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Abstract

Large space structures for the 90’s and beyond require a combination of high stiffness, light
weight and vibration attenuation not heretofore available. Advanced composites offer high
stiffness while viscoelastic materials offer vibration attenuation. Both are light in weight.
This paper describes finite analysis tools, and design and fabrication concepts which makes
a marriage of these two material technologies feasible.

A special purpose finite element based on closed form solutions in membrane cylindrical
shells is derived. Two concentric composite shells with an embedded viscoelastic layer can be
analyzed with one element. Complex ply arrangements such as the Alternating Ply Concept
(patent pending) can be analyzed with as few as five elements.

The analysis code was tied to an optimization package. A material figure of merit based
on specific modulus weighted by a power of loss factor is optimized. A tube employing the
Alternating Ply Concept, was designed using the code and fabricated. Greater than 5.5%
damping was achieved across a 50° F temperature range using a relatively low loss factor
silicone damping material. '
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1 INTRODUCTION

1 Introduction

Currently planned large space structures must be agile and precise. Agility involves the abil-
ity to maneuver rapidly and regain shape and pointing stability in minimum time. Precision
involves the ability to maintain shape and pointing stability in the presence of dynamic and
thermal disturbances. Both agility and precision can be enhanced by the use of structural
concepts and materials which maximize stiffness and damping within constraints on total
system mass. '

Advanced composite materials can offer very high stiffness to weight ratios. This was
verified in recent tests at TRW on Pitch-130 graphite epoxy in a unidirectional layup [1].
A tensile modulus of 80.6 million psi was achieved in a 60% fiber volume laminate. At
a density of 0.065 lb/in®, this gives a specific modulus of 1.24 x10° inches. Near zero
coefficient of thermal expansion (CTE) in a single direction can be achieved in graphite
epoxy laminates through tailoring of ply angles, although this degrades specific modulus in
the loading direction. Metal matrix composites (MMC) employing the same fiber material
as an organic matrix composite will achieve somewhat lower specific stiffness since only a
50% fiber volume can be achieved in practice. MMC'’s can claim a distinct advantage over
organic matrices in applications where near zero CTE in a single direction is desired, since
no off angle plies will be required.

Viscoelastic materials (VEM) offer high energy absorption capability, again with low
weight. For instance, an organic polymer such as the 3M ISD-110 material at room tem-
perature can provide a loss factor, y, above 1.0 across several decades of frequency [2]. The
density of this material is only 0.03 1b/in.

The blending of advanced composites with viscoelastic damping materials offers the most
likely means of meeting the dynamics requirements on precision and agility. If applied on
truss structures, it will be necessary to devise a means of damping extensional motions in a
member. The common practice in damping technology is to apply a continuous constraining
layer to a base structure. This succeeds in damping flexural motions but not extensional
motions. By segmenting the constraining layer periodically in the direction of loading, both
extensional and flexural motions can be damped [3]. A segmentation length which maximizes
loss factor can be derived in closed form [4]. This optimum length is 3.278 times the shear
lag decay length commonly employed in the design of bonded joints. Graphite epoxy tubes
with a viscoelastic damping layer and a unidirectional (all 0° plies) segmented constraining
layer cocured on top have been fabricated at TRW [5). The advantage of cocuring the VEM
and constraining layer is the void free bond one can create. Application of a precured 0°
constraining layer to a cylindrical surface is very difficult. Application of precured angle plies
would not be possible at all. Even though it is difficult to cocure a viscoelastic material with
& transition temperature below the epoxy cure temperature, the performance and fabrication
advantages make the effort worthwhile.

The practical limit to damping using the segmented constraining layer approach is =
0.1-0.12, or {( = 5-6%. One can increase damping using constraining layers much stiffer
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than the base tube, but a figure of merit normalized by weight will begin to diminish. This
practical limit on damping motivated the research described in this paper. It was apparent
that more complex ply layups would be necessary to increase the strain energy induced in
the VEM. This necessitated the development of new analysis and design tools as described
in the ensuing sections.

9 Derivation of Finite Element for Concentric Shells
Enclosing a Viscoelastic Medium

The analysis of constrained layer viscoelastic treatments for cylindrical tubes can become ex-
ceedingly complex when the properties of the tube, the constraining layer and the viscoelastic
medium vary along the length of the tube. In many design concepts, such as TRW’s pro-
prietary Alternating Ply Concept, it is difficult to decide which is the base structure and
which is the constraining layer. Material properties and thickness can vary considerably
both along the length of the tube and on either side of the viscoelastic layer. Closed form
solutions become inappropriate in this case.

