Cg2 * Cg1  Cp5 * Ag Cgg = Ag
C33 - % Cays hg €32 * Cqp
ko =1C3 Cag, = Ag Ag C4n * Cyp
Ce3 Ces Ag Co2 * Cgy
kﬁs = Ag k55

The rest of the solution is exactly like that of Reference 1.
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ITT. CALCULATIONS

In the solution of equations 2 to 6, the velocity profiles parallel
to the plate were taken from Reference 9 except for Mach 8, which was com-
puted by the method of Reference 10. The perpendicular profiles were com-
puted by the equation of Reference 9.

1
(p*u* T - ur p*u* d'T]) 7)
0

In our non-dimensional notation, this becomes

1
dyk = ~
P 2

= e

1

Il
VR=E(wﬂ—TJ‘¥dT]) (8)
o]

The viscosity variation was computed by the use of Sutherland's equation
as given in Reference 9.

3
1.458 T 2
4

107 u* = (9)
T* + 110.
The non-dimensional form is therefore
110.4
12l Te
p=T 1 110.4 (10)
1+ = =—=
T
110.4

The constant in the formula, Te depends on the freestream temperature

and must be altered when this changes. Here Te must be in degrees Kelvin,
The Prandtl number was assumed constant through the layer. If the pressure
change through the boundary layer is neglected, then

pT-’-" 1 (11)
Stability calculations were made for M = 2.2 and M = 2.2, 1.474,
1.232, 1.6852, corresponding to angles with the main flow of 0°, 48°, 50°

and 40° respectively.

For M= 5, M was 5, 4.33, 3.5, 2.5, 3.0, 1.294, corresponding to
angles of 0°, 30°, 45.5°, 60°, 53° and 75° respectively.

For M= 8, M was 8, 5.6, 4, corresponding to angles of 0°, 45.5°
and 60%,
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Iv. RESULTS AND DISCUSSION

A comparison at Mach 5 of neutral stability curves computed by the
Dunn-Lin equations, the Lees-Lin equations and the Dunn-Cheng equations is
shown in Figure 1. The critical Reynolds number based on momentum thicknasc
turned out to be 185 for Dunn-Lin, 325 for Lees-Lin. When the terms involv-
ing the velocity component perpendicular to the flat plate were included,
the critical Ry jumped to 1250. The experimental value of Reference 2 was
about 550. When these last equations were used at a wave angle of 60°, R
critical became 625. None of the computed curves agreed very well with the
data points on the upper branch, though the 60° curve was much closer than
the others.

The directional effect is shown in Figure 2, where the critical
Reynolds number is plotted against the wave angle.

When similar calculations were made for Mach 2.2, the results are
shown in Figure 3. The Lees-Lin equations gave lower branch values of R
about 67 below the data points of Reference 12 and upper branch values about
187 below the data points. When the Dunn and Cheng equations were used with
a wave angle of 50°, the computed lower branch came almost exactly on the
data points, while the upper branch fell about 107 below the data points.

A few results at Mach 8 are shown in Figure 4. The abscissa here is

* x B
R = Eﬂ—:;EQ . The Lees-Lin curve shows values of R around 600, the Dunn
10
and Cheng around 5080, and the Dunn and Cheng with a wave angle of 45.5°
about 1900. Also shown are some experimental transition measurements from
Reference 13. These latter are somewhat (147) above the directional compu-
tations.

V. CONCLUSIONS

The inclusion in the stability equations of the boundary layer velocity
component and the allowance for a three-dimensional disturbance velocity
improve the agreement between the observed and calculated neutral stability
curves.
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PART 3
NUMERICAL SOLUTION OF THE COMPLETE THREE DIMENSIONAL
STABILITY EQUATIONS OF THE COMPRESSIBLE
BOUNDARY LAYER ON A FLAT PLATE

W. Byron Brown
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Dimensionless
Quantities

o3

NOTATTON

gas density

gas temperature

first viscosity coefficient

second viscosity coefficient

phase velocity of the disturbance

specific heat ratio

Reynolds number

Mach number
(R* gas constant per gram)

disturbance wave number
disturbance wave number

Prandtl number

angle between main velocity and the
disturbance velocity

thermal conductivity

length unit

-112-
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Dimensionless Characteristic

