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OPTIMIZATION OF STRUCTURES BASED ON THE STUDY OF ENERGY DISTRIBUTION

V. B. Venkayya*, N. S, Khot*, and V. S. Reddy*
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Wright-Patterson Air Force Base, Ohio 45433

An automated procedure is presented for minimum weight design
of structures. It is an iterative procedure in which the design for the
next cycle is determined by the study of the strain energy distribution
in the present cycle, Displacement method of analysis is used in
developing the method. Any other method of analysis which has the
capability to determine strain energy in various partsof the structure
should be applicable, Designs in the presence of stress constraints,
and stress and displacement constraints are also considered. Where
there are only stress constraints, a simple iteration based on the
study of energy distribution is adequate. In the presence of dis-
Placement constraints, the design is carried in two stages. The
first stage of iteration is similar tothatin stress constraint problems
and the second stage is based on a search procedure. Examples of
two and three dimensional bar structures are presented to illustrate
the effectiveness of the method. It proved to be extremely efficient
in arriving at minimum weight structures,
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SECTION I

INTRODUCTION

Traditionally, structural design has been a trial procedure depending heavily on semi-
empirical rules and the judgment of the designer. The empirical rules are being replaced
gradually by sophisticated analysis methods made possible by the modern computer, The
judgment of the designer still plays an important partin formulating intelligent design
criteria. Because of the interdependence of the response and the design variables (particularly
in case of indeterminate structures) the structural design will always be a trial procedure,
The trial procedure can be developed into iterative procedures, and these procedures are

amenable for automation,

In an ideal situation an automated design should include the development of an optimum
configuration as well as efficient proportioning of structural components to achieve the de-
sired objective. Utility, appearance, feasibility, and economy are some of the important con-
siderations in developing an optimum configuration for the structure. Since many of these
qualities are subjective and are not quantifiable, automation of configuration optimization is
a difficult problem. For these reasons the present report is concerned only with minimum
weight design of structures of predetermined geometry, An iterative method in which the
resizing of the elements is based on the study of the strain energy distribution is presented
in this paper.

The present structural design procedures can be classified, arbitrarily into four
categories:

1, Geometrical optimization,
2. Design based on simultaneous failure modes (includes fully stressed design).

3. Optimization using search procedures based on linear and nonlinear programming

techniques.
4, Methods using combination of the above approaches,

Under geometrical optimization come the development of the whole class of Michell Structures
(References 1, 2, and 3). This development is based on the premise that the members of a
minimum weight structure should follow the direction of principal strains. In other words the

tension and compression members of a minimum weight structure form a mutually orthogonal
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network. In addition, such a structure has greater stiffness than any other structure of the
same weight. It is evident from the principal strain requirement that the members of Michell
Structures can be only axial force members. For a number of reasons Michell Structures
are impractical for realistic structures. For one thing they are not relevant in the design of
complex structures in the environment of multiplicity of loading conditions, In addition, it is
difficult to incorporate geometrical constraints and stability considerations. But in spite of
these limitations, Michell Structures provide a qualitative understanding to the designer and a

norm for comparison of the minimum weight structures obtained by other methods.

The second approach in the list is more practical and frequently used in the minimum
weight design. Much of the earlier research on structural optimization is based on the axiom
that all components of a minumum weight structure reach their limiting capacity at the same
time, with respect to either buckling or allowable stresses. The works of Shanley, (Refer-
ence 4), Gerard (Reference 5), and many others are based on the concept of simultaneocus
failure modes design or fully stressed design, In this approach, design starts with an initial
design variable vector and the structure is analyzed for internal forces and displacements,
Each element of the structure is then resized with the object of attaining a fully stressed
design. The structure is reanalyzed with the new design variable vector and the members are

resized and the process is repeated until there is no reduction in weight of the structure,

Simplicity and speed of convergence are the attractive features of the fully stressed
design approach in the relevant cases, In the case of determinate structures subjected to
single loading condition and with stress constraints only, the fully stressed design can be
shown to yield a minimum weight structure. In case of design for multiple loading conditions,
the concept of simultaneous failure mode design should be modified to read that every
component of the structure should be stressed to its limit at least under one loading condition
in which case the resulting design would be of minimum weight, In the case of indeterminate
structures with constraints on the sizes and in the presence of displacement constraints it
is impossible to satisfy this criteria and the method becomes irrelevant, Some interesting

discussions on fully stressed design and its limitations can be found in References 6 and 7.

The third approach for structural optimization has come into prominence in recent
years. References 8, 9, 10, 11, and 12 are some of the prominent papers on minimum weight
design using this approach, In this approach minimum weight design is treated as a problem
of mathematical extremization of an objective function in “m’’ dimensional design variahble

space. Then the search for extremum is carried out by methods of linear and nonlinear
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programming techniques, The feasibility of this approach for optimization of realistic
structures is established in References 8, 10, and 11,

The reliability of the search methods and the speed of convergence of the earlier two
approaches can be combined for optimization of structures with large number of design
variables. The method presented here falls into fourth category. However, it does not use
simultanecus failure modes or principal strain requirements as the design criteria, Resizing
of members is based on the study of distribution of strain energy in the structure. If there
are only stress constraints the optimal design can be reached quite rapidly by simple
iteration. If there are displacement constraints however, some sort of a search procedure
is necessary in the final stages of the design.

