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CHAPTER 1
INTRODUCTION

1.1 General Statement

Part 1 of this volume is concerned with the problem of controlling
processes under the condition of uncertain changes in the process to be
controlled. Of course, the feedback principle solves this problem to some
extent. Larger process variations and increased accuracy requirements
dictate, however, more sophistication in the control. Conirol systems
designed specifically to consider these problems have been called ""adaptive"
control systems.

Independent of the study on adaptive controls, engineers and mathe-
maticians have been concerned with optimal controls, i.e., the computa-
tion of controlling forces for a known process which minimizes some
performance criterion. One can use results from optimal controls for the
adaptive control problem if first identification is made on the process.
Such a philosophy has been taken by Kalman, Merriam, Braun, Meditch,
and Hsieh (References 1-5). This problem area will also be the concern
of our investigations,

The remainder of this chapter will be divided into four parts. Iirst,
a definition of adaptive controls will be given to set the general framework
for our discussions. Second, background material will be given which is
pertinent to the present study. Third, the purpose and goal of our endeavor
will be stated. Finally, the organization of Part 1 will be given.

1.2 Definitions

In order to effectively treat the subjeci of adaptive control systems
it is desirable to give a definition for this category of control sysiems.
The term ''adaptive'' has been attached to a wide variety of control systems.
It is the intent here to set forth a definition which will encompass the
various adaptive systems given in the past.

Before stating what we mean by adaptive control systems, let us
define the expression "acceptably performing system’.T This term will
describe the external manifestations of the system under investigation.
The goal for a control system design should be clear to the designer as the
first step in his design process. The definitive delineation of "acceptably
performing system' is an attempt to express quantitatively whether the
designer has attained this goal. Let us first describe some terminoclogy.
With reference to Figure 1, let

7

Zadeh (Reference 6) uses ''adaptivity' for "acceptably performing systems'.
His definition for adaptive system is used to define acceptably performing
systems.

Manuscript released by the author May 1, 1964 for publication as an FIL Technical Documentary Report.
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(.= system including process and controller

v(t) = vector function defined for the interval of operation
0=t =T, and composed of (some can be missing):
(a) reference inputs, (b) known inputs to the process,
{c) disturbances to the process, (d) measurable outputs

v = parameter vector belonging to some set I' which
determines the portion of the set wv(t) -- items (a), (b),
and (c) above -- to be impressed upon the system

S‘Y = set of wv{t) which is generated for the particular <«
P(vy) = performance criterion which can take on a range of values
for a given v
W = set to which it is desired to restrict P(7)

In the above terminology, we define a criterion of acceptability in the following
mamner. If P(y) is maintained in the set W, then we satisfy the criterion
of acceptability. This notion leads to a definition.

Definition 1 -- A system, (b , is an acceptably performing system
(APS) with respect to S, and W if it satisfies the
criterion of acceptability with every source in the
family S'Y' v belonging to I.

To elaborate, we have an APS if it is possible to design a mechanism in |
which can provide a control to maintain the performance criterion within
acceptable limits as given by W. This acceptable performance is to be main-
tained for a class of inputs as represented by S’Y'

Even open-loop systems can be APS as long as the criterion of
acceptability is maintained. The problem arises, however, when P(y) can-
not be maintained in W. Here, it becomes necessary to consider more
complex mechanisms within { to satisfy the criterion of acceptability.
Therefore, one is led to many possible alternatives for the construction of
the control mechanism, each with an attempt to satisfy the criterion of
acceptability.

To illustrate the above notions let us, for example, describe the
pitch response of an aircraft attitude control system. Given a command or
reference input, signals are sent to the controlling surfaces which, in turn,
deflect and, through interaction with the air stream, create a torque on the
aircraft. As an example, the performance criterion, P{(y) can be selected
as the percent overshoot to a step command. The < could be the altitude.
For a particular altitude, v, a set or ensemble of air-density variations,
can be experienced. This set corresponds to part of the v(t) just described.
For the set of air-density variations a range of P(y) can be experienced,
gay from 0% to 30%. If this range of P(y) is within the allowable set as
given by W then we have an APS.



In a given application it may be difficult to tie down I, W, and P.
However, the definition gives us a starting point from which we can describe
various mechanizations which have as an intended goal the maintenance of
some performance criterion within prescribed limits.

Now, we are prepared to describe or define various forms of mecha-
nization of {,. It is in this connection that we can describe what we mean
by an adaptive control system.T Of course, open-ioop systems and feedback
control systems are familiar descriptions of control mechanizations. In
contrasi to these forms we degire the distinctive characteristics of adaptive
control systems. Let us present a definition. Along with the definition for
adaptive control systems we give definitions for the other two forms in
order fo point out the distinctive characieristics.

Definition 2 -- A system is an open-loop system if control action as a
function of time is impressed upon the process on the
basis of a priori knowledge of the process.

Definition 3 ~- A system is a feedback control system if a means is
provided to monitor the variables depending upon the
control action (state or controlled variables) in order to
accordingly modify the subsequent control action in an
attempt to be an acceptably performing system.

Definition 4 -- A system is an adaptive control system if a means is
provided to monitor, in addition to the state variables,
its performance and/or process (internal and/or
external) characteristics in order to accordingly
modify the control action in an attempt to be an
acceptably performing system.

Admittedly, Definition 3 is influenced by other definitions given in
the past, perhaps most strongly by that given by Cooper and Gibson
(Reference 7). An important point, however, is to make a fairly general
definition so that it encompasses the many adaptive systems described in
the literature while at the same time making a distinction from the other
two forms of mechanization. To elaborate, monitoring performance and/or
process characteristics makes adaptive control systems different from
feedback control systems. It should be noted that adaptive control systems
are feedback control systems but the converse is not necessarily the case;
therefore, it is expected that better performance can be achieved by
adaptive control systems. And it is for this reason that we study adaptive
control systems. It is noted, however, that even an adaptive control
system may not be an APS.

From the definition, it is observed that commonly described con-
trollers which make modifications depending upon environmental measure-
ments (e.g., air-data measurements) fall into the class of adaptive control
systems.

TZadeh (Reference 6) used the term adaptive for the external manifestation
while we choose to use adaptive for the internal mechanization.

4



Adaptive control systems have appeared in many forms. No attempt
will be made in this section to survey all the different schemes devised in
the past because several good survey articles are available (References 1,
7,17, 22, 24). However, three categories which appear to encompass a large
proportion of adaptive control systems are (1) the high-gain schemes, (2)
the model-referenced schemes, and (3) optimum-adaptive schemes. The
order of the listing is in the direction of increased complexity. It is
expected that the range of performance will vary with the different schemes,
and complexity should be added only if improved performance is obtainable
and mandatory. Presently, the selection of a particular scheme appears to
depend on loosely defined qualitative judgment and constitutes the "art' of
engineering,

1.3 Background

Although the definition given above was stated recently, engineers
in the past knew intuitively what was desired, i.e., achieve acceptable
control in the presence of large variations in the process. Even before
the term adaptive was attached to control systems, engineers used, for
example, air data measurements to vary the controller. This situation
can certainly be adaptive by the definition given above. No attempt will
be made in this section to survey all the different schemes devised in the
past because several good survey materials are available (References 7,
8, 9). It will be more the intent to delineate the three categories into which
the different schemes seem to fall. These are 1) the high-gain scheme,
2) the model-referenced scheme, and 3) the optimum-adaptive scheme.

From the practical standpoint, the high-gain scheme, first proposed
by Minneapolis~-Honeywell Company (Reference 10), has been widely
discussed and tested. It has been proven to be of wide applicability. The
gain in the feedback loop around the changing process is kept as high as
possible in order that the input-output transference is close to unity.
Because stability problems arise at high gain, the signal in the loop is
monitored to check for oscillations. With this information the loop gain is
adjusted to keep the system on the verge of instability. A response close
to that of a particular model is obtained regardless of the process param-
eters by placing a model in front of the feedback loop. A schematic
diagram of the high-gain scheme is shown in Figure 2. One of the objections
to this approach is that the designer must have considerable a priori infor-
mation about the process, i.e., he must know the general vicinity where
the roots of the system go into the right half plane. Of course, a frequency
insensitive unity gain can only be approached implying that the output
response will differ to some extent from the model response. Also, small
oscillations are always present in the loop. (This oscillation has been
reported to be uncbjectionable in aerospace applications.} A variation of
the same philosophy has been recently given by Horton (Reference 11).

If one is willing to accept more complexity, the model-referenced
scheme can provide better response. This scheme has been fested success-
fully in experimental flight tests by a group at MIT (Reference 12). Stability
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problems associated with this type of scheme have been performed by
Donalson (Reference 13). A schematic diagram of this method is shown
in Figure 3. The method simply adjusts the controller parameters so
that the process output is kept close to the model output. The stability
problem ensues in the parameter adjustment loop. With this scheme
unstable processes and nonlinear processes can be handled. The
method, however, requires a good knowledge of the form of the process.

As the state of the computer art advances, one asks if there are
still better methods which can improve upon the accuracy of the system.
In regards to this, optimum-adaptive schemes are investigated. This
area is still primarily in the exploratory stage with no applications
reported. Experimental-verification has been made to a limited extent
via analog and digital simulation. Some of the contributors in this area
are Kalman (Reference 1), Merriam (Reference 2), Braun (Reference 3),
Meditch (Reference 4), and Hsieh (Reference 5). A schematic diagram
for this scheme is given in Figure 4. Basically the technique solves an
optimization problem on the assumption that the process and the states
are known. Since the process state and parameters are unknown to some
extent in an adaptive task, both state estimation and process identification
must be performed.

The identification problem has been investigated by many investi-
gators independent of the adaptation scheme. Some background material
on identification will be given in Chapters 4 and 5.

1.4 Objectives of the Study

The major objective is to investigate unexplored areas of the
optimum-adaptive scheme to adaptation. We will look into both the area
of synthesis of optimum controls and the area of identification. Applica-
tion will then be sought in the area of re-entry of aerospace vehicles.

An extreme amount of background material is available for the
optimum control problem. In fact, several alternative approaches are
available. These are 1) maximum principle, 2) dynamic programming,
3) functional analysis, and 4} steepest descent methods. The on-line
computation of optimal controls, however, is not in a satisfactory state
of affairs except possibly for the quadratic criterion-linear process case.
The previous investigators for the most part have remained in this latter
case. In our investigation we impose an added constraint of bounds on
the control force. We will also stay, however, in the quadratic criterion-
linear process case. The nonlinear (quadratic) programming approach is
used as it seems to be the most suitable method when we have this addi-
tional constraint. In our problem we postulate a digital computer to com-
pute the control forces. This postulation reduces the problem to the
discrete case.

In the area of identification, we will investigate two principal areas.
First, the statistical aspectis of the estimated parameters will be studied.
Here, we study the concept of confidence interval primarily for the case
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with unknown variances. Secondly, we re-examine the learning model
approach of Margolis (Reference 14) from another viewpoint; i.e., we
will study an integral error-square criterion previously unexplored by
Margolis. A modified Newton's procedure will be employed.

Generally, the identification problem is coupled with the state
estimation problem. Identification of process parameters can be made
if the states are known, or estimation of the states can be made if the
process is known. We will attack this problem by investigating identifi-
cation methods which depend only on partial knowledge of the states.
Then, estimation of the states will be made with the identified parameters.

1.5 Organization of Part 1

This report is organized into eight chapters with five appendices.
This first chapter provides introduction to the subject via definitions,
background materials, and objectives.

Chapter 2 gives algorithms for on-line discrete control of linear
processes with a quadratic criterion without inequality constraints on the
control force. This is mainly review material and is included primarily
for setting the stage for Chapter 3.

Chapter 3 gives algorithms for on-line discrete control of linear
processes with a quadratic criterion with inequality constraints on the
control force. Here, quadratic programming methods will be applied
and suitability of on-line computation will be verified by experimentation
through digital simulation.

Chapter 4 explores the statistical aspects of the explicit mathematical
relation method of identification. Also, the recursive method of Greville
(Reference 15) and Kalman (Reference 16) will be applied to identification.

Chapter 5 explores the learning model approach with an integral
error-square criterion. The application of Newton's method to the learning
model approach will be verified through experimentation via digital simu-
laticn.

Chapter 6 gives a method for state variable estimation. This is
again primarily review material but it is an integral part of the overall
adaptive system.

Chapter 7 explores possible application areas for the proposed
method of adaptation. The area of re-entry of aerospace vehicles is chosen.

Chapter 8 concludes Part 1 by suggestions for future studies.

Appendix 1 describes the notation used in the control system and it
states concisely the problems attacked in Part 1.

Appendix 2 gives a brute force method to solve the quadratic pro-
gramming problem of Chapter 3. Although the methoed is cumbersome, it
is included because it gives added insight into the problem.

10



Appendix 3 reviews the pertinent quadratic programming theorems.
Several routines described in Chapter 3 will draw heavily from these
theorems based on the Kuhn and Tucker (Reference 17) theorems.

In Appendix 4 the recursive method of Greville is adopted for the
identification problem. The algorithms are re-derived from the postu-
lates given by Penrose (References 18, 19).

Appendix 5 gives the correspondence between Greville and Kalman's
recursive procedures.

11
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CHAPTER 2
OPTIMUM LINEAR DISCRETE CONTROL

2.1 Introduction

This chapter gives algorithms for optimum linear discrete controls
with a quadratic performance criterion. No inequality constraints will be
considered here. This is mainly review material and is included primarily
to set the stage for the next chapter. As previously stated, we confine
ourselves to the discrete control case as we postulate a digital computer
to perform the synthesis.

This chapter first gives a philosophical basis for our adaptive
control before proceeding to give algorithms.

2.2 General Philosophy

We envision using the optimum-adaptive control to keep the process
output close to some desired trajectory. This operation is to be main-
tained over some time interval which we will designate as the operation
interval. In other words, we desire to minimize the performance criterion

Ny

2
P=kZ=]0 ||Xd(k)—z(k)HQ (1)

where (k) - desired trajectory

Y3
y{k}) - actual trajectory

N1 - number of sampling intervals in operation interval

k=0 - beginning of operation interval
@ - a non-negative weighting matrix

The desired trajectory will be assumed known throughout the operation
interval. A controller designed to minimize p is termed a follower and
an example will be given in Chapter 7.

The optimization of (1) is not practical primarily for three reasons.
First of all, open-loop control ensues and it is more desirable to recom-
pute periodically the optimal control. Secondly, the process is uncertain
for time into the future. Thirdly, the on-line numerical computation
required may be too large. As a result, it is more practical to perform
periodically the following optimization. We choose a fixed time interval
into the future from the present time, designated optimization interval,
and perform a minimization over this interval. Therefore, instead of (1)
we minimize periodically

k+N

2
I= 0 |y, - y@r (2)
jeke1 O Q

13



where N - number of sampling intervals in the optimization interval
k - present time
The time relation of the intervals under consideration is given in Figure 5.

The idea of adaptive controls originated from a desire to emulate the
desirable human characteristics. Therefore, as the general philosophy, we
give a human analogy discussion. A similar discussion was first presented
by Merriam (Reference 2).

A human faced with a control problem, such as driving an automo-
bile, has the problem of selecting optimally the next decision in a multi-
stage decision process. This decision will be based on the present state
and the knowledge (maybe intuitive) of the process response (automobile
behavior). A human will decide on a particular control on the basis of
considerations given over a relatively short time into the future. For
example, the road conditions may change and the human will not appiy the
same control on a rough road as on an icy road. With knowledge of the
desired path over a short time into the future (optimization interval) and
the knowledge of the vehicle response, the human can apply proper control
effort on the steering wheel. The criterion given by (2) will then replace
the subjective evaluation performed by a human.

Repeating ourselves to some extent, although (2) may lead to sub-
optimal policies it may be the only proper criterion to apply in any given
circumstance. Inherent in the above discussion were state estimation and
process identification. These functions are performed by the human
through observation and testing vehicle response. As a human could adapt
to different vehicles (different responses) and also changes in the same
vehicle (road conditions, tire blow-out, etc.), an adaptive control must
be able to perform these tasks if it is to have the finer human capabilities.

2.3 Control of Continuous Linear Process by Digital Computer

We will attempt to control processes which are describable by
linear ordinary differential equations. We immediately make the following
assumption.

Assumption: Changes occurring in the process during an optimization
interval will be assumed to be small.

This allows us fo use constant coefficient differential equations which,
in turn, will relieve the computational requirements. With more com-
plexity, considerations can be carried over to the variable coefficient
case.

The process is then described by
x(t) = A x(t) + B u(t) (3)
where A - n X n matrix

B -nxr matrix

14
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The solution of (3) is given by
t
x(t) = X(t) [3:_(0) + g X_l('r) B u(7) d'r} (4)
0

where X(t) is the matrix solution of
X(t) = AX(t) with X(0) = I (identity matrix)

When digital computers are employed as controllers, the control
gsignal will have the appearance of a staircase signal shown in Figure 6.
Mathematically, it is formed by a sample-hold combination. In mathe-
matical notation,

E(T) = E(k) {(k-1)T =7 < kT k=1,2,...N (5)

For this staircase situation (4) can be solved at discrete instants
of fime.

