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teria Branch, RTD, is the project engineer on the contract, The authors are
Mr. H. Rie, engineer — theoretical aerodynamics, Systems and Technology Sec-
tion, Reentry Systems Departmenti, General Electric Co.; Mr. E. A. Linkiewicz,
mathemetician-problems analysis, Engineering Section, Spacecraft Department,
General Electric Co.; and Mr. F. D. Bosworth, scientific programmer. Finance
and Contract Management Operation, General Electric Co. The project supervisor
was Mr. L. A. Marshall. The development of the unsteady flow field program

covered in this report was started in May 1963 and completed in June 1964,
This technical report has been reviewed and is approved.
éoB. WESTBROOK i
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AF Flight Dynamics Laboratory

ii



ABSTRACT

A method of computing static and dynamic force and moment coefficients has
been prep'ared for the Research and Technology Division. The method provides
for a complete inviscid flow field solution to be computed on the IBM 7094
machine. The solution provides values of all pertinent flow field parameters at
a large number of points in the shock layer surrounding a pointed or spherically
blunted body of revolution (or the analogous two-dimensional shapes) in super-
sonic or hypersonic flight. Perturbations {of each flow field parameter) due to
angle of attack, rate of change of angle of attack, and pitch velocity are also
computed., The force and moment coefficients are obtained by integrating the

appropriate perturbations in pressure over the body surface.

The above flow field capabilities have been delivered to the Research and
Technology Division in the form of magnetic tapes. A sample solution was
demonstrated on the Wright-Patterson AFB computer installation on June 30 -
July 1, 1964, The analysis and programming of this solution is described in

this report.
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SYMBOLS
v* coefficients
moment coefficient
force coefficient

speed of sound
material derivative

base diameter
differential distance along Mach lines

distance along zero yaw streamlines

&%),

function

normal force

enthalpy

reference length

Mach number

order of derivative of angle of attack or pitch velocity being
considered

unit inward vector normal to the surface indicated by its subscript
pressure

pitch rate

coordinate direction (Figure 5). For the two-dimensional problem,
this direction is identical with the y-direction shown in Figure 5.

gas constant

ix



=l

Ml
!
Ny

y*

coordinate directions (Figure 3)

unit vectors in the coordinate directions

entropy/gas constant

time

temperature

components of V in the R, w, ¢ directions respectively for the
pointed cone solution, and in the x, r, and ¢ directions elsewhere.
unit vector in r direction

magnitude of velocity in meridional plane

fluid velocity relative to the body fixed coordinate system
free stream speed

coordinate directions {Figure 5)

unit vectors in the coordinate directions

coordinate directions (Figure 2)

distance from x, y, z origin to center of spherical nose

unit vectors in the coordinate directions

compressibility factor

angle of attack

ideal gas ratio of specific heats

c2
P aps P

gradient operator
an indicator which is defined to be 8 = 1 for the axisymmetric case

and & = 0 for the two-dimensional case



o,B

=

nL & v

o
Subseripts

B

cg

Kronecker delta=1if o = 8
=0ifo#8

arbitrary small values (€ <<1)

flow direction

Mach angle

density

stream function

Angular velocity of the body

shock angle

body surface

center of gravity (center of rotation)

this subscript indicates whether the perturbation is caused by
angle of attack (j = 1) or pitch rafe (j = 2)

this subscript indicates the order of derivative of angle of attack
or pitch velocity being considered

normal to shock

Zero yaw

isentropic process

immediately downstream of shock wave

free stream

perturbations due to & and its derivatives

perturbations due to q and its derivatives

Xi
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1. BACKGROUND AND INTRODUCTION

Usually ballistic re-entry vehicles enter the Earth's atmosphere at some angle of
attack, As the vehicle penetrates to regions of increasing density, the magnitude of the
angle of attack oscillates and should damp out to very small values by the time peak
dynamic pressure is reached in order to prevent excessive heating and loading, The
rate at which this damping occcurs is dependent on dynamic damping coefficients in the
equations of motion. Unfortunately these dynamic damping coefficients, which are of
paramount importance in predicting peak heating and loading along a trajectory, could
not be adequately predicted at hypersonic speeds by analytic methods available when
this study was initiated (e.g., potential theory, Newtonian theory, small disturbance

theory).

The potential theory approach to unsteady supersonic aerodynamics has been ex-
tensively developed in the literature. Van Dyke (Reference 7) has clearly defined the
first order, and combined first and second order (hybrid) theories for simple shapes.
In these methods the boundary conditions are applied at the body and along a Mach line
originating at the apex of the body. Consequently the solution becomes invalid when the
Mach number becomes high enough for the Mach lines to coincide with the body. Un-
fortunately, for bodies of practical interest, this condition occurs at relatively low
Mach numbers, so that this method can only be applied in the hypersonic regime by ex-

trapolation or by assuming Mach number independence. Further restrictions exist in

Manuscript released by author December 1965 for publication as an RTD Technical

Documentary Report.



that the geometries which can be considered are limited, inclusion of unsteady boundary

layer effects is awkward, and frequency dependence is normally indeterminate.

The Mach number limitation encountered in potential theory can be overcome by
using hypersonic small disturbance theory, where the boundary conditions are applied
at the body and at the shock. This method, in conjunction with perturbation theory, has
been applied to the determination of the hypersonic dynamic stability of oscillating
wedges (Reference 8). This study has permitted an evaluation of Mach number and

frequency effects on the stability derivatives for the simple two-dimensional shapes,

Newtonian impact theory is quite useful in estimating trends with variation in body
geometry. However, when comparisons are made with experimental data, it is found
that the predicted levels are considerably in error.* In spite of this, it should be
possible to make semi-empirical modifications to this theory and obtain reasonable re-
sults, particularly in the case of three-dimensional bodies, since this is the only method

which can presently account for the influence of complex geometry.

Because of these limitations in previously available analytical methods for predicting
dynamic damping coefficients of bodies in hypersonic flight, an inviscid flow field
approach has been taken, and small perturbation {echniques have been applied to it, The

objective of this work is to provide more reliable analytical means of determining

*Reference 9 provides experimental data typical of this disagreement with Newtonian

predictions.



dynamic damping coefficients of pointed and spherically blunted bodies of revolution in

hypersonic flight,

Since the forces and moments acting on a body can be found by a simple integration
if the pressure at the body surface is known, it is apparent that the stability derivatives
will result if the appropriate derivatives of pressure are integrated over the body sur-
face. The flow field approach, with small perturbation techniques, provides these

derivatives of pressure.

Because the mathematical character of the equations governing fluid flow is dif-
ferent in supersonic and subsonic flows, different methods must be used to solve them.
For this reason, the flow field about a blunt. body has been divided into subscnic, frans-
onic, and supersonic regions (see Figure 1), A description of the solution used in
each of these regions for flight at zero yaw and in unsteady motion is given in the

present report,

Solutions for flow fields about pointed bodies of revolution at zero yaw and in un-
steady motion have been obtained by combining the solutions for the supersonic regions
(Sections 3. 3 and 4. 4) with solutions for pointed cones (Sections 3. 2 and 4. 3). These
solutions for blunt and pointed bodies have been used to provide flow field information

for a variety of shapes and flight conditions.
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2. THE FLOW FIELD SOLUTIONS

Two 1:.eports have been written explaining the unsteady flow field solutions about
pointed cones (Reference 1) and in the supersonic regions of any axisymmetric or 2-D
bodies (Reference 2), Many more reports have been written about the zero yaw steady
state flow field solutions (e. g. References 3, 4 and 5). The information provided in
these reports is compiled here along with additional work to provide a complete
description of the solution. Section 3 of this report describes the zero yaw solution.
Sections 4 and 5 explain the analysis of the unsteady flow problem. The remaining

sections of this report deal with programming of the solution and numerical resuits.



3, THE ZERO YAW STEADY STATE SOLUTIONS*

The General Electric (GE) flow field solution is capable of both real and ideal gas
computations in shock layers surrounding a variety of axisymmetric and two-dimensional

bodies, It is a numerical solution of the laws of conservation of mass, momentum,

and energy:
ve (#V) = 0 3.1)
PD—? + = vp=0 3.2)
%ts_ -0 (3.3)

and the state relations:

P _

& = ZRT (3.4)
S=8(r, T (3.3)
Z=2(p, D, Z=12Z(»r,H (3.96)

*Reference 3 provides greater detail on these solutions,
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p(~, S) and 3.7

=3
Il

h(#, §) (3.8)

The last five of these relations are in tabular form, for air treated as a real

gas in chemical equilibrium,

The GE solution also uses a parameter y*, where y* is defined as:

P 3
v* = = (a_P)S (3.9)

and is computed as a function of S and p, using the expression:

a

The coefficients a and b are tabulated as functions of entropy and pressure, Ref-

erence 3 gives a more detailed description of this parameter,

H it is desired to do an ideal gas calculation, Z becomes unity, ¥* becomes the
ratio of specific heats,* and the real gas tabulations (Equations 3,5, 3.7 and 3, 8) are

reduced to several ideal gas relations:

+For an ideal gas a = 0 and b = the ratio of specific heats,



p e L constant along streamlines (3.11)

—1-V2 + X P - constant (3.12)
2 Y-1 p

The boundary conditions imposed on the problerﬁ consist of the free siream con-
ditions upstream of the shock wave,* and the condition that no mass flows through
the body surface. Since the mathematical character of the governing equations is
different on opposite sides of the sonic line, the solution is carried out in a different
way in the transonic and supersonic regions of the shock layer, The solution in both

regions is carried out on an IBM 7094 computer,

3.1 THE TRANSONIC REGION

The computation for a blunt body is started in the transonic region, which in-
cludes the sonic line and a small part of the shock layef on each side of the sonic
line, A coordinate grid of streamlines and the lines normal to them is used, The
solution is a direct one, I is started by making an initial estimate of the shock
shape and of the pressure distribution at the body surface, The location of a stream-
line a small distance from this body is then computed (as well as the values of the
flow field variables on it), to satisfy the governing equations, This process of step-
ping to the next streamline is repeated until a new shock wave, which satisfies the

conservation of mass law, is reached. The shape of this new shock wave, as well

*Applied through the Rankine-Hugonoit relations,



as the pressures just downstream of it, are compared with the shape and correspond-
ing pressures for the initial estimate. New estimates of shock shape and body pres-
sure distribution are based on this comparison and on a general inspection of the
results obtained in the entire transonic region. This iterative cycle is repeated

until the estimates and computed values agree closely. * It is usually possible to
obtain pressures downstream of the estimated and computed shock waves to agree
within 2 percent, and to get the estimated and computed shock waves to coincide
within 0. 004 of the body radius of curvature at the stagnation point. At each step of
the iteration the choice of a new estimate of shock shape and body pressure distribu-

tion is made by the operator. All other iterative cycles are automatic.

3.2 THE POINTED CONE SOLUTION

When a flow field solution is needed for a pointed body, the supersonic program
provides it. However, the supersonic program requires a solution along a starting
line. This starting solution is obtained by approximating a small portion of the nose
of the pointed body by a pointed cone. The solution for a pointed cone is then obtained
by the method of Taylor and Maccoll (Reference 6), modified to provide a real gas
solution, if desired. This solution has been included in a single computer program
with the unsteady solution for the pointed cone (Section 4.3). A detailed derivation of

this solution appears in Reference 5.

*A guide to converging the zero yaw transonic solution is given in Appendix IV.



3.3 THE SUPERSONIC REGION*

The steady state solution in the supersonic region is carried out by the method
of characteristics for both pointed and blunt bodies, Three basic directions are used:
the flow direction (constant |, constant S) and the directions of the Mach lines, The

angles between the Mach lines and the flow direction are:

-1 1
+ B = gin (1\‘—[) (3. 13)

The Mach lines are the characteristics (in the mathematical sense) of the continuity

and momenfum equations, Changes along these lines are defined by Equation (3, 14):

as L . cotu dp
— & — sinugin § £ — = 0 (3.14)
dyg r PVZ dy

where § = the flow angle measured from the axial.

{ = the distance measured along a characteristic,

The + and - signs apply to the left and right Mach lines, respectively.

In addition to Equation (3. 14), the equation of state, the condition of constanttotal

energy, and the condition of isentropic flow along streamlines must be satisfied, The

*This Section is taken from Reference 3,

10



numerical soluticn is started from a line along which the solution has previously been

computed by either the transonic or pointed cone program.

11



4, THE UNSTEADY FLOW FIELD SOLUTIONS

4,1 DESCRIPTION OF THE PERTURBATION SCHEME*

The flow field about a body in flight is determined by the solution of the non-linear
boundary value problem stated in Section 4. 2,1. This boundary value problem is stated
in a coordinate system fixed in the body, and consequently, the motions of the body,
—{ég and ﬁ, appear as 'driving functions' in the problem. For the simple planar
trajectory considered here, the motions of the body are given in terms of two functions
of time, @ (t) and q(t), and the constant speed V _ = | i’.cg | , by equations (4.18). In
order to solve the boundary value problem defined in Section 4. 2. 1, it is necessary to
specify the two functions of time w«(t) and q (t). The flow field variables are then
functionals of the functions ef{t) and q (t) in that they depend on all the values taken on
by e(t) and g (t) in the interval from the initial time, t = 0, to the current time, t = tc
and are ordinary functions of position as given by the three coordinates, (R, w, ¢).

In the perturbat.on scheme utilized in this work, o (t) and g.g& are taken to be

=

small quantities on the order of el and €2 , respectively, which then become the per-

turbation parameters, with the substitutions:

at)y = ela(t) (4. 2)

- Vm .
afty = € aw (-—-—) (4.3)
L

*This section appeared originally in Reference 1,

12



the pressure, for example, will be a functional of the functions o (t) and q (t) and an
ordinary function of the parameters € and € It is assumed that p can be expanded

in Taylor's series in the parameters, € 1 and € g to give a series of the form:

P=P + €P + €,p,% ... (HOT.)

The coefficient, P, s is the pressure field produced by the body in steady flight at zero
angle of attack and can be found by established methods. The coefficients, 1 and p 9!
give the first order effects of angle of attack and pitching rate, respectively, and are
to be determined by solution of Equations (4. 21) through (4. 24). They are functionals

of the functions & (t) and (_1(t} and ordinary functions of the spatial coordinates., (In

Section 4. 3) it is shown that they can be represented formally by series of the type

n n-— -
R da = R\ da
= = = 04 ==
Py z Pin v i cos®=1p) 4 *Py AL +eeep COB P (4.5)

(and a similar series for p 2) where the p, , are functions only of the ray angle, w .
This solution holds after "starting transients' have died out, The coefficient, j 0

gives the effect of small yaw in the steady state. The coefficients, , ete.,

P1,1' P12,
give the effects of time varying angle of attack,

It is the coefficients, p, , and corresponding quantities for the other flow field

hn
variables, which are found as a result of this analysis. The method of finding them is
numerical and is described in the following sections. The pressure coefficients yield

corresponding force and moment coefficients which are dynamic stability derivatives.

13



4.2 DERIVATION OF THE PERTURBATION EQUATIONS*

4.2,1 Statement of the Boundary Value Problem in General Form

The inviscid flow field boundary value problem can be stated to an observer in a
body-fixed coordinate system, x,v,z, (Figure 2) by a transformation of coordinates
from an inertial system. Lamb (Reference 10), gives the appropriate transformed

continuity and Euler equations.

The continuity equation:

12

+ v-cﬁr’:o; (4. 6}

Qf

t

The Euler equation:

— - —
§-Y+ﬁ.V)$+2(ﬁx$) +V_l)=_‘.i_YE8.- ax{;cg+-fxis}- + {4.7)
ot o dt dt

—

(5 Xr)x 9.

The form of the continuity Equation (4. 6) is unaltered by the transformation. The
form of the Euler Equation (4, 7) differs from Equation (3. 2) in that the acceleration of
a fixed point in the moving frame of reference appears as a body force involving the

—t

vector velocity of the center of gravity, ch (t), and the vector rotation of the body,

*A more detailed derivation appears in Reference 1.

14



Figure 2, Inviscid Flow Field Boundary Value Problem

£3(t), on the right-hand side. The vector rotation causes a given fluid particle to ex-

perience a Coriolis acceleration, 2(6 X V), which is present on the left-hand side.

The continuity and Euler equations must be complemented by the energy equation

for the adiabatic flow,

— 4+ V.VS=0 (4. 8)

and an equation of state for the gas, here taken to be,

p = P, S) 4. 9)

15



The precise form of the relation indicated in Equation (4. 9) depends on whether the
gas is an ideal gas, a gas at chemical equilibrium, or a gas in some "frozen" composi-
tion. The development of the equations can, however, proceed without specification of

the precise form of the equation of state.

Equations (4. 6) through (4. 9) are a complete set of flow equations for the determina-
tion of the pressure, p, the density, p, the entropy, S, and the three components of
the fluid velocity (measured in the moving frame of reference), {;, for prescribed
motions of the body, {}cg and o] . In order to solve them, initial conditions at some in-

stant of time and boundary conditions at the body and shock, must be given.

As initial conditions, it is assumed that at t = 0, the field is the steady-state,
axisymmetric field produced by a uniform forward translation at speed V_, of the body

along its axis of symmetry,

At the body surface, the flow must be tangent to the body surface and the boundary
condition is:
V.n_=0, (4. 10)

B

On the shock surface,
F_(%y.,2,1)=0, (4. 11)

(which must be found as a part of the solution), the shock equations give the flow

variables as functions of the relative velocity of the shock and the free stream flow,

16



and the instantaneous unit inward* normal to the shock,

-~ t VF
n_ = I — Sl (4. 12)
B

The shock equations can be reduced to the following set of three algebraic equations:

=P V j
psts'- ® "Ne
2 _ 2
psts + ps—pmVNm+ P ? {4.13)
2
VI?B va
— T © 4 e——
b, P+ b=, po) + —
.J

These equations express, respectively, conservation of mass, momentum normal
to the shock, and energy, in a form which utilizes the result that the velocity com~-
ponents tangent to the shock are unchanged in crossing the shock. In these equations,

VN o 18 the component normal to the shock, of the relative velocity between the shock

and the flow on the upstream side of the shock, and V__ is the corresponding component

Ns

on the downstream side of the shock.
The flow velocity on the upstream side of the shock is given by:

Vo= =Vt (T x Q) (4. 14)

*Either the + or - will be used in equation (4. 12), whichever provides the inward normel.

17



and the component of shock velocity along its normal is given by:

1
—_— o QF
5122
|

Therefore, VN@ s 18 given by:
dF
5
. . at
V. =V »n_+ (4. 15)
Nco @ ———
R
8
AF
8
— — - - b 4 -
=-V_.n _+(x Q) n_+ 03t
®t Y

If Equation (4. 13) is presumed to be solved in the form*

:

Pg = Py (Ver Pos Py )
o =P (Vb ) ) (4.16)
Vs = Vne = AVN = AVN(VNm.pa,. P, )

o

The first two equations of Equation (4. 16) give the pressure and density down-

stream of the shock explicitly in terms of the function giving the shock, Fs, and the

*There are numerous procedures in the literature for obtaining such a solution numeri-

cally. Reference 11 presents the procedure used in the subsequent numerical work.

18



motions of the body, v cg and by use of Equation (4. 15). The third equation of
Equation (4. 16) gives the three velocity components of the flow on the downstream

side of the shock by further use of Equation (4. 17):

- - - -> o
V==Vt (rx @)+ 8Vyn, 4.17)

4.2.2 Reduction of the Boundary Value Problem to Perturbation Form

The equations and conditions of Section 4. 2, 1 define the boundary value problem
for determination of the inviscid flow field about a body whose motions, {'fcg and El .
are known. In this Section, the boundary value problem is reduced to a perturbation
form applicable to bodies of revolution which move at constant speed, chl = const.
=V_, in such a manner that the z-axis is always parallel to a fixed reference direc-

tion. *

For the type of motion just described, tiie vector velocity and rotation can be

written in terms of two time variable functions, «(t){the angle of attack) and q(t):

- — —
ch =V, (-X cosQ + y sina)
(4. 18)
- —
Q=qz

*Although this analysis does not employ stability axes, the force and moment

derivatives are conventional.