SECTION II
STRAIN ENERGY EXPRESSIONS AND EQUATIONS OF ANALYSIS

In all optimization methods a large part of the effort is expended in the repeated analysis
of the structure with different design variable vectors. Only after analysis it is possible to
determine whether a given design is acceptable and its position in the design space relative
to the constraint surface. The direction of future travel is also determined from the results
of the present analysis, The necessary equations for the displacement method of analysis

and the expressions for strain energy of the structure and the elements are presented here,

In a finite element scheme the total structure is represented by a group of structural
elements, The force displacement relations of the individual elements are derived by energy
formulation with the assumption of exact or approximate displacement distributions. The
strain energy u, of ith such element may be written as

| t
p :-2-.(,0'i e, dv {n
i
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O, and @, are the internal stress and strain matrices respectively of the ith element and

Vi is its volume, For an element made of linearly elastic material the stress and strains
are related by
T = G [ (2)

where Gi is the matrix of elastic constants for the ith element, The size and form of matrix

Gi depends on the type of element. Substitution of Equation 2 into 1 gives the expression
for strain energy in the form

| t
U "‘2".]; ¢, G, o dv (3)

So far no approximations regarding displacement variations are involved in Equations 1
to 3. To derive the strain displacement relations the knowledge of the displacement vari-
ations in the element is necessary, In most cases the displacements in the element are
assumed to vary linearly or in some other fashion depending on the type of element and the
accuracy requirements, Reference 13 lists some of the expressions for displacement vari-
ations used in variocus element stiffness formulations., For an assumed displacement dis-
tribution the strain at any point in the structural element may be expressed as a function
of a set of discrete generalized coordinates in the form

o = qbi v, (4)

where e; is the strain matrix as defined before. [yl (Y, anen yp] are a set of "p" discrete

generalized coordinates of the element as shown in Figure 21) for various structural elements.
These are in the present case displacements of the nodal points that connect the element
to the structure, ¢i is a rectangular matrix whose elements are in general, functions of
the spatial coordinates expressed in element coordinate system, From Equations 3 and 4

the strain energy of the element may be written as

u ?' fv vi' 4;: 6. ¢, v dv (5)

]
v, is the displacement vector of the discrete coordinates and is independent of the
spatial coordinates. Since the integration is over volume the matrix, v does not partic-
ipate in the integration. Then Equation 5 may be written as

u. :—I-— II.' k. v (8)
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Figure 1. Structural Elements and their Coordinates
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where k; is the ith element stiffness matrix with respect to the displacement coordinates
v, and is given by

k. j; ¢, 6, b, dv (7

The stiffness matrices of bar , frame plate and shell elements are derived by ex-
pressions similar to 7. From Castigliano’s first theorem the element generalized force

matrix S‘;i corresponding to the displacement matrix v, may be written as

0 u;
s+ {5 } : kv (8)
J
The element strain energy may be written also in terms of its forces and displacements

1
a5 S (9

The total strain energy U of the structure is obtained by summing the strain energies of its

components
L5 gt
U = - z Vi ki Vi {10)
i=1
where m represents the total number of elements in the structure. If Tys Ty ==m== r, are the
generalized displacement coordinates of the structure, they can be related to the element
coordinates Vyr Vg "7 Vs by the following relation
vy, = a.r (N

“n’’ is the number of degrees of freedomcof the structure, v, are the displacement coordinates

of ith element. The matrix ¢, may be called compatibility matrix and its elements can be

obtained by kinematic reasoning alone. From Equations 10 and 11 the strain energy of the
total structure is written as

TR
U=~? E]r a. ki a, r (12)

If the total structure stiffness, K is defined as

m
K = Y a k o (13)
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The fotal strain energy of the structure can be written as

u:—l— rt Koo (14)
2

The generalized force matrix R of the structure corresponding to displacement matrix r is

given by

R;,{‘;‘:j} - Kr (15)

The strain energy of the structure can also be written as

U=— R r (16}

Equations 1 to 16 are all that are necessary for analysis (by displacement method) and
determination of strain energy., Usually, programming for computer analysis starts from
Equation 13. This equation indicates the procedure for assembling the structure stifiness
matrix, The stiffness matrices Kk for har elements, frame elements, triangular and quadri-
lateral plate elements, and so forth, are well documented in the literature (for example,
References 13 and 14).

The matrix a serves two purposes. It transforms the element stiffness matrix from the
local coordinate system to the structure coordinate system and indicates the nodes to which the
element is connected. The detailed description of the stiffness matrix assembly procedure
from Equation 13 may be found in References 13 or 14 or any other reference on matrix

structural analysis,

For a given load matrix R the displacement matrix r can be determined from
Equation 15. The element displacements and forces can be determined by equations 11 and 8,

respectively, From internal forces the internal stresses in the element can be determined by

c - B s (7

The elements of matrix Bi are functions of the geometrical properties and the coordinates

of the points of the ith structural element expressed in the local coordinate system.

If the internal forces and the displacementis of the elements are known, their strain
energy can be determined by Equations 6 or 9. Equations 14 or 16 give the strain energy of
the total structure,
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SECTION IIT

ITERATION FOR OPTIMUM DESIGN VARIABLE VECTOR

A structure deforms under a given loading, inducing strain energy in various elements,
The strain energy in an element is a measure of itg participation in resisting the applied
loads. Intuitively, it is evident that an efficient structure is obtained by distributing the

material among various components in proportion to the strain energy in the elements,

To establish a measure of quantitativeness to this statement the term average strain
energy density is defined as the energy per unit volume of the element, Ideally the minimum
weight structure is the one that has the same average strain energy density in various parts
of the structure. The implications of the statement will be discussed further in the next section.
The design of hybrid structures and variable stress limits can be handled more effectively by
replacing the concept of strain epergy density by energy capacity. The minimum weight
structure is the one in which strain energy in various elements is equal to their energy
capacity. The energy capacity of the element is defined as the total strain energy stored in
the element if the entire element is stressed to its limiting stress, This condition is impossible
to meet except possibly in determinate bar structures. But the objective can be modified to
state that the ratio of the actual strain energy to the energy capacity should be made constant
in various parts of the structure, Once again it should be pointed out that this is the objective
to strive for and may not be possible to attain in view of the various constraints on the
structure. Except with determinate structures the relative distribution of strain energy
depends on the distribution of material. Because of the interdependence of the material
distribution and strain energy, an iterative procedure can be used in obtaining an efficient
structure,

The expression for energy capacity, r; of the ith element is given by

1

. 4
N2 i Vi

{u)

Vi is the volume of the element. The relation between the limiting stress and strain is as-
sumed to be

are the limiting normal stress and strain respectively in the element.

o‘fu) and ¢

ai(“’ - E, e?“) (19)
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Then, the energy capacity of the element can be written as

r. = (VPN o £ (20)
i 2 i i i
The quantity ¥ ; 1is defined as
Vi Ei
LT e——— (zn
j| Aai

The scalar A is the base parameter for all the elements.