T
E(k) = X(k) [5(0) + Sk X_l("r) B E(T) d’r}

8]
kAT

- X(K) [§<0)+ Y {7 x'mBum dT] ®)
i=1 Y{i-1)T

Since

k-1 »iT -1
x(k-1) = X(k-1) [5(0) ) g X “(7) B u{7) dfr]
i=1 Y({i-1)T

we can write x(k) in terms of E(k—l).

-1 kT -1
x(k) = X(k) X(k-1) x(k-1) + X(k) X "(rYB dr E(k)
(k-1)T
Let
® = X(k) X(k-1)"1
KT .
T = X(k) X "(v}B dr
(k-1)T
We note that X(k) is the solution of
X(k) = X(k-1) with X(0} =1
Therefore,
x(k) = @ x(k-1) + I u(k) (7)

In terms of @ and I', (6) becomes
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k X k-i
x(k) = & x(0) + ), & T uli) (8)
i=1

It may not be possible to measure all the state variables. The measured
output, y(k) is usually some linear combination of the state variables.

y(k) = H x(k) (9)
The basic deterministic model is shown in Figure 7.

To the deterministic model we can add stochastic disturbances:
1) load disturbances and 2) measurement errors. The distinction should
be carefully noted. Load disturbances generally cause the state variables
to become stochastic, and these can be incorporated into the deterministic
model by including in addition to the control forces, wu(k), other inputs,
w(k), which are white noise. Measurement error can, without too much
loss of generality, be considered as additive white noise on the output
variable., The model with stochastic disturbances is shown in Figure 8.

In the discussion on optimization, it is desired to restrict the
amplitude of the control force. This is accomplished in this chapter
indirectly by adding terms to the performance criterion, (2).

k+N

2 2
7= ) Alyg@ -yl + @]l (10)
jekt1 90 T =R

where R is a non-negative weighting matrix.

2.4 Discussion of the Maxirnum Principle and the
Calculus of Variations Approach

The maximum principle and the calculus of variations approach
can be applied to the discrete version of the linear-process, gquadratic-
criterion case. Chang (Reference 20} and Katz (Reference 21) investigated
the maximum principle for the discrete case giving necessary conditions.
Ag the calculus of variations approach yields the same algorithm, this
latter point of view will be discussed in this section. This approach was
taken by Kipiniak (Reference 22). It will be observed that this approach
leads to a feedback control law; i.e., the control is given as a function
of the state variables.

It should be pointed out that although only necessary conditions
are satisfied, the solution to the necessary condition should be neces-
sary and sufficient. That is, if we know the existence and uniqueness of
the minimum to the problem and if only a unique solution is provided by
the necessary condition, that solution is the minimum. From the argu-
ments given in Appendix 3 we can show existence and uniqueness of the
minimum. It is noted that the infinite domain is a convex set.

For the linear process

x(j) = @ x(j-1) + T u(j) (7)

18
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with f(k) = _150, and the criterion

k+N 1 2 1 2 i
1= ) g Ixallgr g el (11)
j=k+1
Although (11) differs from (10), the derivation follows the same lines.
Equation (11) is applicable directly to the regulator problem which is
important in itself. Using L.agrange multipliers, the constrained func-
tional to be minimized becomes

5L sl +3 ol
J, = 5 x5 +35 ilu@)
1 ekt 1 2 Q 2 R
+ < p(j), x(3) - & x(j-1) - T" u(j) >
The necessary condition states that the total differential of J, wvanishes

for independent differentials of §_(j), ':I.(j)' and B(j). Taking the differential,
we get

k+N-1

dJ, = Z d §(j)* {Q x(§ +p) - 0" p(i+ 1)}
jek+1
+d§m+Nﬁ{Q§&ﬂﬂ-E&+N%
k+N . .
+ ), a y_(j)"‘{R u(j) - I I_)_(j)}
j=k+1

ra g(j)*{ () - ®x(-1) - Tu@} = 0

Therefore, the following relations must be satisfied.

x(j) = &x(j-1) + T u(j) (7)
p() = (0571 pG-1) + (897 Qx(G-1) (12)F
u(@ = R T7 p(j) (13)
with transversality condition
plk+N) = - Q x(k+N) (14)
or,
T

The use of x instead of y implies H =1. If the criterion does not
contain every state, X, then @ can appropriately be chosen with zero
elements.

1It is noted that (<15*)"1 exists since ¢ is a fundamental matrix.
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E(J) - ((DPR'IP:',- (I)*-IQ-I-C[)) ?_(.(_]—1) +T R‘l l.,#: q):.': -IB(J‘].)
p) = ¢ @xG-1) + &% pli-1) (15)
with
x(k) = x°, p(k+N) = - Q x(k+N)
Or,
x(j) x(j-1)
=8 (16)
p(j) pG-1)
where
-1 %1 -1 ko k-1
T R T'o Q+ed TR T o 911912
9 = =
-1 * -1
® Q ¢ 991 fag
Thus,
x(k+N) x(k)
=¥ (17)
p(k+N) p(k)
where
¥i1 Y9
N
V=9
¥o1 LEP
Since B(k+N) = - Qi(k+N), we can eliminate B(k+N) and E(k+N) from
(17). Thus
-1
plk) = - (sz * lez) ( ite Wll) x(k) (18)
and

plkt1) = [921 ~ 05y (¥ @ le)_l( 217 Q ‘Fn)] x(k)

Thus, the feedback solution is given by (13). The inverse here is assumed
to exist. It seems that @Q should be chosen so that the inverse exists even
for large parameter variations. It is noted that existence is required if
the problem is to be a necessary and sufficient condition.

u(k+1) = - A x(k) (19)

where

- e -1
a=-RT (921'922 (w22+Q le) (W21+Q Wu))
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If the process does not change, A will be a constant and the feedback
problem is easy. In an adaptive task, the T, ‘Fij, and eij must be
updated as $and I" change.

2.5 Dynamic Programming Approach

The derivation and algorithm given in this section are due to
Kalman (Reference 16). Again, necessary conditions are used to arrive
at the solution. As before if a unique solution is provided the solution
is necessary and sufficient,

We start with the process

x(j) = @ x(j-1) + T u(j) (7)

with _}_c_(o) = 50, and the criterion

N 1 2 1 2 +
J§=j§1§ ||3<_(J)||Q+§ a1, (11)
Let
fN = Min J (bar underneath the time index N indicates
— u(l}) — time-to-go)
or,
fN = Min {Jl (_}_c_(o), E(l)) +fN—1 (5(1))} (20)
= u(1) ‘= =
£, = Min {Jl (xv-), E(N))}
- u(N) ~ =
For the problem we are considering, it can be shown by induction that fN
is a quadratic form, or =
F #is 1
fE x™(j) M(m) x(j) (21)
where
m+j=N
m - time-to-go
j = running time
It is noted that
f2 =0
and therefore,
M(0) = 0.

T

To simplify the notation in this section and Section 2.6 time index k
has been dropped. (j=1=> j=k+1, j=N => j=k+N).

22



Also,

2
3, = =l + [luw ]

1 R (22)
Upon substituting (21) and (22} into (20),
- Min {men + ||um|| + {12 nM(N o)
- u(l)
Since x(1) is a function of u(l) and x(0),
t = Min {ll Px(0) + T u(l)!|Q+M(N ~ Iu(l)“ }
= u(1)
Or
fN=Min{||x(0)” +Hu(1)“
= ouw o (QrM(N-1 1) ® r*(Q+MN-D)T+R
+ 2 E*(1) f’*‘( Q+M(N_—1))cp§(0)} (23)
Differentiating the quantity in the bracket with respect to u(l) and
setting the derivative equal to zero, we getT
-1
u(1) = - (r"‘(Q+M(§-_1))P+R) I‘*(Q+M(N_-1))(D x(0)
or, the feedback solution is given by (equivalent to Equation 19)
-1
u(l) = - (r* P(N-1) T + R) T P(N-1) ®x(0) (24)

where
P(N-1) = Q + M(N-1)

A recursive relation can be derived for P(N-1). We note that

= Hx(mll Hx(mll

M(N) P(N)-Q

Upon substitutmg (24) into (23), we also have

T

It is easily seen that the inverse here exists since the first term in the

parentheses is positive semi-definite and the second term is positive
definite,
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2

fy * |20 ] o PN-1)®
2
+{lzofl . S
ol P(_l}T_—l)l"(F P(M)F+R) I'" P(N-1)®
2
+ “X(O)H b £ -1 sk
= 26" Py-1) (T PON-1) I+R) T P(N-1)
Therefore,

-1
P(N) = qa*{P(y_:_l) - P(N-1) T (r* P(N-1)T + R) r* P(M)} ®

+ Q (25)

with
P(Q) = 0.

This is a nonlinear Ricatti equation. Equations (25) and (24) give the
optimal control force. At each sampling interval these equations are
re-used. The quantities ¢ and I" can be changed as new information is
available. Whether the algorithm given in this section is better than that
given in the previous section is debatable. The two may well be computa-
tionally equivalent. One difference which is evident is that for the second
algorithm we are assured of a unique solution. In the first algorithm an
inverse was assumed to exist.

2.6 An Extension to the Stochastic Case

With stochastic disturbances the algorithms derived for the deter-
ministic case can still be applied if a particular criterion function is
chosen. This situation was first shown for the white noise case by Joseph
and Tou (Reference 23). Extensions to the more general case were given
by Gunckel and Franklin (Reference 24), Florentin (Reference 25), and
Schultz (Reference 26). Apparently, this situation was known previously
to statisticians under the name ''Uncertainty Equivalence Principle'. A
result of their studies is presented in this section.

The stochastic model is given by
x(k) = @& x(k-1) + T u(k) + 5 wik)
z{k) = H x(k) + v(k)

where w(k) and v(k) are sequences of independent Gaussian noise. We
choose the following performance criterion.

Y oIl Il
J = E ;UG L+ [ u)
EF R
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The optimal control is then given by

-1
u(1) = - (T* PO-1) T + R)  T¥ P(N-1) ¢ %0)

-1
P(N) = cb*{P@-_l)-P(g;pr(r"‘P(N_—l)mR) P*P(y_;_;)}cp
+Q

with P(g) = 0. The equations are exactly the same except E(O) is
replaced by the best least squares estimate, X(0).

Of course, the results in this section do not reflect changes in ¢
and I" which can occur in an adaptive problem. At least, the above
results give assurance that proper action is being taken in a stationary
situation.

2.7 Stability of the Closed-Loop System

There may be some question whether the implementation of the
optimal on-line controller in a closed-~loop manner gives a stable system.
For the case discussed in this chapter we can give sufficient conditions
for stability. We employ the discrete version of Lyapunov's direct
method, Let us state first Lyapunov's theorem (Reference 27):

Stability Theorem: If for the process
x(ier 1) = 1 x00)

there exists a scalar function of the state variables, V(E(k)) , such that
Vv{(0) = 0, and

i) V(x) > 0 when x # 0

ii) v (et n)<v (zc_(k)) for k > K, K finite
iii) V(x) is continuous in x
iv) V(x) =« when x - w ,

then the equilibrium solution x = 0 is globally stable and V(x) is a
Lyapunov function for the system,

For the application of this theorem, let us choose the following
criterion function.

2
v{(xm) = ||x0]| (26)

The problem is to determine x(k+1) when the optimal controller is used.
ILet us consider the formulation of Section 2.4. From (17) we have

x(k) = ['[’11 x(k+N) - !/le Q x(k+N)

pk) = ¢, x(k+N) - ¢, Qx(k+N)
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Eliminating §(k+N), we have

plk) = (wzl' a2 Q) ("’11" Y19 Q)-l x(k)

Therefore,

x(k+1) =(911+912(¢21' Y2 Q) (‘011*‘/’12 Q)d) x(k)

From this follows a sufficient condition for the stability of the optimal
on-line controller.

Theorem 2.1;: If

P
kG

-1 -1
(911”12(‘/’21"‘”22@ (‘”11"012@) ) (911+912(‘”21'¢22Q)(wll"bizQ) )
-1

is negative definite, then the system employing the on-line controller
(without inequality constraints) is stable.

Of course, the choice of the Lyapunov function, (26), may be overly
restrictive. In this case some other choice will have to be investipated.

"It seems that the stability problem will become more severe as the
optimization interval is shortened. Other problem areas may include
time lag in computation and process parameter errors. These problems
will be left as future research topics. Let us look at an example to
demonstrate the theorem given above.

Example 2.1: For the process
x{k) = .9 x(k-1) + u(k) x(0) =1
we will use a u(k) which minimizes

k+4

1 ,.2.1 ,.2

J=, 3 x()" + 5 ulj)
i=k

Equations (15) and (16) become

x(k) 2.01111 1,11111 x(k-1)
p(k) 1.11111 1.11111 plk-1})
and (17) becomes
x(k+4) 39.80408 26,.87973 x(k)
-x(k+4) 26.87973 18.1314% p(k)

Eliminating x(k+4) we get
p(k) = - 1.48371 x(k)

Therefore,
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x{k+1) = . 36255 x(k)

Applying the theorem, (.36 225)2 - 1< 0. Therefore we have stability.
2.8 How Good is Suboptimal?

For the general philosophy, the controller was based on performing
optimization at every sampling instant over a finite interval into the future.
Several reasons were given for doing this. One of the reasons was the
uncertainty in the process into the future. The question then arises:

How good is the controller based on a fixed optimization interval, if the
process is known into the future? (We reiterate again that the controller
based on a fixed optimization interval may be the best one could do in the
face of uncertainty.) As a comparison, we can make the following two
computations. First, we will solve the problem which minimizes

T 1 2 1 2
%5 | tk) lg*3 lfuo) |l (Situation 1)

with the process and initial conditions given. This solution is strictly
open-loop. Secondly, we solve the problem which minimizes at every
sampling instant the following criterion.

+N 1 9 . 9
jg:k 2 HX(j) ”Q T3 Hu(j) HR (Situation 2)

The second philosophy is the basis for our on-~line controller. For the
comparison we will assume that the process is known for all times. We
will illustrate the comparison with two examples.

Example 2. 2; Let us consider the scalar process
x{k} = .9 x(k-1) + u(k) x(0) =1

For Situation 1, we use

o0

Y 2 x(0? + 2 uk)?
2 2

0

For Situation 2, we use

X4y 9 1 2

=x(3)” +=zu(j)
L3 3
i=k

We will use the calculus of variations approach. The Euler equations are

x(k) = .9 x(k-1) + uk)
plk+1) = 1.11111 p(k) +1.11111 x(k)
u(k) = p(k)
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Elimineting u(k), we get

x(k+1) 2.01111 1.11111 x(k)

1]

plk+1) 1.11111 1.11111 pik)

For Situation 1, we can eliminate p(k) and obtain
x(k+2) - 3.12222 x(k+1) + x(k) = 0
This has the general solution

x(k) = A (. 36234)k + B (2. 75988)k

To satisfy the initial conditions: x(0) = 1 and x(«) = 0, we obtain

x(k) = (.36234)° (Situation 1)

For situation 2, the solution is given in the example of the previous
section, or

k
x(k) = (.36255) {(Situation 2)
When 8T was considered as the optimization interval the response was

x(k) = (. 36235)F

Example 2.3: The conditions are the same as the last example except
we take an unstable process given by

x(k) =1,11111 x(k-1) +u(k)
The Euler equations after eliminating u(k) become

x(k+1) 2.01111 .9 x(k)
pk+1) .9 .9 p(k)

For Situation 1, the solution ig

x(k) = .39789k

For Situation 2 with 4T as the optimization interval, the solution is
x(k) = .39858k

For Situation 2 with 8T as the optimization interval, the solution is
x(k) = .39'791k

The amazing revelation of these examples is that only a short
finite time into the future is required for the optimization interval. Of
course, more complicated processes may require a longer optimization
interval. Example 2.3 reveals that unstable processes can be controlled
using the above procedure.
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2.9 Additional Remarks

This chapter provides background for the extension given in Part 1.
It provides review material for the discrete version of the linear process
and quadratic criterion case. No inequality constraints are considered in
this chapter. The extension in the next chapter considers inequality con-
straints on the control variable.

Two algorithms were presented for computing the optimal control
based on two different approaches to the optimal control problem. A
third possible approach is the use of the steepest descent method. It is
not discussed here because it is presented in the dissertation by Hsieh
(Reference 28).

A philosophy for the adaptive scheme (perform optimization over
a fixed interval into the future) is given in this chapter. This approach
will be verified in Chapter 3 for the case with inequality constraints
through experimentation.
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CHAPTER 3

SYNTHESIS OF CONTROL FORCES
WITH INEQUALITY CONSTRAINTS

3.1 Introduction

In this chapter, we extend considerations given in Chapter 2 to the
case when we impose inequality constraints on the control variable.

The problem of on-line synthesis of control forces is no different
from the optimization problem. The difficult requirement is that it must
be rapidly performed. Also for the adaptive task, it must be performed
in terms of easily measured parameters.