19



To put the problem in perturbation form it is assumed that ¢ <<1 and %,Ifo <<l1,

and ¢_ which measure the magnitudes of wand al. are introduced by

and parameters € 9 Vo

the Equations:

G.=€1U.
(4. 19)
L _ -
and"r— 62

oo

In Equation (4. 19), a (t) and gq(t) are assumed to be of the order of one in the time in-
terval of interest, and € and €2 (which are constants) are agssumed to be much less
than one. The flow field variables can be regarded as functionals of the functions q(t)
and q(t) (in the sense defined in Reference 12) and ordinary functions of the perturbation

and ¢ .

parameters ¢ 1 9

In the perturbation scheme, it is assumed that each flow field variable can be ex-
panded in fI‘aylor's geries in the variables, El and € For example, it is assumed

that the pressure can be written in the form:

p = po (XI y’ Z) + elpl(xly,z!t) + ezpz(xiy,ztt) +. 3 2 ) Huoach (4' 20)

These expanded forms are then substituted into the equations defining the boundary
value problem and the resulting set of perturbed equations is separated into a number
of sets of perturbation equations by the usual process of equating ferms in like powers

of € and ¢ (Only the three lowest order terms are considered).

5"
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The boundary value problem so defined for the lowest order coefficients, po, po,
S0 and ‘}o’ is, of course, the problem of determining the steady-state, axisymmetric
field produced by the body as it translates with constant speed, V_, parallel to its

axis of symmetry. *

Substitution of Equation (4. 20) and like expressions for the density, entropy, and
fluid velocity into Equations (4. 6) through (4. 9) to obtain the two sets of equations gov-

erning the coefficients of ¢ , and £ yields,

1

3p.
—J . (0.V V) =0-
3t + V (DOVj + pjvo) =0; (4' 21)

3{;- ij Vp

] ~-»

- - - o .
——-+(V0-v)vj+(vjoV)Vo+T-
o

—— pj=Fs
2 1 j=1,2 (4. 22)
o]

3t

38,
— V. .95 + V.« 98, =0 (4. 23)
at Vo VBT V0 Ve = '

2 2
Pj=Cy 05+ €, 8 (4. 24)

where:

*The solution of the zero yaw field is described in Section 3.
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The boundary condition at the body surface, Equation (4. 10), separates into the two
aets of conditions,

- -
v

= = 4, 25
i*"B 0, §=1,2) ( )

4.3 THE SOLUTION FOR THE POINTED CONE*

For the conical geometry, the equation giving the shock, Equation (4. 11), is most
conveniently expressed in terms of the spherical coordinates, R, w, ¢, (Figure 3), in
a form giving the ray angle, w, as an explicit function of the radial coordinate, R,

meridional angle, ¢, and time, t,
Fy = Wg(R,®,t) -w=0 (4. 26)
The perturbation form for the shock is then (to the three lowest order terms),
W= =w'5‘3+e:1ws1 (R, cp,t)+ezw82(R,cp,t), {4. 27)
where:

W, is the constant shock angle from the steady-state, axisymmetric, conical flow

solution. The unit inward normal to the shock is given by:

—
Row ., o dw
8 Z ) 3R sin W, 3 )

*This solution is given in greater detain in Reference 1.
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Figure 3. The Spherical Coordinate System

and the flow velocity on the upstream side of the perturbed shock is:

- — —
= u U, @ o o

Ve R{ m0+€1 1+€2Um2} + w {v 0+elv.1+ezv 2}+
—
o {GIWU:)1+ ezwmz}

where:
U = Vo C08 wso W
Upl= -V (X sin Wgy o8 O + Wgy 8in Wge) 5

Ue 2 =§i"i° X cg sin W, o8P — Vo Wy g 8in Wy,

23
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V.0 = — V. Bin Wgy

Vel ==Vo (4 cos Wgo cos P + Wg) coB Wgg)
Ve 2 =2e— (X, COS Wgg - R) cos P —Valy cos Wg,) (4. 30
g Cont'd)

L
Wel =0 Vy 8in @

Wo 2 ==—— (RcosWg, — xcg) sin ¢

The consequential perturbation form for the normal component of relative

velocity between the upstream flow and the shock is obtain from Equation (4. 15) as:

2
Vo™ Vo * E € VX (4. 31)
=1
where:
dw_, Jw .
= _,._SJ 8] -—_— =
VNj umoR yal + R 31 vmj,] 1,2

Substitution of Equation (4. 31) into Equations (4. 16) and (4. 17) gives the perturba-
tion forms of the pressure, density, and velocity components on the downstream side
of the perturbed shock. These resulting expressions must be equated to expressions
for the corresponding variables in the field, evaluated at the perturbed shock, to

obtain the proper boundary conditions for the perturbation Equations. The resulting

conditions are:
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op, op_ —
p; ®,vs0, 9ty wgy 4+ ﬁ;’ VN
w =g, VNe= - V.0
apo apB

p](R, wson ®,t) = -W ij + 3V VNJ
N

= A" =V
W= W @0
8o Ne 4.32)
auo dv, j=1,2
— — - — — N
Vj R, Wgg, 0, t) = (umj R+Vooj w +ij ©) -| - R + — w sj +
3w 3w
=50 W=wgg
A Wgy 1 B w AV
8] —» g — N — —
- — 5 -— ; w
AVN GV Py P )\ R3E snung 30 0 V. VNj
VN@,:: - Voo

In Equation (4. 32) the partial derivatives with respect to y arise as a result of
evaluating the varjables in the field at the perturbed shock. The partial derivatives
with respect to VNm are to be obtained by differentiation of the expressions indicated

in Equation (4. 16); expressions for them are given in Section 4. 4. 4. 1,

To complete specification of the boundary value problem for the perturbation
variables, it is necessary to give the initial conditions at t=0. Corresponding to the
assumption stated in Section 4. 2. 1, this condition is that the perturbation variables

vanish at t=0.

Equations (4. 21) through (4. 24) together with the boundary condition at the body
surface, Equation (4. 25), the boundary conditions at the shock, Equation (4. 32), and

the initial conditions, define two separate linear boundary value problems for the
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perturbation variables. In these problems, the "motions" of the body, & (t) and q(t),
appear in inhomogeneous terms and play the role of "driving functions, " Because of
the linearity of the problems, the solutions for arbitrarily prescribed functions, o and
g, can be divided into two parts which can be called the particular solution and the
complementary solution. The particular solutions are defined as solutions of the in-
homogeneous problems which reduce to the trivial solution (all perturbation variables
equal zero) when « and q are identically zero; the complementary solutions are defined
as solutions of the homogeneous problems (obtained by setting & and g equal to zero)

which cause the complete solution to satisfy the initial conditions,

On physical grounds, it is known that the complementary solutions must "die out' in
time, and their decay time is some nominal multiple of the time it takes the body to move
through its own length, % . Subsequent to this decay time the flow field about the body
is giveh by the particular solutions alone, It is, therefore, only the particular solutions

which are of interest here,

The problem of determining the particular solutions of the boundary value problems
for arbitrarily prescribed functions, a(t) and q(t), can be approached in several ways,
e.g., by use of the Laplace transform. The approach taken here is one which reduces
each problem to a problem of solving an infinite sequence of sets of ordinary differential
equations having the ray angle, w, as independent variable, The substitutions which

accomplish this reduction are all of the form:
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pl (-st!cp!t)= Z pl,n(w) G""'
n=o

n n—
22 cos P
o at"

R

(4. 33)*

In writing these series, it is assumed that c(t) and g(t) are analytic functions, Also,

it is recognized that there is no a-priori guarantee that these series are convergent

for any given functions « (t) and g(t).

The two infinite sequences of sets of ordinary differential Equations for the vari-

ables, pj’n(w), etc, , which arise from the substitutions of the expressions represented

by Equation (4, 33) can be written in the common form, (j=1,2), (n=0,1,2,3...).

d
a W .
T 1Co7in* Vo Py o }+‘“”2+53.2"po“3.n+“o Py, BIY*
w, =@

Po¥i,n " "4,n

du P.
v j'n—vv + @+ A, )[u u, P [ L =y
° quw o j,n 1,2\ "0 j,n o i

()

dv, dv 1 d P d

v Lo L. % . _ pj, j.n Py N
i 2
o dw o j,n o j,n j,n da 0 dw 0 dw
) 0
+ 5, v =G

(+ 85 4,y 0 =G0

dwj n pj
v +tu.w + v W, cot W~ . i + (n+6 =
° gu °%,n * Yo¥i,n S emu (0+dy PJu p =7

o

de 1
v .+ (n+4 u_ S, =2
° 4w ( 1.2) o J,n j,n

2 2
Pj,n " Co" ?j,n* % Sy,n

*The "zeroth"

0—

a - s
derivative, _3-(;5-" is equal to @, by convention,
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(4, 34d)

{4, 346)
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where;

= e (1= Vv w
ﬁj.n Ao, n " =%, n-1 50

2
=-(1-8 V.U -— 6. Vo siny: .
Yin 1 o,n) @y ne1 " %1,n 04,1 smu;+éo’néj'zvm(2vo+vmsmw)
2
= - V - _
Gj,n (l'éo,n) wvj,n-l Gl,an ('5j,1 cosm+6j’2)+60’n6j’2Vm( 2u, +Ve cosw)
2
== =5 Va v
ﬂ’{j,n a o,n) wj,n—1+51,n o (éj,1+6j,2cosw)+

: 2
0,0 6j,2 {2 Vo 1y cO8 W=V, 8in W) -V }

’Jj,n =-@- éo,n)vm Sj,n-l
The boundary conditions for these Equations can also be written in a common form,
At the body, w=wp, the condition of tangency of the flow becomes:
vj,n=0at wW=wpg (4. 35)

At the shock, w= wg,, the perturbation variables, Pj, ns etc,, are related to

the quantifies, w j,n which describe the perturbation in the shock shape by:

3p ap
={-—=2 + (n+1+8, )V cosw — w, +
Pj,n dw|w = wy n j, 20 ' 80 BVN v j,n
G Nw="Vm0
aps (4.36a)
j,n AV v.
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‘ BDO sz

p, = 4~ + (n+1+8, [)Ve cos Wy, — W, o+
Nm VND(::_
Voo (4. 36b)
j,n 3V
2
Pin_Co
S' T et .__2 p_ (4. 360)
]!n eo eo J’n
Uy~ (¥ 146, ) BVREvGg Py P) ) =8 16y Ve SIR s (4. 36d)
av AV,
o N
V. ={-u 4 - (n+1+5 ) VocosWg, —— W,
jn % 54 J2 v J,n
=U)Bo Neo VN°°= "'Vmo
(4. 36e)
BAVN
- & _cos +8, + A =
éo’an [ i1 wso ]:1] 5N aVN v
@l No= -y 50
AVN (-v wor Poy P}
= - w .3
",n CTRT jon * fo,n Ve (8, % 85,5 C08s0) (. 360
where;:
= w -
* jgn 50'nvm (6j:1 cos SO+5j|2) ¥ (1 50,!1) Ve Ulen_l

Equations (4. 34) are ordinary differential equations with variable coefficients, which

are determined by the solution for the axially symmetric conical field, ug,,v4,po and pg.
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For j=1 and n=0 the equation is equivalent {o those derived by Stone (Reference 13) for
the problem of cones at small yaw, For either value of j and any value of n (except n=0),
the Equations and boundary conditions are complete, provided that the solution for the
same value of j and a value of n which is one less, has been previously solved, For
n=0, the equations and boundary conditions are complete without a knowledge of the
solution for any other value of j and n, For any values of j and n, the problem is a
two-point boundary value problem in which the boundary conditions contain an unknown

constant, w The eguations have a singular behavior at the body surface where v, = 0.

jym*

4,3,1 The Numerical Solution of The Pointed Cone Problem,

The numerical method of solution of the problem is based on manipulated forms of
Equation (4. 34a through f). The objective of these manipulations is to reduce as much
as possible of the numerical work to performing quadratures, and also to provide a

convenient method of handling the singular point at the body surface,

The manipulated forms of the equations are:

from Equation (4. 34e),

o
S. o
s, =[-L2Y) ™M™ LR 4, (4. 37)
o \;m o o _—
0
w:wso 50 o °
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and
m=n+(§a2

+J

from Equations (4, 34b, c and e):

W
G,
H j,n wm . zbm . oyj,n 0 jJ,n OJJ,H
jsn m o) (8] n
Yo v Y
Wgo o0
w=w
S0
and
du.n y.n-mH +mT 8,
Joo=—bl . may, = L AL °J
hn  dw is
0
where;:

H = BRou w4
Jsn fo) 0 j,n

v, +T8, 3
o j,n o j,n

from Equations (4, 34d) and (4. 39}, and (4. 40},

. uj,n m+l
u, w, sin w +—— i}
N L 1,n m+1 o
j.h jon  (m+1) sin w b m+1 sin w
o w=w
so
w
. H ~TS8, +v J,
m+l ”],n sin o + i,n oj,n oj,n
) _— dw
o (m+1)
sin w v U m+1
w o0
80

(4, 38)

(4. 39)

(4. 40)

(4. 41)



and, from the preceding Equations and Equations (4. 34a and f),

2
d u, 1 dA du (m+1) T
——zl—dw i + Buj'n 3 (4. 42)
p 1--2_1] singy
o
c 2
Q
where:
\% 2 " uv
.0 . 00
A=p l- — (sin w) EXP |- (2m+3) — dw (4. 43)
0 2 2 2
C C -v
o o
80
-1 C 2 -u 2
B= + (m+l)(m+2) ——2
2 2 2
Vo Co - Vo
1--—2 sin W
C
o
mel d pouovo sin ¢ |
\'s C
po 1- '—0—2 sin w 0
C
o
dl"l
= 1w I‘2 (4. 45)
with:
posinw Vo2 povosinw ,::.OT':.H:0
1"1 = P 1- 5 Jj n 2 H, + vosin w 3 Sj n
C ' C i C '
0 o o
(4. 46)
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_ _ _ . o o
T, Z’E},n oowj,n (m+2) sin w H +

Cz j.n
0
9 4, 47)
puv. J p T +e
0 00 jyn -u 00 © S
C 2 (m+1) o c 2 },n
o o
Equations (4, 37, 4. 38, 4, 39, and 4, 41) give S, H, , J, and W, as linear

j,n® i, m’ Tj,n jsn

functions of the shock perturbation parameter, w i.n by substitution from the boundary
’

conditions, Equation (4, 36), That is, they give the variables in the forms:

s -s@ , 5@ 4

jan i,n i»n jn

g =a® + 5@ (4, 48)
i»n j,n j»n j,n

J =J.(1) + J,(z) w and

jsn j,m i»n j,n

W, =W,(1) + w(z) W,
i,n j,n j,n j,n

where the superscripted variables are known functions of w (or are known constants in
some instances) which can be determined numerically by quadratures. With the super-
scripted variables in Equations (4, 48) known, the quantities 1"1 and 1"2 which deter-
mine the right-hand side of Equation (4. 42), are also known in the sense that the
superscripted quantities in the expressions:
1‘1 = I‘lm + 1"1(2) wj,n
(4. 49)

- 1) @)
1"2—1"2 +1"2 wj,n
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are known functions of w, Thus, Equation (4, 42) is a second-order ordinary differen-

tial Equation of the form:

da, 1 dA du.
=t @ —
dw dw

(4. 50)

+ Bu, =T Tow,

where:

Ty and 1'2 are known functions of w, and wj n is an unknown constant, The solu-
L]

tion of this Equation involves two additional constants of integration, K1 and Kz, and

can be written in the form, *

u, =u, +u, w _+g K +{ K (4. 51)

where:
¢ . is a solution of the equation cl2 ¢ 1 da df .
an Jin+_ — ],_[l+ B(; =0
2 A dw duw j,n
dw

satisfying the conditions Qj n(wB) =0, d¢

0= - 2u (@p)
dw _
w=wg
(For m = 0, the solution isl; =v )
l,o o
W (4, 52)
dw
g =0 f
].n J.n Agz
w j,n
8O

*This form is obtained from the standard form for the general solution of a second
order ordinary differential Equation - e, g, as given in Reference 14 by performing

an integration by parts,
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k) _ _ (k) k) (k)
jn ~ 7 (D) gj,n(gj,nrl ) vl 1 -g 1. | 59
=W i,n g j,n ¢
here: Y,
where ) ffdw
I(k) T (k) dg]sn gg (k) wSO
g 1 \Tdw T CTn ) - g, T e dw (k= 1,2)
wSO W
€dw
I(k) - / T (k) dgj!n gg r ﬂ{) .w/S‘O
¢ 1 dy in )T bj,nI‘z © dw k=1,2)
“so
u
f - emey —s
v -C "~ °
o o

The perturbation variables, Vi,ne can also be expressed in terms of the three constants,

wj o Ky and K,, by use of Equations (4, 39), (4.48), (4,51) and (4. 53), '

(1) 2 K d
v, =wv, +v() W + 1 gj,n+K2 dgi,n
ji.n j,n Yjn Tj,n (4, 54)
(m+l) dw (m+l) dw
W
where:
£ dw
(k) dg e vy g ®
= - (k) j:n 1 j,n
v, . T + Y 1 R
]’n J!n 1
W= dw A (m+1)

The Equations, as writfen, contain several limiting forms of the type 0x= and ©-=

as the body surface is approached. With one exception, Jj n(k) , these limiting forms have
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finite values and the final results for the perturbation variables are all finite at the body

surface, The following limiting forms are encountered.

1. Equations (4.37), (4.38), and (4. 41) contain terms of the type I= f '”’

where m # 0 (for M=0, F=0 in all cases) and F (») is non-singular at the body

w F
surface. As the body surface is approached qjom-*o and f (m)m dw |-+, How-
U'}so Vowo

ever, use of L,'Hopitals rule and the equations given in Appendix II gives lim I =
w-—uw

F (u:B)
muD(UJB) ’

These terms are handled numerically by use of a quadrature
formula having the same singularity as the integral,

2. Equation (4, 39) requires division by zero at the body surface. For m= 0, the
numerator of the fraction is identically zero so the limit is zero: for other
values of m the limit is not finite. However, this infinity does not appear in

the subsequent numerical work as explained in items 4 and 5.

3. Equation (4.52) for g. . approaches the form 0 X « at the body surface due to the

j,n
boundary conditions imposed on j,n° The limit ig again finite and is:
1

(wg) = (4. 55)
2u_ () A (o)

gj’ n
The first derivative of gj 1 which is needed in Equations (4. 53) and (4. 54), ap-

proaches the form « ~ = at the body surface and the finite value of this limit is:
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w

B
dgj n - 1
: dg, 2u - __Bdw
W = jyn dw A - i,j
W= 80 N
80
4, In the computation of u;lz ,» (Equation 4. 53) integrals of the form:
w
fB
I= ® Jj,n dw, (4.57)
W
80
where:

@ is free of singularities, are required. Although J in is infinite at the body

surface, these integrals are finite. By use of the following expression for J,

I
(equivalent to Equation (4. 39)).
dH'n-—T clS,n_G‘r,n
__].:_. o ]! ]s , (4. 58)
g = @ dw
Ln u
o

and an integration by parts, the finite values of the integrals can be obtained

numerically from Equation (4.59):

=] -2 (T S, -H ) = (H, -T 8, ) (4. 59)
u o j,n j,n u j,n o j.n
0 o
w=u
80
w
T
Al o®) p 4 feY Tn®| L,
j,n dw} u j,n dw u u,
W
S0 w
(k) f £dy (k)
T, e Weo o - J, n
5. At the body surface, the term —— et appearing in Equation (4. 54),
A (m+1)
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assumes the limiting form = - =« (except when m=0). However, when the ex-

k
pression for 1'1( ) arising from Equation(4. 46) is substituted algebraically into
this expression, the infinities cancel without the application of L'Hopital's rule

to give a finite result.