@; is the relative value of the ith design variable. In case of bar elements L ; 1s simply
the length of the element and Aa; is the product of area and modulus of elasticity of the
element (Aai =A E, ). The actual design variable vector may be written as A @ | The vector

a alone will be referred to as relative design variable vector. The relative response of
the structure depends upon the vector a@. The absolute response can be manipulated simply
by changing the scalar A By altering A every feasible design can be brought fo the con-

straint surface,

The energy capacity [ of the total structure may be written as

m m 2
L =Y o A Y ) a (22)
1= i=l

!
if I is defined as

i m
r La y. (e}“’)a a, £ (23)
|

then [' can be written as

i
= AT (24)
From Equation 16 the strain energy of the structure (in terms of base parameter) is given by
| t U’
= - R r =z -~—— (25)
VA A

The vector r’ is the relative displacement vector, The relation between the relative and
absolute displacement vector is given by

!

I
Fr - —r
A {286)

The relation between U and U’ is obvious from Equation 25.
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The following relation between the strain emergy and the energy capacity is assumed

T =cdu (27)

From the above relation the value of the base parameter may be written in the form

A=c /— (28)

The constant C equal to 1.0 represents the case when the strain energy and energy
capacity are equal. In most cases this is an impossible condition to obtain without exceeding
the stress constraints. However, the value of C can be adjusted to make the given design
acceptable,

For optimal condition the ratio of the strain energy in the element to its energy capacity
should be same throughout the structure, Since the design starts with trial variable vector
this condition can be attained only by iteration, The necessary iteration equation is derived
on the basis of the distribution of strain energy among the elements in relation to their

energy capacity. Equation 9 gives the strain energy in the element

i t2h Y TR (29)

Again the relation between the absolute and relative displacement vectors of the element y

and ¥’ is given by

Vv - — v, {(30)

The energy capacity of the element is given by Equation 20

2 ,
T =|7(ei(u)) Aai’éizATi (31)

For an optimum structure the ratio of strain energy to energy capacity should be constant

throughout the structure, From this condition the following relation can be written,

: — A</ (32)

or

A% P ! (33)
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I/C, is the constant of proportionality. Since the object is to find the value of the design
variable and not the base parameter both sides of Equation 33 are multiplied by aiz

2 I.I‘!I
te, M) =CT' a?( 1_': ) (34)
i

The Equation 34 is the basis for writing the recurrence formula for iteration of design

variable vector,

uj

(“-A) “EC lagy, ( ) (35)
My T v

The subscripts ¥+ | and ¥ refer to the cycles of iteration, The constant C1 need not he

determined because the relative design variable vector is obtained by dividing the actual

design variable vector by one of its componenis. The condition for optimality can be obtained

by iteration using Equation 35 if the design is for a single loadiﬁg condition and there are no

constraints on displacements and sizes of the elements.
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SECTION IV
OPTIMUM DESIGN VARIABLE VECTOR

The statement of optimality condition in the last section is based on purely intuitive
reasoning. The iteration formula, Equation 35, is derived on the Premise that an optimum
structure with respect to weight, is the one that has ratio of strain energy to its energy
capacity constant throughout the structure, For a structure made of same material and
stress limits this statement is equivalent to the saying that strain energy density is constant
throughout an optimum structure. Strain energy density is defined here as strain energy per
unit volume, Theoretically strain energy density (of a non-optimal structure) may vary from
point to point in the structure, Since an actual structure will be replaced by a discrete model
the term strain energy density will be replaced by average strain energy density, The average
strain energy density of an element is the ratio of its total strain energy to its volume,

Under certain conditions a measure of validity can be established for the stated optimal
condition, In Reference 15 Sheu and Prager presented an interesting reasoning for establishing
the optimality condition for a single degree of freedom portal frame. A similar reasoning
is presented here in establishing the optimality condition for a multi-degree of freedom
gsystem. The presentation is in terms of generalized displacement coordinates and avoids the

use of such terms as curvature which are particular cases of generalized displacements,

A structure is subjected to a load vector R and the problem is to obtain optimum sizes
for its elements so that the structure weight will be a minimum, Suppose A and A are two
designs proposed for the same structure to carry the same load vector. The weights of the
two designs are proportional to W and W’ which are defined as

m
W= Y AL (36)

w'=‘E A;,Zi

i=}

(37)

If the geometry of the structure is fixed, j; are same in both cases, For one dimensional

elements, A and .Z are the area and length of the members respectively. For other elements
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interpretations similar to that given in Equation 21 are more appropriate. Let Pi(“ and
pf(u) be the average strain energy densities in the elements corresponding to the two
|

designs. By this definition
u

—

P (u) = Vi

: ui
P, (u) =—— (38)

u; and u; are the strain energies (defined by Equation 6) and v; and v‘; are volumes of
the i th element in two cases. Also let {r} and {r'} (r’ and u’ do not carry the same
meaning as in the previous section) be the displacement vectors corresponding to designs.
one and two respectively. If the potential of the external forces is assumed to be the same
in both cases (this does not necessarily imply equality of the displacement vectors, {r} and