Standard finite element analysis using plate and solid elements is also difficult in complex
situations on curved surfaces with thin viscoelastic layers. Up to thousands of elements can
be required to analyze one structural component in a larger structure.

The path taken here has been to develop a semi-analytical finite element based on closed
form solutions for a pair of concentric cylindrical membrane shells surrounding a uniform
elastic medium in a state of axisymmetric deformation. The viscoelastic nature of the prob-
lem is handled quite simply by assuming that motions are harmonic in time at a given
frequency. This allows a complex modulus valid for that operating frequency to be em-
ployed. The resultant calculations are performed in complex arithmetic. The magnitude of
the displacements for a given force input indicates overall tube stiffness. Tube damping or
loss factor can be derived from the tangent of the displacement, which is indicative of phase
of the displacement with respect to the force.

The semi-analytic solution allows a very coarse grid to be employed along the length of
the tube. All the shear lag effects are modeled exactly. Only a few elements are required,
typically between one and six. This makes computation time extremely short, allowing
optimization algorithms to be employed inexpensively. '

By analogy to the Bernoulli-Euler hypothesis, the results of the axial analysis can be
applied to beam bending performance in many cases. This has been found to work quite
well in test and in comparison to ordinary FEM analysis in most cases, particularly when
constraining layer shear stiffness is low, or if constraining layer segments are short.

2.1 Membrane Cylinder Constitutive Equations
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Figure 1: Membrane Cylinder Coordinates, r, s and ¢, and Displacements, u, v and w.

The equations of equilibrium in a membrane cylindrical shell [6] are defined in the meridianal,
circumferential and radial directions, s, 6 and r, respectively. These coordinates are indicated
on Figure 1. The tangential coordinate t is the same direction as the cirumferential in that
dt = r df. Partial differentiation in the surface of the shell is indicated by the subscripted
comma notation. The membrane shell or line force, N, is a force per unit length of shell, and
the surface traction, g, is a force per unit area. Employing this nomenclature, the equilibrium
equations are as follows:

Nc,c + Na‘,t + 4% = 0 (la')
Nys+Noy+g = 0 (1b)
1
;No = 4 (IC)

The relations between shell force and mid-surface strain in a membrane orthotropic shell
are given below. E, G and v are axial modulus, shear modulus and Poisson’s ratio, respec-
tively, and A is the shell thickness.

1
€ = o) (N, — vy, Ny) (2a)
1
= — - , 2b
€ Edh (No — v N,) (2b)
1
= —— 2
7.‘ G.’ h b ( c)
One may define membrane shell stiffness terms as follows:
C‘. = L (33)
1 = v,
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_ Eh
C” - 1- VeoVas (3b)
C.o = G.Oh (3C)
Cuto = veCoo = V65Cs (3d)

Equation 3d takes advantage of the reciprocity property of orthotropic materials, v, Ey =
ve,E,. The relations between mid-surface strain and shell force are then found by inverting
Equations 2a- 2c, giving:

N, = Cies+visCoses (4a)

No = Caseo + v6:Custs (4b)

Ny = Cisveo (4c)

The relations between shell mid-surface displacements and membrane strains are as follows:
€& = U, (5a)

€ = V¢t % (5b)

Yo = Ut v, (8¢)

By substituting the strain-displacement relations, 5a-5¢, into the force-strain relations, 4a-
4c, one can obtain the following force displacement relations:

N, = C.,u,+vwCos (v,t + %) ~ (6a)
N0 = C“ (v.t + "I:T)) + thuu,t (6b)
Ny = CJO (u,t + v,z) (66)

The membrane cylinder constitutive equations defined above are the basis for the elasti-
cally coupled concentric shell derivation. The stiffness properties have been derived assuming
homogeneous, orthotropic materials. For a composite shell the moduli would represent equiv-
alent through-the-thickness properties. The derivation of these equivalent properties based
on composite shell theory is provided in the following section.