The numerical solution of the problem proceeds in the following order (the axisym-
metric conical flow solution is assumed to have been pre-computed.

1. Compute S 1(11) and S 1(2:) from the formulas which arise from substituting the

boundary conditions at the shock, Equations (4.36a, b, and c¢) into Equation{4.37).

(1) and H(z) from the formulas which arise from substituting the

2, Compute HI,O 1,0

boundary conditions at the shock Equations (4. 36a through 4. 36e) into Equation (4. 38).

(1) and W(z) from the formulas which arigse from substituting the

3. Compute Wl,O 1,0

boundary conditions at the shock, Equations (4. 36d and 4. 36f), into Equation 4, 41}.
and d(l »0 as described following Equation (4. 51), using finite

dw
difference methods when m # 0.

4, Compute Cl o

5. Compute g o and d g1,0 from Equation (4, 52) and its derivative.
’ dw

M (2 [

6. Compute Ig , ¢ (2) and the remaining factors present in Equation (4, 53).

and I
£

1)

7. Compute v g 0 and vl(zz) from Equations (4. 54).

8. Compute the constants, w 0’ K 1 and Kzf from the boundary conditions,

1,
Equations (4.35, 4.36d, and 4.36e) and Equations (4.51 and 4. 54),

9. Compute u from Equation (4. 51), Vi from Equation (4.54), S1 , H

1,0 L0 1,0

and W 1.0 from Equation (4. 48}, Y10 from Equation (4.41), Pi o from Equation

(4. 40) and Pio from Equation (4. 34f)
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10. Repeat the preceding sequence for n=1, 2, 3,.. nmax, and for j=2, n=0, 1, 2,...

nmax to generate as many perturbation coefficients as desired,

4.4 THE SOLUTION IN THE SUPERSONIC REGION*

4.4.1 The Coordinate Systems,

The coordinate systems used in the unsteady supersonic solution, are shown in

Figures 4, 5, and 6,

cg

Figure 4, The Coordinate System and Angle of Attack

*This section appeared originally in Reference 2,
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Figure 5. The Cylindrical Coordinate System
The x direction coincides with the body axis. The y axis lies in the plane defined
by the x axis and the vector direction (‘?cg) of the velocity of the center of gravity.
The z axis is in the direction which makes the x, y, z system orthogonal and right-
handed. The r and ¢ directions lie in the y-z plane. The x, r, ¢ system is an ortho~

gonal cylindrical cocrdinate system.

The flow at any point in the field can be thought of as being composed of two com-
ponents: V which lies in the meridional planes (x - r planes); and w which is normal to
the meridional planes. The flow direction in the meridional planes will be called 8,
and the two components of V in the meridional planes will be labelled u and v. These

quantities are illustrated in Figure 6.

40



=

Figure 6. The Velocities in the Meridional Plane

4.4,2 Governing Equations

The Equations which govern the unsteady flow of an inviscid, non-conducting gas
Equations {4.21) through (4.24), are wriiten in the triorthogonal coordinate system de-
scribed by the following unit vectors:

a unit vector, J, in the direction of the projection of the velocity vector (% in
the meridional planes

—-
-
o =X

=X COS 8+;sin8 (4.60)

<|=

-
+ r

<le

-

a unit vector, n , hormal to zf and also in the meridional plane,

- -+ V = 1 - e
=-X— + r — =-x8i + 4.6
n xv 7 n 8+rcosf (4.61)

and a unit vector, t,; , perpendicular to the meridional plane (axisymmetric case only).
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In this coordinate system, with the velocity vector expressed as
=ved+w D

the governing Equations become:

Continuity Equation:*

dip V
E 61 - ) ( +p. V ) (po O)
L jyn-1 % o j,n JLyn o +Bj,n dno
do, da 5pV 8, cos @
+—:—dg-(po J,n)+pV 3’n.-pov g_n ° , 990 Jn
® dn ° I dJ r
0 °
de sV, ,te V)
sV, +p, V) _ %4 01D BBO g oy
o j,n "j,n o dn r 0
o
*ok
The three components of the momentum Equation:
dp dp dv dv
V_°° @ ao,n) p()Vj,n—l + J,n +8 __..0 + poqo g povoaj,n __..._0

L def 10 a4 ded dn

+ (pV_ + p F
o' 3,n * Vo%,n dzsf o j,n

‘%(1-6 )V o 8 # L0 g © 4 ov? I ELL

o,n o o jn-l dn j,n 00 i, n
0 ded def dn

2 dBO
+ 2pVV +V p, =g G,
odhn Yo Thml g oim

*The symbol 6 is defined to be
6 = 1 for the axisymmetric case
= () for the two dimensional case.
**Equation (4. 66) does not apply in the two-dimensional case.
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dp, dw, sin @

VCD 1 ]n Jn o
— [ 1- + 3 + * -
L ( ‘50,11) B%in1 T o TP Ve T tPVoWin T Py H;  (4-66)
d.of
o
The energy Equation:
V ( de n dSO
= 1_6 ) S. + V 2 + 9 _—= 0 (4. 67)
L o,n jyn-1 0 d‘Jo i,n dno
and the state relations:
3p op

= — 4+ = 8

Pin~ 3 Pjn " 3§ "in (4.68)
dZ 3Z
Z, = — p, + —— 8, 4,69
jyn- 3p Pjyn 38 j,n (4. 69)
"ot 5o + 35 (4.70
ja” 3 Pin T 38 Yy 0
1 3Z DZ

= - _— - —_— *

Tin Z Rp P; a7 P n (ZORTO*‘RTOPO ap) S (RTOOO as) (4.71)

The terms F]_ n? Gj n and Hj n which appear in Equations (4.64), (4.65), (4.66)
] L ]

are acceleration terms resulting from the fact that the coordinate system is moving

with the body. They are the components of ﬁj’ Equation (4.22) and are:

= - ' for j=1
Fj,n Gl,an sin 90 cos ¢ for j

= 6, Veosin 90 cos @ + 51,n [I‘ cos 90 - (x—xcg) sin 90] cos ¢ for j =2

a,

* Equation (4. 71) is derived from the equation of state by differentiating with respect
to the appropriate motion.
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G = - 51,n vV cos 90 cos ¢ for j = 1

- - - - 6 i =
Go,n [ZVO V_cos 30] cos 61,n [(x xcg) cos 0+r sin 90] cos ¢ for j=2

Hj,n = Gl,n V, sing forj=1

& [2 Vo cos BO-VG}] sincp+61

o,n n(x—xcg) sin ¢ for j=2

The following Sections will combine these equations with the boundary condi-

tions and prepare them for numerical solution.

4.4,3 Removal of Dependence on Meridional Angle*

Each of the perturbation parameters, pj,n’ pj,n’ etc., is a function of the three
variables, x, r, and ¢, the time variable having been removed by means of the per-
turbation expressions Equation (4.33). Each of the perturbation parameters can be
expressed as a Fourier series in ¢, Before doing this, however, certain symmetry
properties for an axisymmetric body in unsteady motion should be noted. For motion
about the z axis; i.e., the angle of attack and pitch motions, the following symmetry

relations can be deduced at any given x and r:

forj=1,2andn=0,1,2,3...

n n n
dey dg d g;j
P. =" 'v] =p = "r-@] =p,. = T t-1p (4. 72)
J,n dtn n,j dtn J,n dtn
dﬂ d‘n dn
a- a-
v [=e)=v [(De-w) =v, [ - —Fa-e (4.73)
1R gt DA g J,n dt®

*This section does not apply to the two-dimensional problem.
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Identical relations exist for all perturbation parameters except wj 0’ for which
;|

the following is true

n

d n
w % d %5 ar
; — o)=-w, S— Y
I,n dit ® jan gt P wj,n - aj , = (4.74)
dt?

Consideration of Equations (4. 72), and (4. 73), and (4. 74) leads to the conclusion that
if the perturbation parameters are expanded in Fourier series, it is possible to ex-
press each parameter with either a sine or a cosine series, None of the parameters
requires a complete Fourier series, i.e., they are either even or odd functions.

For the pitch and angle of attack motions (j = 1, 2), the Fourier series expansions

are:
p_],n = § : Pj,nlmcos mo ji=1, 2
m=1
w
) = v CcOoB m n=01,2, ..,
Vin m2=:1 Vin,m %% B ' ’

{4.75)

etc., except for the meridional velocity which requires a sine series:

[ ]

w, = 2 : W sin m j=1, 2
J’n jln!m cp ]
n=0’ 1’ 2' Ol'm

The purpose of expanding the perturbation parameters in Fourier series is to
eliminate the ¢ - dependence from the system of perturbation Equations. This is
done by substituting Eguation (4. 75) into Equations (4. 63) through (4. 71). Before

doing this, it is useful to note that no terms with m greater than 1 are present either
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in the governing equations, or in the boundary conditions which are applied to them.
The absence of terms with m greater than 1 in the governing egquations and boundary
conditions means that all the Fourier coefficients ﬁj,n,m’ vj,n,m! Wj,n,m- ete. ,
except those for m = 1, can be set equal to zero. Because this leaves only one
non-zero term in each of the Fourier series expansions (Equation (4. 75)) the sub-
script, m, will be dropped from our notation. Substitution of the Fourier series
expansions into the governing Equations, Equatiohs (4. 63) through (4. 71) results
in the following system of Equations. The results of this substitution are the

same for both values of j. These equations apply to the axisymmetric case only,

hence § has been set equal to unity.

dip v o W
Vo _& " +i_ [p_ + 0 ]+'é' (00)+ o J,n
BN ( o,n)pj,n-l d‘do oVj,n p],nVo j»n Y T
0
dﬁj g _ cos B _
- — + B, 4,77
povo dn poVo 0 j,n po Vo r “j,n ( )
o o '
dg gin 9
—m— =7 - + " h =
¥ dno (povj!n innVO r (po‘vlsn pj nvo)
dp. d - dv dv_ _
Vo (1-6 ) oV n-1 -7 LA 4 Po ej RERA LT, Po Vo — j,n
TN oM O g, Ml gy By b
0 (1]
dVv, — dv, — —
+p - q, +V o =p F, (4.78)*
o d‘éo 3n o dd J,0 o Jn
0

— —_ 1
j,n’ G],n and H],n are (cos qa) times F],n! G],n and H].’n respectively ,
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V"“(l—é )DV 8 g ¥ - % 4oy L —
- ) o0 §,n dn Jyn 0’0 jan
1, d’do qdo dno
9 de -
+H2pa v, +v'p ~7 =0 G (4.79
o o'j,n o "j,n}] d - o j,n - 19)
P, dw, PV
VQ 1- ‘-v- - J'n + J,n + o0 si —w_ = ﬁ 4.80
T( 6o,n)pn jyn-1 r FJoVo r meo j.n po jsn ( )
0
v ( _ dsTj I
Y= J1-5 S +y |42 + 85 2 (4. 81)
L o,n) jan=1 o] jon gy =0
d'do 0
e 2
— - dp — ap 1 - 0 =
= il _— - — 4.82
p].n p]:n ap + Sj'n 35 C 2 pj!n C 2 j,n ( )
) o
- - ah -~ dh
= —ra— +.S — 4-83
in Pin 3 ° Tj,n 38 %59
- 1 | 3zZ\ - dZ
Tj,n B ZORpo pj-n— pj,n (ZORTO +RTt:>'30 a—p)- Sj’n(RTopo S_f';) (-84

Equations (4. 77) through (4. 82) are projected onto the zero-yaw characteristic
grid and form the basis of the numerical solution. * Equation (4. 83) is helpful in
applying the boundary conditions at the shock wave. Equation (4. 84) is used to com-
pute the temperature perturbations after the pressure, density, and entropy perturba-

tions have been calculated. Since the zero-yaw flow field parameters appear in these

*The reasons for projecting these Equations on the zero-yaw characteristic grid will

become apparent in Section 4. 4. 5 of this report.
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equations, it is apparent that the zero-yaw problem must be solved before the pertur-

bhation flow field is calculated.

4.4.4 Boundary Conditions at the Shock Wave

The pressure and density just downstream of an oblique shock, as well as the
change in magnitude of the component of velocity normal to the shock, can in general
be expressed as functions of upstream pressure, density, and normal component of

velocity:

P = FolPews Pos VN (4. 85)

VNS_V =F(peo:pmvv )

N, 3 N

In each case the only argument which is dependent on the perturbations in the motion
of the body is Vi . * The Taylor series expansions of Equation (4. 85) about their
o

values in the zero yaw field then are:

ZE aF v, d o
- o
p F (p ? p ) N ) + . n

vV n dt
n Ncc d (d aj)

(4. 86)

- v ZZ -
Ps=Fy (P P s N_ )+ n n

) 1 BV d(daj) dat
Ne at"

*The velocity Vi, must be given relative to the shock wave.
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dav d

oF, N, i (a88)
iy -V =Fg @, Pur Vy )+ZZ o wh (cont. )
S ® *o i n 3V ( CLJ')
N_ d =
dt

Pgs Pg, and VNS are the conditions which exist just downstream of the perturbed

shock (point s in Figure 7).

A

PERTURBED SHOCK WAVE

ZERO YAW SHOCK WAVE

BODY SURFACE
(73

Figure 7. The Shock Wave Perturbation

Since the present calculations are being carried out on the zero-yvaw grid, the boundary

conditions are needed at point 3, rather than at point 5. The pressure and density at

point 3 are given by: n
=p - 32 2 R o
P3=Pg~ 37 &L 5 = (4. 87)
J n J»n

dt
where R s is the value of r at the shock wave.
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and

4% ) DL
= - 4, 88
p3 ps ar Rs n ( )
j n b

,n dt

From Equations (4. 86), (4.87), and (4. 88)* it can be concluded that:

aFl vam apo =
jen T3V n T 3r R 8, (4.89)
N d q. l,n
dat”
and
an dVNm apo
3. = - R (4.90)
j,n aVN dna. or Sj,n
at™
) ) 5F1 6F2
The zero~yaw values of ﬁ_p . 32 = and v are to be used. Equations
T r N, VN

(4. 89) and (4. 90) will provide two of the boundary conditions at each shock point, once
the other derivatives on the right hand side are determined. Expressions for these

derivatives are obtained in Sections 4.4.4.1 and 4.4.4, 2,

Three other boundary conditions will be needed at the shock points. If expressions
similar to Equations (4. 87) and (4. 88) are written for the velocifies u, v, and w, then

the following statements result:

*See also Equations (4. 33), (4.75), and (4. 76).
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n j,n dt
(4.91)
=1 4+ Fa(RB L] _T
dv 4" .
> ) 7 -5
Vg .|._aT Ra —= =V + F3(nS + T) (4. 92)
j n j,n dt ®
_ — .--b
= w_+ F3(nS P) (4.93)

Equations 4. 91 through 4. 93 can be put in "perturbation" form through the following

definitions:

mj,n dtn

L] dnCL-
o v 2D,
o ) .
] n

n
B 3) DP | .00
J

n j,n dt
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n
d o,
™ T =n + ZZ: n. ! (4.95)
0 . irg: nh
] n

S dt

SIS 3 e
n q3=§0+ gj,n n
j n

s at

Expressions foru, ,v_ , W,  and the other terms on the right hand side

J!n ],n jyn
of Equations (4. 94) and (4. 95) will be derived in Section 4.4.4.3. If Equations (4. 86),
{4.94), and (4.95) are used in Equations (4.91) through (4.93), the perturbations in

u, v, and w can be expressed as:

dav
3F N Buo
— - = : - - R 4, 96)
T =u +F_ T+ T 5= B (
],n mj,n 30 ]’n 0 aVN (dna ) r j'n
n
dt
¥, N oy
v, =¥, +F, A - 37 B *.97)

_ Eara diNm
w =W +F E 4+ (4.98)
i @ i bS]
j,m j,n 3, lin o Vm dna]
d n
dt
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The symbol Fso is used above to denote F3 P P VNQ) evaluated at VNm = VNmo'

Finally, the perturbation scheme can be applied to the trigonometric relations:

u = qcos @ (4.99)
v = gsin 6 {4.100)
To get:
v =T. cosb +v, s&inb 4.101
V.o "W, 088+ jeimb, (4.101)
u v,
8 b2 ging +- cos @ (4.102)
Jyn o o Vo

where V]- p 18 the change in the magnitude of V. It is not (ujzn + vj‘?' n)1/2.

Note that the 6 o Which appears in Equations (4.101) and (4. 102) is the zero yaw flow
direction downstream of the shock. The 8, which appeared in the preceding Equa-

tions is the flow direction upstream of the shock.

Equations (4.101) and (4. 102) together with Equations (4.96) and (4. 97) give:

oF dvN au
V. _ =]l u +F, 1 _+T 3 = . ao R cos B
j,n “,n 3, L, 0 ava dnaj r sj'n
(em
(4.103)
_ F, N, v _
Ve, *Fg Mp M n . or s sin 8
Jyn 0 N d g j.n
dtl’l
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E_n=_L ﬁm +F3;n+1-0 3 - ol -BOE sin 8
b Vo i,n o I’ A}V d T Sa ©
dt”
(4. 104)
L _ 3F N, w,
te—|v_ +F, n. +7 - R cos 8
VO i,n 30 J,n o ava (dnocj ar Sj,n
d dtn)

Equations (4. 89), (4.90), (4.98), (4.103), and (4. 104) are the boundary conditions
needed in the shock point calculation. Expressions for Tor Tgo Eo, Tin nj,n’

d®e

E‘,n and dVNm d

j are given in Section 4.4.4.2. 3 Fl/a VNm , 0 Fz/a VNm .

dt

and 3 F,/3V in Section 4. 4. 4.1,
3/°VN,,

4.4.4.1 Determination of 0F,/3V, , 3F,/0Vy and 3F,/0Vy from the Govern-
179V, ¢Fa/9VN 3/9VN

ing Relations for a Normal Shock

The governing Equations for a normal shock are:

continuity:
VN T P, VN (4.105)
S o
momentum:
2 2
Pq VN + Pg =P, Yyt P, (4.106)
s [+2]
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1 2 1 2 '
and state:
h = h{p, p) (4.108)

where subscript « indicates conditions just upstream of the shock, and the subscript s
indicates conditions just downstream of the shock. Equations (4.105) through (4. 107)

can be differentiated with respect to V.. - If this is done, and the definition of F

1’
Fy, Fq in Equation (4. 85) used, the following equations resuit:
an BFZ
P o+ Vv = p (4.109)
8
BVN 8 NS BVN -
= +] o
BFB an dF
2p V + V. + =0 (4.110)
5 NS dVy N ava 0V
o ==
oF oh oF dh_ oF
vy BV3 * Vg ot S—E = z2_, 3 2 - Lo_ vy {4.111)
N_ 8 PN P VN -

Equations (4. 109) through (4. 111) can be solved algebraically for @ Fl/ OV
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' 4,112
oF, Po (VNg = VN [VNB + VN, ahs] ( )
= S ps.a_.n
aVN A VNS p
BF3 1 ahs P, N 3hy
= = - + -V —= — - _—
where
a=va —ahs s 4,113
= Ns a- pS ap - Ps 3p (4. )

Since the right hand sides of Equations (4. 112) and (4. 113) require only values that are
known in the zero-yaw flow field, the three derivatives 9 Fl/ b} VN , O F2/ AVy and
[=+] =]

an/ 0V are completely determined.
o

Equations (4.112) and (4. 113) will be used in the shock boundary conditions, Equa-

tions (4. 89), (4.90), (4.98), (4.103), and (4. 104).