Horing (Reference 29) has considered an on-line controller calling
it a predictive controller. He solves the same problem by using con-
cepts from pattern recognition and he synthesizes the controller by adders
and logical elements. Complexily arises in his method if he wishes to
lengthen the optimization interval.

Ho and Brentani {Reference 30) have extensively studied quadratic
programming methods applied to the control problem. The problem of
minimizing the quadratic error over an optimization interval falls in
their nonlinear class requiring additional calculations. It is shown sub-
sequently that the quadratic error problem can be attacked directly using
the formulation by Ho (Reference 31) from an earlier paper. Ho and
Brentani explore a method which projects the gradient on the feasible
region, R. Although this method can also be applied to our problem an
alternate method used by Hildreth (Reference 32) called a coordinatewise
gradient method will be explored. Both methods can be applied o the
particular control problem with ease (in comparison to some general
quadratic programming problem). It is to be emphasized that this report
is exploring a follower type controller in comparison to the more difficult
{(computationally)} trajectory optimization problem.

In this chapter, the coordinatewise gradient method will be
described. Secondly, some simulation results will be presented showing
responses to several different inputs. A comparison is made with
responses of conventional sampled-data systems. Effects of parameter
errors on the responses are experimentally observed. Extensions are
then made to bounds on the rate of change of the control variable. One
extension gives a hybrid computational procedure.

In Appendix 2, a brute-force method is described. The dimen-
sionality problem of this method is indicated, thus recommending the
gradient method. Although of little practical value, a study of the
brute-force method is important in that it gives geometrical insight into
the problem.
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3.2 Problem Formulation

The philosopy for the determination of the control force was stated
in Chapter 2. In addition to the consideration given to the formulation
of the problem posed in Chapter 2, we require the control variables to be
bounded, i.e.,

lutk) |= M (27)

For the sake of ease in presentation, the single control force and single
output case will be considered. Generalization can be made to the multi-
pole case (see Ho -- Reference 30). The input-output relationship of the
process is given by

)
8 = ), gU+1-p) ud) +y () (28)]
j=1
where
g(£) - response to a unit pulse of width T at £T seconds
from the initiation of pulse
yo(,ﬂ) - initial condition response
The g(f) are to be estimated by methods in Chapters 4 and 5. Equation
(27) is rewritten in matrix form.
y=Gu+y (29)
where
[(y(1}] M u(1)] [y, (1]
y(2) u(2) yo(2)
y = u = =
RAM | () Yo (N
[ g(1) 0 0 0]
g(2) g(1) 0 0
. | | }
G- ESE R
i g(N}) g(N-1) g(1)
T

32
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This G matrix is triangular because of physical realizability. Also,
the g; are linearly independent if g(1) # 0. For this discrete case the
G matrix has rank N if and only if the process is controllable
(Reference 31). It is observed that if g(1) # 0 the system is control-
lable.

In terms of the above notation the criterion becomes

, 2
7=5 llgg - gl (30)

where Yq - desired irajectory. Let

d' =y Ly (31)

and
N
d= ) u) g; (32)
i=1 ~

The d will not in general be made equal to d' because of (27).

The problem which can now be stated is: Determine u{i) which
minimizes
2

=l - g (33)

J=§

Each column vector, g;, can be viewed as a basis which collectively
spans a linear manifold of Eyn (output-space). Without bounds the
problem can be solved readilyT because the G matrix is triangular.
With bounds the problem is fo determine a point in a closed convex
region which is nearest to the desired point, d'. The closed convex
region is in particular a parallelotope in Ep.

3.3 Coordinatewise Gradient Method

In this section we look at a gradient method to iteratively approach
the optimum point, We modify the method of steepest descent to consider
limitations on the movement of the trial point. Because of the simplicity
of the boundaries (parallelotope) compared to some general quadratic
programming problem we anticipate some easy gradient method to apply.
Ho (Reference 30) also utilizes the simpleness of the boundaries in his
method. An obvicus method is to adjust each component one at a time.

In this way the bounds on the components can easily be applied.

Let us look at a two-dimensional problem as shown in Figure 9.
In the method we can start from any point in R. For the sake of discus-
gion, let us begin at the origin, O. First, we move in the u(l) direction.
In the u({l) direction, we seek the minimum which is located at point a'.

TThis statement is not true for other criterions which include, for example,
a penalty for control energy.
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Figure 9. Path of Descent
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Since we cannot reach thai point we stop at point a. Next, we seek a
minimum in the u(2) direction starting from point a. The minimum in
the u(2) direction is found at point b. Since this is the optimum point
in R, we have reached the optimum in two iterations. (For higher
dimensions the optimum will usually not be reached so rapidly.)

Next, the equations which will be programmed will be derived.
The point in R is given by

N
d=) ulilg =Gy (32)
=1~
We seek the minimum of
1 2
= = | B
7=5 llg" -Gl
The gradient along a component is
BJ ES b
— =g. Gu-g.d' =V, 34
Bu B URTE L i (34)

It is noted that the gradient along a component is a scalar. The corrected
value for the u(j) component is
LAntl . in
u(J)( ) - U.(J)( ) 4 e V.
nj
The €, is found by seeking the minimum along the direction of the j'c
component gj. Expanding J,

{n)

h

2
20 =<G" Gy w - 2<G" g, o + g

Let us work with the terms which depend on u.

Q<G Guyu>-2<6" g, v (35)
Also,
H(n+l) _ B(n) ‘e I,?}(n)

where r,_g(n) is zero except for the jth element, which is equal to Vj(n).

Substituting u(8t1) into (35) we obtain

(n)_ G*E" rn(n)>

~

Q(g(n)+ €. H}(n)) = Q u(n)) +2¢ <G'Gu
(n)

+e:<G*Gm , m™ s

(] P~

The minimum along a particular direction is then given by
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d
d e
n

(n)

o )=2<G"Gu

+2¢e < elalle) m(n), n'™s oo

<g*Gu™

[

et ar, m™s

E —
n < G* G m(n)’ El(n)>

The vector 1 is zero except for the jth element. Therefore, €, in the
jth direction is

n, 5 " <g.
. .v. ) L
b g &Y, S

th

Therefore, at the n*"' step we get the n+1 approximation by

v, ()
T et ARSI\ A R (36)

2
g,

could possibly exceed a bound we must limit its amplitude,

As u(j)(n+ 1)

ar

a2 gat [u(j)(n+1)] (37)
M

The quantity on the left is used for the next iteration. Therefore, the
vital equations are (34), (36), and (37). The simplicity of the equations
to be solved is noted. Every iteration requires only

N2/2 + 5N/2 - 1 additions, N2/2 + 5N/2 multiplications, and 1 division,

An iteration for the coordinatewise gradient method should not be com-
pared with one iteration for Ho's method. The computation time for N
iterations of the coordinatewise gradient method should more closely
correspond with one iteration of the other method.

The procedure described above can be modified to possibly
improve the rate of convergence., Before each iteration, the gradient
in each coordinate direction is evaluated. The direction of the largest
gradient is then chosen for the descent. I no motion is possible in that
direction the direction for the next highest gradient is chosen, etc.

Of course, such a procedure will demand more from the computer;
however, it may still be much simpler than other methods.
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3.4 Remarks on Convergence

Comments in this section will be largely heuristic, appealing to
the geometrical picture. A discussion on the existence and uniqueness
is given in Appendix 3.

The proof of convergence has been given by Hildreth (Reference
32) and D'Esopo (Reference 33) for the parallelotope region that we have
(rectangular in u-space). It should be emphasized that convergence of
the coordinatewise gradient method is assured only for this particular
type of constraint. Geometrically, the convergence can be visualized
for the two-dimensional case. The criterion function, J, defines a
surface in d-space which is a circular paraboloid (non-circular paraboloid
in u-space). In the parallelotope region, R, we are to converge upon the
lowest point on this surface. At each iteration (although we select the
direction of the coordinates) we measure the slope and we choose to go in
the negative slope direction. Along any direction the slope is either
positive, negative, or zero. If zero, we temporarily do nothing because
if the point is non-minimal some other coordinate will have nonzero
slope. The procedure stops when either we arrive at a point where all
the gradient components are zero (min in R), or motion of the trial
point is restrained by the boundaries of R. If restrained by a single
boundary, the gradient will be normal to that boundary.

3.5 A Remark on the Initial Trial

Of course, the success of the gradient method will depend upon
the closeness of the initial guess or trial to the answer. This section
describes a technique whereby a good initial guess can be obtained. As
previously described we envision repeating the same optimization pro-
cedure every T seconds. Although the optimization yields the control
force for the entire optimization interval, NT, only the first component
is ever used. However, the other components can be used as an initial
approximation for the following interval of consideration. If the changes
caused by disturbances and process and input variations are small during
T, one should be able to compute the optimal controls rapidly since the
initial approximations will be very close to the optimal point. In Figure
10, u(2} in interval 1 becomes the first guess for u(l) in interval 2.
Only an initial approximation for the last T seconds is missing, For
this reason, the iteration is initiated from the last T interval, working
forward, and repeating this process. In this way the first iteration will
not disturb the initial good approximation of the other intervals. For the
reason that only one component may be initially indeterminate, it is
felt that the coordinatewise gradient method may be the most suitable
in this application.

If no initial approximation is available, the unbounded solution
can be computed. By simply passing the unbounded solution through a
limiter operation we have a possible initial guess.
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3.6 Example for One Optimization Interval

Before proceeding to the simulation of the controller in a closed-
loop, let us examine in detail the iteration procedure for one optimization
interval. We take a four-dimensional example. Let us consider the
following linear process described in terms of the Laplace transfer func-
tion

Y{s) _ .5
Uls} s{s+.5)

with a sampling period in the controller of T = 1 sec. The unit pulse
response is given by the succession of the following values

gj = (.21306, .52270, .71050, .82442)

The G matrix is

[ 213086 0 0 o |
.52270 . 21306 0 0
G= 1 71050 .52270 . 21306 0
| . 82442 .71050 .52270 . 21306 |

We will let yq4(i) = 1 and assume that the initial condition is equal to zero.
Therefore, d'{(j) = 1. We restrict u(j) such that Iu(j) lS 5.5.

Using the gradient method we assume as a first approximation the
set u(j) obtained by limiting the unbounded solution. The unbounded
solution for the problem is

u{j}' = (4.69, -6.82, 5.77, -4,89)
Therefore the first approximation is

)

uY = (4.69, -5.5, 5.5, -4.89)

Figure 1! shows the optimum bounded-control sequence obtained
from the gradient method and the brute-force method as described in
Appendix 2. The non-gradient scolution was possible because the example
chosen was one of the special cases (see Appendix 2). (The brute-force
method was not programmed in general terms.) Also, Figure 11 shows
the unbounded solution. It is noted that although the unbounded solution
exceeds the bounds twice, the bounded scolution has only one component
at the boundary.

Figure 12 shows the corresponding output of the linear process.
Actually, the output will be continuous rather than the staircase signal
shown. The staircase response is plotted for convenience and the response
at the sampling instants will correspond exactly with the actual response.
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Table I shows how the optimum point is approached by the gradient
method. The gradient method has the characteristic that errors are
initially rapidly reduced and the finer accuracy is obtainable only after
many iterations. Table 1 shows that good approximations are obtained
after 16 iterations. In an adaptive control task the solutions should be
approached even sooner because as discussed in the previous section
we generally have a good initial approximation.

3.7 Simulation

A digital simulation was performed on an IBM 7080 to operate
the controller in a feedback loop. The flow chart is shown in Figure 13.

First, the controller was required io cause the process to follow
a triangular wave. The process used previously {(an example) was again
considered. QOptimization intervals of 4T and 8T were considered with
T =1 sec. A comparison is made with a conventional controller shown
in Figure 14 for which the K was chosen so that the damping ratio was
0.5. For a comparison, the bounds on the on-line controller were
selected from the maximum and minimum control forces experienced by
the conventional controller. The numbers of iterations per sampling
interval were respectively 20 and 40 for the 4T and 8T cases. (This
means that each component was iterated 5 times.) Simulation was per-
formed over 100 sampling intervals.

A portion of the results is shown in Figure 15. A marked
improvement in the response is noted. The conventional controller
response shows the characteristic lag which is not present for the on-
line controller response. For the example chosen it is seen that no
appreciable difference is seen in the responses of the 4T and 8T cases.
The number of iterations was increased by a factor of two with no
appreciable difference in the response.

The control forces for the conventional controller and the on-
line controller are shown respectively in Figures 16 and 17. The on-
line controller's controls are more jumpy but such constraints on the
rate of change were not considered in the optimization.

interval using the formulas previously stated. (No. (Add) = N2/2+5N/2-1,
No. (Multiply) = N2/2+5N/2, No. (Division) = 1 per iteration.) Let us
assume that we have an on-line digital computer with an add-time of

35 u sec. (The add-time for the IBM 7090 is 2 u sec.) Considering

that we have 10 digit multiplication and that the transfer time is 1/2 the
add time, the estimate is .016 sec. per sampling interval for 20 itera-
tions and 4T case (, 001 sec. for IBM 7080). Therefore, compared to

the 1 sec. sampling period the computation time is only a fraction.

An estimate can be made of the computaaion time per sampling

As the pulse response of the previous example did not tail off
(because of the integrator) another process was selected with

Y(s) _ .25
Uls) {(s+. 5)2
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Figure 13. Simulation Flow Chart
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and with T = 1 sec. The results of the simulation are shown in

Figure 18 for the 8T case. Again, an improvement is noticed over the
conventional controller. No appreciable improvement was noticed when
the number of iterations was increased by a factor of two. A sine wave
was also tried and the results are shown in Figure 19.

It is felt that the results reveal that some new types of responses
can be obtained by using an on-line controller. It should be noted that
if the conventional controller must operate in the linear range a simula-
tion must be performed with all the possible inputs that the feedback
process will encounter. On the other hand, the on-line controller at all
times can do its best with the available control forces.

3.8 Effect of Uncertainties in Process Parameters

The optimal contreols are computed assuming that the process
is known accurately. In an adaptive task, one is not so fortunate as to
have accurate knowledge of the process. It is very desirable then to
know whether suitable control action is obtained even with inaccuracies
in the process parameters, say 10%. If we have this condition, then
assurance is given that if the process parameters are known to within
10%, then the overall system will behave satisfactorily. Therefore,
optimal controls and trajectories should be experimentally studied
with errors in process parameters. A few experimental results are
reported in this section.

The situation of Figure 18 was studied further. The process was

Y(s) _ .25
Uls) (S+.5)2

The time constant of 0.5 was uncertain to the controller and values of
0.45, 0.5, and 0.55 were respectively used. Optimization intervals of
8T and 4T iterations per sampling period were used. The differences
in the responses were hardly noticeable to plot on a graph. Therefore,
the initial part of the runs are tabulated in Table 2 for the 8T case for
comparison purposes. The output of the conventional controller is also
tabulated.

One should not draw sweeping conclusions from a single example,
However, the results indicate that possibilities are present and any
individual problem should be analyzed by simulation. The close tracking
capability in spite of errors in the process information can possibly be
attributed to the feedback which is present in the on-line controller,

3.9 Bounds on the Rate of Change of the Control Variable

Instead of having bounds on the amplitude, we can place bounds
on the rate of change of the control variable. Let us look at the four-
dimensional case as an example.

S = u(l)gl +1.1(2)ﬁg'.2 +u(3)§3 +u(4)§ (38)
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TABLE 2

EFFECT OF UNCERTAINTIES IN PARAMETERS

T

Desired

k Path a=.45 8=.5 a=,55 Conv.
1 1.0 .5h6 .559 .521 .0

o 2.0 1,98 1.838 1.771 .21n
3 3.0 3.733 3.471 3.302 .990
k k.o L. 847 4.783 L.628 1.981
5 5.0 5. 628 5.590 5.568 2,974
6 6.0 6.665 6.517 6.500 3.819
7 7.0 7.801 7.635 T.573 k.521
8 8.0 8.798 8.651 8.582 5.173
9 9.0 9.589 9.472 9,411 5.858
10 10.0 10.182 10.094 10. 046 6.600
11 11.0 10.611 10.547 10.510 7.381
12 12.0 10.912 10.867 10, 841, 8.163
13 11.0 11.120 11.089 11.071 8.927
14 10.0 10.Lk99 10.640 10.763 9,131
15 9.0 9.440 9.760 10.004 8.420
16 8.0 8.181 8.460 8.738 7.18¢9
17 7.0 T.093 T.266 7.473 5.950
18 6.0 6.180 6.263 6.380 5.01%
19 5.0 5.170 5.27h4 5.369 b, 364
20 Lo L.,033 4.193 L. 320 3.812
21 3.0 2.935 3.108 3,247 3.193
22 2,0 1.789 1.938 2,097 2.455
23 1.0 .898 .966 1.056 1.643
24 0.0 - .306 - .205 .098 .828
25 ~1.0 -1.359 -1.190 -1 096 .051
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We wish to bound the difference between succeeding control forces.