Quantities Measure
x* distance from the stagnation point
X non-dimensional distance 4
y distance from the flat plate 2
w undisturbed velocity parallel to the plate Eg

in component boundary layer

v undisturbed velocity component in boundary u*
layer perpendicular to the wall

t velocity disturbance amplitude in x direction
P velocity disturbance amplitude in y direction
h velocity disturbance amplitude in 2 direction
m amplitude of the pressure disturbance

r amplitude of the density disturbance

8 amplitude of the temperature disturbance

A bar over a quantity denotes average value. A prime denotes
differentiation with respect to y. Subscript o denotes free-
stream value; subscripts r and i denote real and imaginary parts.
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1, INTRODUCTION

It has been shown (Reference 1) that the approximate method (Refer-
ence 2) of acoustics for the three-dimensional aspect of the disturbance
velocities is of only limited value and does not agree well with experi-
mental data on the upper branches of the neutral stability curves, espe-
cially at Mach 5,

To remedy this defect and to cbtain a calculation method that is more
reliable at high Mach numbers, a direct solution of the linearized stability
equations that contain all three momentum equations for the disturbance
velocity has been obtained. The new calculations and the new results for
Mach 2.2 and Mach 5 are given in this report.

11, ANALYSIS
The disturbance forms assumed are those of Dunn, Reference 2, namely

u, = w (y) + £ (y) exp [1 (ox + o3z - alct)]

u, = v {y) + a1¢ (y) exp [i (alx + a3z - alct)]

uy h (y) exp [i (alx + a3z - alct)]

p=ply)y+r (y) exp [i (a'lx + Aq2 - arlct)]

p=p {y)+ g y) exp [i (alx + a0z - alct)]

T=T(y) + ¢ (y) exp [i (alx + 42 - alct)]
du

"
By = My (y) + EE 8 (y) exp [i (alxl * a2 - alct)]
A, EQUATIONS

These are the same as in Reference 1, except that a third momentum
equation is included; also another disturbance wave number, as in Reference 3.
Thus the equations to be solved are now:

First momentum (x direction):

f:_[-?-f-l:i.(W-C)+§-E a'z
T 1
vy g1/ 2 du), g (w1 L
tpl— - = o] + =5 +
T R dT M T Y
vw '’ 10 V’Q’l d“, w’ dp‘ w’ dz“’ w' d“‘
+9{-5+i= = == == =T —)+ 8 |- 7 =
T 9 R dI R dT R R dT

2
= fﬂ H + f - E’_a_l
R @ 9R

Second momentum (y direction):

T'ay d i, p o Y-
f {i 0 - 1 ¢ + £’ {- 1, i L (2)
9 R dT R 9 R
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e (v P gyrdu) L 8vrde (2
o\ T2 R dT 9 R d 9 R d

(cont.)}

Third momentum (z direction):

iw ~ig,m ¢t {4 Rv ph o 5 2
-1 (w-1¢)hs= 3, ’ h* + ho(2e T! = == - — (a + QB) (3
T YMz R R R \%1

Energy equation is:

- -

1 | R

2
20 “2wluy (v = 1) M
flig(y-1+i =y Mgv|esg | Y
1 9 R
9 -
2iw'gluy (y - 1) M2 -
1hY Y + — sz (4nT)’ + (y - 1)M2v'
R ] M

+ [dl (gnT)’ -

+

R 2
i (v - 1) M 8 d
e[_?_l(w-c)-zunmf-u___<..vfz+wf)_%

T T R 9 dT
2

Yo of2 . 02y Y ey 2 9% (4
+ — 61 + QB) - —T" = « —E T 5
R 1 oR dT o 4T

’
v {yv - 1) YL
16 91V BY VY MZ] +g”

(y - 1) + 9 R

]