4.4.4.2 Determination of Quantities Dependent on Perturbations in the Shock Wave

Shape and on the Perturbations In the Velocity Upstream of the Shock.

a. Derivation of T, M. &g» Ty n» Mj,ne &y,
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If the Equation of the shock surface is expressed as

(4.114)
at

— - = 6.aRs
YR *3x TTTYR T,
._vR":‘: 5 (4.115)
I s' d3R_ 2 § dR_\2
B s14 |[— =2
9 x Rs ap

Equation (4.114) can be expressed in the perturbation scheme

o™ EZ R, (%, ®) ——?—
,n dt

(4.116)
then
n
3R.  ®R °R,  da,
Tﬁ = — 8o ZZ - J.n 4.117
x X j n X dtn

and

aRs aRs' n

—B _ 2 (4.118)*

D

P . a3 dtn

j n

*Equations (4.118), (4.121), and (4. 124) do not apply in the two-dimensional case
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and

n+l

3R d o,
-8 _ E E R — (4.119)
ot - 5 n+1

i n ,n dt

2 2

3R 3R, 3R R, &,
__) . ) RN g i L (4.120)
X x 3x 4 3x at?

and
1 3R \ 2 _
(iz— 3‘5‘) = 0, if higher order terms are neglected, then'{{s becomes:
s
(4.121)
[ ™
n aRas. dna.
3R 3R du 0 J
So 5 n ji| - - n v at"
S Erpabarel ] o 8
dt R +2 3R dna .
- 8 - 8 J
T = ] n o jn ) qn
8 — (4.122)
3R\ 4 3R 3R n
8 5 8 d g,
2 + 2 ° ), 1+
ox ox 3x
- dt?
i n
It can be noted that:
BRH
O = tan o (4.123)
Ox o

(where o is the local shock angle measured from the x-axis) and that:
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H.

(4.124)

ZZ ast’n dn j
j n * dat"” - ______X[
a" a

2D,

to first order accuracy.

Substituting Equations (4.123) and (4. 124), into Equation (4. 122) and multiplying both

numerator and denominator by cos @ o

- Zz aRBj n dnaj . cos 0 d o,
X {8sinC + cos O 20 2 |-TcosT + J b
_ 0 L ° & at® 0 s, a
n =
8

n

3R a%y
2 5 n j 2
sin UO+ZsinU coscC . _J +cos C
o o 3 n o
3 X dt

(4.125)

The denominator of Equation (4. 125) can be rationalized if the numerator and denomina-
3R n
8

da
I . j,n i
- o —_—
tor are multiplied by |1-s8in0 cos o Z 3% o
n
2 aRs. o dncr.j aRs. n dna,
™ =% |sinoc -8in"0 cosC L —= + cos g Jr n]
8 ° ° ° 3x  dt dx dt
j n j mn
3
2 Rs. n dnon.
-T|coso -sin o, 08 g, L nJ (4. 126)
° dx 4t



cos8 O

0
—
+ o

Yy e

Jsn ]

r & b at®
R

8
0.

(4.126)
(cont.)

Comparisons of Equation (4.95) with Equation (4.216), permits the following con-

clusions:
To = sin o,
n, =-cosa, g (4.127)
b = 0
/ \
3 aRsi n 3 aRsi n
Tj,n = cos” 0 Te - C08T 0, —s — cos¢
3R dR
2 ®i,n 9 ®,n cos ) 5
nj’n = 8in 0 cos”™ O e sin 0, cos” g, - (4.129)
cos O ast n cos 0,
£ = — = R sin @
j,n RSO 3 Rso sj,n
7/
or after removal of dependence on ¢:
- — )
. ast i \ aBSj i
T].’n = COo8 0'0 Sx ?’]j,- = 8in 0, cos™ g —"'"gx——L
(4. 130)
R
= - COB :
E’j,n %% % Rg
0
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da,
b. Derivation of 3V /a )
V. at"

The component of free stream velocity normal to the shock wave consists of the
normal component of free stream (absolute) velocity, and the normal component of

the shock wave velocity:

.7 —£ (4.131)

-\7’ is the free stream velocity

n is the unit vector normal (positive inward) to the shock wave

8 is the shock wave radius. The free stream velocity vector can be ex-

pressed in the terms of its components:

; J ;
) J

‘7 =§ v_ + E a.u +F E V... 0. + o E w \ 4,132
i

where:

v is the free stream velocity in the zero yaw steady state case, and

oo

U,., vV

and ij are perturbations in the free stream velocity (see

ooj’

Section 4. 4. 4. 3).

The components of the vector normal to the shock have been expressed in the perturba-

tion scheme: (Equation (4.133) is the same as Equation 4. 95)
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da

s 0 E:}': je dtn
j n

dna

{4.133)

=
ot
»
ol
il
=3
©
+
3
Card
(=]
="
H:S'_.

il

B S
s © Lo g
j n

Equations (4.119), (4.126), (4.132), (4.94) and (4. 133) can be combined in Equation

(4.131):

n
d o,
_ j .
vy T 2: _+§: s\a (4. 134)
VN V. 0+ Z v, Tj,n " Ty um'+n0 v +“§0 v, j
@ t
i n

*m=nwhen j=1; m=n+1whenj=2,
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Differentiating Equation (4. 134):

n

d a,
V.. /3 1) = i 5
Nm/ ( i ) VmTj,n + 50’n (g umj + ?‘xovmj + §mej ) (4. 135)*

v
-(1-6_ )n R (__m)
o,n’ o Sj,n-l 1

Using Equations (4.127) and (4. 130), Equation (4.135) becomes:

_ d 3 aRs.
BVN /3 M = v cos®c ~2tB 4 (u s8inc -v cosc)
o \gt" @ 0 99X o,n wj o wj 0

(4. 136)

+ (1-6 ) -I_is Vw
a,n j,n-l 1L

dn
*In the equations leading up to Equation (4.134) the term % which appears within
dat"”

m
the double summation should, in every instance, be multiplied by (-‘—}E—) in order

-]

to be consistent with our notation (i.e. with Equation (4. 33)). It has been omitted in

order to simplify notation. However, in going from Equation (4. 134) to (4. 135) we

Vv

o

m
divide by(—L) (See Appendix VI for a similar step). It is this division which
causes the quantity —‘{—‘l'i- to appear in the last term of Equation (4. 135).
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4.4,4.3 Derivation of the Expression for Free Stream Velocity

Figure 8 shows a two-dimensional sketch of a right handed rectangular coordinate
system (x, y, 2z) with origin a distance Ip forward of the center of gravity of the body.
The x-axis coincides with the body axis. The y-axis is perpendicular to the x-axis,
and lies in the plane defined by the x-axis and the vector direction of the velocity of

the center of gravity.

<¥

cg

ol

Figure 8. * Two-Dimensional Sketch of 2 Right-Handed
Rectangular Coordinate System (x, y, 2z)

A second coordinate system, (x, r, ¢) is shown in Figure 9, The unit vectors,
T and c_;;, lie in the y - z plane. The fluid velocity, relative to the body-fixed coor-

dinate systems, at any point in the free stream is:

v, = - i}cg -0 x (x [xIp] + T (4.137)

*The body in the Figure 8 is intended fo represent either a pointed or blunt body of

revolution, or a two-dimensional body.
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where:

Q= Zay (4.138)

ch = -XVeocosay + ¥,V sin oy (4.139)

Note that &g i8 an angular velocity, while ¢ is angle of attack. This inconsistency

in nomenclature is permitted because it results in a considerably simplified notation

throughout this work.

Figure 9. Cylindrical Coordinate System (x, r, ©)

The ; and z unit vectors can be given in the (x, r, ¢) system:

¥ = Tcos (08) - @ sin (p §) (4. 140)
Z = rain(@b) + G cos (@) (4. 141)
Substituting Equations (4. 138) through (4.141) in Equation (4. 137):
Vv, =x [V, + oy rcos (¢ 6)]
+ 7 [ Vo @, cos (¢ §) - &y (x - Ip) cos (¢ 6] (4. 142)

+ @ [Vo oty 8in (9 6) + g (x - Ip) sin (@ 6)]
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The approximations:
cos @y = 1
sin ot = oy
have been used in Equation (4, 142).
In Section 4.4.4.2, the free stream velocity was expressed as:

V, = ':':'(Vm + Z:ajumj) + T 2 ;ijaj +E E :wmjaja (4. 143)
j J

]

] ]

Comparison of Equation (4. 142) with Equation (4. 143) leads to the conclusion that:

u,, = 0 forj = 1
! (4. 144)

= + T cos (¢ §) forj = 2

Ve, = =Vg €08 (00) forj =1
! (4. 145)

= =(x - Ip) cos (pd) forj = 2

W, = V,, 8in (@ §) forj =1
) (4. 146)

= {x - Ip) sin {©§) forj = 2

4.4.5 The Characteristics Solution

Solution by the method of characteristics entails finding those lines in the flow
field which may contain discontinuities in the spatial derivatives of the flow field
parameters, but not in the parameters themselves. This can be done at any point
in the field by arbitrarily placing a line at an angle 8 to the zero-yaw streamline

direction. If a differential lengfh along this line is called dl, then the relation.

66



dF dF
dr + sinp — (4.147)

=gCo8 B8 —,
af def | dng

is seen to hold, where T represents each of the flow field parameters which appear
in Equations (4. 77) through (4. 82). Equation (4. 147) then represents a matrix of 6

Equations. In order to determine what values of 8 (if any} will determine the desired

dF dF¥

lines along which the various —— and -— may be discontinuous, Equations (4. 77)
d A dn0

through (4. 82) and Equation (4. 147) must be treated as twelve algebraic Equations in

dF dF
the twelve derivatives represented by ——:{ and ;n— . The desired values of 8 are
d
[s) (8]

found by setting the determinant of the resulting coefficient matrix equal to.zero.

The values of 8 for which this determinant is zero are:
g =0 (4.148)

and

(4. 149)

w
Il
H
m‘
EI
'—l
S
zlp
\_./
I
H=
=
©

Equation {4.148) represents the zero-yaw streamlines, Equation (4. 149) the zero-yaw

characteristic lines. If the twelve algebraic Equations are further investigated to deter-

mine under what conditions the derivatives ;j‘ and cd]nF are indeterminate (rather
] o

than infinite), no further conditions (beyond Equation (4. 148) are found necessary on

the streamlines, On the characteristic lines, however, the following conditions must

hold:

- 1
on the left running characteristic | = + sin 1 (T)
0
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5 ip 1-M 2
%0 ! 2~ ®ia M% * 2 o _ (4.150)
¥ M--1 - - =0
d},+ 0 2 o d£+ o v 2 oV 2
OVO 00 00

- 1
on the right running characteristic (B = - gin 1 (-M—)) ,

f i
&) D e A - M2
dej,n _ 1 M 2_1 dpj,n + 1o _ 2 1 Mo -0 (4.151)
d 2 [+ d 2 2
Ao e, L o, PV,

In Equations (4.150) and (4. 151) the differential lengths along the left and right running
characteristic lines are denoted by d,&_ and 4 ,g_ respectively. A 1 and ) , are known
functions of the unknown flow field parameters (but not of their derivatives), which
result when the Equations being investigated are solved for the derivatives of the

flow field parameters. They are given in Equations (4.155) and (4. 156).

The solution can be carried on to solve for eleven of the derivatives —% and

0
dr in terms of the six perturbation flow field parameters F, and the twelfth

dn
o
a,
derivativeﬂ{’)— . Some of these solutions will be in indeterminate form, and

therefore trivial. The non-trivial solutions are:

dw, ?\3
ht - (4.152)
e PV
dsj,n _ ?t4
3 alET : (4.153)
o o
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dq, dp, X
4 1 n 5 (4.154)

_- i
d: a P OVO %0 P OVO

A3s A4, and A 5, like ) and Ao, are known functions of the flow field parameters.

The expressions for the five \ are:

\o=-V [dpo "o T S dvo] (4. 155)
==V, + p + 8p - ,
1 g" .
1,n o Od_no o r Vo H
2
8
I
jonLr jsh c 2 dno 00 tu r
cﬂ2
d
dp 1 dp T Ve 2 e 2 db
iy o __dno R 002 do -v
o o VO o J.n CO do o dn
i
1
) 2 d("’z)
8in B8 e e
sy —2 -5 v, 2= @
or j,n 0 2
| o
o o 2
—— ‘ —— - 6 .
+ (1-8 2 v - 2.3 5 1, PV, 8in 8
o,n)l v jon-1 C 2 Tj,n-1 jyn-1j+
4] o Vo
a8 9 db s dp
A =-¥ 2| _F L2 2 __ o _ _"0}4.156)
2~ " Vin 290V0y0 Pin | Yo dn_ i.n | Pov an_ Y

- {1-8 8 -b )
(1 o,n)(povoej,n-l) anovmcos 0
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- - 1 _
’ = - ———— e | - - 5
}\.3 wj’n r + pj'n l:r ] ( 50’ n) (powj’n_l) + i,n pOVw (4. 157)*

dS0 _
=-0 —= 1 . {1-8 4,158)
kg i,n Vo d’o (1 o,n) Sj,n-l {
dq dq dp dv
= 0 -~ 0 - 0 0
=V -5 - —° —0 (4.159)
k5 J,n pO ‘ﬂo p].n VO 'C-]?; ej,ll dno FJ0";’0 dno

- _6 e - -
( o,n) (povj,n-l) 61,n povaa sin 80

Equations (4. 150) through (4. 154), along with Equations (4. 82) and (4. 84) permit us to

begin a numerical solution of the flow field.

4.4.6 The Numerical Solution in the Supersonic Region

The numerical solution in the supersonic shock layer consists of the repeated ap-
plication of three "unit processes." Each unit process requires that all the perturbation
flow field parameters be known at two points in the flow field, and permits the calculation
of the same parameters at a third point downstream of the other two. ** H in Figure 10,
the perturbation flow field parameters are known at points A and B, and are fo be com-

puted at point C, the three unit processes are:

*Equation (4.157) is not applicable in the two-dimensional case.
**Values of the flow field parameters which would exist if the body were in steady

flight at zero yaw, must be known at all three points.
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FLOW DIRECTION

- C

Figure 10. Location Of Points A, B and C On The Characteristics Grid

1. The body point process which is used when points B and C lie on the sur-

face of the body, In this case, C lies on the same zero-yaw right running character-
istic as point A;

2. The shock point process which is used when points A and C lie on the shock

wave. In this case, point C lies on the same zero-yaw left running characteristics as
point B;

3. The field point process which is used when none of the points lies on either

the body surface or the shock wave. In this case, point C lies on the same zero-yaw
right running characteristic as point A, and the same zero-yaw left running character-

istic as point B.
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A description of these three processes is given in following sections. The application
of these three unit processes to the solution of the supersonic portion of the flow field
requires:

1. A complete description of the zero-yaw flow field in the region where calcula-
tions are to be performed, and

2. The values of the perturbation flow field parameters along a "starting line" in

the flow field.

The former is obtained from the zero-yaw solution (Section 3). The latter is ob-
tained from a solution for a pointed cone in unsteady motion (Section 4. 3), if a pointed
bhody is being investigated, or from a transonic solution for a spherically blunted body

in unsteady motion (Section 4. 5), if a spherically blunted body is being investigated.

The starting line in the case of a pointed body will always be a left running zero-
yaw characteristic, which intersects the body surface on the conic section, This
starting line was chosen because it fits in effectively with the sequence in which the
computations in the rest of the field are carried out. Providing the information along
this starting line presents no difficulties in the pointed cone solution for flow field per-
turbations. In figure 11, points 1 through 5 are on the starting line. The solution be-
gins with computation of the perturbation flow field parameters at point 6 using the body
point unit process and the known perfurbation parameters at points 1 and 2. It con-
tinues to point 7, using the field point process and the known values at points 3 and 6.

It then continues to points 8 and 9 using the same unit process. Finally the solution at

point 10 is obtained from the known values at points 5 and 9, using the shock point
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process. The computation then moves to point 11 and continues to points 12, 13, etc.,

until the aft end of the body is reached.

The computations for a spherically blunted body follow a similar scheme. They are
only slightly complicated by the fact that the starting line may not be a characteristic

line. The complications appear only in programming the solution, they do not affect

the theory.

SHOCK WAVE

STARTING
LINE

/BODY SURFACE

BODY AXIiS

Figure 11. Sequence Of Computations In The Unsteady Supersonic Solution

4.4.6.1 The Field Point Process

In the field point process, the values of the perturbation parameters are known at
points A and B (figure 12), The zero-yaw flow field is known at points A, B, and C,
It is desired to compute the values of the perturbation parameters at point C. Point

D is defined o lie on the same zero-yaw streamline as point C and on a straight line
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with points A and B. If it is assumed that all the zero-yaw and perturbation parameters
vary linearly between points A and B, then the values of the perturbation parameters as

well as the zero-yaw parameters at point D are given by:
0 0
_ B D
P =Fg* |v——¥ (FA FB) (4.160)

F represents each of the parameters, and the subscripts A, B, C, D refer to the

points in Figure 12. Equation (4. 160) is useful since \I'O = ‘I’o .
D C

Figure 12. Grid Points For The Field Point Process
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Having obtained values of the perturbation parameters at point D, Equations
(4. 150) through (4. 154) can be put in finite difference form, and the final step in the

computation can be indicated. In the following Equations the subscripts A, B, C, and
D will again indicate the points (Figure 12) at which the subscripted values are {o be
taken. Combinations of two of these subscripts will indicate an average, e.g.

A%

0AC indicates that the average of the values of VO at points A and C is to be used.

1 A C
r 2 — — 1o
6, -9 + -1 P -p. =4
Jhis  1Dg povz o hha, “hng + o 2 (4.161)
0 BC o
1
?\2 ME
+ o}
2
R o BC

- = 1 2 - -
5 -3 - | —— Mm%l P. - P, )
jyn j,n 2 o ( j,n j,n
C A C A
PV, AC

° o (4. 162)
1
1._ —r—
'y 2
_ lco )\2 Mo
=—Ad -
- V2 pOV
Po o ¢ Jdac
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from Equation (4. 152):

A

- — 3

W, -W, = (4. 163)*
jan j,n A‘-’% [p VO]CD

s. -8, =uad [——] (4.164)
e ' TR ALY e’

' b
— — 1 —_ — 5 f
V _V' + o—— p_ -p = —— (4.165)
j,n 1, [pV] ( Jyn i ) [OV] 0
(o D 0 0l., 'C " 0 ol~p

Equations (4.161) through (4. 165), together with Equations (4. 166) and 4. 167) which

are identical to Equations (4. 82) and (4. 84):

- 2

- [ _ e, 3

e lc 2l Ping T|n 2| Sing (4. 166)
C ¢ |Co
- 0 ¢ C

— C 1 - — dZ

T, - . -F. + oZ

= dZ

*Equation (4.163) is not applicable in the two-dimensional case
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constitute a set of seven algebraic equations in the sevenunknowns p, , s V .
I DRERS 19  DRRS 1% Wiy
C C C
[) W, s and T, .
J’nC’ i, nC' j'nc' R . They need only be solved for the seven unknowns.

Note that the solution of this set is somewhat more complicated than it may at first

seem, because the unknowns (but not their derivatives) are present in ) 1 through 15.

4,4.6.2 The Body Point Process

Again the values of the perturbation parameters are known at points A and B
(Figure 13). The zero-yaw field is known at points A, B, and C. It is desired to com-

pute the perturbation parameters at point C.