]um)-um-nlsmz

We put no constraints on the range of u(i) itself. Rewriting (38) we get
a - (g + gy ey +gy) + (v - un) (g, + g+ g,)

+ (w3 - @) (gg +g,)* (a0 - u®) (@)

Let
4-1
b, = 2 g4 £(i) = u(i) - u(i-1)
j=0
Then,
=L p, + A2 b, +L3) by + A4 |, (39)
where
umlsmz

Now, we can use the same method as discussed previously and solve for
£(i) which in turn can be solved for u(i).

3.10 Weighting Between Error and Control Energy

In place of (30).it may be desirable to use instead the following
criterion which also penalizes control energy.

1 2 1 2
J=3 sz'YNH 3 H}g“

Now, distances in state-space or y-space have no longer the same signif-
icance as before. With less geometrical significance, however, the
problem can be viewed as done by Ho in the solution space or control
space. If we still degire to limit the control force, a point is then desired
in a hypercube, R. The two-dimensional problem is shown in Figure 20.

In Figure 20, the lines of constant J are no longer circular, but
the J hyper-surface defined at every point of the solution space can be
shown to be convex. It can be assumed here that J is continuous with
bounded second partial derivatives with respect to u(k). Then, J is a
convex function of u(k) if the symmetric matrix of the second partial
derivatives is positive semi-definite at all points of R {see Eggleston,
Reference 32, page 51). It is noted in passing that the sum of convex
functions is convex. This follows simply from the fact that the sum of
semi-definite matrices is semi~definite. Writing J in terms of u, we
have

1

2 1 2
=i llg -l + 2 gl 4o

oo
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u(2)

u(1)

Figure 20. Solution Space (u-Space)
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The second partial derivative matrix of the first term is G* G which
is symmetric and positive definite (columns of G are linearly inde-
pendent), The second partial derivative matrix of the second term is
simply 2I. Therefore, the coordinatewise gradient method is still
applicable for this case.

3.11 Bounds on Both Contrel Force and the
Rate of Change of Control Force

Most practical systems have limitations both on the magnitude
of the control force and on the rate of change of control force. Let us
restate the problem with the added constraint.

Problem: Given a) Process:

2
y(8) = ), gl +1-iu@) +y_(8)

=1
b) Constraints:
i =
|u(J) [ Ml

lut) - uw(-1| = M,

Determine: u(j) j=1,2,...,N which minimizes
1 N 2
1230 (vg0 - v)
1=1

The problem is again a guadratic programming problem but with more
constraints. The region from which a solution is to be chosen will no
longer be a parallellotope. The region for the two-dimensional case is
shown in Figure 21 in u-space.

The problem is to find a point in u~space and in the shaded
region which has the smallest J. Ior such regions, the coordinate-
wise gradient method or Ho's simplified gradient projection method is
not directly applicable. Therefore, a more involved method is required.
Rosen's (Reference 35) gradient projection method is applicable but the
use of such a scheme on-line is questionable. Thus, we look for a
simpler scheme to apply to our particular problem.

The procedure to be described will transform the above problem
so that the constraints will be rectangular. Such a scheme has been
described by Hildreth (Reference 32). The constraints being rectangular,
we can apply the coordinatewise gradient method or Ho's simplified
gradient projection method. It should be noted that the following pro-
cedure can also be used for control problems with state variable con-
straints by converting to equivalent statements on u.

As before,

54



Jz
.

AMPLITUDE

/‘ CONSTRAINT

RATE OF CHANGE
CONSTRAINT \

/

u(z)

AV

Figure 21. Two-Dimensional Case with Multiple Constraints

LE]



Taking the parts of J(u) which depend on u,

Q) = gu*Cu+h*y (41)
where

C=G":G N x N matrix

h=- G*g’ N x 1 vector

The constraints can be placed in the form
Du-b=0

To illustrate that problems with amplitude and rate-of-change constraints
can be put into this form, let us look at the two-dimensional example. In
this case,

-1 o] By 7

1

1 0 —Ml

0 -1 _Ml

0 1 -M1

D= b =

-1 0 -M2 - u{0)
1 0 -M2 + u{0)

1 -1 _MZ
__1 l_l __MZ _

Returning to the general formulation, we form the Lagrangian
#*
$u, A) = Q) - X (D u - b)

From the theorems given in Appendix III (Kuhn-Tucker theorems,
Reference 17), the task is to find the saddle point of qS(u,_?E), or solve
the following max-min problem.

Max Min (-l-u*Cu+h*u-?t* (Du-b)) (42)
Aaz0 oy 27 T T T T T 7

The following is an equivalent problem.

1 'S ¢ b
Min - [Min (51,5_, Cu +E{B—} (DE-E))} (43)
A=0 tn

We can differentiate ¢(u, A) with respect to u to solve the first mini-
mum,
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u=c D r-n) (44)

it —

Upon substituting (44) into (43), we have the following problem. The
terms which do not depend on A have been left out,

Min (A AL +Y ) (45)

where

Now, the coordinatewise gradient method or Ho's simplified gradient
projection method can be used to solve this new problem. Upon deter-
mining A, (44) yields the optimum u. We note that the A obtained
need not be unique. -

3.12 A Compromise Procedure for the Multiple Constraint Case

If the procedure outlined in Section 3. 11 is not computationally
feasible, then the following compromising procedure can be tried.

A method is proposed which attacks directly the magnitude of
the control force and which indirectly constrains the rate-of-change by
using a penalty function.

We attack the problem in u~space with the criterion,

2 N ) o
1 u(j) - u(j-1)
gl -l o 3 (500

where u(0) = 0 (or the control used in the previous interval),
@ 1s an even integer (2, 4 etc.)

The larger the value of o the closer will the solution approximate the
solution to the original problem. For « > 2, the problem is slightly
more complicated by the fact that J is no longer quadratic.

With this formulation, the coordinatewise gradiant method or
Ho's simplified gradient projection method will apply directly in
u-space.

3.13 Between Sample Considerations

Besides the errors at the sampling instants, considerations can
be given to the output of the process between sampling instants. Instead
of (29), we use

=Gu+y

<

where
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[ a(1) 0 o ... 0 | [ (1) ]

g(1) 0 0 y(1)
g(2) g(1) 0 y(2)
g(2) ¥(2)

®]
0
td |
0

g(N) g(1) y(N)

N EN-D L g(1) | y(N)

where
y(j) - the output T/2 sec. after y{(j)

E(j) - response to a unit pulse of width T at (j + %) sec,
from the initiation of pulse.

The criterion becomes
2
1 4= -
7 =5 ligg -yl

From here, the procedure is exactly the same as before. If desired,
the procedure can be extended to more in-between points.

3.14 A Hybrid Computational Procedure

In this section a method will be proposed which exploits the
particular features of the analog and digital computers. As shown in
Appendix 3, A, > 0 can be used as a test to determine whether the

minimum is on a particular bounding hyperplane. Upon determination
of the hyperplanes upon which the minimum lies we can determine the
minimum point by projection. The analog computer will be employed
for the zero-nonzero determination; while the digital computer will be
employed for the projection operation.

To each constraint

is associated a A;. For those inequalities satisfied by the equality
we have A:>0. F*]or those in equalities satisfied by a strict inequality
we have A;= 0. We are interested in determining those )Lj which are
positive. JE‘rom Theorem 3 of Appendix 3 we have to satisfy

5=c'1 (D* A - h) (46)

Du-b20 (47)
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A (Du-b)=0 (48)
Az0 (49)

Let us substitute (46) into (47) and (48) eliminating u. We obtain
the set ~

pDc ' @*x-h)-b=z0

Y (pctp*a-mcTt hem) =0

Az 0
Let

w=DC 1 (D*A-h-b (50)
Then, we have the symmetrical set of relations to satisfy.

w=0

Az 0

< \ﬂ,£> =0 (51)

tn

The equation in ( j = 0 when kj > o0 and KJ- = 0 when
WJ > 0.

1) requires that w

Instead of using A;, we can use w. to determine whether the
optimum point is on a par%i::ular hyperplane. The magnitude of Wy
gives the distance from the optimum pocint to the hyperplane, Hj.
Therefore, we are interested in those w.: which are zero. As we are
interested only in the zero-nonzero aspect, an analog computer with
limited accuracy can be employed. If a W; is close to zero there will
be little harm in calling it zero.

Upon determining those w;'s which are zero we collect the cor-
responding inequalities which are to be satisfied by equalities

H. : d,,u, -b. =0 i=1,...,¢q (52)

j L

The equations may not necessarily be linearly independent. There is no
loss of generality in assuming that d. vectors, which are normal to the
hyperplanes, Hj’ have unit norm.

To perform the projection it will be convenient to find a point
which is common to all of the hyperplanes. Let us write (52) in vector
form

or
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where

D= gq X n matrix
_E_ = gq x 1 vector
A point EI which is common to all of the hyperplanes in (52) is given

by the pseudo-inverse.

;f -p'p (53)
Before proceeding, we describe the projection operator as
described by Rosen (Reference 35). (We extend Rosen's work by em-
ploying the pseudo-inverse.) Let us consider the linear subspaces
(includes origin) corresponding to the hyperplanes, Hj‘

Du=0

The normals to the subspaces (d;} span the g-dimensional subspace Q.
The subspace obtained by the intersection of the hyperplanes translated
to the origin we dg_s;.ignate as Q. Now, the total space consists of the
product space of @ and Q, or B = Q® Q.

Now, the projection of a vector in En onto 6 is given by
B -DD'
q

The projection of a vector in En onto @ is givenby thenxn
matrix.

Since we are interested in the intersection of hyperplanes trans-
lated from the origin, we form the vector from uy+* to the desired point
u', oru' - BI' Performing the projection we obtain

a-B5Bh @ -uh

Now, the optimum point is obtained by
Eo ={I-D 51-) (u' —31) +BI (54)

The computation of (54) will be performed on a digital computer with the
pseudo-inverse subroutine described in Appendix 4. It should be pointed
out that the technique is directly applicable when the criterion is given
by (33). Otherwise, the gradient vector must be projected in an iterative
manner,.

The reasons for employing analog computation are: 1) speed of
response and 2) minimal accuracy requirements. The implicit function
technique does not seem to have a counterpart in digital computation
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except by using analogous techniques such as DDA. Let us describe the
analog circuit requirements by looking at a simple example. Although
simple constraints are considered in the example, multiple constraints
can be considered without modification of the method. It is not difficult
to envision special purpose computers for on-line application.

Example: Find u(l) and u(2) which minimizes

2
7=llg-cull ~y* ¢ ay-24"Gu=g" g
where
g(1) 0
G =
g(2) g(1)

subject to Iu(i)lf M i=1,2

The constraints in vector form are

-1 0 | M
1 0 | |u(l) M
Du-b-= =0
~oo= 0 -1 ul2) |1+ | M
_0 1_ _MJ
In (50)
=g*a (2 x 2)
h=-2d""G (2x1)
Let
%11 %14
pclp*-
—0'41...0'44_
-1
DC E~E=Ip_ (4 x1)

A schematic for the implicit function method for solving (51) is shown in
Figure 22. Only ! channel is shown. For the two-dimensional example
there will be 4 similar channels. In general, a channel is required per
constraint. The circuit employs integrators, summers, diodes, and
relays.
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CHAPTER 4

IDENTIFICATION OF PROCESS PARAMETERS -
EXPLICIT MATHEMATICAIL. RELATION METHOD

4.1 Introduction

Many methods have been proposed for identification (more pre-
cisely, parameter estimation) of physical processes. The method to be
used in a particular application may depend upon, among other conditions:
1} the manner in which the estimated information is used, and 2) the
amount of a priori information available. The methods sought then
must fit the control signal synthesis method discussed in Chapter 3. As
the identification is to be performed on-line there are requirements on
the speed and amount of computation. If a priori information is avail-
able the simpler is the identification problem. To have methods which
can be readily performed on-line we usually require a certain amount
of knowledge about the process.

Our discussion will be resiricted to those methods which have
the following characteristics. First of all, the process is assumed
linear and stationary. The stationarity is assumed for the time interval
of the data from which an identification is made. Secondly, the identifica-
tion should be performed without inserting externally generated test
signals. It should depend only on the normal signals present in the
system. Lastly, because noise is inevitable in the systems, smoothing
should be provided.

For linear processes either the weighting frunction or the coef-
ficients of the difference equation (discrete case) are identified. We
confine ourselves to the determination of the coefficients. Discussions
on the determination of the weighting function are given by Levin
(Reference 36), Kerr and Surber (Reference 37), Balakrishnan (Reference
38), and Hsieh (Reference 28).

Restricting ourselves to the determination of the coefficients of
the difference equation, essentially two different approaches are avail-
able: 1) the explicit mathematical relation method, and 2) the learning
model method. The explicit mathematical relation method requires
knowledge of the exact form of the difference equation. This restriction
is somewhat relaxed for the learning model method in the sense that a
lower order model can be made to approximate a higher order process.
This chapter will discuss the explicit mathematical relation method.
Chapter 5 will discuss the learning model method.

The explicit mathematical relation method was used by Kalman
(Reference 1) but the basic philosophy dates as far back as 1951 when
Greenberg (Reference 39) discussed methods for determining stability
derivatives of an airplane. Subsequent work on this method was per-
formed by Bigelow and Ruge (Reference 40). The method will be general-
ized by bringing in the concept of the pseudo-inverse. Furthermore,
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statistical analysis has been lacking in the previous studies on this
particular method. Therefore, statistical considerations will be given
in terms of the confidence interval.

In accordance with considerations given in Chapter 2, the explicit
mathematical relation method does not rely on the exact knowledge of
the state variables.

A thorough survey of identification methods is provided in a
report by Eykhoff (Reference 41).

4.2 Description of the Mathematical Relation Method

Briefly, the method reconstructs the equation of the process by
measuring the output and input, and their previous values (sufficiently
enough so that all of the terms in the equation are accounted for). By
taking redundant measurements filtering is provided. Additional filtering
can also be obtained by inserting filters (this can be done without sacri-
ficing the identification process).

The method can best be described by taking an example. Let us
determine the coefficients of the following difference equation.

y(k) = @ yk-1) + @, u (k) (55)
The problem is to determine «; and a,. These parameters can be con-
stant but unknown or changing due to changes in environment. Usually,

y(k) will not be directly observed but with a contaminating noise quantity
as depicted in Figure 408, Thus,

z{k} = y(k) + v(k) (56)

The values of z(k) and u(k) will be stored for some interval of
time into the past; and throughout this interval the parameters oy and
a9 are assumed to be constant. Since y(k) cannot be directly measured,
(55) is rewritten in terms of z(k).

z{k) - v(k) = al‘rz(k—l) - v(k-l)] + a, ulk) {57)
or
z(k) = o, z{k-1) + o ulk) +vl(k) (58)
where

Vl(k) = v(k) - @, vik-1)

Taking a set of measurements, (58) can be rewritten in vector form.

- T
By T 2o TR Ty (59)

where

7

The k signifies that N data points into the past from time k are con-
sidered.
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z{k-N+1)

“%k = . , etc.
z(k)

In matrix form

e =Baty, (60)
where

A= [g(k—l) ! u(k)]
Let

2y =A o {(61)

The %2, is in the manifold of zy_; and uy. The quantity gy is not
necessarily in the linear manifold because of y;,.. Since y;) is unknown,

a reasonable estimate of the parameters would be those values which result
from the projection of z; on the manifold of z,_; and y,. The projection

yields

< - =
B " e B 770
< -z > =
2 " B By 0
or,
< > +a_ < > =< >
%17 k-1 Bx-1 T T Y2 T B Bk B By
< < =< >
@ 21 BT TN &7 By By (62)
In terms of the matrix equation, (62) is
AT A a= A* "%k {63)
Equations (62) and (683) are known as normal equations, and if z and
: . L ~k-1
Y, are linearly independent, then the solution is given by
&=*ala¥ z, (64)
If Zyp-1 and u, are not necessarily linearly independent, (64) can be
generalized to
a = AT 2, (65)

The pseudo-inverse, extensively discussed by Penrose (References 18, 19)
provides a unique solution even if the inverse in (64) does not exist. It
provides the solution with Min Hg” . It should be noted that the minimum
norm solution may not be the actual values of the process parameters.
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However, a solution is provided to the problem formulation instead of some
nonsensical solution. A recursive method of evaluating the pseudo-inverse
is presented in Appendix 3 essentially following the derivation given by
Greville (Reference 15}. It is rederived starting with the axioms given by
Penrose. The relation of Greville's routine with Kalman's recursive
filtering technique {Reference 16) is given in Appendix 4.

During the first few steps of the recursive procedure we always
have a singular situation. The advantage of Greville's procedure is that
a unique solution is provided even for these first few steps; and eventually
as the nonsingular situation is reached the solution is obtained without
error.

4.3 Additional Filtering

In conjunction with the use of redundant data, it is possible to incor-
porate additional filtering. This filtering should be provided without com-~
promising the identification process. ILet us describe this filtering process
on the same example. We designate F() as a linear discrete filter and
operate on both sides of (58).