{r} ) then it can he shown
m i m
LA Lipitu) = XA A pite) (39)
izl izl

The displacement vector {r'} is the natural displacement vector for the second design.
However, the displacement vector {r } is kinematically admissible for the second design.
If the second design is forced to have the displacement configuration represented by vector
{r } then, from the principle of minimum potential energy, the following inequality can be

written
m m
T oAl Lp tu)2 ¥ AL plLu) {(40)
izl i=l

Use of Pi,( u) in the left side of the inequality is justified because the strain energy density
depends only on the displacement configuration and not on the sizes of the elements, The
validity of this statement can easily be established from Equations 6, 11, and the definition
of strain energy density, From Equation 39 the Inequality 40 may be witten as
m . m
i‘él AL pi(u) —El ALptu) 20 (41)
The same inequality may be written also as
m
Y (a7 -andp tu) 20 (42)
i=1
If the strain energy densities, P tu) of the first design are assumed to be same throughout
the structure i-e p (ul= ,oZ(u) op, (u)=pla) the inequality 42 becomes

m
2 ¥ A ,Zi {43)

§ AL,
izl
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From Equation 36, 37 and Inequality 43 it is evident that

Wi ow (44)

This means that the design which has the constant average strain energy density throughout
is a lower weight design than the one in which this condition is not satisfied.

The quantity average strain energy density is called mean square curvature in Ref~
erence 15. However, the term mean square curvature is restrictive since it applies only when
the deformation of the members is due mainlyto bending, In Reference 16 it is called specific

energy or the difference between certain specific energies per unit specific stiffness.

SECTION V

DESIGN FOR MULTIPLE LOADING CONDITIONS

In practice most structures have to be designed for more than one loading condition,
Selection of proper design loading conditions is one of the important aspects of design
criteria, Each loading condition consists of a set of loads and each set acts independently of
the others. The reliability and efficiency of the structure can be improved by intelligent
selection of design loading conditions.

However, design for multiple loading conditions presents difficulties that can at best be
overcome by approximate means. For example, the optimality condition of constant average
strain energy density throughout the structure is impossible to fulfill in case of design for
multiple loading conditions. The distribution of strain energy in the structure is different
for different loading conditions and an optimality condition, for one loading condition may not

be quite optimal for other loading conditions,
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In case of multiple design loading conditions the optimality requirement can be modified
to state that the largest average energy density in each element is the same throughout the
structure. This largest strain energy density is not caused by the same loading condition in
all the elements. Under these conditions the recurrence formula (Equation 35) for iteration

can be modified to read
u.

'max
(o, M), =c, ke, (_T.—)V (45)

!
Ymax
design loading conditions. In the absence of displacement constraints, iteration using

. . . . .th
is a measure of the maximum strain energy in the i” element due to any of the

Equation 45 is very effective in arriving at minimum weight design. Even in the presence
of displacement constraints this iteration is quite effective in the initial design stages.
For completion however, iteration using a search procedure is necessary in the final stages
of the design. A search procedure is presented for this purpose in the next section.
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SECTION VI
DISPLACEMENT LIMITS AND A SEARCH PROCEDURE

In a practical design the constraints on displacements may be required for a variety of
reasons. Some of these reasons are requirements of tolerances in fabrication to assure the
overall stability, and sometimes to provide certain stiffness characteristics to the structure,

In the presence of displacement constraints the proposed method handles the problem in
two stages., In the first stage iteration is carried out as in stress constraint design, using
recurrence Formula 45, The first stage ends when further reduction in weight is not achieved
by this approach. The second stage, which is referred here as a search procedure, is outlined
with the aid of necessary equations,

The force displacement relation, in terms of the generalized coordinates, is given by
Equation 15 and is repeated here as Equation 46

R = Kr (46)

Any changes in the sizes of the elements reflect change in stiffness matrix K and the
displacement matrix, r . If AK is the change in stiffness matrix, the force displacement
relation may be written as

R - [K+AK] {r+ar} 47)

Since the external force matrix is same, the left hand side of Equation 46 remains unaltered,
Solving for Ar the following relation is obtained:

Ar - — K" AKr — K~' AKX Ar (48)

If the change in stiffness AK is very small, then the last term on the right, containing the
second order term, AK Ar , can be ignored, Alternately, the following iteration formula
may be used for determining Ar:

Alv'H_| =:— K™ AK {ry+ Ary} (49)

v and v+ | refertothecyclesofiteration in a given design cycle. Use of iteration Formula 49
permits slightly larger changes in the stiffness matrix, Only two or three cycles are nec-
essary to obtain a reasonable approximation when the changes are not too large,
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The matrix K “! ig available from the last design cycle and need not be calculated
again. If AK is considered to be due to change in size of one of the elements, it is also
available since it was determined during the assembly of structure stiffness matrix, The
Ar matrices corresponding to unit change in the size of each element can be determined

by Equation 49,

The entire Af matrix corresponding to each element change is not of interest and need
not he stored. If 7’ is the direction corresponding to the active displacement constraint, then
only the elements of Ar corresponding to ¢“j’’ direction need to be stored, From Ar
calculations the influence of all the members on active displacement constraints can be
determined. The sizes of the elements that have negligible effect (or negative effect) on active
displacement constraints can be reduced without exceeding the limits. (If the increase in size
of the element increases the displacement in the constrained direction it is called negative
influence here). By this procedure, weight can be reduced further but this reduction in some
elements may activate constraints at other locations. This creates a problem of determining

the magnitude of change. The following procedure is adopted to overcome this problem:

