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THREE DIMENSIONAL ERROR PREDICTION 

George M. Hahn and Edmund J. Pinn·ey* 
Dalmo Victor Company, San Carlos, California 

I. INTRODUCTION 

In a previous paper1 presented by members of this organization, a number 
of methods for theoretically predicting the change in boresight due to the 
presence of the radome were described. One of the methods, referred to 
in the reference as "Scattering Technique", will be discussed in some 
detail in the present paper. 

· The basic idea of this method is to regard the radome as a perturbation 
source, determine the electromagnetic fields due to this source and then 
combine them with the fields due to the antenna without the presence of the 
radome. It is then possible to determine the boresight shift by comparing 
the two field configurations. The electromagnetic formulation is of 
necessity fully three-dimensional; none of the usual optic or plane wave 
approximations are made, and flat panel transmission an9- reflection coeffici
ents are not employed. 

II. DERIVATION OF THE BASIC INTEGRAL EQUATION 

Maxwell's Equations for electromagnetic fields in a dielectric of volume V, 
and whose time variation is of the form e,-1<»T, are: 

D:.E.E 

v·E=o 

v x H + J w E. E =-0 

v'·H =O 

where all symbols have their usual meaning. 

(1) 

Similar equations hold in free space, if €.. and_.,,LL- are replaced by ~o and 
_,,,,u-

0 
respectively. 

According to Stratton2, the electromagnetic fields in this problem are the 
same as those that would be generated if no dielectric were present at all, 
but instead a distribution of virtual currents and charges. Let J be the 
virtual current distribution inside V, c:f _j;he virtual surface charge on 5 , 
the surface bounding the volume V and f<;. the virtual surface current distri
bution on S . He re 
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:J = -f w ( ~ - t. 0 ) E (2) 

whiled and "'R are determined from the boundary conditions on S. The 
scalar and vector potentials can then be written: 

_E_lo-S!J <f (Q) cL 5 (3) 

( eJl.oR. 
d.. V+A-o Js K ( Q) 4,rR clS 

where P and Q represent field and source points respectively and 

(4) 

• The subscript p indicates that we are referring to the perturbation fields; 
these can be calculated from the perturbation potentials in the usual manner. 

For the case~:/Lo, one finds for the electric field: 

with 1<.::. 3/E.0 > E (Q) the total electric field, and n the outward 
normal to S . Equation ( 5) is an integral equation relating the perturbation 
fields ts? the antenna fields and the physical properties of the radome, 
Since E (Q)-=Ep(Q) + E0 (Q)the equation must be use ,i for two separate 
calculations: 

a) determination of E (Q), i.e. the effect of the presence of the 
radome on the fie l d in the volume occupied by the radome itself, 

b) calculation of Ep (P), i.e. the far field effects of the perturbation 
sources. 

For the latter calculation, the following approximation is usually made: 

Let O be some convenient origin in or near V and let~= mt be the vector 
from Oto p , m being a unit vector. If C/ denotes the vector from O to 
the point of integration, Q , then: 

(6) 
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Retaining only the first two terms, equation (5) reduces to: 

III. TECHNIQUES OF SOLVING THE INTEGRAL EQUATION 

It is clear that one cannot hope to obtain solutions in closed form to 
equation (5) or to equation (7), The starting data are the measured fields 
( £

0
) in numerical form. While it would be possible to fit these data in 

some polynomial approximation, the complicated geometry of most radomes 
would still prevent one from exactly solving the equations. 

Numerical methods must therefore be resorted to, and three different 
methods were considered by the authors. 

a) The Grid Method: 

Suppose Ff lP) _denotes an approximation to Ee_( P) then 

F ( P) = E
0 

P + Fp ( P) is an approximation to E ( P) 
It is then possible to define an error term 

~:fv R (Q) • R.lf (Q) d.. V (8) 

where the 1{'~ are defined in such a manner that they vanish when 

F (P) = E ( P) . The radome volume is now covered by a 
grid of N points sufficiently close together; the approximation 
Fp (P) is assumed as due to contribution from the N points: 

N -
Fp(P)=-~

1 
a.

11 
C (P) 

(9) 

The error term then becomes 
]!_ N ~ 

f.: ~ 
1 
~ 1 R t'r)n a..Y'1l 0.. n ( 1 o) 

which is minimized by equating the go.'i. and ~:-., to 
zero for n'" r • • • N . This gives N linea~ equations in~the N complex 
0.,,'.5; solving these the results are then substituted into (9) and 
F p ( p) is obtained. 

b) Stationary Phase Approximation 

The method to be outlined here depends on the fact that the integrals 
in the ~t~gral equation have integrands involving the product of 

el O and the internal electric field. Now if the internal 

4rr R. 
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electric field behaves locally like a plane wave, it contains a 
factor e_1k-Y. , where t. is the coordinate in the direction of 
the wave. The two exponential factors are responsible for the 
change in phase as the point of integration moves about in the 
dielectric shell. 