F(z(k}) = o F(z(k—l)) +ay F(u(k)) + v, (k) (66)

Now, the quantities F z(k)) and F{z(k-1)} are respectively closer to
y(k) and y(k-1). Thereforeé, we have in vector form

Fk T odor Tea By Ty (67)
where
— =
F (z(k-N+1))
= . , etc.

T (z.(k))

The identification configuration will appear as in Figure 23.

4.4 Block Processing of Data

The Greville-Kalman recurgive method can process the data as it
arrives. However, there is one difficulty. In an adaptive task in which
the process is changing it becomes necessary to lop off the effect of old
data. Of course, in an adaptive task in which the process is unknown but
constant, there is no problem because the recursive method can start at
time t = 0 and continue up to the present time. A possible sclution to
the former case is block processing depicted in Figure 24. The recursive
method is initiated at the start of each observation interval.

This, of course, is simple minded. The estimated values are
changed every NT seconds. If parameters are changing continually this
procedure may not be satisfactory.
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4.5 Exponential Weighting

The lopping off of old data can be provided by exponential weighting.
This weighting can be incorporated into the recursive method previously
described by determining the solution to
. §

Wk Akgk = Wk %y {68)
The dot above the equal sign signifies that the o's are to be chosen so
that the left-hand side best approximates the right-hand side in the sense
that we have

2
Min llwk A q - Wkgkll

The W, is equal to

k — —
N 0 0
. 0
W, =W, = :
e 0
|0 0 Nw |

with 0=Sw=1 and w is the staleness factior.
The solution is given by

=a ¥
By = A Wi gy (69)

where AkT is the pseudo-inverse of Wk Ak'

It is observed that

- -z (70)

[
i
1
1
]
1

g
n
]
1
1
i
1

<1

| - L -

The recursive equations can be derived in the same way as in Appendix 3.
The important equations are

o T T ﬁl}k—ak &4 + ﬁbk z{k) (71}
e ¥ % T
o mNway ~WNwa AL WA (72)

§The subscript k again refers to the present time,
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k
ool
Py T (—Ek k) Lk (73)
Casge 2 Ck = ()
e —1 e
i - Y Al t
b, ("er (ﬁ)—ak Aot W1 Bpi1 ) Al Wil A1
(74)
T _ AT
A W A = AL W A TR o (75).
AN A i U A
Ay W dy Wb A B Wi B VY B Ry
+Nw b_b’ (76)

The exponential weighting is depicted in Figure 25. The point k represents
the present time. Recent data are given larger weights than older data.

As w — 1, these equations will revert to the growing memory case of
Appendix 4.

4.6 Uniform Weighting - Observable Case Only

If adequate computer storage space is provided, at any sampling
instant a finite amount of data into the past can be analyzed. The recursive
equations for this uniform weighting have been worked out by Gainer
(Reference 42) for the observable case ((A™ A)~! exists). The procedure
will be outlined in this section. Pictorially, the uniform weighting slides
forward in time as depicted in Figure 26.

-~

For adding the effect of new data, oo N Wes determined in terms

“ § . .
of Ek-l, N-1 and the new set of data 2 z(k).? This time, the set of

data to be deleted (—gk—N’ z(k—N)) and L are given, and it is desired

. " . 6
to determine Ek,N-l From (64)

P A

“,N T Tk N 7k, N2k, N (77

where

-1
PN " (Ak,N A, N) (78)

or, (the subscript k is dropped when unambiguous)

§In &N the N signifies that N data points are taken and k signifies
time. This notation is adopted primarily for this section.
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z(k-N)
Fy 1 b
N PN[—aLk—N: AN—l] T
= PN—ak-N z{k-N) + PN AN-l ZN-1 (79)
Also,
n _ *
on-1 " Py-1 AN-1 8N (80)
We note that
p l- FowAl A= S (81)
N 2k-NZk-N T ON-1 An-l T Bk-NBk-N T TN-L
Therefore -1
- _ "'1 g
EN-1 7 [PN —ak—N—ak-N:‘ AN-14N-1 (82)
or,
P B - S (83)
N-1<N-1 N ~2k-N 2k-N |[CN-1
Substituting (83) intc (79), we have
N [I " PNk "i‘k-N]EN-l t Py 2y 2N
or
IN-1 7 [I ) PNEk-NEk-N:' (3N T PN 2N Z(k'N)) (84)

We can eliminate the inverse by noting the following

y -1 %
[I " PN—ELk-N—ak—N] [I ) PN—ak—N—ak—N} =1

e —1 ala "l
. » .
[I i PN-‘"i‘k-N—ak-N} [I i PN—E}k-NEk—N] PN 2NN ]

(85)
Post multiply by PN 8N
e —1 b _l
[ - Pykx gk—N} PN 2k-N~ [I “PN2k-n "i‘k—N] PNok-n?

" Pnlk-N
where

B=a, PN 2N (scalar)
Therefore,
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B _ 1
|1 Py 2w gk-Nj! PN %N " T8 P 2N (86)
Post multiply (85) by é:N
- -1
] ~ FS 1 g ~
- = ko ——
1Py ék*NE—Lk—N] INTINTTFB PN 2k-N2k-nNEN (87)
Substituting (86) and (87) into (84), we have
o~ - ~ 1 ( =|I= -~
-1 9N T T P 2k-n \Zeen Oy 2K N)) (88)
Now, PN-l will be derived in terms of PN. From {(81)
p_topli-p_a o
N-1 N N -k-N -k-N
or, . 1
PN-17 [I PN ok-N gk—le PN
To eliminate the inverse, we post multiply (85) by PN. Therefore,
_ 1 *
Px-1 7PN " T8 Pn 2k-N Zk-n P (89)

Equations (88) and (89) are to be used with the recursive equations of
Appendix 4 to perform uniform weighting, A sequence of add, delete, add,
delete, add, ... alternatingly using the above equations for the oldest data
and equations of Appendix 4 for the new data is required. It is noted that
1-8 may be equal to zero. When such a situation arises, the elimination
of that particular row of data can be deferred, of course, with attendant
increase in programming complexity.

4.7 Confidence Interval

The determination of the accuracy with which parameters can be
estimated requires statistical analysis. An extensive study in the area
of least squares has been made by Linnik (Reference 43). The particular
results which are useful for our purposes will be presented here.

Let us refer to Figure 49 and consider the case when v(k) is a
sequence of uncorrelated Gaussian random variables. As vy(k) is a
function of w(k}) and w{k-1) in (58) and if we consider the data points at
every other sampling interval, v;(k} would be an uncorrelated sequence
of noise. Therefore, our samples are taken so that we consider the white
noise case. Of course, one would do better to consider every data point
even if they are correlated. However, the white noise case is more con-
venient for the determination of confidence intervals and it will provide a
conservative determination.

We will consider the case when the variance (02) of vyi(k) is
unknown. It is observed that even if the variance of v(k) is known, the
variance of vl(k) is unknown because Vl(k) is a function of the param-
eters to be determined.
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Firat, let us discuss the properties of the optimum estimate, @_,
We state the significant properties as lemmas. The proofs can be found
in Linnik {(Reference 43).

Lemma 4.1: The estimators from the least squares analysis are
unbiased, i.e.,

K

%>

o

. . -~ - 3 .
Lemma 4. 2: The unbiased estimators, o, form a Gaussian, n-dimensional
vector with the correlation mairix.

Ra = 02 (A" A)7
&

Var ai - o2 {(A* A)"l}

or

ii
Therefore,

~
o, - O,

o f{ (;:" Al)_l}

ii

€ N(0, 1)

where N(0, 1) represents Gaussian distribution with zero mean and standard
deviation of one. '

Next, we consider the properties of i, given by
ve=AG-z

Lemma 4.3: The minimum variance unbiased estimator also satisfies the
condition
2
1#]] = min

LLemma 4.4: The error vector, v, is an ({N-n) dimensional Gaussian
0 I3 » A -
vecfor and it ig independent of a.

Lemma 4.5: The random variable f:( v is distributed as x 2 with N-n
degrees of freedom and it is independent of _af_.

Now, we have the quantities which can form the t-distribution. If
£ and X Eiz are statistically independent Gaussian random variables with
the latter having n' degrees of freedom, the t-distribution is formed by
the following ratio.

t =

1
n' i n'

Let
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£ = i i
e '1
aN<{AT A) »
ii
21 axs
X s v ¥
o
n' = N-n
then,
&, -«
_ i i
N’n \/ 1 G* ~
{(A“‘A) = ¥
N-n

It is observed that the unknown variance cancels when the ratio is formed.

Using the t-distribution we can determine the interval about a
which will include o; with a certain probability. For example, let us use
Pr. = .90; then,

Pr {ltN_nl < 'y}= .90

The <« is found from well-tabulated tables. Therefore,

8- ogl 0 Jfua w7, 2
1 ii -

Thus, the range 2A of the .90 confidence interval is

b

_ ~ £ -1
2A = aiﬂzvf(A AT L W (90)

The difficulty in the use of the confidence interval lies in the fact that

A¥ A and v* v change as the interval of consideration changes. Possibly
one could use the conservative (larger) estimate of these quantities to get
an estimate of 2A. The important point to observe is that to decrease 2A4A,
N-n must be increased.

<>
|

The above results can be extended to the case when exponential
weighting is used. The range 24 is then given by

N M 2 ‘1 {r Wz{.’
2A =&, % v {A W A)} - = (91)
i

4.8 Determination of Pulse Response

In the type of adaptive controlier studied in Chapter 3, the elements
of the pulse response are desired along with the coefficients of the difference
equation. However, the pulse response and the coefficients of the difference
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equations are closely related; and two methods are available for determining
the pulse response.

First, there is the well-known method of deriving the pulse response
from the coefficient via long division. Although it is relatively simple to
perform the calculations, there may be uncertainty in the propagation of
errors through the division process.

In the other method, the pulse response coefficients can be measured
directly. Let us first look at difference equations which have only a single
forcing term. In this case, the states can simply be chosen as x(k), x(k-1),
x(k-2), etc. The second order example has the form

x(k} = ® x(k-1) + v utk) (92)

z(k) = M x(k) + v(k)
where
M=[1 0]
x, (k) Xl(k)
x(k) = =
xz(k) xl(k-l)

The equations are

2(k) - v(k) = ¢, (z(k-l) —v(k—l))+ by (20c-2) —v(k-2))

+ g{1) u(k)
or
2y Ty By T 991 Byop TR YY)
where
f'-ka = (z(k-N+ 1), ..., z(k)) (N samples)

For the state variables chosen, the above equations apply to the case when
there is only a single forcing term. From this expression for z,. the pulse
response at the end of one sampling interval, g(l), can be determined along
with estimates of ¢11 and ¢12. The least-squares procedure is again used.

In order to obtain g(2), we need an equation for x(k) in terms of
x(k-2). From '

x(k-1) = ¢ x(k-2) + 7 u(k-1)

we obtain
x(k) = ®° x(k-2) + ¢ ¥ ulk-1) + ¥ u(k) (93)
Therefore,
- (2} (2)
ANT %1 En-2t Pty Ay TE@IRy ) T uy T X,y
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where

(2) (2)
¢21 ¢22

From the above expression, g(l) and g(2) can be formed along with ¢11(2)
and 4)12 2} If more elements of the pulse response are desired, the above
procedure is repeated. The pattern is now, however, familiar. For example,
if g(1) to g(4) are desired, the following equation would be used.

(4) (4)

911 Bn-4T %12 En-stE@ By teGluyg

ZNT
+ g(2) Unoy T g(1) Uyt ¥an

Although the procedure requires larger equations, the advantage in using
this method is that the unknown coefficients are determined directly.

In the case where there is more than one forcing term, the above
procedure can be used but with a little more difficulty. There are two
alternatives. First, if xl(k), xl(k—l), etec., are used as state variables
the problem can be treated as a multiple control input problem. The second
approach is to use a different set of state variables so that the single dif-
ference equation can be put into the form of (92). The procedure will be
briefly illustrated.

Let us look at the example given by

x(k) +af1 x(k-1) +a2x(k-2) =Bl u(k)+B2u(k-1)

Let
Xl(k) = x(k)

xz(k-l) = @, xl(k—2) - Bz ufk-1)

then
xl(k) = - @y xl(k-l) - xz(k-l) +B1 ulk)

xz(k) = a, xl(k-l) - BZ u{k)

The equations are now in the form of (92). Let us see what is involved if
we desire g(l) and g(2). The top row of the vector equation, (93), is

(2) (2)

xl(k) = ¢11 xl(k-2) + ¢12 x2(k-2) +g(2) u(k-1) + g(1) ufk)

In terms of the measured quantities we have
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@ _ L, @ (2)

BT B gty @92 379, Byu

2~k-2

+ g(2) B g + g(1) o+ noise

Along with g{1) and g(2) other coefficients are determined.

Although this method requires more manipulations, it gives the
required coefficients directly.
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CHAPTER 5

IDENTIFICATION OF PROCESS PARAMETERS -
LEARNING MODEL METHOD

5.1 Introduction

The other approach available for estimation of coefficients of a
difference equation is the learning model method. It is felt that if some
a priori estimate of the unknown parameters is available then we should
be able to use this information to advantage. This is probably the moti-
vation for the learning model method. This method was originally studied
by Margolis (Reference 44) using the sensitivity function. The sensitivity
function is also used by Staffanson (Reference 45) who was concerned
with parameter determination from flight test data. Several character-
istics are apparent in Margolis' work.

1. One is constantly worried about the stability problem.

2. Noise considerations were not given.

3. One must choose the gain in the steepest descent
procedure.

4. The use of sensitivity functions is generally valid for
small regions about a trial point.

To overcome some of the above problem areas, this chapter will give an
alternative procedure primarily patterned after Newton's method but

with the extensive use of the digital computer to give assurance of mono-
tone convergence. Newton's method is chosen because it is known for its
rapid rate of convergence. By considering blocks of data at a time,
smoothing is performed. We will first briefly describe Margolis' approach
through an example so that it will provide a basis for comparison. Again,
we restrict ourselves to the discrete case.

Two other possibilities for performing the learning model method
should be mentioned. The first is the quasi-linearization approach described
by Bellman, et al (Reference 46). This method was found to be very
cumbersome for the discrete case. The other method is the orthogonal
function approach used by Elkind, et al (Reference 47). Fixing the model
time constants a priori seems to be a crude method.

5.2 Margolis! Sensitivity Function Approach

Margolis' learning model approach is shown in Figure 27. Margolis
used the error-squared as the criterion. Integrals of error-squared led to
stability problems. Even though Margolis may have had success in many
situations for the continuous case, the discrete case may lead to other con-
clusions. Therefore, we will look at the discrete case. The procedure
will be described here with the results given later.

Let us choose to discuss the first order process with two unknown

parameters @, and -
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Figure 27. Margelis! Learning Model Approach
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y(k) = o y(k-1) + Qg u(k) (94}

z{k} = y(k) + v(k)

The equation for the model is given by

ym(k) = ay ym(k-1) + a, u(k) (95)

The coefficients a, and a, are to be adjusted to minimize
2

7= (200 - ymao) (96)
We take the gradient of J with respect to ay and 8y

aJ

R ICUE ym k) ) u, ) (97)

a, 1

aJ _

b (20 - ym(0) ) u, 00 (98)

where

. 9ym(k)
u, (k) = “oa,

(k) = dym(k)

Ba2

The ul(k) and uz(k) are called sensitivity functions and they are deter-
mined from equations obtained by differentiating (95) with respect to the
parameters. Therefore,

ul(k) =a, ul(kwl) + ym(k-1) (99)

uz(k) = a uz(k-l) + u(k) (100)

1

The corrections on the parameters a; and a, are taken in the direction
of steepest descent.

a, (k+1) = a () - 2K (2(k) - ym(i) ) u, (k) (101)
a (k+1) = a (k) - 2K (k) - ym) ) (k) (102)

where K is the gain in the steepest descent procedure. The K is to be
chosen from stability and noise considerations.

5.3 Modified Newton's Approach

We next describe a method which will be extensively studied in this
chapter. Again we will use an example to illustrate the procedure.

Instead of operating on the error as shown in Figure 27, the stability
problem can possibly be alleviated by solving the following problem:
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Problem 5.1: Find the parameters (ai) of the model which minimizes

N 2
7= ) (2G) - ym) (103)
j=1

where ym(j) is subject to the dynamical constraint

ym(j} = a; ym(j-1) +a, ulj) (104)

The time indices are shown in Figure 28.§ In our case, the model {(104)
could be of lower order than the actual process (model fitting problem).
We start from an initial trial or estimate of the parameters, ai(l), and
the initial conditions for the interval of observation, ym(O)(l). ‘With
these initial trials (104) is solved to obtain a nominal solution, ym(j)(l),
j=0,1,..., N. Next, the perturbation equations of (104) are written,
evaluated along the nominal ym(j)(l).

(1) (1)

sym(j)=a, ~ sym(j-1)+ym D G-n 62, (3-1) + u(k) 6a(j-1) (105)

We adjoin to (105) other equations which maintain the parameters constant.
This trick was used by Bellman, et al (Reference 46}.