The displacements at the active constraints are allowed to exceed by a certain percentage
(say 10-20%). This can be accomplished easily by changing the parameter A . The constraint
displacements are then brought to theirlimiting values by increasing the sizes of the elements
in proportion to their influence on the exceeded displacements, This influence is determined

by Ar calculations (Equation 49),

If ‘5" is the direction of active displacement constraint and Arj(” is the influence of
of the i'P element on rj » then the required change in the size of the i1h element is deter-
mined by the relation

A, =cAr§”/£i (50)
Sipce the increase in size of an element with large length parameter penalizes the
weight, the AAE , is assumed to be inversely proportional to Z i C is the constant of
proportionality, The Ar} calculations are due to unit changes in sizes of the elements and
the change Sri( i) due to A4 is obtained by

' Y2
Sr(j.l) : C(Ar;')) /'g. (51}
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The constant of proportionality, C may be determined from the condition that the displacement
r should be brought to its limiting value by changing the sizes of the elements according to

Equation 50, If L[Jj is the magnitude of the displacement exceeding the limiting value then

Y]

C = E [Arj(” ]2 {(52)
A

In the summation, only the elements that have positive influence are included, The expression
for AA; becomes

IV j [ arj’ ] (53)
(a2 4,

p=1 1]

If more than one displacement exceeded the limit, the necessary change in each element
size is determined separately for each constraint, using Equation 53, The largest AA; is
used for actual change in the size of the ith element, Use of largest increase for each
element is conservative and the displacements after the increase are usually lower than the
limiting values, Since the procedure will be repeated more than once the final displacements
can be brought to the limiting values without penalizing the final weight, This procedure was
tried on number of examples of bar structures and proved to be very satisfactory. The
examples in the next section attest to the validity of this statement.

The major disadvantage of this search procedure is that calculations by Equation 49
require the inverse of the total stiffness matrix. This requirement imposes some restrictions
on the sizes of the structures that canbe optimized in the presence of displacement constraints,
If there are no displacement constraints, structures with a large number of degrees of
freedom can be optimized with the aid of iterative analysis methods such as the one proposed
in Reference 17, With displacement constraints however, problems with degrees of freedom
larger than 185 to 190, will require extensive use of peripheral storage. For larger systems
search procedures which do not require inverse of the total stiffness matrix are more
advantageous, The complete method is presented in the form of a flow-chart in Figure 2.
The details of the method in a form suitable for computer programming can be found in

Reference 18.
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SECTION VII
EXAMPLES - BAR STRUCTURES - CONCLUSIONS

Five bar structures are designed by applying the' method proposed in the paper, It is
hoped that these examples highlight the important features of the method and also Provide
basis for comparison with the existing methods, A program hased on flow-chart shown in
Figure 2 is written in FORTRAN IV, The reported computational times are for IBM
7094-11-7044-DCS, The stiffness matrix is inverted by the Cholesky scheme modified for
symmetrical matrices, No attempt is made to reduce the computational times for analysis

by using the techniques of banded matrix inversion or any such procedures,

All the structures, except the geodesic dome, are designed with stress and displacement
constraints as well as stress constraints only. The geodesic dome is designed for the case of
stress and displacement constraints only. All of them have lower limits on the areas of
elements and no upper limits. The material is assumed to be aluminum in all cases except
the plane truss, Example 5, in which steel is used,

EXAMPLE 1 - TEN NODE TWENTY-FIVE BAR TRANSMISSION TOWER

The schematic diagram of the tower with dimensions is shown in Figure 3. This entire
figure is reproduced from Reference 11, The design information for the tower is given in
Table 1, The same table contains the output information,

The structure is designed for six loading conditions, Actually only two are independent
loading conditions; the other four are meant to maintain the symmetry of the structure, If
the program has a symmetry option as in the one reported in Reference 11, only two loading
conditions are necessary, The symmetry option is not incorporated in the present program;
the structure was designed for six loading conditions. The increase in computational times for
additional loading conditions is insignificant and there is no particular disadvantage in

omitting symmetry option,

The final design weight is 555.11 1b when there are displacement constraints, Total

computational time was 24 seconds. The same tower, also designed without displacement
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Figure 3. Transmission Tower
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TABLE 1
EXAMPLE 1 -~ TRANSMISSION TOWER
Input: Design Information
Material Aluminum
Stress Limits 40,000 psi
Modulus of Elasticity, FE = 107 psi
Specific Weight = 0,1 1b/cu in.

Lower Limit on Membersizes 0.01 sq inch with displacement limits and
0.1 sq inch without displacement limits

Upper Limits: Yone
Displacement Limits: 0.35 inch on all nodes and all directions

Number of Loading Conditions: 6 (all loads are in pounds)

Direction of Load
Load Condition 7 Node
X y z

1 1,000 ho,000 |- 5,000
1 2 0 10,000 - 5,000

3 500 0 g

6 500 0 0

1 0 10,000 - 5,000

2 - 1,000 10,000 - 5,000
2

4 - 500 o 0

5 - 500 0 0

1 1,000 10,000 |- 5,000
3 2 0 —-10,000 §- 5,000

3 500 0 0

6 500 0 0
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OUTPUT

TABLE 1 (contd)

Loading Direction of Load
Condition Node
X v z
4 1 0 -10,000 } - 5,000
2 -1,000 |-10,000 | - 5,000
4 - 500 0 0
5 - 500 0 0
1 0 20,000 ] - 5,000
> 2 0 -20,000 | - 5,000
1 0 -20,000 { -~ 5,000
6
2 0 20,000 § - 5,000