B3]
™ '
Q2

s

Continuity equation is:

fi - (£nTY' + Rl EE - v (4nT) + 1 (w=-1c)+v'
¢ M2 oy oy (5)
ig '
-ﬁ— ! E ' _,Y_ —— f I.T—v
+ 2v (gnT)’ - 1ig, (w-1¢) - v - B + h = - -
alT [ 1 } alT ¥y ¢ a,
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The equation of state has been used to replace r and r’ in the continuity
equation:

r = 8
T2
2/’ oon o, (6)
M (FT'PT) 8'T> - 28TT’
r = 2 4

When w” in the second momentum equation is replaced by @” as ob-
tained by differentiating the continuity equation, the term n’v/& cccurs.
Since both n* and v are very small, this term is negligible and is dropped.
Thus a system of 8 first order differential equations may be obtained.

B. SOLUTION OF EQUATIONS

This is done by substituting

Z, = £
Z, = £' = Z{
Zy =g
24=M-12
(7)
Z5 =B
Zg =08’ =2
Z;=h
Zg=h'=124

This system is set up as follows:
la] (2] = [b] [2]
Row Index Equation

Z) =2y
First momentum
Continuity
Second momentum (modified by ¢” replacement)
Zi =2
5 6
Energy
L
Z; = Zg
Third momentum

QO ~ v W N
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The a.: and bij matrices are then as follows:

1]
&11=1
- B
a2 = R 2
an ='iW1
3 9R
8qq = -1
33
_ VM2
334—'_""_
&
& up
a41‘—'-'19 R
g HM v g T'ey du
843 =~ T (4nT) " - — + 5 9T
9 R T R
2
1 g wM
a‘i‘*:”;-;_R_ -v(.znT)’+iQfl (w-c)+2v'\
_ 8 r. '
a45_—9RTl2V(!’nT) - ey (w-c)-v}
8 v
B46 = 3 =
9 TR
_ _ B log
ag7 = - R
355=1
P 2
qupr(y-l)M
3.63=-arl(y-1)+“é- R
.
866 = 4R
89 = 1
=P
488 = R}
b12=1
il 2 2
b21=—",fL(W-C)+(CY1+(Y3)'E
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y i+
T R dT
w' {142 d
| s
T = R dT
101 vaM2
8 T
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bse = 1

= 20 2 ’
bgy = iy (v - 1) + 1 5 RY (y - 1Y M o v
b = 2w/py (y - 1) M2
62 - ° R

2iw'a1uy (y - 1) M?

bgs = ) (4nT) ' - "

by = vM° (4nD)’ + (y - 1) M2 v

ial(w~c) YT” du yT’z dzp Vi

2 2 v
bgs = - — = -3 ‘
65 T R dT  oR g12 = R (dl ¥ 03) r (4D
2
-y(y-l)M w'2+'8-v'2£l£
R 9 dT
v 2T’y dy
b66 T~ oR 4T
beo =1 (y - 1) o,
byg = 1
Lol
84 ¥
iy (w - ¢)
| 2, 2\p
®g7 T t el v o)y
88 Rdar T
The system

[a} [27] = [b] [2]

is reduced to a system

[1] (2] = [c] [2]

by multiplying the right hand side by the reciprocal [a]'l. Thus
[c]= (a]! [b].
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Once the [C] matrix is computed, the characteristic equation is
found and solved numerically. The rest of the solution is essentially
the same as that used in Reference 4. The solution is carried out in two
parts. If the boundary layer depth is & (point where the boundary layer
velocity is 99.9% of the free stream value), then within this distance the
Cij coefficients are variables. Hence the integration fromy = 0 to y = %

is carried out numerically, When y > &, the Cij's are constant. Hence

the solution is the sum of eight exponential terms, one for each root of

the characteristic equation. Since Zl’ 23, Z5 and Z, are bounded as y — «,
the coefficients of four of these terms, those in which the real part of

the root is positive, must vanish. At the point y = 5, the numerical sol-
utions must of course match the exponential solutions, Thus four conditions
must be satisfied here for the four coefficients to vanish. These suffice
to determine the eigen values required. Specifically in this case, the
numerical solutions are