2.2 Orthofropic Shell Stiffness Properties

The membrane stiffness properties of a composite shell in an orthotropic layup are derived
here. The overall properties of the shell are obtained by summing the properties of a sequence
of individual plies [7]. In the following discussions an a = 0° ply is assumed to align with the
meridianal direction of the shell, s. Off-axis plies are assumed to be layed up symmetrically
8o that there is no axial-shear coupling. Thus for every ply at a non-zero angle a, there is
an identical ply at an angle —a.
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2.2.1 Lamina Properties

Strain-stress relations for an individual lamina are given below in terms of the lamina stiffness
coefficients Q. When the ply is aligned with the meridian of a cylindrical shell, the 1 and
2 directions will correspond to the s and t directions, respectively. The stiffness properties
reflect a state of plane stress in the lamina.

o0 Qu Qi O €
o2 p=|Qiz Qn 0 €2 (7)
Ti2 0 0 Qe N2
E,
= e—t1 8
@n —— (8a)
E,
= ——— , 8b
sz 1 bl VlEgllgl E ( )
_ higfpa = vy
9 = 1-viavn 1=y (8e)
Qes = Gi2 (8d)

To be physically realizable, the lamina properties must obey: |v5| < \/El /E2, and v}, F; =
i E].

2.2.2 Laminate Properties for a Symmetric Layup

For a pair of plies lain at angles ta to the meridian, the strain-stress relations are:

o, Qu Qu” 0 €,
{ ) }= [Qu“ Qw 0 ]{ € ] (9)
O 0 0 QJO Yt

Note that coupling terms between exténsional and shear deformations are zero due to the
symmetric layup assumption’. The lamina stiffness properties are defined as follows, where
the shorthand notation ¢ = cos a and s = sin a has been employed.

Qu = Quc'+Qys*+2 (@12 + 2Qes) 8c? (102)
Quw = Qus'+ ngc‘ +2(Q1a2 + 2Qes) 8°¢? (10b)
Ques = Quz (8‘ + C‘) + (Qu + Q22 — 4Qee) 5°¢3 (10¢c)
Quw = Qos(s'+ c') + (Qu + @z — 2Q12 — 2Qes) 8¢ (10d)

1A possible means of damping a tube we have not investigated would be to fabricate concentric tubes,
the inner one having all positive ply layup angles and the outer tube having negative angle plies. Axial loads
on the tube would generate opposite torsion in the two tubes, and hence shear in the enclosed VEM layer.
The ends of the concentric tubes would likely need to be free to rotate independently about the tube axis to
obtain maximum damping.
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The total shell thickness is the sum of the lamina thicknesses, h = I h;. The total stiffness
properties of the laminate C can be obtained by summing the individual lamina properties
weighted by their thicknesses. Average moduli, E,, Ey and G.s, and average Poisson’s ratio,
v,s, may then be derived using the definitions for laminate stiffnesses given in Equations 3a-

3d.
C“ = EQ“)hj (lla)
Coo = Y Qos,h; (11b)
Cute = Z Qn“, hj (1 lc)
Cw = z Qnﬂ, hj (lld)

2.3 Mechanics of the Viscoelastic Layer

Constitutive equations are derived here for the viscoelastic layer constrained between the
two concentric elastic shells, which together make up the damped tube finite element. The
sandwiching arrangement is shown in Figure 2.

The viscoelastic material (VEM) is assumed to be at a single operating frequency, which
allows the elastic and shear moduli, Ey and Gy, to be defined as complex numbers represent-
ing magnitude and phase of stiffness. The analysis can be repeated for different operating
frequencies and temperatures. It should be emphasized that the analysis presented here is
for one temperature and frequency.

h o=
o_ﬁ )

hi A

=

- -]

4 INNERSHELL/ |

-
N\

\

Figure 2: Representation of VEM Sandwiched Between Two Concentric Shells

The derivation is performed first for arbitrary motions in a cylindrical coordinate system,
and then specialized to the case of radially symmetric motions.
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2.3.1 Viscoelastic Medium Constitutive Relations

The relations between displacement and strain in the VEM are given below [8). The compo-
nents of the displacement vector uy are in the radial, meridianal and tangential directions,
r, s and ¢, respectively.