Since flow cannot pass through the body surface, at point C the flow direction must

be the same as it was in the zero-yaw field. Therefore,

5 o (4.168)

-1
: AC A Y m2
L= 1 2 — - 170 2 o
“8,n, " ZVM--I B o ~Bia )=2Al—3 - g (4169
’A pv 0 'C 'A oV pV
o0 AC o0 [« s} AC
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Figure 13. Grid Points For The Body Point Process

BODY SURFACE

Equations (4. 152) through (4. 154) in finite difference form are (note that line BC is a

- zero-yaw streamline):

*Equation (4. 170) is not applicable in the two-dimensional case.
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Equations (4.169) through (4. 172) together with Equations (4.173) and (4. 174) (which are
identical to Equations (4. 82) and (4. 84)) and (4. 166) and (4. 167),

2
1 eo -
. = |73| P, - s (4.173)
g [c 2] Jang C02 Jang
% ¢ C
—_— _ —_ az
T, = [z ; Q] p. -0 ZOR’I‘ + RTODO _BF] (4.174)
]’nc 0 p ]lnC J’ C o C

- 9
- 8, n [RTopo TSZ']
J’ C c

Vj,n

constitute a set of six algebraic equations in the six unknowns 'ﬁj ng’ BL“C’

C’ Wj’nc’

S

j,ng? and i"ﬂc’ They must again be solved for the unknowns. Again the unknowns

are present in ) 1 through A5.

4.4.6.3 The Shock Point Process

The values of the perturbation parameters are again known at points A* and B
(Figure'14). The zero-yaw field is known at points A, B, and C. It is desired to com-

pute the perturbation parameters at point C.

*At the shock wave, an additional parameter, RS, enters, and the perturbations in RS

must be known at point A and calculated at point C.
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SHOCK WAVE

Figure 14. Grid Points For The Shock Point Process

Equation {4.150), in finite difference form is valid between points B and C.

R S B PR A LY R e B
8 - + . = = 9
]!nC JinB pvz MO_]' Jlnc J)nB + OV
oo 0
BC
|
1 - —
)\2 M2
2
Vo A

BC
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The shock boundary conditions (See Section 4.4. 4, Equations (4. 89), (4.90), (4.98),

(4.103), and (4. 104) are:

oF d (VN dp
- _ -
jan 3V n ar 8
C N_ a (d :]) j.n
t C C
_ 3F d(VN
w = |w +F, 8 +8
n ® s)
big o 3o 1m0 OV (dna.)
© d _]
n
dt c

*Equation (4.178) is not applicable in the two-dimensional case,

81

(4.176)

(4. 177)

(4. 178)*



|

- duy —
+F_ T, + 7T - R
i 2
30 j,n o VNm dnaj) ar Sj,n
d it —
dt®
3F d(VNQ v
;; + F n 3 3 - -
- 3o '§,n 0 oV n ar
jen ’ Nco d daj
dt?
3F d(vN) ou
3 +F. 7. + T 3 -
um. 3 i,n o 3V n or
dt ™
v—"oc mj,n 30 j,n oaVNm ; dn&j
t D
cos ©
j,n
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Equations (4. 181) and (4. 182) which are identical to Equations (4. 84) and (4. 82), re-

spectively, apply:

— 1 - - oz
T = p. - p. [Z RT +RT p a—]
hng [ZoRpo]C J,nc Jing o o 009pj~

- JZ

Fyng [0 ]

],nC oo oS C
e 2
° n, _}-5 Pin ~ 02 é-j n
e e Mo e, e
°de c

(4. 181)

{4.182)

Equations (4. 175) through (4. 182) constitute a set of eight algebraic equations in the nine

=
3
5
to
Sl
>
<l
|
,_:G)‘
wl
x|

i,n

- .n,_ﬁnand[
C]tc Jtc jlc

*

],

(4.183)

BRS BRS
® R 1 j,n j,n
R =R + = - + 2 (x - X )
8, B, 2 ax 2}
Jing jin, o X da c A
3R
Bj n
*Although ax, does not appear explicitly in Equations (4. 175) through (4, 182},

it is included in the terms T, _and 7, _.
j.n jam

3
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This set of nine equations must be solved for the unknowns. Expressions for the terms
on the right hand side of these equations are given in Sections 4. 4. 4. 1 through 4, 4. 4. 3., **
4.5 THE STARTING (TRANSONIC) SOLUTION FOR SPHERICALLY BLUNTED

BODIES

4.5.1 The Small Yaw (} = 1, n = 0) case

If the solution for flow about a spherical body is known in the X5 T, coordinate
system in the above sketch, it can be expressed in the x, r system as follows {as

long as the angle « is small):

aFl an aF

o , , . .

Section 4. 4. 4. 1 provides expressions for aVNm . “aVNm , and VN * Section 4,4,4,2
d VN

provides ¢ , Mo? §0, Ty,n’ m. .8 and—% Section 4,4,4, 3 provides expressions
1 d .

(=)

dt”

for :1— L ;m , and "vTrmj « Allother terms come from the zero-yaw solution or from thermo-
I jsn 1

=
i
=
L

dynamic tables,
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ap dx Ap

p v =2 Ly, o0&, 4. 184
P=P*"3x W3t da (4. 184)
dx dr
where a and ?(; represent the rate of change of the coordinates of a general

point P, with ¢, when going from the X ro system to the x, r system. Since

the flow field surrounding a spherical body does not change when the body is rotated
about its center, the above representation will be useful if the X, axis is taken to
coincide with the axis of a spherically blunted* body at zero angle of attack; and the
x axis is taken to coincide with the axis of the same body at small yaw. The above

equation then fits our perturbation scheme:

P = P, * Py @ CO8ip 6),

if we note that g_x& and :—ii% have a sinusoidal dependence on ¢, i.e. that
dx
—— = -rcos (p8)
da
and
dr
— = Xco8 (d)
do

*For the two dimensional case this discussion is applicable to a cylindrically

blunted body.
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so that

P g~ -r 7 + x —/— cos {¢ §) (4. 185)

all other scalar quantities have the same form as Equation (4. 185), Because the

- — -
derivatives of the unit vectors x, r and ¢ with respect to ¢ are non-zero, the

velocity components take on a slightly different appearance:

660 a6,
8 0= {4 1-r T A x T cos (¢ 8) (4. 186)
, 0
f2).8 ar
and
X .
Wl,() = VO cos 90 - sin 60 gin (¢ 6) (4. 187)

The perturbation in shock radius is obtained from

aRﬁzo dx aB’aso dr
RS = RS + — @ + — o
0 ax de ar dx
= RS - o RS'0 tan o, + X} co8 (@ 6) (4. 188)

o]

In Equations (4. 184) through (4. 188), x is assumed to be measured from the center
of the blunting sphere, and in equation (4. 188) Tan 9, is:

dR
80

Tan g = (4. 189)
dx
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4,5.2 Thej=1,n=1andj=2, n=0 Cases

Since the angular velocity (due to the & + q motions) of a sphere* about its
own center will not affect the inviscid flow field surrounding the sphere, the sum of
the ¢ and q derivatives of scalar values must be zero. The sum of the derivatives
of the velocity components must however reflect the fact that the ?, ?, $ unit
vectors are dependent on & and g. Within these requirements and the need to
make the solution compatible with the solution for j = 1, n= 0 the ¢ and q

derivatives may be assigned arbitrary values. For example, p 1.1 can be given any
value as long as 52 0 is set equal to minus ﬁl 1 In the present discussion, the

following values will be assigned:

~
R =Es = 0
1,1 2,0
0 = n = 0
P1,1 7 Pa,p S

(4. 190)

Pr,17 Py~ 0
S S
1,1 _ "20 _ J
R R

*For the two dimensional case, this discussion is applicable to a cylindrically blunted
body.
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Substituting Equations (4. 190) into Equations (4. 176) and (4. 177) however, indicates

that by assigning these values we have implied that

=0 (4. 191)

Using this fact in Equation (4. 136) leads us to conclude that (note the definition of

RS in Equation (4. 188):

1,0
aﬁs aﬁs Rso sin a, + xs cos o
1,1 2,0
= - = 3 (4. 192)
X ox L cos %
Substitution of this equation in Equations (4. 178) through (4. 180) yields:

V_ sin @
Vl,l == — (Rso sin o+ X cos cro) (4. 193)

L cos q,

; . _ ; + + v osi
sin es sin (or0 es ) (RSO sin g Xg CO8 co)(xcos % r sin 90)

B = =
1,1 2 , (4. 194)
L cos o, (xS cos as + Rso sin 93 )
Wl, 1= 0 (4, 195)
Vco
Vz’0 = —V1,1+ —~L— (r cos eo-xsm 60) (4. 196)
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v

==]

82’0= -el,l-VoL (rsm90+xcos 90) (4. 197)
- X

W =V — 4, 198
2,0 = ( )

In the preceding equations, the subscript s used with x and § implies that values
of x and @ at the shock point on the starting line are to be used., Unsubscripted

values of x and r imply local values of x and r at each point on the starting line.

In the definition of 91 1 the ratio:

is used in order to satisfy the boundary requirement at the body surface, that:

61,17 8o~ 0

at the body surface, Inspection of Equations (4. 193) through (4. 198) indicates that

(Vl, 1t V2,0 }s (91’1 + 62,0 ) and (wl. 1t WZ,O) do in fact express the apparent

velocities due to the angular velocity of the coordinate axes.
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5. FORCE AND MOMENT COEFFICIENTS*

Once the pressure perturbations at the body surface have been calculated, itis a
simple matter fo integrate them over the body surface in order to obtain the force and
moment coefficients of interest. Figure 15 shows a two-dimensional view of a right-
handed cartesian x, y, z coordinate system, in which the coefficients will be given.
The body sketched in Figure 15 is intended to represent either a pointed or spherically
blunted body of revolution. The normal force Fu will be taken to be positive in the

negative y-direction,

v
cg

Figure 15. Two-Dimensional View of a Right-Handed
Cartesian x, y, 2z, Coordinate System

*This Section appeared originally in Reference 2.
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The pressure is given by Equations (4. 20) and (4. 33):

no, n+l
= L\ d%a & L\ d%
P=p, + E : pl,n —_ _n" cos{pl) + E p2,n —_— —n cos{pb6)
n=0 V. dt n=0 \i dt
{5.1)
So that the normal force is:
n
[/ = L d"e
F. .= p_+ Z P —] —— cos{pb)
N [ 1,n
n=0 Voo dtn
Body Surface
© n+l n
+ p2,n — — cos(p b) | (-y)'dA (5.2)

where the vector dA is a differential area of the body surface. Similarly, the moment

about an axis which is parallel to the Z direction and passes through the center of

gravity is:
"
M= (x-1p) | P, ~ E pl,n — cos(pb)
n=0 v_/J dtt
Body Surface (5.3)
n+l
2. _ L dnq s s
+ E p2,n _ — cos(pd) | (-y* dA
n=20 Voo dt

where ﬂp is the distance from the coordinate origin to the moment center.
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The usual force and moment derivatives

3C 3F
e 1 5 L (5. 4)
n

\ d aj 5 P A Abase S d aj
at" at"

and
°Cu 1 3M (5.5)
-1 2 n )

dno‘j 7 PV Apse Phase 5 i_‘_xj
at" at"

can be obtained by differentiating Equations (5. 2) and (5. 3) with respect to the appro-

priate motions:

acC 1 L 5
an = 3 5 CENR (5. 6)
5 % 7 PPV Aage
dtn o)
aC L
M 1 b ey =
ry =T pmvmz D ('nrrb) (xf,p) pj’ndx (5.7)
3 —] 2 A'batse base
at" ©

In obtaining Equations (5. 6) and (5. 7) from Equations (5. 2) and (5. 3) the integration
in the meridional (p) direction has been carried out, since f)j n I8 independent of ¢,

-and the dependence of (—f ). dA on ¢ is easily expressed:

%) - dA = r cos ¢ dp) ® dx 5.8)
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In the two dimengional case (§ = o), substitution of Equation (5. 8) in Equations

(6. 2) and (5. 3) will result in a force and moment per unit depth in the 7 direction.

The base area, Abase' which appears in Equations (5. 6) and (5. 7) must, therefore, be

base area per unit depth in the two dimensional case.

3.1 FORCE AND MOMENT COEFFICIENTS FOR FRONT END OF BLUNT BODIES

The foregoing discussion of force and moment coefficients is applicable on any
portion of a body where the various perturbations in pressure are known, and, there-
fore, can be used with both the pointed cone and supersonic solutions. In the case of
a blunt body, however, the pressure perturbations are not calculated upstream of the
starting line. In this case, use is made of the knowledge that g—g + %% = ( on the
spherical portion of the body, to conclude that the spherical portion does not contribute
to (CMq + CM&) or fo (CNq + CN& )*. As a result, it is only necessary fo compute
the CNa and CMQ coniributions of the spherical nose. This is done by a momentum

balance as indicated in the following sketch,
SHOCK WAVE

BODY SURFACE

*mn this part of the discussion, rotation is assumed to be about the center of the spherical

nose,
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Line DEFG is the starting line. The dotted lines CE and BF are the bounding surfaces
of a differential stream tube, If we define dF,_ to be:
dF x = flux of axial momenfum crossing BC + axial force on the stream tube
due to pressure on BC - flux of axial momentum crossing EF - axial
force on the stream tube due to pressure on EF,
then total axial force on the hody (due to the portion of the flow field upstream of the
starting line DEFG) results from integrating dF, over all the stream tubes between the

stagnation streamline AHG and the point D.

It rg is defined to be the radius to point B, r the radius fo point F, drg the dif-
ference in radius at points B and C and dr the difference in radius at points E and F,

the above equation for dF, becomes:

dF_= {V_dm +pm(21rr)6dr I
X ® g 8 8

Veos Bdm +p (217r)6dr

where dx'ns and dnh are the mass flow rates across BC and EF respectively. They are
am =p V. @rr)lar
g~ P Vo 21 dr

and
. 6
dm = an (27r) di
where Vn is the component of velocity normal to EF, and d4 is the distance between E

and F.

The conservation of mass law requires that dm = dm g+ So that
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PV

¢
@n rs) drB = pos ‘?m @nr r)‘5 di (5.9
We also note that:
dr = (sin A) dz

Vy=Vsin (- 6)

where A is the angle between the line EF and the axial. Substitution into the expression

for de yields:

w4 22 -
(V + Ve ) (V cos A (5. 10)

LB sin A
pV sin (A - )

Infegrating from point G to point D provides axial force:

dF =
x -

(27r) 0 PV sin (A~ 8) dg

D
- oy P2 _ p sin A 8 _—
Fx fV +p°°V°° (V cos B+pV S (- 9)) (2mr) pVsin A-0)d 2
G
(5. 11)

The normal force coefficient (for the j = 1, n = 0 case) iz obtained by integration

of the pressure perturbation over the body surface:

3F_ L
=a - /Dl,o (-y) - dA

Body surface

-t

where -y - dA is given in Equation (5.8). The pressure perturbation P, gom the sur-
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face of the spherical* forebody is given in Equation (4. 185) so that:

X 27
sl
oF op ap 8
n o o 2
vl f f -r X X = (r cos pdgp) dx
X . o
axis

The coordinate origin is placed at the center of the sphere in this discussion, and x

sl

is the x value at the body surface on the starting line.

Integration with respect fo ¢ yields:

sl
3F ap op 5
n _ (8} 0
=0 / r S vX 5| (oo
X
axis

At this point it is convenient to change to the variable ¥ which is defined in the fol-

lowing sketch

BODY SURFACE

l— BODY AXIS

L
CENTER OF SPHERE

*For the two dimensional case the present discussion applies fo a cylindrical fore-

body.
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Then

X = -Rn cos V | W
r=R_sin¥ where R is
n n
and the radius of
El[_ng i apo 3x \ apo aT _ rapo —x ap0 y the sphere
37, axX Y ar Vv ax ox

so that the force coefficient becomes:

sl 6

oF op

-2 - - =2} \7R siny] R _sinvdy

do oV n n

o
Integration by parts yields:
Vsl
aFn 6 6 )
3o = P (mr) T + P, Rn (an) (6+ 1) (sin v) cos vdy
[8)

The integ‘ral in the above equation, however, is seen to be the axial force FX,

since
vsl
F = p f-dA=/ p (27 R sinv)GR cos V dv
X 0 0 n n
Body surface 0
so that the normal force coefficient is:
aFn 5
Fp = Tg = "p, )" v+ F

where Fx is given by Equation (5. 11).
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Finally, it is apparent that in the inviscid case surface pressure on a sphere can-
not cause a moment about the center of the sphere, so that M z =0 if the moment
o
center is taken at the center of the sphere.
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6. PROGRAMMING OF THE ZERO YAW STEADY STATE FLOW FIELD
SOLUTIONS

This Section provides a brief outline of the programming of the zero yaw steady
state flow field solutions. Its purpose is to provide a link between the analysis of the

problem and the listing of the computer program. *

CHAIN 1

A. Main program,

B. Calling sequence: None.

C. This program calls in link 1 of the chain tape.

D. Error indications: None.

FFSYS

A. Main program.

B. Calling sequence: None.

C. This program is always link 1 on the chain tape. It reads in the first{ two
input cards, (FFCASE) and (IDPR(_)G & KENSE) and then calls for the link
containing the program to be executed.

D. Error indications: None.

ATBNTP?
A. Main program.

B. Calling sequence: None

*The listing is to be published as a separate report by RTD.
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C. This program uses as input the BCD thermodynamic tables tape and writes
the binary tape which is used in the program.

D. Error indications: None.

MNPRNT

A, Main program.

B. Calling sequence: None.

C. This program will print:
1. Thermodynamic tables.
2A. Ohblique shock tables 0° = g < 90° in increments of 0. 5°
2B. Normal shock ¢ = 90°

D, Error indications: None.

MNEXP
A. Main program.

B. Calling sequence: None,

C. This program will compute the properties at an expansion corner.
D. Error indications: None.
BINTP1

A. Subroutine.
B. Calling sequence: (IND)
C. In this routine, the "standard flow field binary tape" is written or read.

The various options are determined by the value of IND
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1. IND = 0. The tape numbers {logical) are read in, NBTPW (writing)
and NBTPR (reading).

2. IND = -1. Preliminary information is written.

3. IND = 1. Preliminary information is read.
4, IND = -2, Streamlines or characteristics are written.
5. IND = 2, _ Streamlines or characteristics are read. Also, the

reference table SREFS is created, when appropriate.

8. IND = 3. Final record is written (NVAL = 0), and tape is rewound.
7. IND = 3. Tape is rewound.

D. Error indications: None.

CLCINT

A, Integration.

B. Type
FORTRAN 2 Function.

C. Purpose.
To compute the definite integral of F(X)*DX from X = AtoX = Bby
1. Trapezoidal rule.
2. Simpson's rule.

D. Usage.

1. The calling sequence is: F = CLCINT (IND, DX, FX, TEMP)
A, F is the value of the integral.
B. IND =0 Trapezoidal rule.

IND = 1 Simpson's rule.
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C. DX=20 when X. = A,
DX = X(N) - X(N-1) when X. # A,
D. FX is the integrand.
E. TEMP is an array containing 5 cells which must not be used for
any other purpose while the integration is being performed.
E. Method.

1. The first interval is always computed by Trapezoidal rule
G(1) = DX/2. 0% (FX(1) + FX{(2))

F(1) = G(1)

2. Subsequent intervals are computed by Trapezoidal rule when that
option is specified and when the current and previous values of DX
are unegual.