Now consider a straight line drawn outward from the point of 
observation RsO. Suppose for simplicity that 'i,=O when R=O . 
Then on this line the ratio /</'j. remains constant, and the 
exponential argument 1-1:.<>R+ 1 -k"J increases linearly as R in
creases. However on some iines the factor of proportionality 
is zero, so the phase remains constant. These are all the lines 
lying on a cone (which might be called the "cone of stationary 
phase") with axis parallel to the direction of propagation of the 
interior electric field, and elements inclined to the axis at an 
angle equal to the corripliment of the critical angle for the dielectric. 
On one side of this cone the phase increases as R increases, and 
on the other side the phase decreases as R. increases. The 
contributions to the integral from the region near the cone add 
together and reinforce each other. The contributions from the 
region well away from the cone have a tendency toward mutual 
cancellation. 

The idea then is to approximate the dielectric sheet locally by 
a flat sheet which fits as closely as possible to the curve of 
intersection of the cone of stationary phase and the surface of the 
dielectric sheet, and to evaluate the integrals in the integral 
equation for that flat sheet, and on the basis of the assumption 
that the electric field is essentially plane in the region of 
importance in the integral. This is probably not _a bad assumption 
because the cone of stationary phase occupies only a limited 
region near the point of observation. 

This gives rise to what may be considered merely a flat plate 
theory. However, it is not the usual sort of flat plate theory. In 
the usual flat plate theory the dielectric shell is approximated by 
a flat plate whose two sides are tangent to the shell in the local 
region of interest. In that theory the plate is held fixe d in the 
determination of the field at all points of the local region. In 
the present theory, on the other hand, the orientatio}l and thickness 
of the fitting flat plate change from point to point, a~ depend on 
other properties of the shell than its thickness alone. This may 
be expected to give a more accurate theory than the usual flat 
plate theory. 

c) Lumped Fields Method: 

Another approach is to divide up the radome into a number of 
circular disks of the order of a wavelength in diameter. The 
point is to "lump" the local behavior of the electric field in each 
disk in a way one can handle, and then to use the basic integral 
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equation to tie together the fields in the different disks. To do 
this one must first express the electric field throughout each disk 
in terms of the field at the center. Certain assumptions are 
required to do this. One may assume that the internal field in the 
disk is approximated by two plane waves whose directions of 
propagation may be set at will, but may, in particular, be given 
the directions that the internal waves in a flat sheet would take 
when acted upon by the local magnetic field considered as a plane 
wave. If that is done, one can apply a good deal of plane sheet 
theory to simplify calculations of the local fields. 

It is then possible to calculate the total field at the center of each 
disk by integrating over each disk and then summing over all the 
diskft. The problem then reduces to a set of linear equations in 
the unknown fields at the centers of the disks. Rather than attempt 
to solve these directly, one can again resort to a least squares 
and successive approximation theory, as described in Paragraph 
III a). 

The three methods just discussed are all of considerable complexity. 
The grid method, to provide sufficient accuracy, requires an excessively 
large number of points taken. As a result, the storage, requirements 
exceed the capacities of available computing machines. The stationary 
phase method is hampered by the difficulty of fitting the sheets to the 
cones of stationary phase. This process proved so difficult that the 
approach was abandoned completely. The lumped field technique looks 
the most promising of the three. 

It should be pointed out that the existence of a unique, bounded solution 
to equations (5) and (7) is iY,ano means obvious. The existence of the 
singularity in the term~ makes the question non-elementary, from 
a mathematical point of v~w. However, the results mentioned in the 
following paragraph tend to show that such a solution does exist, a 
condition which one would expect from the physics of the situation. 

IV. RESULTS 

To test the possibility of a successive approximations scheme as suggested 
in paragraphs III a) and c) above, the following experiment was carried out. 
A cylindrical polystirene{E.-=2.S)ring, large compared to the wave length 
was placed in front of a parabolic reflector transmitting at X- band. The 
resulting pattern was measured in the E plane of the antenna. Three points of 
the pattern were then computed using the iterative scheme outlined in III c), 
on the basis of one plane wave only and then for the next two higher approxi
mations. In each case the higher order approximations were successively 
closer to the measured values than the low order approximations. 

At the present time computations are being carried out at WADC to test the 
method on a radome; unfortunately no results have become available as of 
the date of this paper • 
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