6a1(j) = 6a1(j—l)

(1086)
ba,(j) = 82, (j-1)
Let
sym(j)
LG = | sa, () (107)
6az(j)
Then
£() = ®(G-1) £(G-1) (108)
where _ -
oM WG a)
o(j-1) = 0 1 0 (109)
i 0 0 1 |

At this stage, instead of solving the optimization problem stated in (103),
the following problem is solved.

Problem 5. 2: Find the initial conditions of {108} which minimizes

§'I‘o simplify the notation, the index k is dropped. Thus, at the time of
computation, J=0=j=k-N and j=N=>j=k.
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Figure 28.

Obsecrvation Interval
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Z (z(J) -y ) - pymd (J)) (110)

where 6ym(1)(k) is subject to the constraint (108). We have converted a
nonlinear problem into a linear problem. By repeatedly solving this last
problem we hope to approach the solution to the first problem.

Problem 5. 2 is solved by using the least-squares curve fitting
procedure. It is noted that

sm DGy + symtG) = 29) +ny) (111)

where n{j) is the discrepancy caused by noise and error in the parameter
adjustment. Let

(1) (1)

(3) £ 2(j) - () (112)

The right-hand side of (112) is known and it is desired to determine
éym(l)(J) subject to (108), which best approximates z(j) - ym(J)(l)
Equation (112) can be rewritten as

n* e = 2G) - ym V) (113)
where

*=(1 0 0.

|=

The N equations represented by (113) can all be rewritten in terms of
£(0) by using (109).

h* £(0) = z(0) - (1)( 0)
(1)

* $(1,0) £(0) = 2(1) - ym

(> |

(1)

n* $(N, 0) £(0) = z(N) - ym' ")

Or, in matrix form

(N)

A0 =¢ (114)

where

-
A= | n¢(1,0 N + 1 x 3 matrix
| h* ¢(N, 0)

-

§= . N+1x1vector

(1)

I_z(N) - ym (N}
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The pseudo-inverse routine is used to solve (114).

§(0)m T 5(1} (115)

From (115) we can make corrections to the initial trial of the parameters
and initial conditions.

a'(2) - a'(1) + 63_(1)(0)
' ' : (116)
yrn(0)(2) - ym(O)(l) +6y1n(1)(0)
The procedure can now be repeated.

5.4 Algorithm and Convergence

The procedure outlined in the last section may well be divergent.
Procedures using the digital computer can, however, be used to give
monotone convergence. This section will give the algorithm which
assures this important property.

From the initial trial and solution we can compute the error index.

= % (2 - ym (J)) = |z - lelz

The problem is to find a éym(k) such that J2 given by

=% (=) - ym ™M) - éym(J))z

is less than Jl'

The difference Jl- J, must be greater than zero.

2
2 2
J=d, = |z =3 T - ||z =5 1T
+2<oym, z-yp' >
2
- leym|| z 0
or
2
2< bym, z - ym >—||6y£n“ z20 (117)
Equation (117) is the condition for convergence. If
(1)

<éym., z-ym "> #0

Then for éym sufficiently small (117) can be satisfied since the first
term is linear in éym while the second term is quadratic. It is noted
that the first term in (117) is positive since it is the scalar product
between the error and the projection of the error on the linear manifold.
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The condition

<6ygl,5—y£n(l)>=0 (118)

requires that Xrun(l) is closer to z than any nearby point obtained through
linear perturbation. In other words, the gradient is zero and we have a
local minimum,

The situation is shown in Figure 28. The first linear correction
is 1'. Upon solving (104) point 1 is obtained which may well give a J
which is greater than Jy. If Jo9> J;, then we cut the correction,
sym(k), by a half yielding point 1. If the J at point 1 is less than J;
then we keep the correction given by 6ym(k)(1)/2. If not we cut 6ym(k)(1)/2
by a half and repeat this process. By using this cutting procedure we have
monotone convergence until condition (118) is reached.

In an on-line task, we are limited in the number of iterations we
can make at a given time. The requirement is not as stringent, however,
as the control synthesis problem because the estimation can be made at
wider time intervals for slowly varying processes. If we limit the number
of cutting procedures described in the last paragraph, we may never find
the correction which will give a smaller J. In this case no corrections
will be made and we go on to the next interval. Here again, no interval
may give corrections, in which case the method fails. It is felt, however,
that for a class of problems in which the estimates are within a certain
range from the true values the routine will be applicable. This problem
seems no worse than the instability problem associated with Margolis'
procedure.

5.5 Simulation

A digital simulation of the modified Newton's procedure was made
on an IBM 7090, As a comparison, the discrete version of Margolis’
procedure was also simulated. The experimental set-up and results will
be discussed in this section.

Let us first describe the experimental set-up for the modified
Newton's procedure. The first-order process with two unknown coef-
ficients was taken as an example. This process has the form

y(k) = @, yk-1) + a, u(k)
z(k) = y(k) + v(k)

The noise, v(k) was an uncorrelated noise with a uniform distribution
because it was readily available. It is believed that this distribution is
more severe than the usual Gaussian noise if the variances of the two
are the same. Many runs were made, however, without noise.

The flow chart for the simulation is shown in Figure 30. Over
100 points of uf{k) were inserted. Either a triangular wave with a
period of 24 sampling instants or a square wave with a period of 20
sampling instants was used. The observation interval was taken as 10
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Figure 29. Two-Dimensional Picture of Correction Scheme
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PROCESS WITH ACTUAL VALUES
INITIALIZATION . n=o

-

I. MEASURE z(n)
2.SET n=n+l|

3. STORE PAST 10 SAMPLES
OF ul(n) AND z{n)

STOP
SIMULATION

4. INITIALIZATION! 1=0

5. COMPUTE NOMINAL SOLUTION
USING ESTIMATED VALUES

IF J, WAS LESS THAN
6. COMPUTE CRITERION J; SET INITIAL COND.
J = |;£_ym||2 FOR NEXT OBSERVATION
INTERVAL EQUAL TO
LAST VALUE IN
PREVIOUS OBSERVATION
INTERVAL .
OTHERWISE USE
MEASURED VALUE.

I. INSERT PERTURBATION EQUATION
COEFFICIENTS VIA NOMINAL SOLUTION

2. ADJOIN EQUATIONS
ain+1) =ain) FOR

EVERY UNKNOWN PARAMETER CUT CORRECTION
|  BY TWO
3. CALL SUBROUTINE PSEUDG
TO DETERMINE CORRECTION ON NO
INITIAL CONDITIONS OF PERTURS.
eqs. AND ADJOINED eqs. YES
NO

. COMPUTE NEW NOMINAL SOLUTION

YES

2.5ET I=I+1

3. COMPUTE NEW CRITERION, J,

Figure 30. Flow Chart for Modified Newton's Procedure
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sampling instants and the intervals were taken in a block processing
manner. (In an actual application probably more points will be taken. )

Four iterations were taken per observation interval. If needed, the cutting-
by4wo procedure was counted as an iteration. The method requires

initial conditions for the model equations at the beginning of every obser-
vation interval. These were supplied by either of two ways. First, if the
previous interval revealed an improvement in the criterion J, then the
state values at the last sampling instant of the nominal solution of the
previous interval were used as the initial conditions. Otherwise, the
measured outputs were used as the initial conditions.

For Margolis' procedure essentially the same conditions prevailed
to permit a comparison. The procedure provides adjustment after every
sampling instant as described in Section 5. 2. This procedure requires
insertion of a gain, K, for the steepest descent procedure.

For the first series of runs, the process parameters were taken
as constant but unknown. The estimates were initially displaced from the
true value. A representative no-noise case is shown in Figure 31. After
three observation intervals the true values are obtained. Ii was found
that large displacements of the initial estimates can still provide conver-
gence. Even unstable roots were identified. From this series of runs,
it is felt that any root near and within the unit circle can be identified for
the first-order process regardless of the initial uncertainty.

For the second series of runs, noise was added to the output of
the process. Noises with 5% and 10% of the peak output were inserted
along the initial displacements of the estimated values. Several results
are shown in Figures 32, 33, and 34. The results shown convergence
from the displacements but an error in the estimated values. The 10%
noise case reveals that possibly more than 10 points are required for the
averaging. KEssentially, there is no significant difference between the
triangular and square wave inputs.

For the third series of runs, the true values were continualily
changed as a ramp. Both noise and no-noise cases were taken. Some
results are shown in Figures 35, 36, 37, and 38. First, even without
noise the tracking capability is rather poor if the parameters are
changing as much as 0. 0025 per sampling instant. With 5% noise, the
situation is even worse. Close analysis of Figure 36 showed that up to
50T the signal-to-noise ratio was much worse than 5%. As the signal
portion increased, the tracking capability improved. Figures 37 and 38
show that the method is able to track changes in parameter of 0.00125
per sampling instant even with noise. Essentially, there is no significant
difference between the triangular and square wave inputs.

Results using the discrete version of Margolis' procedure are
shown in Figures 39, 40, 41, 42, 43, and 44. The adjustment of K is
very critical. Many runs were made before a satisfactory K was
obtained. (This adjustment was very troublesome on the digital computer.)
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This gain was dependent upon the input signal. When the gain was adjusted
to give a satisfactory response to square waves, it was unsatisfactory for
the triangular wave (Figures 39 and 40}, Different types of behavior were
obtained depending upon the direction of the initial offset. It seems that
the best adjustment for K is when the behavior is slightly overdamped.
Otherwise, oscillations appear to persist for a long time. With K adjusted
to this seemingly suitable value, then it takes a long time before the true
values are obtained. The method is also not applicable for large displace-
ments of the initial guesses and the K seems to depend upon the values of
the parameters which are being estimated. With the gain set so that the
behavior is slightly overdamped, noise did not affect appreciably the
response. (This fact was conjectured by Margolis.) In fact, with noise
the gain should be even smaller.

Let ug summarize the difficulties of the discrete version of
Margolis!' procedure.

1) The gain depends upon the input signal.

2} The response is slow, when K is properly adjusted.

3) The behavior differs depending upon the direction of
the initial offset.

4} The method is applicable for small initial displacements
between the estimate and true values.

5) The gain depends upon the true parameter values of the
process.

Because of the criticalness of K, the modified Newton'’s procedure
appears to be more practical even with the added complexity in computation.
Even for the well-monitored experiments the adjustment of K was difficult.
In an on-line application where the parameters are uncertain, the problems
would be almost insurmountable.

5.6 A Possible Alternative

If the pseudo-inverse routine is computationally demanding, an
alternative would be to use the steepest-descent method to perform the
inversion of the rectangular matrix, (114). Choosing the criterion

2
J=|la go - g (119)

Or equivalently, minimizing

Q (20) = €0 a%A ¢(0) - 2% A ¥(O)

We assume here that sufficient data points are processed so that A™A is
positive definite.

The gradient is given by
- 5 0y - ®
Veo) @=AA K0 - ATE

The next approximation is given by
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(n+1)

£(0) )(n) (n}

= £(0 -e V

X n (0 Q
where € is determined so that the minimum point in the direction of
the gradient is obtained, or

v, o™
£(0)

" (n) (n)
<A¥AV .V >
¢« ¢ Vo)
As before, one can check to see whether (103) is actually decreasing,
and if not perform the cutting by two procedures. It is noted here that
even if J in (119) is continually decreasing it does not imply that (103)
is decreasing.

€ =
n
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CHAPTER 6

STATE VARIABLE ESTIMATION

6.1 Introduction

To use the adaptive controller discussed in Chapter 3, we must
know the state variable at every sampling instant. This chapter will
discuss a method of estimating these variables, The content of this
chapter draws heavily from the work of Kalman (Reference 16). Joseph
and Tou (Reference 23) have also made studies along this line,

The state variables can be estimated if the process is known. Also,
it is known that the process can be determined if the state variables are
known accurately. The task in adaptive controls is one step more difficult
because neither the state variables nor the process is known accurately at
any time. However, we can employ the following philosophy. If identi-
fication methods are available which can operate with inaccurate knowledge
of the state variables, then the identified process can be used in the state
variable estimation. A possible reason for taking this route is that the
state variables generally change faster than the process parameters. As
the identification methods of Chapters 4 and 5 were applicable even with
unprecise knowledge of the siate variables, those results can be used to
update the process parameters in the state variable estimation. There-
fore, the state variable estimation part can employ Kalman's recursive
technique. The procedure will be outlined mainly to complete the total
picture.

6.2 Qutline of Estimation Problem

Let us refer to the process configuration shown in Figure 45. From
the knowledge of z(k) and u(k), it is required to estimate the state, x(k),
at the present time. The past values of z{k) and u(k) are known from
some initial start time. The process characteristics, G; and G2= are
known, the former through identification. In an adaptive task the transfer
characteristics are time varying. As new parameter values are obtained,
the corresponding values used in the estimation will be changed. The
covariance matrices of v{k) and w(k}) are also known. These noise
sources can be taken to be white noise. It is noted that because of Gy
the load disturbances can have a non-white spectra.

We note

x(k) = x, (k) + x,(k)

where )_cl(k) is known. Let
vik) = z(k) - x, (k)

x4(k) = x(k) - x, (k)
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The problem is now simply the determination of %z(k) which is the con-
ditional expectation given wv(k), k = 0,1,...,k. From )_cz(k) the estimate
of the state is

x(k) = 2, (k) + x, (k)

Therefore, it can be seen that Kalman's filtering algorithm which can
treat time-varying processes is applicable here.
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CHAPTER 7

APPLICATION TO THE RE-ENTRY
FLIGHT CONTROL PROBLEM

7.1 Introduction

The control of an aerospace vehicle entering the earth's atmosphere
is one of the more challenging problems facing engineers at the present
time (References 48, 49). Large variations and uncertainties in the process
dynamics, primarily due to variations in air density, make feedback con-
trol mandatory. Furthermore, accuracy requirements may dictate using
some sophisticated form of adaptive controls. This chapter will outline
how the scheme discussed in the previous chapters can be applied to the
re-entry problem.

7.2 Flight Path Control Problem

Probably the ideal method for the re-entry problem would compute
optimum controls depending upon the present state and the desired destin-
ation. As time progresses the controls are recomputed. This task using
the nonlinear equations of motion, however, is very difficult, requiring an
enormous (IBM 7090) computer. Even if a computer is available the
computation time will be an appreciable portion of the re-entry time.
Therefore, some other procedure is required.

Several alternative schemes have been suggested in the literature
{References 50, 51). One scheme performs re-entry by following a pre-
viously computed, stored optimal-trajectory. The adaptive control
philosophy discussed in the previous chapters can be applied for such a
scheme, Linear dynamical equations are obtained by writing perturbation
equations evaluated along the nominal optimal trajectory.

Another scheme is to approximate the optimal path by segments
of shorter paths which are easier to solve, This scheme is illustrated
in Figure 46, As an example, the optimal path is approximated by three
segments: 1) constant lift-to-drag ratio path, 2) constant altitude path,
and 3) constant lift-to-drag ratio path. The adaptive control philosophy
discussed in the previous chapters can be applied to each segment sepa-
rately. The procedure will be illustrated for the constant altitude segment.

7.3 Constant Altitude Controller

First, the two-dimensional equations of motion will be derived.
Let us refer to Figure 47. Summing the forces in the direction of V we
obtain

‘}=gsin7—% (120)

Summing the forces in the direction perpendicular to V we obtain

mVé=gcosy—L
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Since

ijVcosy
R+h

we obtain

V cos vy +£ cos v - L

YT R+R TV mV (121)
In addition, the altitude rate is given by

h=-Vsiny _ (122)
The names attached to the above symbols are:

v - flight path angle measured from local horizontal

V - velocity
R - radius of Earth
h - altitude

L - lift force

D - drag force

m - vehicle mass

g - acceleration of gravity

In control terms, V,7, and h are the state variables and L and D
are control forces. The amount of lift and drag being applied at any time
can be measured by accelerometers because

aD=

Bl 8|9

3L

where

- magnitude of deceleration measured by an accelerometer
oriented along the velocity vector.

a. - magnitude of deceleration measured by an accelerometer
oriented perpendicular to the velocity vector,

Since independent control of lift and drag would be very difficult physically,
we will agsume that lift is a control force and D is a function of L.

D = f(L)

Next, we write perturbation equations of (120), (121), and (122) about the
constant altifude condition. It is noted that Yo T 0 and h0 = 0. There-
fore,

v=- f(LO(t)) (123)

Or, the velocity must decrease along a constant altitude path. Also,
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m Vz(t)

Lo(t) = - —R‘rljl;- +mg {124)

Along a constant altitude path, L,, which is a function of time, must
satisfy (123) and (124). Writing perturbation equations about Vg
Y = 0, h,, L, we obtain

. of
6V =g b v- 1/n1—~£££- sL (125)
oL
o
-mV2+ (mg + L XR+h ) \
. o] o] 0 0 1
6y = 5 6V t— éh - —~— 5L (126)
m(R+h )}V (R+h ) o
o’ o .0

sh=-V &7 (127)

T of(L) . i

The uncertainties in g, m, R, and 31 require us to use an adaptive

[0}
controller. Of course, if approximate values are known they should be used

as an initial trial in any iterative identification process. In matrix form

x=Ax+bu (128)
where
u=6L
ERY%
x= |6
s h
0 a12 0_1
A= 3.21 0 323
_0 332 0_
b1
b= |b,
__O
and
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8127 8

2
-mVO + (mg + LO) (R+ho)

a =
21 m{(R+h ) V2
Q Q
v
a = °
23 (Ren )2
(8}
332 =T Vo
NN 1(19)
1 m oL,
0]
o
bz T mvV
(8]

At any time instant, aj; and b; are treated as constants over a short time
interval. Such an assumption is valid if the coefficients are changing slowly.
The signal flow graph for (128) is shown in Figure 48.