G(N) = DX/2. 0% (FX(N+1) + FX(N) )
F(N) = F(N-1) + G(N)

3. Otherwise, subsequent intervals are computed by Simpson's rule as

follows:

G(N) = DX/3. 0% (FX(N+1) +4. 0% FX(N) + FX(N-1) ) - G(N~1)

F(N) = F(N-1) + G(N)

Assuming a constant DX, the net effect of this procedure is: if N is
odd, the integral consists of Trapezoidal rule integration over the first
interval, and Simpson's rule integration over the remaining N-1 inter-
vals. If N is even, the integral consists of Simpson's rule integration
over the N infervals. This is in keeping with the fact that Simpson's

rule must be performed over an even number of intervals.
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F.

G.

H.

1

21
41
61
91

CLPOLY

A.

B. Type

C.

Restrictions. None.

Additional Subprograms Required. None.

Sample Case

Suppose we wish to find by Simpson's rule the definite integral of

X**¥2*EXP(~X) from X = 1.0to X = 5. 0 with a DX of 0. 5.

Dimension SAVINT (5)

X=10

DOS1 J1=1,9
If (J1. = 1) goto 41
DX = 0.5

Go to 61

DX = 0.0

X

X+ DX

A = CLCINT (1, DX, X**2*EXP(-X), SAVINT)

Continue

POLYNOMIAL Evaluation.

FORTRAN 2 Function.

Purpose

To evaluate the Polynomial (SUM (A(I)*X**(I-1), I = 1, N+1)).
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D, Usage
1. The calling sequence is:
Y = CLPOLY(X, A, N)
A, Y is the value of the polynomial.
B. X is the independent variable.
C. A is the name of the array containing the coefficients.

D. N is the degree of the polynomial.

E. Method
1, The standard nesting process is used,
F. Restrictions. None.

G. Additional Subprograms Required. None.

CONENT

A, Subroutine.

B. Calling sequence: (IND)

C. In this routine, the properti_es p, V, M, 8/R, T are computed assuming
values for P and ). The method of solution is explained in the write-up

{Reference 3) of

A

* = .
P

Y + B

The use of IND is as follows:
1. IIND[: 1. The reference properties are taken from the reference

tables (SREFP or SREFS).
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2. IIND|= 2, The reference properties are taken from a previously
computed point (stored in the SB array). This option is used in the
pointed cone and expansion corner programs.

3. IND < 0. This insures that in the expansion corner program, no
more than one pressure break is crossed at a time.

Error indications:

NOVAL = 121: y out of range of reference tables.
NOVAL = 1501: Pressure out of range in A, B tables.
NOVAL = 1511: Reference pressure out of range in A, B tables.

NOVAL = 2291: Failed to converge in temperature iteration.

CRVINT

A.  Subroutine.

B. Calling sequence: (IND).

C. If IND = 1, this routine reads in the body curve coefficients and the x-
coordinates of the intersections, if any. It computes for these points of
intersections the value of r, the downstream flow angle, and the upstream
flow angle. It also prints the information on tape.

If IND = 0 (i.e. a restart), only the printing is done.

D. Error indications: None.

CRVOUT
A. Subroutine.

B. Calling sequence: (A, J, N)
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C. Given an array of I sets of J curve coefficients of the form A(J, I), this
routine prints out the first N of these seis.

D. Error indications: None.

EXPAND (The unsteady solution as developed here, does not include the expan-
sion corner capability. }
A,  Subroutine.
B. Calling sequence: (IND).
C. This is the routine in which the properties at an expansion corner are
computed. There are the following 3 entries to the subroutine.
1. IND = 1. The information required at each expansion corner (up to 5)
is read in and the first expansion corner is initialized.
2. IND = 2. The properties on the first fan of the expansion corner are
computed.
3. IND = 3. The properties on the succeeding fans are computed. If it
is the last fan, the next expansion corner (if any) is initialized.

D. Error indications: None

FFCASE

A.  Subroutine.

B. Calling sequence: None.

C. This is an initialization routine. I will read input cards until it finds one
with the letters FFCASE in cols. 1-6. I will print out cols. 7-72 of that
card and then read the next card which will identify which link of the chain

tape the program is on (IDPROG) and the external parameters (KENSE),
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D. Error indications: None.

FLOWRD
A, Subroutine
B. Calling sequence: (IND)
C. This routine reads into core storage:
A, From the input tape:
1. RIDEAL, GIDEAL, ZIDEAL, RHOO, RHOOO, GREAL.
B. From the atmospheric tables tape (real gas only).
1. S/R = f(p, T)
2. a, b= f(p, 8/R)

3. Z=1{p, T) (curve fits)

4, v = f{p, T) (curve fits)

5. Z=f(p, S/R)
If IND < 0, this information is printed out.

D. Error indications: None.

FLOWTL
A. Subroutine.
B. Calling sequence: (IND).

C. This routine computes for real gas:

1. Z = f{p, S/R) IND = 1or -1
dZ
= = —1
2. g = 10, S/R) IND
3. z=1f(p, T) IND = 2
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4, S8/R=1(, T) IND = 3

5, v = f(p, T) IND = 4

6. b&a+hp=1f(p S/R) IND = 50r -5

7. dg%t & dgl;R = f{o, S/R) IND = -5

For ideal gas:

Z = ZIDEAL

%gz = 0

S/R = f(, T)

v = GIDEAL

b = GIDEAL

a+ b.p= GIDEAL. p

da__ _db _ 0

dS/R  dS/R
D. Error indications: Various for arguments being out of range.
FSSTAB

A. Subroutine
B. Calling sequence: (IND).

C. This routine calculates:

1. Certain free stream conditions.
P
A. T = ad
® Pm Zm RGAS

Since Z is a function of T, an iteration process is required.
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B. Z Y S/Rm {Table look-ups)

It also prints alt., Pm, P Vm, Tm, Mm.
2. Shock and SIGMA Tables.

The shock tables are merely calculated and printed and consist of

the properties:

o, P, p, T, /R, Z, v, v* V, M, 6.

computed at increments of . 5° between 0 = 0° and ¢ = 90°.

The SIGMA tables consist of 0, T, ¥, and are computed and stored

for use in the SHOCK routine as a time saving feature.

The options are as follows:

1. IND = 0. Only the free stream conditfions are printed. Used
only in a restart.

2, IND < 0. The normal shock values (0 = 90°) only are calcu-
lated and printed.

3. IND = 1. The shock and SIGMA tables are not computed.

4. IND = 2. The shock and SIGMA tables are computed.

D. Error indications: NOVAL = 291. Failed to converge on Tm.

QUDINT
A, Function
B. Calliing sequence: (X, Y)

C. This routine computes the value of definite integral

X

4
A=f ydx

*1

109



by the four-point quadrature formula:

2 3 3
8 5 h ) h
1 M 21 1 81 1 @ -2n)
A= Y, h1 + = - 12
2 6 12
where
hy = %%y
h2 = x3—x1
S M s . 12 u
11 xz -xl 21 x3 - x1
5 Y37 ¥y I TT
i2 x-x 522 T X -x
3 2 4 2
s _Ja s 5 - 22 ~ %21
13 x4-x3 31 x4—x1

3 %4

The array X contains xl. xz, X
The array Y contains Ypr Yoo Yoo ¥y

Error indications: None.

Function
Calling sequence: (IND, A, X)

Given the general body curve

A

-— —2 -3 -4 -5 _—
= + A X
r—A1+A2x+A3x +A4x +A5x +A6x 7

X=x -~ A

where; 12
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This routine computes:

1. T IND =1

11
2 2
V= A10 -u

Then,

o= WL
v v
u' =1

Vs
V' = - u
V3
Therefore,
A

_ — —2 -3 —4 —5 - 8

r = A1+A2x +A3x +A4x_ +A5x +A6x +A7x +A9 v
A -1

t - -2 -3 —q — 8 ,

r —A2+2A3x+3A4x +4A5x +5A6x +A7A8x +A9 A'A
A -2
" - -2 —3 — 8 1)
= —1 X

r 2A3+6A4x+12A5x +20A6x +A7 A8 (Aa ) +A9 v

A is an array containing A1 -A 19°

D. Error indications: None.

SHOCK
A, Subroutine.

B. Calling sequence: (IND, SU)
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C. In this routine, the properties behind a shock are computed. The process
is explained in PROPERTIES BEHIND A SHOCK, * SU is the name of the
array containing the upstream properties. The use of IND is to determine
whether the iteration process on T and ¥ is to be performed. If IND = 1,
the process is performed. If IND = 2, we interpolate for T and 4 in the
SIGMA tables calculated in FSSTAB and skip the iteration.

D. Error indications:

NOVAL = 311. © not found in range of SIGMA tables.
NOVAL = 411, o < 0°.
NOVAL = 421. o > 90°.
NOVAL = 1491. Failed to converge on temperature.
NOVAL = 1691. Failed to converge on Y.

STREFP

A.  Subroutine.

B. Calling sequence: (IND, N)

C. In this routine, the reference properties are stored in one of the two refer-
ence tables.

1, IND.= 1. The properties are stored in SREFP

L ¥
2, P
3. p

*Reference 4.
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5A., V
5B. Z

2. IND = 2. The properties are stored in SREFS,

1, ¥
2A. K
2B, S/R

D, Error indications:

NOVAL = 311. More than 500 entries in SREFS, exceeding dimension,

TLU1

A, Table Search
B. Type
FORTRAN 2 Subroutine,
C. Purpose
To locate the position in a table of a specified number.
D, Usage
1. The calling sequence is: CALL TLU1{ARG, NTAB, TAB, J, IERR}
A, ARG is the specified number.
B. NTAB is the number of elements in the table,

C. TAB is the name of the table.

D. J and IERR are outputs as follow d IERR
1. ARG. < TAB(1 1 -1
2, ARG. = TAB(K) K 0
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3. TAB(K). < ARG. < TAB(K+1) K 0
4, ARG. > TAB(NTAB) NTAB 1
E. Restrictions
1. The elements of the table must be in monotonic ascending order,
G. Additional subprograms required: None,
TNT1
A,  Single interpolation (Lagrangian),
B. Type
FORTRAN 2 Function.
C. Purpose
To do a single table look-up and Lagrangian interpolation of specified
order,
D. Usage

1. The calling sequence is: Y = TNT1(X,NTAB,XTAB,YTAB, NPT,
IERR)
A. Y is the interpolated value,
‘B. X is the independent argument.
C. NTAB is the number of elements in the table,
D. XTAB is the name of the independent variable table,
E. YTAB is the name of the dependent variahle table.
F. NPT is the number of points over which the interpolation is
performed,
G. IERR is an error return as follows:
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G,

IERR
1. X. < XTAB(1) -1
2. XTAB(l). £ X, < XTAB(NTAB) 0
3. X. > XTAB(NTAB) 1
Method
1. The order of interpolation is N = MIN(NPT-1, NTAB-1), The
best N+1 points are selected for the interpolation,
2, Special cases are:
A, N=20 No interpolation,
B. N =1 Linear interpolation.
C. N=2 Parabolic interpolation.
3. When the argument is outside the range of the independent variable
table, TNT1 is set {0 0
Restrictions
1. The elements of the independent variable table must be in monotonic
ascending order.

Additional subprograms required: TLUl.

MNSUP1

A,

B,

Cl

Main program.

Calling sequence; None,

This program performs initialization for the supersonic plus the calcula-
tion of all left hand characteristics to and including the first starting
from the body.

Error indications: None,
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MNSUP2

A, Main program.

B. Calling sequence: None,

C. This program calculates the properties on all characteristics after the
first emanating from the body. It includes the calculation of all expan-
sion corners and constant pressure wake as well as regular body points
on the surface,

D. Error indications: None,

BODY1

A, Subroutine,

B. Calling sequence: None

C. This routine computes the properties K, x, ¥, 6, ¢, p, p, V, M, S/R, T
at a body point in the supersonic region.

Given the configuration:

D

"/
and assuming all properties are known at D and G:
‘bc B !pG

X, Ty and 60 are obtained in SURFIN,

P *Pp-Qgp 0 -6+ E° Gy
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2
Q:-‘—I_—_&
M -1
% ging
G = Mr

p,V,M, S8R, andT are obtained in CONENT.
I N ¢ c

K = -1, (Used to identify body points).
Convergence must be made on 8 and M.
D, Error indications:

NOVAL = 691; Failed to converge on 8and/or M.

FIELD1

A, Subroutine,

B. Calling sequence: None.

C. This routine computes the properties K, x, r, 6, ¥, p, p, V, M, S/R

T at a field point in the supersonic region.

Given the configuration:

and assuming all properties are known at B and D:

rB-rD+xD-A2 -xB-Al

C AZ—Al
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c B 1
- . - . . + . G’ . + - p
. 8, " Qap* %5 %Bc - " %sc %W """ %cp” %cp "PB
+
c Qp " C
- - + - G
Pe=Pg - Q¢ Cc 5 * M " “BC
QUTSUP
A. Subroutine.
B. Calling sequence: (IND)
C. This is the main output routine of the supersonic program. The options

are:

1.

IND = 1, Starting line information is written,
m, n, X, I, 9, {b- P’ P, vV, M, S/R: T.

Also, Pt and C p are computed:

max
Ideal gas:
& YIDEAL
' Y 1
- [1 ) VipEAL-] Mz] IDEAL
t C 2
. ) P -P
2
Pmastx 0.5 e, Vm
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Dm
CP = 2 - —p—
max
P =10.5 V2 C + P
t Dm ) P ®

IND = 2, Information at each point on left hand characteristic is
written,

m, n, x, v, 6, %, P, p, V, M, S/R, T, NITER.

Shock angle - K.

Also, the body and shock data is written on a binary tape to be
summarized at the end of the run,

IND = 3. The body and shock data is summarized,

Body data:

m,n, X, r, P, P/Pt’ P/Pm, CP/CP . Cx, f(rad), 9 (deg)

max
P-P

where CP =

0.5mr2p V>

P
F=2nfp-r-tanedx+2nf{[\f+ = :,
X o me

*B *x

P , sin s _
-[Vcose+ . "'—Y_‘smw-m]}‘_"’vsm“’ 8 df
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Shock data;

m, n, X, v, K (rad.), K (deg).

PSIINT
A. Subroutine.
B, Calling sequence: (IND).

In this routine, the values of the stream function ¢ are calculated at

each point of the starting line. It is computed by the formula

8
w=_/-r +p-V.coscdf

where ¢ is computed as follows:
(a)  Arbitrary line normal to streamlines:
e =0

(b}  Arbitrary line not normal to streamlines:

-1 1
= - ———— -8
€ tan [ d_y ]

dx
where:
2 2
dy _ [rn+2 - rn+1] [ S xnl - [rn+1 - rn] [xn+2 - xn+1:|
dx ’ 2

X - X |'x - X 2 -x - X X - X
n+2 n+l L n+l n n+l n n+2 n+1]
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{c) Right or left hand characteristic:

. -1 1
€ P 8in Y,

There are two options currently available:

1. IND = 1. In this option, the integration goes in one direction
only. This is to be used for the nozzle program not yet in pro-
duction.

2. IND = 2, Inthis option, the integration is done twice, once
from body to shock, and second from shock to body, and then a
weighted average of the two integrations is taken, The initial

values of 4 are:

] 0

BODY

+
I‘51

Yshock = T 71 " Pe" Ve

The weighting formula is:

' = b Ayt L
/v 4,

The integration is done by the quadrature formula deseribed in

QUDINT.

SHOCK1
A, Subroutine.

B. Calling sequence: None
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This routine computes the properties K, x, r, 6, 3, p, o, V, M, 8/R,
T at a shock point in the supersonic region.

Given the configuration:

B

and assuming all properties are known at B and G:

rB-rG+xG-A2—xB-A1

where:

o, to
_ C G
Az—tana_BC—ta.n [ 3 ]
UC=KC

ol (L
u = sin M

p, V, M, T, 8/R, P, Bare obtained in SHOCK.
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8, = - - G n
C aB QBC BC
where:
Q= ——F
M™ -1
6 . sin B
G M.r
d+1
et V- 1g
be = 5+ 1
i
Convergence must be made on M, and |6 a - GC'

The iteration is done on K c*
D, Error indications:

NOVAL = 691, Failed to converge on 6 and/or M,

STPROP
A.  Subroutine,
B. Calling sequence: (IND).

C. This routine calculates at each point on the starting line:

1. T = S—

Since Z is a function of T, an iteration process is required,

2. S/RC = f(pc, T

2. ‘YC L3 Pc
5 Ve© ¥WH 7 ho

Yoo Pg
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where:

P
} ‘/ C o
4, MC VC atb-p : Equilibrium.
,F Z)*P
M =V -L : Frozen
C C p :

Z

where: F (Z) = 1 + T @D T e-2) - (5.5 +JF)

There are two options:

1. IND = 1. At the shock point, the free stream conditions and
SIGMA tables are also calculated.

2, IND = 2. At the field points and body point, only the starting

line information is calculated.

D.  Error indications:
NOVAL = 291. Failed to converge on T c'
SURFIN
A,  Subroutine,
B. Calling sequence: (ALPHA),
C. This routine computes the coordinates and the flow angle at a point

determined by the intersection of a left hand characteristic with the

body. If there is an expansion corner between this point and the pre-
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vious body point, a pseudo body point (i.e., the projection of the up~
stream body curve) is used, preparatory to entering the expansion
corner subroutine,

Given the configuration:

A value is assumed for x

C
T C(l) can be obtained from the body curve Equation (see RF)

r C(Z) can be obtained from the equation

(2 _ _ _ .
rC -rD (xC XD) ta.nGCD

where:

and
S I S
b= sin
L . (D) (2) ithi ified
Iteration is made on X until r C and r c agree within specifie

Timit.
2] o is then obtained in RF.
Error indications:

NOVAL = 591: Failed to converge onr.
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MNTRN1

A, Main program.,

B. Calling sequence: None.

C.  This is the main control program for the transonic region.

D.  Error indications: NOVAL = 1686, Failed to converge at continuity
point,

DERIV

A.  Subroutine,

B. Calling sequence: (IND, Xl, X2’ X3, Rl' Rz, R3).

C. This routine computes the first derivative of a function f(x) by means of

a parabolic differentiation formula based on the points (xl, rl), (xz, r 2),

(x3, r3).
r -r
-1 1
D= tan x3- X
3 1
' 1 3
- - - i <j =
Xi (xi xl) cos o+ (ri rl) sin @ i .
' i 3
= - - i - < i <
ri (xi xl) gin  + (ri rl) cos @ 1=1
¥ ' 2 ' 1 2
T4 -r, - x
A = 2 3 3 2
¥ R 1 1 1
e Xq (x3 xz)
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1
2 3 3 2
B= 1 1 ' 1
Xo * K ¢ (xs-xz)
dr' '
r
ax. = A+ 2 B.xi
i
dt
r
— + tan
1 dxi @
f (x)i = -
dr
1-tan $+ —
i
OUTTRN

A,  Subroutine,
B. Calling sequence: (IND),
C.  This is the output routine for the transonic program.

1. IND

1: Continuity point output.

2, IND

2: Regular ocutput.

3. IND

n

3: Summary of continuity point output and first two normals
which are supersonic at body.

D, Error indications: None.

SHKEQ
A, Function,
B, Calling sequence: (IND, R)

C. In this routine, information concerning the shock curves is computed, *

*Provision has been made for up to 7 shock curves.
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10
X = A - r1 .
E : i
i=0
2 IND = 2, The value of x is computed by the ahove formula.
3. IND = 3. The shock angle is computed
g = 1
dx
dr
D. Error indications: None.
TRBDY
A, Subroutine.
B. Calling sequence: None.
C.  This routine computes information on the body.
The x and P are read in at each point.
The r, 8, and K may be read in at each point or may be obtained
from an analytic body curve (RF).
The p, V, M, and T are obtained in CONENT,
D. Error indications: None.
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7. PROGRAMMING OF THE UNSTEADY FLOW FIELD

This Section provides a brief outline of the programming of the unsteady flow
field solutions, Its purpose is to provide a link between the analysis of the problem,

and the listing of the computer program.