With Displacement Limits Without Displacement Limits
Final Design Weight in 1b, 555.12 Final Design Weight in 1b, 91.14
Computer Time in sec, 24 Computer Time in sec, 9
El,No|Area |E1,No | Area [EL,No| Area |¥l.lio | Area |[%l.Vo}| Area [Il.lio | Area
1 [0.033 | 10 0.010 { 19 11.760 1 0.100 10 | 0,100} 19 0.278
2 {2,015 } 11 lo.010| 20 [1.760 2 0.376 11 | 0.100] 20 0.278
3 ]2.015 | 12 0.014 | 21 |1.760 3 0.376 12 | 0.100] 21 0.278
4 {2,015 | 13 0.014 } 22 |2.440 4 0.376 13 | 0,106} 22 0.380
5 |2.015 | 14 0.980 | 23 |2.440 5 0.376 14 ) 0,100 23 0,380
6 12.823 | 15 0.980 | 24 |2.440 6 0,471 15 | 0.100] 24 0.380
712,823 | 16 0.980 | 25 |2.440 7 0.471 16 | 0.1004 25 0,380
8 12.823 | 17 0.980 8 0.471 17 | 0.100
9 |2.823 | 18 1.760 9 0.471 18 | 0.278
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constraints had a design weight of 91,14 lb and used nine seconds of the computational time.
The lower limit on the area of the members is 0,01 square inch when there are displacement
constraints and 0.1 square inch when there are no displacement constraints., Both the input
and the output data are summarized in Table 6.

The design of thlS transmission tower was reported in Reference 19. The reported weight
is 570.4 1b. The same tower was also designed by Gellatly in Reference 11 and the final design
weight is reported here as 550.68 1b and it was designed in 20 minutes. Later, in Reference 12,
Gellatly reports the design for the same tower as weighing 555 lbs and needing 20 minutes of
computational time on IBM 7090. In the same reference Gellatly discussed the number of
possibilities of reducing computational times, He estimates about 110 seconds as the running
time for this problem if all the suggested improvements are incorporated, The computational
time of 24 seconds by the present program is lower than the projected time in the above
reference by factors of at least 2 to 3. A simple analysis of the design from Reference 11
revealed the displacements to exceed their limits by at least 1%, This is the reason for the
low weight of 550.68 1b. The design reported in Reference 12 yields displacements which are
closer to the actual displacement limits and it appears to be more realistic,

EXAMPLE 2 - TWENTY NODE SEVENTY~-TWO BAR TRUSS

The top and front views of the truss are shown in Figure 4, The design information is
given in Table 2, The structure is designed for five loading conditions, The loads are devised
to keep the symmetry of the design. The purpose of this example is to study whether the
higher degree of indeterminacy has any detrimental effect on the speed of approaching the
optimum design,

The final design, in the presence of displacement constraints, weighed 425.8 1b and
the computational time was 5 minutes 45 seconds, The design weight of the same tower

without displacement constraints was 96.6 1b and the computational time was 59 seconds.

It is evident from these examples that the presence of displacement constraints increase
the computational times substantially. Similar experience is reported by Gellatly (Ref-
erence 11), The degree of indeterminacy does not appear to have significant effect on the rate
of convergence. The input and output data are summarized in Table 6.
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TABLE 2

EXAMPLE 2 - 72 BAR TRUSS
Input: Design Information
Material Aluminum
Stress -~ Limits 25,000 psi
Modulus of Elasticity E = 107 psi
Specific Weight = 0.1 1b/cu in.
Lower Limit on Member Sizes 0.1 square inch
Upper Limits: None

Displacement Limits = 0,25 on all nodes and all directions

NUMBER OF LOADING CONDITIONS 5

Load Condition | Node Direction of Load
X y z
1 17 5,000 5,000 | - 5,000
2 18 -5,000 5,000 | - 5,000
3 19 -5,000 | -5,000 | - 5,000
4 20 5,000 | -5,000 | - 5,000
17 0 0 - 5,000
18 0 0 - 5,000
’ 19 0 0 - 5,000
20 0 0 - 5,000
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TABLE 2 (contd)

OUTPUT
With Displacement Limits Without Displacement Limits
Final Design Weight in 1b 425.8 Final Design Weight in 1b 96.6“
Computer Time in Seconds, 345 Computer Time in Secomds, 59
Elements with Members with
El, No | Area Same Area El. No| Area Same Area
1 1.471 2, 3, 4 i 0.294 2, 3, 4
5 (.548 6, 7, 8 15 0,199 16, 17, 18
9 0,090 {10, 11, 12, 13, 14} 29 0.191 30, 31, 32
15 1,083 16, 17, 18 43 0.189 44, 45, 46
19 0.559 20, 21, 22
All other members are of 0.1
23 0.090 24, 25, 26, 27, 2E square inch
29 0.933 30, 31, 32
33 0.589 34, 35, 36
37 0.137 38, 39, 40
41 0.112 42
43 0.858 44, 45, 46
47 0.674 48, 49, 50
51 0,518 52, 53, 54
55 0.503 56
57 0.548 61, 65, 69
58 0.559 62, 66, 70
59 0.589 53, €7, 71
60 0.674 64, 68, 72
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EXAMPLE 3 -~ FIVE NODE ~ FOUR BAR TRUSS

Figure 5 shows the geometry and the dimensions of the truss, This figure is reproduced
directly from Reference 10. Three different cases are considered in designing the truss.

CASE 1: Design for a Single Loading Condition
CASE II: Design for Three Loading Conditions
CASE 11I: Same as CASE I except Vertical Load

(z-direction) is doubled

The input and output details of these three caées are given in Table 3. CASES 1 and 1I
are designed with and without displacement constraints. The third case is optimized with
stress constraints only. The purpose of the third case is to establish that iteration using
Equation 35 coverges to a structure with constant average strain energy dengity in absence
of displacement constraints and single loading condition. The vertical load is doubled to
insure the condition that the sizes of the elements are not governed by minimum area
requirements.