Reducing the signal flow graph we obtain

sh _ Pa®3pstP, @

L 2
s(s T 8987 859 a23)

6L
Making 6L to be a staircase signal as appearing from a digital controller,
we obtain the discrete input-output transfer function.

21 %32

2
shiz) _ Bz By 2tk
6Lz} 3

2
+ + +
2 al Z D!ZZ a3

The coefficients «,, B. must be identified through the identification process.§
It is noted here that if only ———ag(i“') (a function of density) is uncertain, only
the numerator coefficients will be uncertain. Thus, only the numerator coef-
ficients need to be estimated and the identification procedure will be greatly
simplified. Upon knowing these coefficients the controller scheme discussed
in Chapter 3 can be applied. The bounds on 6L are obtained from

L . =sL+L =L
&) m

min ax

Or,

We know that the numerator is at most a quadratic since the initial value of
the response is zero.

116



§59004d paziaeaur] g0y ydear) morq reudig ‘g% aandrg

117



The criterion function for this problem would be
k+N

J=3 ) eh()
j=k+ 1

2

This type of problem has been termed "tracking'' problem. The desired
path is known a priori, and the function of the controller is to keep the
process close to this path. Besides the above illustration, one can
envision many control problems that fall in this category.
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CHAPTER 8

SUMMARY AND SUGGESTED EXTENSIONS

8.1 Summary

The major concern of Part 1 is the development of tools necessary
to perform adaptation in a control problem with an unknown process. The
approach taken to perform adaptive control was to measure the process
through observation of the input-output data and to compute optimal con-
trols on the basis of estimated parameter values and estimated state-
variables. Therefore, there are three phases to this approach to adaptive
controls.

1} Parameter Estimation
2} State-Variable Estimation
3} Computation of Optimal Controls

The three phases were siudied separately indicating approaches which can
accomplish these tasks.

In the area of optimal control computations, methods presently
available were summarized. These methods are for the linear process
case with quadratic performance criterion. Next, extension was made to
the case with inequality constraints on the control variable. For this case
quadratic programming methods using a gradient method were found to be
suitable. The philosophy of employing an optimization interval for a finite
time into the future was verified through computer simulation on an example.
Because feedback was employed the technique showed experimentally that it
can tolerate at least 10% error in the parameter values. Formulation was
given also to handle constraints on both the amplitude and the rate of change
of the control variable.

For the parameter estimation phase two approaches were studied:
1} the explicit mathematical relation method and 2) the learning model
method. For the explicit mathematical relation method the recursive
method of Greville was adopted to give estimated parameter values. Tools
necessary for the statistical problem of assigning confidence intervals were
given. For the learning model approach, a modified Newton's Method was
presented and verified experimentally. Convergence considerations were
given. Experimental comparison with Margolis' approach was made in
terms of speed and noise-handling capabilities. With added computer com-
plexity, experimental results verified the superior performance character-
istics of the modified Newton's procedure.

For the state variable estimation phase, Kalman's recursive
filtering technique was adopted.

Finélly, an outline was given in Chapter 7 to apply the optimal-
adaptive approach to a phase of the re-entry problem.
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8.2 Suggestions for Further Research

Of course, a study of three phases of the problem does not imply
completion. There is still the problem of tying all phases together to see
whether the combination will work. Such a task would take an extensive
programming effort. When application is eventually contemplated this
task will have to be undertaken.

For the more immediate extensions, one can, for example, verify
experimentally the case with bounds both on the magnitude and the rate-of-
change of the control variable. From the practical point of view this case
seerns to be the most realistic.

For the on-line computer optimization, it seems that the coordinate-
wigse gradient method and Ho's simplified gradient projection method are
the two feasible methods. As an extension a comparison of the two pro-
cedures can be made.

Analog methods suggested in Section 3. 14 can be tried for the
quadratic programming problem. The task here requires hybrid compu-
tational capability.

More extensive stability studies can be made for the on-line con-
troller employed. Some considerations were given to the case without
inequality constraints. No analytical methods were given for the case with
inequality constraints. Although stability problems were not encountered
in the experiments, possible situations may arise especially when the
optimization interval is shortened. Other problem areas include computa-
tion time lag and error in parameter knowledge.

The simulation of the on-line controller (Section 3.7) revealed that
the responses were slightly underdamped. Possibly one can choose dif-
ferent weighting in the criterion function to improve the response. Adding
a term which weights the use of control energy is a definite possibility.
These consideratiors can also be given to the example in Section 2.8 for
the problem without inequality constraints.

For the explicit mathematical relation method, experimental
studies can be made so that a direct comparison with the learning model
approach can be made.

For the learning model approach, only block processing was employed
experimentally., Analyzing intervals into the past from the present time at
every sampling instant is another possibility. Iterations per observation
interval could then possibly be reduced to a single iteration. The effective-
ness of the identification is dependent upon the input signal employed. One
could possibly attempt to use signals which more closely resemble signals
present at the input of the process. If signals present at the input to the
process do not give satisfactory results, then one should consider injection
of suitable signals. Also, no analytical statistical considerations were given
for the learning model approach.
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For the general identification area, one can make a comparison
between determining the weighting function and determining the coefficients
of the difference equation. It is generally believed that the computer
demand is less for the latter problem. But it would be of interest to deter-
mine the actual difference in the computer requirements of the two
approaches.

The techniques outlined in this report require a digital computer
for computations. Before these techniques can be applied the numerical
computations must be translated into computer requirements (time and
space). Some considerations were given in Chapter 3. Considerations
could be extended to other chapters.

Finally, computer verification is needed for the application to the
re-entry problem before serious consideration can be given.
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APPENDIX 1
NOTATION AND CONCISE STATEMENT OF PROBLEMS

An attempt has been made to keep the notation consistent throughout
Part 1.

I.1 Notation of Process Variables

The notation used for the single-input single-output process is given
in Figure 49,

In terms of the state variables, the notation is given in Figure 50,
In equation form

x(k) = ®(k, k-1) x(k-1) + (k) ulk) + = (k) wlk)

z(k) = H(k) x(k) + v(k} = y(k) +v(k) (129)
where

E(k) - n x 1 state vector

yik) - m x 1 output vector

z(k)" - m x 1 measured output vector

u(k) - r x 1 control vector

wik) - g X 1 uncontrollable input vector

v(k) - m x 1 uncorrelated noise vector

o - n X n transition matrix

r - n x r matrix

H - m X n matrix

= - n x q matrix
1.2 Concise Statement of the Problems

In this section the problems treated in Part 1 will be stated in a
concise form.

Problem I.1: Given

i) process defined by (129).
ii}) z(k)
iii) v(k), w(k) - rough estimates of the variances

can probably be given.

iv) some elements of  and I" are known; for other
elements possibly statistical characteristics can
be given. (Changes usually occur slowly).
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Figure 50. Process in Terms of State Variables
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v) % and H are known

vi} Xd(k) - 8 x 1 vector (s = m); given for
k=0,1,2,...,N1
Determine the sequence E(k)* k=1,2,..., N1 which minimizes
N1 2
p= kZ=1 Iyt - ¥ yaoll,

where Y - known & X m matrix
@ - known positive definite matrix
Subject to the constraints

Iui(k)| SMil,2,..., 1k, N

Because Problem I.1 is difficult to solve we split the problem into
several parts. Al every sampling instant an optimization over a short
interval of time into the future is performed {for simplicity of discussion
we treat the single-input, single-output case).

Problem 1.2 (Chapter 3): Given
i) process defined by
x(k) = ¢ x(k-1) + ¥ u(k)

where ¢, vy are known

ii) initial conditions x{0) (known)
iii) 4 3=k, k+1,... k+N, N< N,
Determine u{j) j = k+1,...,k+N which minimizes
k+N 2
7= Y (v - Y )
j=k+ 1

Y - 1 x n matrix
Subject to |u(j)|=M j=k+1,...,k+N
We can add other constraints.
Problem I.3 (Chapter 3): same as Problem I. 2 except we add the constraint
[u) - w@-1 ] =M' j=k+1,... k+N

In Problems I.2 and [.3 we assume that we know @, v, and x(k). The
® and y are estimated through identification; and x(k) is obtained t?u'ough
state estimation. Although the two problems are tied together we choose to
separate them. For the identification problem we solve:
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Problem I.4 (Chapters 4 and 5): Given
i} the process form

x, (k) = @ x (k-1) + 7, ulk)
z(k) =H )_cl(k) + (k)

where ﬂ(k) is correlated noise
x, k), @, 7

as shown in Figure 45,

k, k-1,...,k-N

k, k-1,...,k-N

ii) u(j) known j

i

iii) z(j) known j
Determine cbl and 1 (assuming they are constants over the
observation interval)

The estimation problem can be stated in the following way.
Problem 1.5 (Chapter 8): Given
1) a random process defined by

X, (k) = ¢2(k, k-1) x,(k-1) + I‘z(k) w(k)

Yo = Hy (1) x,(k)

where <I)2, I‘z, H2 are known (Figure 45)

‘i(k) and \y_(k) - uncorrelated Gaussian noise with known
variances

yl(k) is a known deterministic sequence
ii) E(j) j=0,1,...,k (present time)

Determine an estimate 37(1{) which minimizes

2
E(ﬂk)-§m0
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APPENDIX II
A BRUTE-FORCE METHOD FOR THE QUADRATIC
PROGRAMMING PROBLEM

This appendix outlines the non-iterative method of solving the quad-
ratic programming problem of Chs ter 3. Only the two- and three-dimensional
cases are considered.

II.1 Two-Dimensional Case

For the two-dimensional case, (32) reduces to

d = u(l)g1 +u(2) ,,%2 (130)

"~

with
la(ky| = M

Equation (130) can be rewritten in terms of unit vectors.

d=a.i) taydy
where

i = Fx

~K

g, I

@ = u(k) “gkll
with

M, =M ||g |l

Let us lock at Figure 51. The total planar space shown in Figure 51
is the space spanned by the linear combination of j; and is. Since there
are bounds on ¢ we are restricted to operate over region R whichis a
parallelogram. The problem then is to approximate d' as closely as pos-
sible by a point d in R.

If d' lies in R then we have the unbounded case and the solution
is easy as we can invert a triangular matrix. Now, if d' lies outside of
R, two possibilities occur. K d' lies in the unshaded region, then the
optimum point is obtained by making a projection on one of the edges of the
parallelogram. If d' lies in the shaded region, the optimum point is at a
vertex.

After these observations, let us see how we could solve the problem.
The discussion will be restricted to the sector defined by > 0, 9> 0
shown in the top-left sector of Figure 51. The same considerations hold
true for the other sectors; also, the technique should also apply whether
the vertex is obtuse or acute.
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Figure 51. Two-Dimensional Case
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First, let us compute the unbounded solutions, al' and az' , l.e.,

d' =a + o

T 3 T 3

11" %22

Then, we can make tests via the digital computer to see whether any of
these ;' exceeds M;j. If neither exceeds their bounds we have no problem

so we will not consider this case. We have three cases to consider.

Case 1: al! > M ¢! =M

1 1 2 2
. 1< 1
Case 2: al M1 crz >M2
. P v
Case 3: al Ml az M2

Cases 1 and 2 present no problem because we can project d' on the edge
which is exceeded. The projection may exceed the vertex of the parallelogram
in which case we take that vertex as the solution. Now, for Case 3, we see
that it can be in one of the sectors A, B, or C. If it is in A or C the optimum
point is on one of the edges; while if it is in B the optimum point is at the
vertex,

Because of these possibilities, if ‘1’1' and a?: exceed their bounds
we must project onto both edges. If either of the projections lands on the
edge we have the optimum point. If both projections exceed the vertex, the
vertex is the optimum point.

At least for the two-dimensional case the above tests can be readily
implemented on the computer.

For the case shown in the figure the point of projection is determined
by the condition for othogonality

or,
=< dt > - <1 i
@y =<8 3y 7 n M <4y 37
and o 17 M 1 is the other component. The solutions are then
[
u(l} = 2 L
1]l
o
u(2) = g 2
[[22]]

which are the control forces to be applied in succession if the optimization
interval does not change during application.
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II. 2 Three-Dimensional Case

For the three-dimensional case let us again find the unbounded
solutions.

+a )i, teo)

1 = 1 3
e T T

Again, we omit the case when the |afil =M . We have the following cases.

Also, as before, we consider the positive sector only.

Case 1: al’ > Ml’ a) = Mz, aB' SMB
Case 2: o:l' SMl, all > M2, a3‘ = M3
Case 3: cvl' SMl, o 51\/12, a3’>M3
Case 4: al' > Ml’ o, > Mz, as' = M3
Case 5: al' > Ml’ o) = M2’ 03’ > MS
Case 6; al' EMl, o >M2, 0:3' >1\/[3
Case 7: al' >M1, a, >M2, 013' >M3

The following cbservations were made after building a parallelopiped.
Cases 1, 2, and 3 give no trouble as we can immediately conclude that
respectively, o« = M, a9 = Mg, o3 = M3, and we can obtain the solution
by projection on the sides (planes) which are exceeded. For cases 4, 5,
and 6 we have two components that exceed the bounds. Here, we have to
project d' onto the sides of the parallelopiped which were exceeded by the
two components. From the projections we can make conclusions as in the
two-dimensional case. Case 7 is the most troublesome one. We first
must project d' onto each of three sides. We can draw some conclusions
if any of the projections reveal that some projected components are less
than the bounds. However, there is still the case when the three projec-
tions reveal that the projected components all exceed the bounds., In this
latter case we have to take o; two at-a-time and project d' onto the
edges (line) of the parallelopiped. If the projection on the edge exceeds
the bound then we can conclude that the optimum point is at the vertex.
Otherwise, the optimum point is on the edge obtained by projection on the
edge.

We have seen how the problem has grown from the two-dimensional
case. We can imagine how difficult the four-dimensional case will be.
Because of these developments we are led to gradient methods.
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APPENDIX III
QUADRATIC PROGRAMMING THEOREMS
Let us consider the following general quadratic programming
problem.
Problem III. 1 Find the n-vector u which minimizes
jw =u*Cu+h*u (131)
subject to a convex region defined by
Du-b =20 (132)

where
C known n x n positive definite matrix
D known m X n matrix

known n vector

known m vector

Tl

-First, we show that a unique minimum exists for the problem.
Lemma III. 1 A unique solution to Problem III. 1 exists.

The existence is assured from the fact that J(u) is bounded from
below and the region of feasible solution is closed and non-empty.

For uniqueness, we first note that J(u) is a positive definite
quadratic form; therefore, it is a convex function. Let us assume non-
uniqueness, and let u, and u, be two distinct minima. Because of convexity

Ju)<J ., foru=gu, +{l-olu_with0<a<1
— min - - -2

1
Point u is along a line between uj and ug; and it is in the feasible region
because of convexity of the region in u. Therefore, by contradiction there
is a unique solution.

The statements to follow are special cases of the more general
theorems given by Kuhn and Tucker (Reference 17). It is rederived to fit
more closely the problem we have. First, we give a sufficient condition
for a minimum.

Theorem HI. 1 Saddle Point Theorem (Sufficient Only)

If for the above problem we can find an n vector u® and an m

vector A% such that u®, A% forms a saddlie point of the Lagrangian
| $(u, 2) = J(u) - X" (Du - b) for X2 0
i.e., (133)
¢(u, 2% = $(u°, A%) = ¢(u°, )

then u® is a minimum of J(u) for Du - b =0,
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Proof: Since 11_0, A0 is a saddle point,

J(w) - 2°"(Du-b) 2 J(u°) - 2°¥(Du’-b) = J@°) - A (Du°-b)
Since the right-hand inequality is true for 2= 0,
2°% (Du®-b) = 0
But,
0% (Duo-b) 2 0
Therefore,
2°% (Du°-b) = 0
The left-hand inequality becomes
J(u) - 2°* (Du-b) = J(uO)
Since «
X% (Du-b) = 0,
J(u) = J(u®)
Thus, if we can find a saddle point then we are assured of a unique minimum,
It is noted that the saddle point may or may not be a distinct point. This fact,

however, is not important to us. Next, let us give sufficient conditions for
a saddle point.