7.1 THE UNSTEADY SUPERSONIC PROGRAM

Using the method of characteristics solution, the program finds the perturbations
on the zero yaw flow field properties due to arbitrary values of angle of attack, pitch
velocity, yaw velocity and the various time derivatives of angle of attack and pitch and

yaw velocity.

Zero yaw properties are found using the Superscnic Zero yaw program, Perturbed
properties along an initial line may be obtained from the pointed cone program, input
cards provided by the user or internal calculations for a blunt body solution. Using the
zero yaw properties and perturbed properties from adjacent left hand characteristics,

the perturbations are carried out along left hand characteristics.

The program is written in Fortran II, General Electric MSD version. It utilizes

the chain feature, and consists of two links on the flow field system tape.
A brief description of the flow of the proéram follows.
7.1.1 Link1I

1. Read input common to all opticns.

2. Initialize parameters for options and tape assignments.
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Read thermodynamic tables if real gas.

Decide upon starting line option.

a. Arbitrary line - input from cards - go to 5.

b. Arbitrary line - input calculated by program - go to 7.

¢. Left hand characteristic - input from cards - go to 8.

d. Left hand characteristic - input from binary tape - go to 8.

Locate shock point of left hand characteristic immediately preceding
starting line shock point from zero yaw input tape.

At each point on starting line, calculate properties not included in input,

2
K 1’ through K, , 02 and e , then continue out the left hand characteristic

4
on which the point lies, until the shock point has been calculated. Each
point with its left hand characteristic is calculated for all J's and N's before
going on to next point on starting line., After body point on the starting line
and its left hand characteristic have been computed, go to 11.

In Subroutine STLINE, calculate:

a., Perturbed properties for all J's and N's at each point on the starting
line from Shock to body, storing data on binary tape (B-5 if set by pro-
gram),

b. Rewind binary tapes containing starting line data and zero yaw solution.

¢. Read preliminary information from zero yaw tape,

d. Return to main program and re-locate starting line in zero yaw solution.

e. Proceed as in step 6, except starting line data is read from binary tape

instead of cards. When body point is reached, go to 11.

Locate starting left hand characteristic from zero yaw solution,
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10.

11.

12,

a. Input from cards - go to 9.

b. Input from tape - go to 10.

Read in perturbed properties along starting left hand characteristic.

a. Calculate K 1 through K 4 Cz and 92 at each point on left hand charac-
teristic.

b. Do this for all J's and N's.

c. Goto 11.

Read in perturbed properties from Binary tape (A6 if set in program) along

starting left hand characteristic.

a. Calculate Kl through K |, 02 and e2 at each point on left hand charac-~

4
teristic.

b. Do this for all J's and N's,

¢c. Go to 11,

Store perturbed properties on one of two temporary tapes (A7 or A8 if set in

program).

Go to next link on chain.

7.1.2 Link II

10

Set temporary tape assignments for reading and writing perturbed properties
along characteristic for N-1 values. Rewind tapes.

Read zero vaw properties along left hand characteristic.

Read perturbed properties along previous left hand characteristic for J, N.
Find perturbations at:

a. Body peint
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10,

11,

b. Field points

c. Shock point

d. Steps 3 and 4 are re-done until all J's and N's have been calculated
e. Perturbations are stored on second temporary tape

At body point - go to subroutine SUFINT and do integration of forces along
body. If blunt body solution, store force coeificients on binary tape (A-6
if set by program),

Print output.,

Check to see if this is last characteristic to be calculated.

a,. Yes-goto8

b. No - go to 1 and repeat process.

Write summation of force integration along body.

Blunt body solution - go to 10,

Pointed cone selution - go to 11,

Call subroutine SUMINT and do summary of force integration for aand a.

Call control subroutine fo either get off machine or do another case.

7.1.3 Tape Assignments,

The standard Fortran peripheral input and output tapes (A2 and A3) are used to

read BCD input and write BCD output.

Because of the storage requirements put on the original program, several

intermediate tapes are utilized for sforing binary information. These tape assign-

ments can be set by the user or set by the program. They are designated, in the
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program, as NT2, NT3, NT4 and NT5. If NT2 is read as zero, all tapes will be set
by program. If NT2 is non-zero, all tapes must be set by user. The program

designates these tapes:

Logical Physical
NT2 = 17 A7
NT3 = 18 A8
NT4 = 16 A6
NTs5 = 25 B5

AT and AB are used to store perturbed properties for J, N along a left hand char-
acteristic,

AB, for a pointed cone body, contains perturbations along initial line. This tape is
created by the pointed cone program.

Ag, for a blunt body solution, is used to store the properties calculated along the
starting line.

B5 is used to store the coefficients from the integration of forces along the body for

use in final summation tables.

Two additional tfapes are used by the program. They contain (1) the zero yaw
solution created by the supersonic zero yaw program and (2) the thermodynamic
tables.

B7 is used for the thermodynamic table. This tape need not be loaded if atmosphere
is an ideal gas. The user has the option of designating tape assignment for the zero-

yaw solution.
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NBTPR, if input as zero, assigns B6 for the zero yaw solution.

Since the program contains the 10 tables for G. E. M. S. D. FORTRAN, the following

list must be referred to if the user wishes to change internal tape assignments.

Logical Physical Logical Physical
1 Al* 16 AB
2 A2¥ 17 AT
3 Ad 18 A8
4 A5 19 A9
5 B1 20 Al0
6 B2 21 B1
7 B3 22 B2
8 B4 23 B3
9 B5 24 B4

10 A3* 25 B5
11 Al* 26 Bé
12 A2% 27 B7
13 A3* 28 B8
14 A4 29 B9¥
15 Ab 30 Bl10

*These tapes are not available for intermediate designation as they are used by the system.

134



7. 1.4 Restrictions

1. If terminating along right hand characteristic or constant value of X, either
must intersect with the shock beyond shock point on left hand characteristic
from the first body point.

2, A maximum of 70 points is allowed on a left hand characteristic, including
body, field, and shock points. For arbitrary line start, maximum value of

NUMPTS is 35.

7.2 BRIEF DESCRIPTION OF G. E. M. S.D. VARIABLE FIELD INPUT

- Floating point fields must begin with F, each variable separated by a comma, and

card terminated with an asterisk.

Ex. {o input:
X=.50
R=178
V = 1700. 06

p =.5678X10-6

On one card it will appear as:

Fo0. 50,1, 78, 1700. 06, . 5678E-6* beginning in Column L

Fixed point fields must begin with X, each variable separated by a comma, and

card terminated with an asterisk.

Ex. to input:
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NUMDPTS = 20
MSTART = 148,
On one card it will appear as:

X1, 17, 20, 148* beginning in Column 1 {no decimal points may appear on fixed

point variables)

To input both floating and fixed point fields on same card, fields must be separated
by a comma.
Ex. to input above (information on one card):

(X, R, V, 8, N, NT1, NUMPTS, MSTART)

Card will appear as:

F0. 50, 1. 78, 1700. 06, 0. 5678E-6,X1, 17, 20, 148* Beginning in Column 1.

Columns 1-72 may be utilized only. If more than one card is needed to complete
list, terminate card with an asterisk after any convenient variable, Continue on next
card, beginning card with field designation (F or X) and terminating with an asterisk.
Any number of cards may be used to complete a list. A separate card must be used for

each input statement in the program.

A list may be terminated, all succeeding variables in that list being set equal to

zero, or entire list may be set equal to zero, with use of § character,

To terminate a list after a particular variable, place a comma after the variable
followed by a $.
Ex. Array Test (1-10) is to read in where:

Test (1) = 1 x 107°, Test (2) = 1 x 10°°, Test (3-10) = 0
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The card will appear as:

F1l. 0E-5, 1. 0E-6, $ beginning in Column 1.

If entire array were to be set equal to zero, the card would appear as: F$.

Input Supersonic Unsteady Flow

IDPROG =17

Variables No. of Cards
1. FFCASE 1

2. IDPROG, KENSE (1-10) 1

3. XEND, XTERM, ELP 1

4, MSTART, NMAX, NTERM, NT2, NT3, NT4, NT5 1

5. NBTPW, NBTPR 1

6. RIDEAL, GIDEAL, ZIDEAL, RHOO, RHOOO, GREAL 1

I. Pointed body requires Cards 8, 9, 10, 11 as in II below (but Card 7 is omitted for
the pointed body).

IL  Arbitrary line input (blunt body) - starting line calculated by program

7. NUMPTS, XO 1
8, DELX, RN, NRTST, NXINT, NT5 1
9, RTEST (1-NRTST) | 1
10. XINT (1-NXINT) | 1
11. XMAX 1

IOI. Arbitrary line input - starting line input from cards*
7. NUMPTS, XO

8. (STARTING LINE DATA - SHOCK TO BODY)

*Neither option III or IV will be needed in the usual unsteady flow field solution.
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A. THCB, VCB, WCB, PCB, RHOCB, SRCB, TCB, DRDX, RX (Shock Pt
all J's and N's)
B. THCB, VCB, WCB, PCB, RHOCB, SRCB, RB, $ (Each Field Pt all J's
and N's)
C. THCB, VCB, WCB, PCB, RHOCB, SRCB, TCB, $
D. COEFN, COEFM (Body Pt. Cards C, D, for each J,N)
9. DELX, RN, NRTST, NXINT, NT4
10. RTEST (1-NRTST)
11, XINT (1-NXINT)
12, XMAX (1-NRTST)
IV. Left hand characteristic input - starting line input from cards
7. (STARTING LINE INFORMATION - BODY TO SHOCK
A. COEFN, COEFM
B. THCB, VCB, WCB, PCB, RHOCB, SRCB, TCB, DRDX, RX
(ONE CARD FOR EACH POINT BODY TO SHOCK. ENTIRE CHARAC-

TERISTIC is read in for each combination J, N)

7.2.1 External Parameters for Supersonic Unsteady Flow

KENSE (1) = 0 Arbitrary line starting line

KENSE (1)=+1 Left hand characteristic starting line - input from cards.

KENSE (1) = -1 Left hand characteristic starting line - input from binary tape.
KENSE (2) =0 Arbitrary line starting line properties are calculated by program.
KENSE (2) = £1 Arbitrary line starting line properties are read from cards.
KENSE (3) =0 Print perturbations of entire flow field

KENSE (3) = #1 Print only summation of force integration
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7.2.2 Input Variables in the Order in Which They Appear in Input

ELP
XSTRT
XTERM
NMAX

NUMJ

NT2, NT3
NT4, NT5
NBTPW

NBTPR

RIDEAL

GIDEAL
ZIDEAL
RHOO
RHOOO

GREAL

Length used in restricting magnitude of perturbed terms.
X-coordinate of body point on initial left hand characteristic.
X-coordinate along which left hand characteristics may be terminated.
Maximum value of n. No restriction on NMAX,

No. of J's over which solution is to be found. Maximum value of
NUMJI=2.

Intermediate tape assignments.

Intermediate tape assignments,

Always set to zero.

Tape designation of zero yaw solution. If input as zero the program
sets NBTPR = 26 (B6).

Ideal gas constant.

A

Isentropic relationship P

+ B, for ideal gas = 1. 4.
Compengibility factor in P = ZR pT. For ideal gas = 1. 0.
Reference dengity in density tables.

Reference dengity in density tables.

Actual value of —% + B. For ideal gas = 1. 40223.

NOTE: IF RIDEAL, GIDEAL, ZIDEAL, RHOO, RHOOO, GREAL are input as zero,

the program sets them equal to the constants for air.

NUMPTS

MSTART

X0

Number cof points on starting line.

Value of MC (from zero yaw solution) at shock point on arbitrary line
starting line,

Distance from origin of coordinate system to reference center for

ents,
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COEFN Coefficient of force normal.

COEFM Coefficient of moment.

THCB Perturbation on flow angle 6.

VCB Perturbation on velocity.

WCB Velocity component perpendicular to meridianal plane.
PCB Perturbation on pressure,

RHOCB Perturbation on density, p.

SRCB Perturbation on entropy divided by Ideal gas constant.

TCB Perturbation on temperature.

DRDX Slope of shock wave, tangent of slope angle.

RX Radial distance to shock wave.
DELX Increment for XCG/LB in TABLE II of force summary.
RN Nose radius. (Coefficient Al 0 of body equation of nose).

NRTST Number of interpolations o be done on summary of body data.

RTST Value of rn/rb at which interpolated values are to be found. There
must be NRTST of these.

XMAX Maximum value of XCG/LB in table II. There must be NRTST of

these,
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7.3 BASIC STORAGE ARRAYS

The basic storage arrays used by program are ag follows:
SP(J, N, M) Dimensions SP(11, 120, 2) contains zero yaw properties along
left hand characteristic -

J indicates particular PROPERTY.

N indicates point on the characteristic.

M indicates characteristic.

M = 1 characteristic being solved.

M = 2 preceding characteristic,

SPDS(J, N, M)

Dimensions SPDS(15, 70, 4) confains perturbed properties along
left hand characteristic -

J indicates particular property

N indicates point on the characteristic

M indicates characteristic

M = 1 contains perturbed properties along characteristic being solved,

N=n,
M = 2 contains perturbed properties along characteristic being solved,
N =n-1,
M = 3 contains perturbed properties along previous characteristic, N = n.

M = 4 contains perturbed properties along previous characteristic, N = n-1,

SX(J) Dimension SX{30) "Working' array for using finite difference

equation for method of characteristic solution
X=A, B, C, D, E or G depending upon point on characteristic line
J indicates particular property.
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7.3.1 Use of Basic Storage Arrays to Provide Characteristic Method of Solution.

BODY POINT
SP(, N, 2)
SPDS(LN,9)—
SPDS{J, N, 4) SPELNL
] *
T SPDSE.N, 1)
1 SPDS(J, N, 2)

B&G C BODY

Point to be calculated is at C
Zero yaw properties: 8A(J) = SE{J) = SP(J,2,2)
SB(J) = SG(J) = SP(J, 1,2)
SC(J) = SP(J,1,1)
NOTE: Zero yaw properties along any left hand characteristic remain the same for all

combinations of j and n along that characteristic.

Perturbed properties: SA(J+13) = SPDS(J, 2, 3) n ferms
SE(J+13) = SPDS(J, 2,4) n-1terms
SB(J+13)-= SPDS(J, 1, 3) n terms
SG(J+13) = SPDS(J, 1, 4) n-1 terms
SC(J+13) = SPDS(J, 1,2) n-1 terms

NOTE: SC(J) array is utilized to store n-1 terms at point being calculated until all
calculations have been completed. Then the n terms are placed there for

storage in the SPDS(J,N, M) array.
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SPDS8(J, 1, 1) = SC(J+13) for succeeding characteristics

FIELD POINT

SP(J, N, 2)
SPDS{, N, 3)
SPDS(J, N, 4)

SP(,N, 1)
SPDS(J, N, 1)
SPDS(J, N, 2)

BODY 1

Point to be calculated, point C. 3rd point on left hand characteristic
Zero yaw properties: SA(J) = SE(J) = SP(J,4,2)
SB(J) = SG(J) = SP(J,2, 1)

SC(J) = SP(J,3, 1)

Perturbed properties: SA(J+13) = SPDS(J, 2,4) n terms
SE(J+13) = SPDS(J, 4,4) n-1terms
SB(J+13) = SPDS(J, 2, 1) n terms
SG(J+13) = SPDS{J, 2, 2) n-1 terms
SC(J+13) = SPDS(J, 3, 2) n-1 terms
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Caleculations are carried out and

SPDS(J, 3, 1) = SC({J+13) for succeeding calculations,

SHOCK POINT

SPW, N, 2)
SPDS(J, N, 3)
SPDS(, N, 4)

SP{J,N, 1)
SPDS(J, N, 1)
SPDS(J, N, 2)

Point to be calculated, point C-shock point, last point on left hand characteristic.

Zero yaw properties

Perturbed properties

SA(J) = SE(J) = SP(J, 10, 2)

SB(J) = SG(J) = SP(J, 9, 1)

SC(J) = SP(J, 10, 1)
SA(J+13) = SPDS(J, 10, 3)
SE(J+13) = SPDS(J, 10, 4)
SB(J+13) = SPDS(J, 9, 1)
SG(J+13) = SPDS(J, 9,2)

SC(J+13) = SPDS(J, 10, 2)
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Calculations are carried out and

SPDS{J, 10, 1) = SC{J+13) for succeeding calculations.

7.3.2 Basic Storage Arrays Showing Assignment of Variables Used in Supersonic

Unsteady Flow Program.

Flow Program.

J 54 SP SPDS

X=A,B,C,D,E, or G

1 M K, o E
2 N X v
3 K, o r W
4 X 9 P

o
-

-
ol

6 B P S/R

7 v p T

8 P 3R/3X

9 p M RX
10 \'s S/R K,
11 M T K,
12 S/R K,
13 T K,
14 9 c?
15 ; e2
16 W
17 P
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1oy
ol R

18
19 8/R
20 T
21 3R/3X
22 R,
23 K,
24 K,
25 K,
26 K,
27 c?
28 e2
29 Z
30 Y
ARYCLC

A, Subroutine

B, Calling sequence: None.

C. This routine computes C, (i = 1),5; D (i = 1,19) and Fi’j;_éi’ j;ﬁm.(i =1,2;j=1,2)
at A, B, C in body, field and shock point calculation along a left hand charac-
teristic, A, B, and C Storage have been set in BODY, FIELD or SHOCK
(depending on type of calculation) before entering ARYCLC,
for n=0 '5k,1=1.0

6k, 2

0.0
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for n=1 61{,1 = 0,0
b2 = 10
for n>1 6k,1 =0,0
61{,2 = 0,0

The following equations are solved using zero yaw properties first at point C,

then A and B,
F1’1=0.0
F, _=-Ff S
F1,2 chsinec
— vm —
For=-77 Fia
— VCD
F2’2= 7 p, (¥, cos ec - X smec)
G1’1=0.0
G1,2 == p, vV cos e
o V2 v
G = &= 8 -2V —mp
G2,1 f ; cos c cf: c
v P
— [s ] c .
= - +
(.?rz,2 l, (rc gin ec xc cos ec)
H1‘1=0.0
Hig= P Ve ®
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_ \'
Hz,l =T- (2 pcvc cos Gc-pcvm) (5

Vv
- ©
H2,2 X Pe xc6

a, and b are found in subroutine THERMO from the thermodynamic tables,

1 M['2 -1
C., = c
1 V2
Pe e
C2 = 1
p V.M
c c ¢
Cl
C, = ——
M
¢
o = 1
g =
Pe Vc
1
% = v
c
3 8/R
T is found from stream function reference tables (zero yaw)
p,= -1 2v 2Ry
14 cecPe’c 3y CIDEAL
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1 2
v y1—
M
44
-0
5
r
[
vV M
C
2c>
C
\'
c.
ZocCi 1-—1&2—
[ 4]
Mc
TV [Kl'Kz]
c
1 Ye |
2 pc 5
M,
- K
241 - ¢

149




10

11

12

13

15

-
P
A" Kc

Kc +Kc c -53— + ¢

1 2 2ch 1——2- e, e

M %
c
p V Bin 8
c ¢ ¢ 5
r
¢

b
r

c
ré‘) V2 aS/R

c pc c a v

c
-1 [Kc +Kc]
ZVclfl- 1‘-4—2- 1 2
(]

Vc

0 D12

c
Vv o) (\7) ez e

m(l_é)ccn-l_c_S__

1
Z k, 1 Vc C2 Rc n-1

c

7T v k, 2 -V k,1
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v N v
D, = -——(1-86_ )p V_ (8) +(G, ) —_—
16 A kll ¢c c ¢'n-1 j.2/¢ [' 51':,2

* (Gj,l)c 5l':,l
A _ _ v_
Dy = A A A\ A ), 7 O, 2
O DL By
v_ s
Dig = -g7— Q-8 )\ 7R
\ '

Error Indications:

NOVAL

601: Error in finding a or b in FLOWTL

S
621: 1 is outside of reference tahles in calculating %—“’/—R—-

]

NOVAL
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BODY3

Subroutine,

Calling sequence: (IND}

This routine computes the properties B . P y P v , w . T . ?’/ R at a body
point on the starting line and at any succeeding body point.