€ = Uy (12&)
& = u,, ' (12b)
€ = Ugy+ y;: (12C)
Yoo = Ug,+ U, ¢ (12d)
Vor = Upy+ Uy, (126)
Yor = Upyt+ Upy— % (12f)

Relations between strains and stresses in the VEM sandwich layer are:

o, Ey l-v » v €
o, }= ‘ v 1-v v € (13)
o (1+2)(1-2v) v v 1-v €
A modified VEM elasticity term has been defined to simplify subsequent notation: Ey =
ﬁ‘{_—m. The shear stress strain relations are simply:

oi; = Gvvj ; i#) (14)

2.3.2 Strains Given Shell Displacements

The displacements within the VEM are assumed to vary linearly in the radial direction
between the inner and outer shells. This is felt to be a very good assumption when the VEM
layer is thin. In that case, one can largely ignore the change in circumference of the medium
in the radial direction. Thus stresses, and hence strains, will be almost uniform through the
thickness of the VEM layer, hy. The VEM displacement vector uy is assumed to be related
to the displacement vectors of the inner and outer shells, u; and u, as follows:

ro—7r r—r;
™ +u,(s,0) _hv

= u;(s,0) Ri(r) + u, (s,6) R, (r) (15)

The shells have been assumed to be thin enough that the mid-surface displacements are
identical to the displacements at the surface in contact with the VEM. In other words,
the inner and outer shells have their stiffness properties defined at their outer and inner

uy (3’0’7') = W (3’0)
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surfaces, respectively. For simplicity, the shape functions R;(r) and R,(r) have been defined
representing radial dependence due to unit displacements of the inner and outer shells,
respectively.

Strains in the VEM due to individual components of inner and outer shell displace-
ments are obtained by inserting the displacements defined in Equation 15 into the strain-
displacement Equations 12a~ 12f.

6, = oM (16a)
hy
€ = ui.oRi + uo,aRo (16b)
€ = visRi+v,R,+ %[wiRi + w,R,) (16¢)
Yrs = wi,nRi' + wo,nRo + u’ (16d)
hy
o — Ui 1
Yo = Y hvv + (wi R + wo,gR,) - ;" (viRi + voRa) (163)
Yoo = (ViuRi+ vouRo) + (e Ri + uosRo) (16f)

Since the VEM layer is assumed to be very thin, one may assume that strains at the middle
of the layer are representative of strains throughout. A correction to the average stresses to
allow balance of load transfer between inner and outer shells is derived in the next section.
Average extensional and shear strains, € and 7, are evaluated at the average radius, ¥ = 1ife.
The radial shape functions, R;(F) and R,(F), both equal } under this assumption. The VEM
strains given shell displacements then simplify to:

W, — Wy

€ = hv (17&)
€& = % (ui,a + uo,o) (17b)
1 1
& = ) (vig + vog) + 5 (wi + wo) (17¢)
1 U, — U;
= = = (w: 2 , 17d
Yro 5 (Wis + wo,) + . (17d)
. Y—v, 1 1
Yo = T + E (wi.t + wo.t) % (v + "O) (17e)
1 1
Yo = 5 (Vietvoa)+3 (tig+ tog) (17)

2.4 Coupling Shells to the Viscoelastic Medium

Through surface tractions, the thin viscoelastic layer couples the motion of the inner and
outer shells which together compose the damped tube. Given some reasonable assumptions
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on the compliance of the VEM its deformations can be made wholly dependent on the shell
motions, simplifying analysis considerably. The coupling procedure is explained in this
section. It is developed first for arbitrary motions, and then specialized to the case of radial
symmetry. Radially symmetric motions include both axial and breathing motions. The axial
solution is applicable to bending motions through an analogy similar to that employed in the
Bernoulli- Euler hypothesis of beam bending. Solutions for the case of radial antisymmetry
(torsion) may be derived along similar lines to the radially symmetric case.

2.4.1 Simplifying Assumptions

The following set of assumptions allow the problem to be simplified considerably. The motion
of the viscoelastic material can be made dependent entirely on shell motions, leaving these
as the only independent variables.

A. The load carrying capability of the VEM layer in its plane (s-8) is ignored, i.e. 0y,0,,
and o,y are assumed to be zero. If the VEM is considerably softer than the shells this
will be valid. Essentially one requires the following:

(Evhv)es < Cif°co (182)
(Evhv) €, £ Cﬁ"’c, (18b)
(Gvhv) 7w € Citov,g (18¢)

where the superscript ¢ + o simply means that the stiffness properties of the inner and
outer elastic cylinders has been added together.

B. The VEM will act to transfer loads between the two tubes; i.e. o,, 0,9 and o,, are non-zero
and significant. This will generally be true if the VEM layer is thin.

C. No external surface tractions are applied to the inner or outer shells other than those
due to stresses in the VEM layer. Loads are applied only through meridianal and shear
forces at the ends of an element, and through reactions due to boundary conditions.