Lemma IIT1. 2 The following conditions are sufficient for the existence of a
saddle point. (Equations 134 and 135 are also necessary conditions but this
fact is unimportant, )

1) v | =0 (134)

2) v, 8| =0, vktpio*f:o, 2 z0 (135)

3 $w,2%) 2 ¢, 20) +V ¢ (u-u®) (136)

9 N = 400 + v, 9l (20 (137)
Proof: Using (136) and (134)

¢(u, A°) = ¢(u°, 2°)
Using (137) and (135) .
o, M) = $u®, X°) + 9,6} A
but
A d)lo =0
Therefore,
$(u®, N = ¢(u®, 2°)

We will prove another lemma which will be useful in the theorem to follow.
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Lemma III.3 If ¢(xX) is convex, then
#(x) = $(x°) + 9, 9| (x-x°)

(If ¢(x) is concave, the inequality is reversed.)

Proof: Using the definition for convex functions, i.e.,

(1-0) $(x°) +6 6(x) = ¢( (1-0) x° +0x)

with
0= @g=

1
6((1-0) =% + 0. x) - ¢°)
:

o(x) - p(x°) =
In the limit as 8 — 0.
3

) = $lx )+, ¢ (x-x)

The existence of a saddle point is assured by the following theorem.

Theorem III. 2 For Problem III. 1 the following are necessary and sufficient
conditions:

1) v ¢l =0 (134)
or, V J-D"X°=0 (138)
e
o (o]

2 el so. v e 2°=0, 2° =20 (135)
or, Du®-b 2 0, 2°*(Du’-b)= 0, =0 (139)

E
3) #w. 2%) = 3, 20) + 9 ¢ (u-u”) (136)

e
4) (. M) = 9(u°, 2°) + v, 4| (2-2°) (140)

Proof: (Necessary Part)

We prove (136) and (140) first. Forming the Lagrangian
#(u, 1) = J(u) - X" (Du-b)

We know that J(E) is convex. For a given A, the second term is linear
in u. Therefore, ¢(u,A?) is convex in u. “Thus (136) follows from
Lemma III.3. For a given u, ¢{u, 1) is linear in A. Therefore, using
Taylor!'s theorem (140) follows. -

To show (134) and (135) let us note that the inequality can be replaced

Du - _‘12 = 52 {(141)

by
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Now, performing the usual optimization on
_ o 2
W(u, A, s) = J(u) - A" (Du-b-s")

Taking the partials with respect to each of the variables,

vuwlo =VU.¢IO =0

v ¥l = - (Du-b-5°) = 0
or
v :)5[ = - 82 or v ¢[ =0
Ao - '
v wl =25‘,’:= A° =0 or, s A% =0
s o - = = =

Multiplying (141) by 2°, we get
3 o) ~
vy bl A7 =0

There remainsg to show that io 2 0. We are to satisfy m inequalities.
There will be some inequalities which will be satisfied by equalities.

d.u’ -b, =0 j=1,...,r. (142)

. R

There will be other inequalities which will be satisfied by strict inequalities.
Yd. u’-b,>0 j=r+1,...,m. (143)
D B J

For the strict inequality case, by (139) Ai =0 for i=r+1,...,m.

Let us suppose that the A, associated with one of (142) is non-
positive, i.e., ).v =0 where 0=y =r. Assuming that uio is the minimum,
let us take a point u; slightly removed from u® such that

Y. d. u -b =0 iZv, j=1,...,r
S i

djiui_bv>0

We note that u; is still in the constrained set. Multiplying (138) by (5-50),
we get

* Oy _ % % o
v Il - = A DYu-u”)

=,\( - )
v Zdv‘iui bv

Therefore, if ?LV< 0, then

* 0
v J| (u-u®y<o
u Qo — —

138



If A =20, then
v

In both cases we have a contradiction, since we have a unique minimum.
Therefore, A, > 0. Since v is arbitrary, we see that, in general, the
multipliers associated with the inequalities are non-negative. (Sufficiency)
The conditions are also sufficient from Lemma III. 2 and Theorem III. 1.
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APPENDIX IV

A RECURSIVE METHOD TO OBTAIN
THE BEST ESTIMATE

In this appendix a recursive method is given to numerically deter-
mine the best estimate of parameters using the concept of the pseudo-inverse.
The pseudo-inverse as defined by Penrose (References 18, 19) is used to
solve a set of simultaneous algebraic equations when there are more equa-
tions than unknowns. Greville {(Reference 15) gave a recursive method for
the purpose of successively adding higher-order terms in the polynomial
approximation problem. The question arose whether one could use
Greville's method for the estimation problem when one degires to update
the estimate as new data arrive. We show in this appendix that one can
indeed use his method.

Some new lemmas are shown in this appendix which facilitate the
derivation of the algorithm. We start directly with the axioms and lemmas
given by Penrose. This route presents the derivation with less insight.

The pseudo-inverse is defined as that matrix, AT, which satisfies

aAata-a (144)
Al aaf-af (145)
aah)* = aaf (146)
alay-afa (147)

Several identities follow immediately as shown by Penrose. These
identities are stated as lemmas.

* T %*
Lemma IV. 1 a) A AA'-= {148)
by alaa®-a" (149)
Lemma IV. 2 a) AFaT* AT =T (150)
by Al aT*a* - af (151)
Lemma IV.3 ATT = {152)
Lemma IV.4 A*A =0—-4=90 {153)

It is noted that the inverse [A* A]-l exists if and only if columns of A are
linearly independent.

In the following discussion we will work with the equation

Yy © Ak :n_:k (154)

where
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Xk - k x 1 {given)

A, -k xm (given) k>m

k

X, =m x 1 (unknown to be determined)

The problem is to find X, by

T

k Tk {1553)

X, =4
This represents the best-estimate after k instants of time. Each instant
of time has a new set of data. Let us partition Ay, in the following manner.
A k-1xm

gk l1xm

n

where a represents the new set of data. The pseudo~-inverse, Ap’, can
also be partitioned.

T . 1
A —(Bk : yk) (157)

mxk-1 mxl

Before we derive the algorithm for computation it is convenient to
give some lemmas.

T _
Lemma IV.5 Ak—l Ak Ak = Ak-l (158)
Proof: From (144)

j}k_'l AT A = }}k__l_
N % k Tk o W
-k -k
A AT A A
_k_—l_ _k_ _k | _—1
* "f' - &
2y Ay Ay 2y
Therefore,
T -
Apoy B B T A
¥ Tooo_ AT
Lemma IV.6 Ak Ak Ak—l Ak-l (159)
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Proof: From (150) and (158) A al*a® AT* AT - af
) k "k k-1 "k-1 ""k-1 k-1
. t 4 al N
Using (147) Ak Ak Ak-l Ak-l Ak—l = Ak-l
T S |
From (145) Ak Ak Ak-l = Ak-—l
T
Lemma IV.7 Bk Ak-—l Ak_l = Bk {160)
From (148) Ak Ak Bk = Ak—l
T = R
From (145) Ak Ak Bk Bk £

. . %3 He T - %
Substituting * in (148) Ak Ak Bk Ak-l Ak»l Ak Ak Bk
Premultiply by Ag Al* and using {151)

T T LT
Ak Ak Bk Ak—l Ak-l - Ak Ak Bk
Using ** B A Al -B

Let us now derive the algorithm. First, multiply (157} and

(156)
TaA =B A b o (161)
A B =B By b gy
Postmultiply by Al—l
Pa Al - f * Al
By A By T B A Al TR 3 Ay
Using Lemmas IV.6 and IV.7
i “ ot
- 16
Ar T B TR 2y A (162)
Therefore,
i at AR
B T\ A1 T B B By - B (163)

The task remains to find k_Jk Let us form AII Ak from
(163) and (156)

ATA =AT A -b a*AT A +hb a=k
k 7k k-1 "k-1 =k -k k-1 "k-1 -k -k

Or,

s
2

k (164}

AJA -AT A +b c
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3 1o *
¢c. =a =-a, A lA

Ck T2 T3 By (165)

k-1

Again we divert from the main path to prove some more lemmas
which will be useful later.

™o
= &
Lemma IV.8 Ak-l Ch 0, if " 0 (166)
Proof:
x
First, it can be shown easily that )y A-fl;—l = 0. From {165}
* % * AT A
Sk T 2%k T %k k-1 Pk-1
Post multiply by AI{—I’
TN
Sk Bk-17 %k Ake1 7 2 Bke1 7O
. *
Post multiply by Ak- 1 Ak- 1?
b4 AT A:v:: _ 0
%k k-1 “k-1 k-1
From (149)
X oAk _ *
S Bpg =0
From (149)
sk 'f' %
%k Sk %k T %k
Substitute in *,
b T . =
%k Sk Sk Pk-1 70
. = e
Since (_:k 0, (_:k c_:k #= 0
A .
% A1 7O
Taking transpose
A T 0
k-1 Sk
Lemma IV.9 a CT* =1, if ¢ #0 (167}
"k “k ’ “k
. * T =a*
Proof; From (148) ¢ S S Ty
Post multiply by Cy?
e T ¥

%k %k %k Sk %k %
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e
c, #0,

Since Ek Ce
_ ¥ TF
‘-‘kT e =17 %
Post multiply (165) by CI.I;

¥ T*_ I % -|' T*
° %k "% Sk " %k Pko1 k-1 Sk

Using Lemma IV.8

of* -
-k -—k
Lemma IV.10
T _ . *
Ak—l Ak—l ng = l_)k, if Ak-l Ak-'l >0 {168)

Proof: Let us start with an identity,

3
Ak-l Ak--l 12k Ak 1 Ak—l t-)k

Substitute (148)

Akl k-1

it la,_ A I>0
¥ =
Ak-l Ak—l }gk 1—)k
In the determination of }:-)k we have two cases to consider, 1) g_:k;ﬁ 0 and
2) ¢, =0,
~k

Case 1)§ c_:k #0

Consider the matrix
p -AT A T# ¥ %
k- Pk-1 k-1 7% Sk

Premultiply by a;
e 'f'* e

T
"i‘k P = "i‘k AplrBror T % %

Using Lemma IV.9

p =a*al A *
"i‘k k 2k “k-1 %k
Substitute (165),
] o
8 P T8

§’I‘his. is the case when the columns of A are not linearly independent.
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Premultiply * by A

k-1
A P =A AT A + A CT*
k-1 "k k-1 "k-1 k-1 k-1 -k
Using (144) and Lemma IV.8
A1 P " 8%
Therefore,
Ak-l P = Ak-l
-2t R
3k 2k
Or,
Ak Pk Ak
Thus, Pk has the property of AJ Ak. Or,
_ AT
Py =By Ay

Let us consider * and (164)
ala =at A +p cf
k 7k k-1 k-1 -k -k

T = T T* * 3¢
Ap B s 8 Bt %

b * fx  *
% Sk T Sk %k

If we post multiply by Cy it is seen that

S L ( N
%% "%k T %k \%k ck)
The (-1) represents division in this situation.

Case 2)

From Equation (165),

% _ % AT
=

To simplify the writing let us define

% _ _% AT
de T2 Br1
Therefore, if ¢ = 0 from (165)
3 =9 Ay
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Let us form the sub-matrix of Ay A}; obtained by deleting the last row and
last column. From (156) and (163)
- oo *
G F Ao B T A Pk
Since Gy and A,_; A]_| are symmetric (146), it follows that the last
term is also symmetric. Since Ay _; by is a column matrix and n_iﬂ is a
row matrix, it follows that

A _ b =hd, (172)

where h is some scalar to be determined. From (156) and (163)

o * )

ol (B M A,
k Tk a¥-a¥p af
k "2 k%

Using (172) and (171),

AkAlj = _15.‘1*_ S
gk —hc_lk Elkf_ik

———— e — s
v

Because of symmetry and the fact that ‘31? c_ik is a scalar,

hd =dp ~hddp 9

Therefore,
« -1
ne(1eg )
From (172),
Alt—l Ao B TR AL Y
Using Lemma IV. 10

# -1 T
b (1 d) AL g

Since d, = a AT__ , we have

-1
] AL AL
b = (1 tay Apor Axaa "i‘k) Ap_1Bror (173)

It is noted again that (-1) signifies division.

§It is noted that this division always exists.
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We are more interested in the solution, }fk’ instead of the pseudo-
inverse. It is desired to solve X,

in terms of X . Let
y, = ( Tk~ 1_)
k yk

k-1
where Y last data

Xk-l -k -1x1 vector

Then,

~
= X

T
Apoq Teo1 = ¥y

and,

134>
1]

T (Al # 0 J-1
R N N (Ak~1 - 131{) ('y;{'

T " %ke1 7 Pk %k T B Yk (174)
It is noted that in no place Ay and Ai_l are required; but the quantities
Alj Ay and AkT AkT"‘ are required. Therefore, a great savings of computer
storage space can be made if we generate the latter quantities. From (164)
and (163),

.AII Ay =Al_1 A, *b, 9; 164)
AJ Ak‘r* ) Al-l AEI - b a” Al_l A}t’fl

-al Al mam e atal AT w0t
’ }Ek E’k (175)

Let us summarize the important equations. The flow chart for the computa-
tion is shown in Figure 52.

|
%k T 2% T 2k Age1 Bk (185)
Case 1: Ek # 0
e -1
by = ¢ (o %) (168)
Case 2: ) =0 »
b o=(1+a’al  al* 2y ) Al AT* (173)
2k 2k “k-19%k-12k/) “k-17%-1 %
- 5 - * o
X " Xpe1 T P B Feop TR (174)
ala =al A +b (164)
e i "0 i PO W T
P ot o pal  al%, (b a0") b, b
A Ay =mpa -DA A -0 ) )¥h By (175)



INITIALIZATION

k=0
t 1
A Ak = O
1 .
Al A = 0O
‘e
k= k+|
INPUT COMPUTE
v Z "

COMPUTE

Figure 52,

COMPUTE b,| | COMPUTE b
CASE 2 CASE |
COMPUTE
% ¥
by 9. by Cy
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In conclusion, we remark that we have arrived at a method of
computing the best estimate in terms of the previously calculated best
estimate. This computation was alsc performed in a manner which saved
computer storage and in a manner not requiring matrix inversion. It is
also noted that the procedure will always give a solution since Penrose has
shown the existence and uniqueness of the pseudo-inverse.
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APPENDIX V

CORRESPONDENCE BETWEEN GREVILLE'S
AND KALMAN'S RECURSIVE PROCEDURES

Although Greville's and Kalman's resulis were derived for seemingly
different problern areas, the recursive procedures can be shown to be equiv~
alent for certain conditions. Greville's routine given in Appendix IV of this
report and Kalman's routine given in Reference 16 should be followed for
the notation. The correspondence is not completely one-fo-one in that
Greville's routine is more general in one respect while Kalman's routine
is more general in another respect.

Observability is the term used when ATA is positive definite and
(A*A)‘1 exists. In this case the pseudo-inverse is given by

1

al - @aray?t a* (176)

Greville's procedure is valid even for the unobservable case., It will be
shown here that for the observable case Greville's procedure is equivalent
to Kalman's procedure applied to the time-independent case. Kalman's
routine is more general in the respect that for the observable situation the
recursive routine can be extended to dynamic systems and the correlated
case. Ho (Reference 52) has discussed the connection between least-squares
theory and optimal filtering theory assuming that (A¥A)~1 exists.

First, we show that for the observable case gk =0,
Lemma V.1 If (A*A)-1 exists; then c, = 0. (Necessity)
From (163)
ES d*o_ k- T
Sk T T %k Apop Pret (185)

-1
% p
If (Ak-l Ak—l) exists then
T 3 -1 *
A1 T (Ak—l Ak-l) Bk-1
The proof follows immediately upon substitution in (165).

For the case ¢) = 0 (Assuming Sufficiency) we show the equivalence
of the recursive procedures. We have

- % AT ok ) T* %
b, = (1+aal Al a) A A 8y (173)
N AR AT
A A A A TPt Ao e Ak B P )
* T T::: s 3 sk
Bic 2 Ao Ppor B2 ) TR Ry (175)
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In Kalman's notation

-1
K = (1 +H ) (t/t-1) H*) Yt/t-1) H
Yit+1/t) = Y(t/t-1) - KH Y(t/t-1) - Y(t/t-1) H K

% % *
+KH ))(t/t-1) H K+ KK

The correspondence in notation is

Kalman: Greville:
R(t+1/1) X,

K(t) by

z(t) Y,

R(t/t-1) X g

H(t) ay

N(t+1/1) Al al*-p,
Y (t/t-1) al_ Al

Looking at the last four terms in (178)
_ZH*(l +HZH*51HZ
_ZH*(l +HEH*)—1HZ
) H*(l +HY I-I*)—l HY H (1 +HY H*)_l H )
£ H*(l +HZH*)-1 (1 +HZH*)d1HZ

I L1 (1 +HZH*)
2(1 +H), H ) - (1+HZ‘,H*)

(177)

(178}

(tengw) |oy

=_EH*—(1 +HZH*) ]HE

Therefore,

-

S
Yt+1/t) =Y (t/t-1) - ) (t/t-1) H l:(HZ(t/t-l)H"'ﬂ) :IHZ(t/t-l) (179)

Equation (179) corresponds with Equation IIIj of Kalman (Reference 16)
(page 150a) for the case when &(t+1;t) = I, R{t) = I, Q(t) = C(t) = 0.
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