Final design weight with displacement constraints in CASE I is 39.88 1b and the com~
putational time, three seconds. For the same case without displacement constraints, the

design weight is 34.5 Ib and the computational time, four seconds,

In the second case, design with displacement constraints weighs 14.3 1b and the time,
10 seconds. Design without displacement constraints weighs 9.09 1b and the time, three
seconds,

The weight of the design in the third case is 65.76 1b and the time, three seconds, The
strain energy density is same in all the members.

The first two cases with displacement constraints are also designed in Reference 10.
The weights reported there differ slightly from the weights reported here, The definition of
displacement constraints in Reference 10 is ambiguous (they seem to be in error) and it is
difficult to make any comments on these differences. In any case the differences are not

very significant.
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EXAMPLE 4 - SIXTY-ONE NODE, ONE HUNDRED THIRTY-TWO ELEMENT
(BARS) GEODESIC DOME

The Geodesic Dome with necessary dimensions is shown in Figure 6, This figure is
 reproduced from Reference 20 except the height of the dome is doubled (60 inches), Ref-
erence 20 is concerned with stability of the dome and not its design. The purpose of this
example is to illustrate the application of the proposed method to moderately large size
problems. All the input and output information for this problem is given in Table 4, The

information is also summarized in Table 6.

The final design of the dome weighs 180.95 Ib and the computer time was 68 minutes and
30 seconds. For the size of the structure this time appears to be reasonable, This structure
is somewhat unusual in the sense that out of a total of 10 ¢ycles of iteration, eight of them
are involved in search procedure and only two cycles used iteration Formula 35. In most of
the other structure this proportion ig about half or less. The large computational time may
be partly attributed to this peculiarity because the computational time for a search cycle is

much larger than the cycle using Equation 33.
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TABLE 3

EXAMPLE 3 - 4 BAR TRUSS
Input: Design Information
Material: Aluminum
Stress Limits = 25,000 psi
Modulus of Elasticity, E = 107 psi
Specific Weight = 0.1 1b/cu in.
Lower Limit on Member Sizes = 0.1 square inch
Upper Limits: None

Displacement Limits for Both Examples (3-I and 3-II)

Direction
Node
X v z
5 None = 0.3" |+0.4"

Number of Loading Conditions
Example 3-I 1
Example 3-II 3

Example 3-III 1

Details of Loads: Case I

Pirection of Load
Load Condition Node
X y z
1 5 10,000 20,000 -30,000
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TABLE 3 (contd)

Details of Loads: Case II
Load Condition Node Direction of Load
x y z
1 5 5,000 0 0
2 5 0 5,000 0
3 5 0 0 =-7,500
Details of lLoads: Case III
Direction of Load
Load Condition Node
X v z
1 5 14,000 20,000 - 60,000
QOUTPUT: With Displacement Limits
i Areas of Elements in Square Inches Weight in
1 Case 1b
1 2 3 4
I 0.112 1,108 0,958 0.249 39,88
I1 0.217 0.319 0.186 0.140 14,30
OUTPUT: Without Displacement Limits
P ————
Areas of Elements in Sguare Inches Weight in
Case = 1b
i 2 3__ 4
1 0.100 0.890 1.002 0,100 34.48
11 0.132 0.193 0.122 0.097 9.09
I11 0.430 1.755 1.258 0.548 65,76
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Figure 6. Geodesic Dome
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TABLE 4

EXAMPLE 4 ~ GEODESIC DOME
Input: Design Information
Material Aluminum
Stress Limits 25,000 psi
Modulus of Elasticity, E = 107 psi
Specific Weight = 0.1 1lb/cu in,
Lower Limits on Member Sizes = 0,1 sq in.
Upper Limits: Nomne
Displacement Limits 0.1 in. on all nodes and in all directions
Number of Leoading Conditions: 4

All Loads are Acting Down in z - directiom and their magnitude is
1000 1b each

Nodes Loaded in each Loading Conditiom

Loading Comndition 1 1

Loading Condition 2 1, 2, 3, 4, 7, 8, 9, 10, 11, 12z, 13, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 37.

Loading Condition 3 ALL NODES ARE LOADED

Loading Condition 4 1, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37

OUTPUT

Final Design Weight with Displacement Limits = 180.94 1b

Computational Time = 68 minutes

144



AFFDL-TR-68-150

TABLE 4 (contd)

Areas of Elements (in square inches)

There is symmetry about the vertical plane containing nodes 1, 38, and 50.
Only the areas of the elements on and to one side of this plane are listed.

El, No| Area El, No| Area El. No| Area El. No| Area 'El. No | Area
1 1.015 28 0.437 48 0.503 85 0.305 119 6.273
2 1.060 29 0.407 63 0.503 86 0.245 120 0.515
5 1.060 30 0.407 b4 0,383 87 0.164 121 0.423
6 1.015 31 0.354 65 0.516 38 0.251 122 0.319
7 0.819 32 0.391 66 0.379 89 0.276 123 0.388
11 0.819 39 0.391 67 0.397 20 0.251 124 0.348
12 0.328 40 0.354 68 0.360 91 0.267 125 0.292
13 0.437 41 0.511 69 0.274 92 0.292 126 0.267
14 0.542 42 0.511 70 0.429 93 0.348 127 0.232
15 0.449 43 0.360 71 0.429 94 }.388 128 0.365
16 0.646 44 0,397 72 0.274 95 0.319 129 0.323
25 0.646 45 0.379 73 0.164 96 0.423 130 0.323
26 0.449 46 0.516 74 0.245 97 0.515 131 0.365
27 0.542 47 0.383 75 0.305 98 0.273 132 0.232
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EXAMPLE 5 - SEVENTY-SEVEN NODE ~ TWO HUNDRED ELEMENT PLANE TRUSS

The schematic diagram with dimensions is shown in Figure 7, The structure is designed
for five loading conditions and the input and output data are given in Table 5. Table 6 gives

summary of this data.