D. The loads transferred between inner tube and outer tﬁbe due to the VEM tractions must
balance. Specifically this requires that

|gilr: d0 ds = |g,|r, d0ds = (5y - ¥) #dfds (19)

where f is the unit vector in the radial direction, &y is the stress tensor in the VEM
evaluated at its average radius, and ¢ is a traction vector on an inner or outer shell
due to the VEM stress. The tractions applied to the shells will thus be:

‘ F
(q,,q.,qo).' = +(5‘x,5‘:'.a55); (20a)
[ ]
o -V -V VT
(q"qnﬂ)o = —(Ux,dx,dyo); (20b)
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2.4.2 Specialization to Radial Symmetry

The case of radial symmetry allows many terms to be discarded, This enables the derivation
of a semi-analytical finite element based on closed form solutions within the domain between
circumferential nodes on the shell. Specifically, one may ignore: all partial derivatives in
the circumferential direction, i.e. %; the shell quantities v, gg, 7,6, and N,4; and the VEM
quantities 0,4, 0,9 (Which is assumed zero in any case).

The VEM tractions on the inner and outer shells defined in Equations 20a and 20b may
be inserted into the shell equilibrium equations. The meridianal equilibrium Equation la
becomes:

N2, = +&}, (;":) (21a)
N,, = -5, (ri) (21b)

After multiplying both sides by inner or outer radius, as applicable, the radial equilibrium
Equation lc simplifies to:

Ny = -fa ‘ (22a)
N; = —faY ' (22b)

2.4.3 Elimination of Radial Displacements

These equilibrium equations can be expressed entirely in terms of shell displacements. One
must substitute the shell force-displacement Equations 6a and 6b, the VEM average strain-
displacement Equations 17a-17e, and the VEM stress-strain Equations 13 and 14. The
meridianal equilibrium equations on the outer and inner shells become:

Cou,, + (vasCo)° rl,“’f- = 4Gy [“—h'-'v—"- + % (ws, + wf,)] (rl) (232)
Civ',, + (v4sCs )’ %wf, = -Gy [u°,;u" + % (w", + wf,)] (ri.) (23b)

The radial equilibrium equations become:

c:'f—o + (v Cs) e, = —Evi [1 ¥ (wP —wf) + 2 ("’ 1Y o+ u:',)] (24a)

h 2 T
C;'%+(vo.Cs)‘uf. = +E"v'_.[1}'.-vl’ (w°—w")+§("’ :—w +uj,+uf,)] (24b)

Due to assumption C above, i.e. that no shell tractions exist other than those due to the
VEM, the radial equilibrium equations can simply be solved for the radial displacements.
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The displacements w are thus wholly dependent on the meridianal strains u, in the inner
and outer tubes, and may be expressed as follows:

w’ = a,,uf,+a,.-uf, (25a)

v o= g,u, +aiul, (25b)

_ The meridianal equilibrium Equations 23a and 23b may now be expressed wholly in terms
of the meridianal displacements. Substituting 25a and 25b and collecting terms produces:

e+ (222 - (=2 .+

[( V.:Co)oao.' Gy, (a,.- -2I- G.'i)] uf” C;:. w + i:o u:” =0 (26a)
[(u,:.Co)' a;, — Gy, (___a,, ;- a;,)] u,, +
\c;‘ + (”“’rc’)ia;; +Gy, (%)] i+ %u*’ f:" W, =0 (26b)

This expression has been compacted by defining weighted VEM shear moduli at the outer
and inner shell surfaces: Gy, = Gy (_.) and Gy, = Gy (
To simplify further derivations the meridianal equxlxbnum equations are expressed in the

following form:
Py f ¥ ]
Moo Mo | [ WS, o |dwl_[0
lmio mas]{“‘:a}-'.kv[ %‘7{]{“‘}-{0} 21

Again, for simplicity, a VEM shear stiffness per unit area, ky = Gv/hv, has been defined.
Equation 27 is a pair of coupled second order differential equations in the meridianal
coordinate s. One can assume solutions of the form:

{u}=t0e (28

Insertion into the governing differential equation and solution of the resultant eigenproblem
leads to the following eigenvalues:

ky [£ (mi + mio) + £ (Moo + ma)]
Moot — MoiMio

a® =0, (29)

The zero eigenvalue leads to eigenvectors such that u® = u'. Both rigid body meridi-
anal translations and constant meridianal strains are allowable solutions. Thus for the zero
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eigenvalues one obtains the following shape functions in the shell:

{::gg}={i}(q‘+‘h’) (30)

The non-zero eigenvalues lead to eigenvectors such that
U =—af-u =ﬂu‘ (31)

Defining the decay length A = \/1 /a one obtains the following allowable shape functions in

the shell: (9) .
u'(s s .. 8
{ u (s) } = { 8 } (q;; cosh X + g4sinh X) (32)

The amplitude of the shape functions, ¢; — ¢4, remain to be determined. Once they are
defined, the entire displacement and stress state can be found. One can assemble the dis-
placements due to the zero and non-zero eigenvalues as follows:

N
{::§§;}=[i ! 5 ;19] ::;sh O (33)

2.5 Element Definition

The preceding derivation has allowed us to solve for the internal displacements and stresses
in the concentric shell and VEM layers in closed form. The displacements and stresses are
dependent on a set of undetermined shape parameters g. These must be determined through
application of boundary conditions to the shells. Figure 3 shows the partition of a shell into
one discrete segment of length s,. The meridianal displacements of the inner and outer
shells at the left and right ends, A and B, are the degrees of freedom of the element. These
displacement degrees of freedom can be found by evaluating Equation 33 at s =0 and s = s,
for ends A and B, respectively. The elemental displacements are thus:

u, 10 1 0 2!
_Ju 10 8 0 .,
{ue} = up [ |1 s, coshyg sinh% g (34)
uj 1 s, Bcosh¥ Psinh% 7
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Figure 3: Axial Forces and Displacements on Radially Symmetric Shell Element

With some effort, this expression can be inverted in closed form to give the shape functions
q in terms of the element end displacements {u.}:

-8 1 0 0 u
Z; _ 1 '-% e Eg ™ “g (35)
g3 - l—ﬂ 1 -1 0 0 ui;
% hE whf wF ang | lud

To obtain a stiffness matrix for the finite element, it is necessary to compute the external
forces in terms of the nodal displacements. Starting with Equation 35, one can apply unit
displacements to each of the meridianal degrees of freedom of the element {u.} and work
backwards through most of the equations of the preceding sections to obtain meridianal shell
forces N, at each end of the shell element. For the case of radial symmetry the only external
forces are axial. Radial forces are not allowable due to the membrane shell assumption. The
external axial forces are computed from the internal meridianal shell forces by integrating
around the circumference to give:
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F, riN;(0)
(Fy={ @ =2 o (33¢)
Fg roN2(s,)

The element forces thus computed as a function of element displacement allow one to con-
struct an elemental stifiness matrix such that

{Fe} = [K.]{u.} (34)

2.5.1 Element Assembly

Having an element stiffness matrix, one can construct larger models by mapping a series
of elements together end to end. Since this is a one-dimensional element the connectivity
is quite simple. Starting at one end of a tube, the axial displacements at the B node of
element j are made equal to the displacements at the A end of element j +1. A very narrow
bandwidth will result, since at most two elements will be connected at any one node. In
contrast, the practice of modelling a tube with quadrilateral plates will result in a very large
number of elements and a poor bandwidth.

Since the radial displacements w are wholly dependent on the meridianal strains in a
membrane shell, and since the stiffness properties can vary from element to element, it is
likely that the radial displacements predicted by two adjoining elements will differ. We are
enforcing neither radial compatibility nor equilibrium between shell elements. The implica-
tions of this are not thought to be major for thin shells, since the behavior we are seeking to
model is loading in the stiff in-plane directions. Loads out of plane will generally be orders of
magnitude lower. In addition, the bending loads due to radial displacements on a cylindrical
shell are known to decay rapidly as one moves away from the point of application in the
meridianal direction.

'2.5.2 Load Transformation Matrix

In order to simplify stress and load recovery after solution of a load case at a given forcing
frequency, internal element response is stored in a load transformation matrix (LTM). This
matrix is computed for each element as the elemental stiffness matrix is generated. The
matrix gives internal element response {L.} in terms of nodal displacements in the manner:

{Le} = [LTM] {u.} (35)

The quantities stored in the LTM are: the amplitudes of the element shape functions g;
meridianal strains, u ,, radial displacements, w, and axial forces, F, at ends A and B of the
inner and outer shells; and VEM shear stresses, o,,, and radial stresses, o, at ends A and B.
These quantities are generally sufficient to evaluate strength and any other constraints one
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might impose during an optimization of the tube properties. The LTM enables one to avoid
having to recover internal stresses after problem solution, greatly reducing computation time
- and programming complexity.