8
(j)
Zi'—zi Cj Zi (i=1, 2, ... 8) (8)
=1
The Zil) are fundamental solutions defined by their initial conditions
(j) =
A (0) = . (9)
. ) bij
The initial conditions (y = 0) are
Z]_:O
Zy = Cy =1
i3 = 0
24 = Cy
Zy = 0
Zg = Cg
Z7 =0
Zg = Cg
Thus
z. (m=c z o =c =0
1 171 1
= (3) = =
23 (0) C3 23 (0) C3 0
Z. (0) = €. 283 (0) = ¢ = O (10)
5 5“5 5
_ (7 _ =
Z? (0) = C7 Z7 (0) = C7 0
Hence the general solution is
_ ,(2) (4) (6) (8)
Zi = Zi + 04 Zi + C6 Zi + C8 Zi (11)
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and the problem is to determine C4, C6’ CB and any two of the real param-

eters @ , oy R, ¢, ci from the conditions at y = b, K5 = K6 = K7 = K8 = 0.
The general exponential solution can be written
8
2, =§: ko (Kg ersy) (£ =1, 2, ... 8) (12)
s=1

where the Eis are the cofactors of the elements of the fourth row of the
characteristic determinant

%, -
det (C ¥ AS bij) ij (values of Cij when vy > b)

Each of these is computed numerically by the machine.

Since Equations (12) applied at y = & form a system of simultaneous
linear equations for evaluating the 8 K 's, upon solving and setting Kg = 0

s =15, 6, 7, 8 four homogeneous linear functiomals in the Zj's result which
must be satisfied when y =

Thus the boundary conditions can be written

Z Kig 23 82 =0 1=5,6, 7,8 (13)

where the matrix Kij is the inverse nf the matrix Eij'

Thus, at y =

z Ky 2 232 042 Ky 2 “‘) + Cﬁz Ky g 2
j=1
i (3) o

Let Kf denote the linear functional
8

Z Kij Z.‘l (a)

5=1

8
K;‘P) = E Ky z?’) (s)
3=1

(14)

and
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Then Equation (14) can be written

= ga(2) (4) (6) (8) _
k¥ = k&2 4 o) kx4 g k¥ 4 g KX = 0

i=5,6,7, 8

The first three of these can be used to compute C4’ C6 and CS' Substitu-
tion in the fourth yields a complex number for Kg. To make this number
vanish, the parameters @, a3 R, ¢, and ¢; must be adjusted. The result
is a set of eigen-values. For a neutral curve, cy = 0, a3/al is given a
value (usually to make R a minimum) and R and c, are computed for a series

of values of o The plot of oy against R is the usual neutral curve.

I1TI. CALCULATIONS

The calculations were carried out in the same manner as in Reference 1
except that, of course, equations 1 to 6 were used. These contain another
parameter oy SO the complete parameter list consists of oy (wave number),

R (Reynolds number), c, (wave velocity), ci (emplification or damping factor),
oy (wave number). After testing a few cases where o, was fixed and o4 varied,

o
as in Figure 1, it was decided to adopt a fixed value of the ratio ;; = 1.428.

This corresponds to a flow angle of 55°; i.e., tan 55° = 1.428. This seems
to be near the angle between the three-dimensional flow and the main flow
where the critical Reynolds number is a minimum. (Reference 2 gives about
51° in & similar case for a lower Mach number.)
o
At this ratio, Ei = 1,428, neutral stability curves were computed for

1
Mach numbers 2.2 and 5.

IV.  RESULTS AND DISCUSSION

The results for Mach number 2.2 are shown in Figure 2, where the data
of Reference 5 are plotted alsc. Agreement between theory and observed data
is quite good on both upper and lower branches of the neutral curve.

The Mach 5 results are shown in Figure 3, where the data of Reference 6

are plotted. Here also, agreement is good on both branches of the neutral
curve.

V. CONCLUSIONS

The addition of the third momentum equation to the usual set of
stability equations for supersonic laminar boundary layers gives good agree-
ment with observed data for both the upper and lower branches of the neutral
stability curve.
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