It is the only structure designed in steel. The final design weight in the presence of
displacement constraints in 31,120 1b, The computational time for this design was 93 minutes,
The design weight of the same structure without displacement limits was 22,115 1b and the

computational time, 64 minutes,

The five illustrative examples conclusively show that the method of structural optimization
based on the study of strain-energy distribution coupled with a search procedure is quite
efficient in arriving at minimum weight structures. The formulation of the method is general
enough to be applicable to any structure. A preliminary application of the method to frame
structures is found to be quite successful and the results of this study will be reported in the
near future. The computational times for large structures may be reduced substantially by the
use of gparse matrix techniques and banded matrix techniques for inversion of large matrices.

The approach is simple and is no more complicated than the analysis itself,
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Figure 7, Plane Truss
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TABLE 5

EXAMPLE 5 - 77 NODE - 200 BAR TWO DIMENSIONAL FRAME

Input: Design Information

Material Steel

Stress Limits

Modulus of Elasticity,

30,000 psi

E = 30, x 106 psi

Specific Weight = 0.283 lb/cu in.

Lower Limit on Member Sizes = 0,1 sq in.

Displacement Limits 0.5 in. on all nodes and in all directions

Number of Loading Conditions: 5

Loading Condition

Loading Condition

Loading Condition

Loading Condition

Loading Condition

OUTPUT

1

1000 1b acting in positive x direction at node
points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71
1000 1b acting in negative x direction at node
points 5, 14, 19, 28, 33, 42, 47, 56, 61, 70, 75
10,000 1bs acting in negative Y directions at node
points 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17,
18,19, 20, 22, 24,———————— 71, 72, 73, 74, 75
Loading Conditions 1 and 3 acting together,

LOading Conditions 2 and 3 acting together.

Final design weight with displacement limits = 31,020 1b

Computational time = 93 minutes .

Final design weight without displacement limits = 7550 lbs

Computational time = 50 minutes
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TABLE 5 (contd)

Areas of Elements (in square inches) on one side of symmetrical line

with displacement limits.

El. No} Area El.No Area El., No| Area El.No Area El.No | Area
1 1.348 40 0.233 81 5.737 120 | 2,558 159 0.210
2 1.313 43 4.798 82 1.988 121 | 0.237 160 {14,981
5 3.402 44 1.850 83 0.201 122 [10.649 161 1.175
6 1.771 45 0.127 84 7.220 123 | 0.966 162 1.251
7 0.173 46 4,318 85 0.984 124 | 0.991 163 9.800
8 1.497 47 0.971 86 0.797 125 | 7.822 170 0.116
9 0.742 48 0.749 87 5.626 132 | 0.116 171 0.816
10 0.782 49 3.346 94 0.116 133 ] 0.634 172 0.816
11 1.156 56 0.116 95 0.491 134 | 0.634 173 0.703
18 0.116 57 0.333 96 0,491 135 | 0,512 178 6.713
19 0.377 58 0.333 97 ¢.318 140 | 7.285 179 0.713
20 0.377 59 0.208 162 6.688 141 | 0,587 180 4,281
21 0.435 64 5.662 103 0.533 142 | 2.835 181 |{16.104
26 4.575 65 0.519 104 2,151 143 |11.752 182 1.309
27 0.538 66 1.950 105 8.288 144 | 1,049 183 1.317
28 1.895 67 5.326 106 0.884 145 ¢ 1,011 184 110.9530
29 2,483 68 0.813 107 0.984 146 | 8,969 191 5.073
30 0.750 69 0.954 108 6.770 153 | 2.495 192 3.243
3 0.784 70 4,495 115 1.687 154 | 1.024 195 8.983
32 2,278 77 1,391 116 0.605 157 | 5.695 196 j20.687
39 1.294 78 0.343 119 6.274 158 | 3.932 197 9.594
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TABLE 5 (contd)

Areas of Elements (in square inches)

Without displacement limits

Areas of the elements to one side of the center line are given

El. No| Area El. No Area El.No Area El.No Area El.No Area
1 0.100 40 0.100 81 1.027 120 | 0.613 159 0.100
2 0.100 43 0.687 82 0.415 121 | 0.100 160 4.615
5 0.251 44 0.247 83 0.100 122 | 3.379 161 0.100
6 0.117 45 0.100 84 2.270 123 { 0.100 162 0.132
7 0.100 46 1.271 85 0.100 124 | 0.104 163 2.706
8 0.371 47 0.100 86 0.100 125 | 2.102 170 0.100
9 0.100 48 0.100 87 1.475 132 | 0.100 171 0.100
10 0.100 49 0.851 94 0.100 133 | 0.100 172 0.100
11 0.250 56 0.100 95 0.100 134 | 0.100 173 0.100
18 0.100 57 0.100 96 0.100 135 | 0.100 178 1.686
19 0.100 58 0.100 97 0.100 140 | 1.595 179 0.114
20 0.100 59 0.100 102 1.364 141 | 0.126 1.80 0.922
21 0.100 64 1.024 103 | 0.107 142 | 0.689 181 4.951
26 0.588 65 0.100 104 | 0.484 143 | 3.716 182 0.137
27 | 0.100 66 0.309 105 | 2.607 144 | 0.106 183 | 0.100
28 0.172 67 1.608 106 | 0.100 145 | 0.100 184 3.043
29 0.708 68 0.100 107 0.100 146 | 2.438 191 1.263
30 0.100 69 0.100 108 | 1.811 153 | 0.430 192 0.875
31 0.100 70 1,187 115 | 0.298 154 | 0.100 195 2.362
32 0.586 77 0.190 116 | 0.100 157 | 1.349 196 5.964
39 0.101 78 0.100 119 1.258 158 | 0.851 197 2.602
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