3 Example Problem

A simple example of the use of the code is the uniform segmented constraint. A 324 element
Nastran quadrilateral plate model using eight-fold symmetry to reduce complexity, and a
one element TUBES model predicted axial stiffness within 1% and loss factor within 4%.
The Nastran analysis used the modal strain energy approximation, which accounts for the
slightly greater discrepancy in damping predictions.

A difficult problem which can take advantage of the analysis and optimization capabil-
ities of the TUBES program is TRW’s Alternating Ply Concept damped tube. A patent
application on this approach to integrating passive viscoelastic damping into fiber compos-
ite structures was submitted in 1988. The application was filed as “Viscoelastic Damping
Structure and Related Manufacturing Method.” A tube using this unique ply layup was
designed, built and tested at TRW in 1987.

Figure 4 shows cross-sections of damped tubes employing both the uniform segmented
constraining layer, which was the best available prior art, and the Alternating Ply Concept,
which offers much greater damping levels.

The Alternating Ply Concept tube is essentially two concentric elastic tubes with a VEM
layer in between. A large amount of energy can be forced into the VEM through the arrange-
ment of stiff plies lain primarily in a 0° orientation on alternating sides of the VEM layer.
These axial plies are short, with some overlap between inner and outer tubes so that load
transfer can occur in shear through the VEM. The axial plies are held together by angle plies
running continuously along both sides of the VEM layer. The angle plies serve to seal in the
VEM. They also prevent the formation of peel stresses since they are in continuous contact
with the VEM along the whole length of tube. Lacking fibers in the axial direction, the angle
plies are very soft in axial deformation. They thus act as a flexure between the stiff axial
plies. The flexing takes place in the gaps between the axial plies. Conversely, the angle plies
are stiff in shear and torsion, and so those deformations do not get effectively damped. Axial
and bending deformations of the tube can be heavily damped due to the fact that almost
all the axial load is forced through the VEM layer.

The Alternating Ply Concept is a blend of series and parallel damper ideas. Design
parameters can be shifted to either end of the spectrum between series and parallel. Damping
is distributed along the whole length of the tube as in constrained layer damping. High
damping levels can be obtained as in joint dampers. The twin parallel elastic load paths
through the angle plies provide for static stiffness and strength, and dimensional stability.
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Figure 4: Layup Details and Geometric Design Variables for: a) Uniform Segmented Con-
staining Layer and b) Alternating Ply Concept.

3.1 TUBES Model

Rather than model a whole tube, the smallest repeatable section, called the unit cell is
modeled. This unit cell is shown in Figure 5, along with the element divisions and meridianal
displacement degrees of freedom. Note that the model consists of five elements and twelve
axial displacement degrees of freedom. The displacements at the left end, u, and uj, are
typically constrained to be zero, and the displacements at the right end, u;; and u,z, are
constrained to move together. A unit force is then applied to the right end to determine the
complex value of stiffness, from which dynamic stiffness and damping are determined. When
inner and outer shell properties are assumed to be the same, the design variables are: to, the
thickness of the axial plies; t,s, the thickness of the angle plies; ty, the VEM thickness; L., the
length of the unit cell; and L,, the length of the gaps between the axial plies. Additionally,
one could choose the angle of the angle plies as a design variable, rather than fixing it as we
have at 45°.
The properties assumed for the GY-70 angle plies are:

E, = 43e6 psi, Ey = .975€6 psi, 1,9 = .19, p = 0.06 Ib/in®, and n = .002 (0.1% damping). The
properties assumed for the P-100 axial plies are the same as those for the angle plies except
the moduli are scaled up by the ratio 74/43. The VEM properties are those for the SQDM-I
material for the given operating temperature and frequency. A nomogram for this material,
showing shear modulus and loss factor versus reduced frequency, is given in Figure 6. The
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Figure 5: TUBES Model of Unit Cell of Alternating Ply Concept Tube.

VEM thickness was dictated by the available material, and is ty = .024 inches.

A design was optimized to maximize the resonant vibration figure of merit, FOM™ =
fn, which weights loss factor equally with specific modulus. A material concept which max-
imizes this figure of merit will minimize response at resonance if a structure were fabricated
uniformly from the material. A material figure of merit can be defined for a random envi-
ronment. If one assumed a flat power spectral density and well separated modal frequencies,
wn, mean square response [9] would be inversely proportional to (,w?. A random vibration
figure of merit would thus be FOM§* = En?/3, In realistic situations the PSD will roll off
with frequency. Assuming, as in Reference 10, a 1/ roll-off the resultant figure of merit
would be FOM*™ = f\/ﬁ It turns out that designs optimized for these various figures
of merit do not differ greatly. The resonant figure of merit emphasizes damping somewhat
more, while the random figures of merit emphasize stiffness somewhat more.

The optimization was performed for VEM properties at room temperature and a frequency
of 10 Hertz. The optimized design, after rounding off lengths to the nearest half inch and
thicknesses to the nearest available ply thickness, is:

L.=5, L, = 1.5, tg = .005, and tp = .015, all units in inches.
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Figure 6: Frequency Nomogram for SQDM-1

3.2 Test Results

Process development tests were first performed to see if the VEM could be cocured into
graphite epoxy. A three foot tube, 1.5 inches in diameter was then constructed using the
above properties. Free decay vibration tests were performed in cantilever bending. Tip
weights were varied to modify frequencies. A blow dryer was used to vary tube tempera-
ture. The temperature estimates are thus rather approximate. Six cases were run. The A
cases were at room temperature and the B cases were at elevated temperature. Subscripts
indicate the number of 4.2 pound tip weights added to the cantilevered tube. Test results
are summarized in Table 1, along with analytic results from the TUBES mode] and VEM
properties estimated from the frequency nomogram. Room temperature VEM properties are
extrapolations since the curve does not go down low enough in frequency.
Shell stiffness was derived from the bending frequency using the following formulae:

El = EhzR®
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Given knowledge of the radius, natural frequency and mass, one can back out Eh, which
is the effective shell stiffness of the whole layup integrated through the thickness and along
one unit cell.

Two sets of damping measurements are given to indicate the difficulty in measuring this
parameter when damping is high. Both curve fit and log decrement estimates are given.
Natural frequencies are from the curve fit. Correlation of room temperature tests with
analysis is not too bad. At elevated temperature, test data indicates that VEM stiffness
breaks down more rapidly than the curve fit in the nomogram would indicate. This results
in lower shell stiffness. It also is a possible explanation for the lower than predicted damping,
since less strain energy will get into the VEM if it is very soft.

Table 1: Damped Tube Test Summary.

CASE

- 4 B [ A [5B[4 5
Tip Weight w Ib 107 = | 827 | = | 947 | =
Temperature T °F 71 135 71 115 | 71 | 120
Natural Frequency | f Hz 23.4 |1 19.03 | 9.65 | 8.50 | 7.00 | 5.70
Curve Fit ¢ % 40 | 86 | 48 [ 72 | 6.0 | 6.4
Log Decrement ¢ % 38 [ 90 | 45 | 69 | 53 | 9.0
Shell Stiffness Eh [10%1b/in | 54 | 354 | 4.8 | 3.7 | 464 | 3.1

| . Material Data Estimated from Nomogram
Reduced Frequency | fa, “ ? | TE6 | 1E13 | 3E8 | 2E12 | 4E7
G psi

Shear Modulus 3800 | 2000 | 3500 | 2600 | 3400 ( 2200
Loss Factor n 2 .6 25 | 49 | .28 | .55
Analytic Results Using Material Data

Damping ¢ % 43 [ 127 50-] 10. | 6.0 | 11.
Shell Stiffness Eh [10° Ib/in || 5.30 | 4.00 | 5.12 | 4.50 | 5.05 | 4.18

3.3 Conclusions

In one of the cases tested, A, 43% of the strain energy was absorbed by the VEM. This
is phenomenal, and indicates that the use of a VEM with a loss factor of 1 or more would
give 43% damping or higher. These high levels of damping can be attained with a structure
baving a considerable degree of static stiffness. The high damping was sacrificed in our
design in order to explore the use of a VEM with reduced temperature dependence. The VEM
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was providing a loss factor lower than .3 at room temperature, yet damping between 4 and
6% was obtained.

It is also important to note that the tube was designed in a state of axisymmetric ex-
tension, but tested in a state of asymmetric bending. The analysis and test still correlate

well.

This is because the fibers behave locally like they are in extension even though the

tube overall is in bending. Thus the Bernoulli-Euler hypothesis we assumed which allowed
axial and bending properties to be equated was verified.
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