Given the configuration

and assuming zero yaw properties are known at A, B, and C and that the pertur-

bations on these properties are known at A and B,

. - PC— P,
2 A
£ac
P -P
1 2
K, = 2¥1- AC B -K, where aﬁAcz‘/(xc-xmzunc-RA)
M LBC
L - p 2
5 %8 *J(xc X R Ry
dz Y/ 2 2
. . .
as/. * 3 p/ R K3. K4, C , e and y* are obtained in THERMO,
R po
Ci(i =1,5) at A, B, C
Di (i=1,19) at A, B, C are found in ARYCLC
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Average Values of

CifromAtoCandBtoC

Di from A to C and B to C are found,

Body point matrix (aij) where i = 1,4; j = 1, 4 is initialized as a zero matrix,

Then elements are calculated by:

(DAC £ 0 CACZ)

a =1 - 8
1,1 2C,,
1
D Y C + D L . C )
o _( ac, ~ac “ac, Ac, “ac “ac,
1,2 2C,
1
D A ¢ - p_ L ¢ )
i ) ( ac, “"Ac “ac, AC, “AC”AC,
1,3 2C '
AC,
D L ¢
. ) ac, “ac CAc,
1,4 2C,
1
1
a = --—D ,é C
2,1 2 BC, ~BC BC,
1
B4 lJ":a_DcB9 ﬁBC CBC4
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NOTE:

a = 1+=D £ ¢
3,3 2 "BC,, BC 'BC,
a -— ..L

4,1 2

8,2 - 1.0

All elements not noted are equal to zero.

Compute matrix (§i), i=1,4:

L+ DACS 4, CA02

= t - - %7 - sy
& 2 C PAa~82Pa "853V, -2 W
AC, ,
1 /g Z 1
- +{D C.. -D c .1
C ac, ac, “Ac “Ac, T Tac, “Ac Tac, 2 C ac,
EAC
- -D + D c
C,0 AC . "AC, AC,, ~AC,
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5o = O

S .8 )

/B = G/By + Cpo Ypg D

5 18
92 —
. _._£ 5

4 T T2 /Ry

c

Invert Body Point matrix:

c 1
°c = 8§43, Po
V, = b,
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C 4
= 1 = —~ AZ

T = P -{P Z RT_+p. T, Rlog . e

C Z Ro C c C C cC C 10 aloglop

(o] [+]
+ (E/R) T .R.o 32
C 'cc’c Y
/R o

D, Error Indications:

NOVAL

111: Error in thermodynamic properties (Subroutine THERMO)

NOVAL

I}

151: Error in finding Ci and Di (Subroutine ARYCLC)

7.3.3 Initial Line Calculations at Body. (Spherically Blunted Body Only)

Given the configuration for the body point on the starting line,

. D

B

forj =1, n=240

5 =(PD—PC)(BC_GB) N (PC_PB)(GD-BC).

1,0 5, - O i - g 8, - b
X - X )sineg

— (c o) c

W1,0 = VC [cos HC - T x DEL
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S/ =0
Rl,O

'5' - P1|0
1,0 CZ

- - Pl,o
1,0 pc VC

T 0 is found in the same manner as at succeeding body points,
1,

i 3 = 1 = .
forj=1,n 5k,n 1,0
forj=1,n>1 S ,n = 0-0
and
Vin=" %, n VsHK

where VSHK is computed at shock point,

el,n = - Bk,n BSHK [(XC - Xo) cos 80+rc sin BC:,

where BSHK is found at shock point,
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1,n
—1,n = 0.0
al,n = 0.0
Tl’n = 0.0
forj=2n=20 Bk’n=1.0
for j =2 n>2 Gk,n=0'0

§2,n = 0.0
Ez,n = 0.0
éj”Rz’ = 0.0
:Ez,n = 0.0
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FIELD3

Ao

B,

C.

Subroutine,

Calling Sequence: (IND)

This routine computes the properties 5, _15, 7, V,w, T, S/R
at each field point on the starting line, and each field point on succeeding

left hand characteristics.

Given the configuration for any field point not on the starting line:

and assuming zero yaw properties are known at A, B and C and that the per-

turbations on these properties are known at A and B,

K = Po-Pp
1 A zBC
P -P
= __g_._A_ _f _ 2 _ 2
Kz- r 7 whereAﬂAC (XC XA) + (RC RA)
AC
f _ _ 2 _ 2
A BC (XC XB) " (RC RB)
) d
Z R Z . K., K, 02 and e2 are obtained in THERMO
BS/R ap/p 34
o
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O
-
i

= 1,5 at A, Band C

o
[

=1,9at A, B, and C are obtained in ARYCLC

Average Values Ci from Ato Band Ato C

Di from A to Band Ato C are found.

Di at point D

Average Values Di from D to C are found,

Field point matrix (aij) (1 = 1,5 j = 1,5)is initialized as a zero matrix.

- 5 ¢ (__-)
(GA B T BC\P,- Py

E = -
1 C T C
AC, BC,
I
Csc. B
E = 2
2 C + C
AC,  "BC,
£
Cse.  “Be
E_ = 3
3 C + C
AC, BC,
J
Cac “ac
E, = 2
4 C + C
AC, BC,
Cac. “ac
E = - 3
5 C + C
AC, BC,
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1
F, = T(Ez D]a',c8 tE, DACB )

1 )
F, = -C , -—C D
2 AC, T2 TAC, TAC, AC

1 /)
a, = C -=C D
1,1 BC, -2 "BC, BC, BC
1 / 1 J
a = -—=C D + = D
1,2 2 "BC, BC, BC 2 "BC, BC, BC
1 I 1 /
__1 1 D
2,32 %c. Prc. "Bc* 2 %Bc. Prc. BC
2 1 3 5
_ 1 J 4
8 4% ~% %c. Prc. “mC
2 2
a, = 1l+4¢ D +=C A
1,5 BC. °BC.  BC BC. BC, BC
2 3 3 7
1 /
a = -C +—=—C D
2,1 ac, 2 “ac, “ac, ac
1/
a = D c + D o
2,2 2 AC\ AC, "AC, Ac, “Ac,
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2,3

2,4

2,5

3,1

3,4

4,1

4,2

4,3

4,5
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5,1 ez
C
2
a — - E—C——
5,2 e2
C
1
a = —D C ﬁ
5,5 2 DC11 D05 (8))]

NOTE: All elements of matrix not in list are equal to zero,

5= (@-3; g 85+ 2 CBc1 ~8 ) Pg -3 3V

* Cpe. Pre._ “Bet CBe. Pre ch

2 15 3 16

g - (2. ) Y v
g T @8, 9T, FFy Py -2, 0Pp "8y 3V

- £ {p c - D c

AC( ac,, “Ac, ac,, “Ac, )
§3= @-a5 ) wp-ag Pt Dy Chp “op
17 4

8= @-2, gV +a, Py-a ,0n-8, o957
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g = /Ry - ag o0

+
,DD C

DC DC

18 b

Invert field point matrix:

@) x €)= b,
13C = b,
oc = Py
‘."c = by
W= h,
éc = b,
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D, Error indicators:

NOVAL

NOVAL

111: Error in thermodynamic properties (THERMO)

151: Error in finding Ci or Di (ARYCLC)

7.3.4 Initial Line Calculations at any Field Point (Spherically Blunted Body Only)

Given the configurations for a field point on the starting line

for j =1, n=0
Lo (re- )

dap_ _ (Pc Pp )A ce  \"g~°? 0 Ly . 1
al’ b pe 54 cg 84 cg* 2L po

F(B B )Al (9 -0 )Al
ds  J\c B CE _\E_C BC | 1
al’ 51 nc 81 og i A e
d5/R__ (S/RE' S/RE\)A Log X (S/RB' S/RB)”BC . 1
al® 5 ne 8L ok 84 g 84 g
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df” 8 s A op Leptl s

d 8 _[(GC'BA)MCD +(9D” eC)AlAC] 1

al” 8L pc 8 ep 88 op 84 ¢

a>r _ [(G/RC'S/RA)AICD +(S/RD_S/RC)A£CD } 1
al- 5 ac A op o op AL 4c
where:

_ 2 2
84 0 'Jv(xc - X) @R -R)

2 2
84 5¢ 4 KXo -Xp) * (B, - Ry

5 2
84 op =J(Xc -Xp * (R, -Rp

) 2 2
Y CE “/(xc ~Xp tR,-Ry

, 1
A:[(xc-xo) cos (8q= Mo +Rcsm(ec‘“c)]‘ sin 2 M

Cc

- 1
B=[‘Xc'xo) cos (ec+“c)+RcS‘“(ec+“c)] * Snzu

C
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- d 8 do
= B——-——
1,0 af”* il
— s s
S/R1o AdﬁR_'_Bd_/R
' af af

= &

C

s Pl.o ) o2 9711

1,0 02 c2 1,0

Pro ) R 8/n

1,0 DCVC VC 1,0

ifj=1,n=1 8 = 1:0

if}j=1,n>1 8y = 0.0

1,n = - ak,nVSHK VSHK from SHOCK3

61,n= - ﬁk,n GSHK[(XC—XO) cos 9C+Rcsm ec] BSHKfrom,

SHOCK3
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Py = 0.0
31,n= 0.0
Tl’n = 0.0
ifj=2n=0 5k,n=1_0
j=2n>0 5k’n=0.0

<!
1

v
2n " ﬁk,n VSHK - .E—T- ([xc - O])sin 2] -(RC cos 90)

2,n k,n SHK-ﬂ,";,C [(XC-XO) cos eC+RCsin ec]

p = 0.0
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T2,n =0,0

SHOCK3
A, Subroutine
B, Calling Sequence: (IND)

C. This routine computes the properties 8, P, p,V, w, T, S/R , RS, -:sz-

at a shock point on the starting line and at any succeeding shock point,

Given the configuration for any shock point not on the starting line,
SHOCK C
A Loc
Lac B

and assuming that the zero yaw properties are known at A, B, and C and that

the perturbed properties are known at A and B,

. ) 2 2
AlAC —{(XC-XA) + R, - Ry

. Pc PB
1 AIBC
-1 1
H, = 8in
C
MC
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B =9, ,+n -0

%\ - -
) sin ( Mo B) sinZuC , Pc PA
K= - sin B K1 * ene af
AC
3 3
2z °Z k. K.,C? e arefound in THERMO
S/ 3 4
3 /R Bp/p

o

e
-
’:\
Il

1,5)8,t A, B, and C

1, 19) at A, B, and C are found in ARYCLC

of
1

Average Values of

Di from Bto C

Ci from B to C

v =V sing
N1 w C

s Ve "N
3H 1 Pa
Er i
C ZGeC
2
*PC
2m_ -5y
2
P ZoPc ¢
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2 ZaHpaH

8=VN " fc Ve 3P ‘c 3%
3

Fl = . F3 V..F_+2p 2

- - )

3 VNl A N2 "3 C p
oF (V +V )
—2 _ PP N1 N2/ ., 2H
oV \' Cc 29dp

N1 A N2
3F

3 1 3H dH
SV 142 [VmVNz+ P VN2 (VNz' 2V1\11) 3P (e ap“.]
For n =0
C1 = -VmcosUC
- v
C2 = = (Rc sin “a + Xc cos oc) T
Dl = -V_sin BC
DZ-—- (RC cos BC-XC smBC) T
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E =
1 Vmcos BC

- v,
E,= B, sin 8, +X, cos 8¢ 7

L /
Hp==% (CB02 BC ’mc. "~ “me. “BC DBCB)

14+ L )
Hy=1+5 €pc “pc Pre. * CBe. “Bc Prc)
2 3 3 7
oF,
H6—- %?IN_VM coB cc
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C C C
cos 2 aC oF 2
H8=—-——V-—— Fa(uc cosoc+vc Slncc)+vm§\7— (ucsmoccosoc-vccos CIC)
C N1
cos 0. co8 B oF
. C C 2 , 2 3
H9 = Vc tan GC (F3 cos q, +V_ BmUC cos O, BVN

1

BFB

% W)
N

. 2
- CcO8 GC (F3 gin CIC -V, cos

o=
i

gin 9, cos B
1 2 , C C
-5004 (VC(I—MC ) DC1 cos Bc + Dcs sin BC) -5 Rc
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1 2
H14- 5 (—Vcc:o::sBCDCE+VC smecncl)
a8/
find FU from reference tables.
v
C
2
13" .2 "¢ Pfcicy c 2 c
C C

1
H . =C D +— V. D, )ecosbB +V_ D sin 8
15 C4 [ Cl4 2 C 05 C C 012 C]

Hjg=-® H, +H H +H H  +H H,+HH,)

H17 = - (Hl H6+H2H7+ H3 H8+H5 H9)

= = > =
for n 0,61{ 1 forn>0 6k 0

€1=(2ch -H) P, -H, pg- Hg V5 -H Vo +(2—H5)GB

+C D

* 4c ©ae, Paey, * Cne, Paoy)

S -5 T Y- 3 1
== . + (1= ) cos o R 1
2 k j W 6k c

N, £ 8 c., V1
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oF V_ 0oF

= 2 © 2 =
=-5 - - =
§3 A + (1 Bk)coscrc ﬂ v RS
nl nl C
n-1
_ Vm . BF3
54 = 5]{ Dj - 5kcj - (1-6k) cosc:C T RS o sin (OC-BC)
C N
n-1 1
5 E, ' oF
g, =~ I 5. C.-(1-5 ) coso, — R cos ©,.-9.)
5 v k k c / s 3V ccC
C C C N
n-1 1
_ oR_
56~ Bs Hi13xa
A
n
=5 Q
€7 kQ]

=5y -H S, -Hy S, -H & ~H, & -H &

ORg =€8-H16§6
°oXiCc H, H H,
3R
Ry|.=&.-H A —2
s{c” %" "11 X |C
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s
p.= &, -H R - H, —=
c” ST mUs | T x| g
_ _ 3R
V.=¢&,- H R - H, ——
¢ SeT s |78 K |

_ _ 3R g
8. ¢ -H R, -H
C 5 1278, 9 T x
C
- 9 -
(_5_) Pc ~ Cc P
R 2
C eC
_ 1 _ _ _ Az
ctP¢ E10P
s 37
+ — TCRPC —_—
RJe a—s-
R /p

D. Error Indicators:

NOVAL = 111: Error in thermodynamic properties (THERMO)
NOVAL = 151: Error in finding C; or D, (ARYCLC)

NOVAL= 321: ¥ c at shock point is not in reference tables.
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Given the Configuration for the shock point on the gtarting line (spherically

blunted body only),

BOW SHOCK D

2 2

2
AslBC = J&C-XB)z + (R-Rp)
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where:

do _|©Cp 00Xy G~ %W - %) 1
dx X X, X, -X, XX,

w (PC-PB)AICE @Ry aLBC 1
ab aJBC ALCE 8fCE-4  BC

a6 [(BC-BB)A£CE ] (ec-eE)uBc} )

al? A 4 BC AJCE A {CE-Af BC
ds/p i (5/R ~8/Ry) Alcn_; (S/R-8/R.)A 4 BC .
al’* af BC s fCE 24 CE-4 £ BC
® ®-P,) 84 CD . ®,-Py) alac 1
dsd Af AC A CD afac+alcep
as _ (85-6,) sl cp . (6,85 af Ac 1
dd AfLAC s dco slac+alco
dS/R [ (S/Rc-S/R A) s cp (s8/ RD-S/RC) s fac 1
= + .
ded bf AC afcD A AC +AfCD
A =RC sincc + (XC—XO) cos crc
sin (cc - BC - uc)
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R, sin (8 + -
5o c Cotugh + Eo=X,) cos (6+u )
-8 -
sin (05 - 9 ~ k)
51 D=-A b + B _C_lf_.
] d dd
_10— -A.fl_.e’__'_.+B 481
’ df df
_ s/ s/
S/R == A d R -+ .El__.R_
1,0 af d.ef
X .-X ) sin 8
w = C O C
Wl'o = VC cos BC R 8
C
P 2
b0 -5 g
} C C 1,0
v =_P1,0 i RTC 5/
1,0 pCVc VC 1,0
—T—l 0 is found in the same manner as succeeding shock paints,
]
if j=1, n=1 0, n 10
=1, n>1 6kn= 0.0



= g+
b n R sincrC X .-X ycoso

dx k, C C O c|° 3
1,1 £ CcoS GC
R1’1=0.0
Vo sinBC )
\Y = — [(X - XO) Cos 0 + RC sin O'C]
SHK ,é' cos O ©
C
. i mecsm(cc C) (Xc O)coscC+RCsmorc
t

SHK 2 coszoc (XC O)cosec+Rcsi.nBC
Vi1™ &0 Vsuk

91’1= kn SHK [(XCX } cos B +Rcsmec]
Wy,1=00

P1,1°0:0

P, 00
s/ =0,0

R1,1

ifj=2 n=0 6k,n=1'0

= > H =

j=2.n>0 5k,n 0.0
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dR _ : 1
= - 6k,n (}{C-Xo)coscc+3 sing .

C C
l' cosao‘C
R =0.0
X
v _ E sin Bc .
SHK = ¢ cOSch ( c - 0) cosa-s-RC sinoc]

. ) smec sin(oc-_ec) (XC-XO)coscc+RcsmoC

(XC-XO) cos ec + RC sin BC

‘e' 00820’0

V2.n = Gk,n [VSHK - 1,— ([XC - XO] gin BC - RC CcOs Bc)

v
92.11 = Bk,n [GSHK -l——'v (XC-XO) COB ec + RC gin GC

181



STLINE
A. Subroutine
B. Calling Sequence: JARG, NARG, MARG, NTARG

C. This subroutine calculates perturbations along an aribtrary line to be

used as a starting line for a blunt body supersonic unsteady flow run.

Finds shock point which will be first point on arbitrary line, from zero-
yaw solution. Asgsigns storage properties for shock point. Goes to subroutine
SHOCK 3 and calculates perturbations for all J's and N's. Stores perturbations on
binary tape NT5. Repeats for all field points using subroutine FIELD 3 and body
point using subroutine BODY 3. After calculating body point, rewinds NT5 and zero-
yaw tape. Reads preliminary information from zero-yaw tape, and returns to main

program.
SUFINT
A. Subroutine
B. Calling Sequence

C. This routine calculates the integration of normal force and moment along

the body. The integration is done by Simpson's rule.

Perturbation normal force: FN, n = FN0 + / (TR C)l|5 E. dx
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L
. 6=
Perturbation Pitching moment: Mz, =M -
£ jan Zo]. 0 [ (TRo) Py (Xg¥
?

X

S
RC tan 90 ) dx
FN.
force and moment coefficients: CN = 1.0
j, 1 v} 2
P (R R PV
sz .
= ]
ch n 6_2 2
(7R,) R PV,

Axial Location of center of pressure

Mz X 1

Along starting line, integration is done from shock to body to get initial data at

body point.

at shock point F = 0.0,

Xk

at each field point

R -
y=tan EC"%‘
c B
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= -X 32 ~R }¢
A £BC J(XC X% + (RR)

B
f P P sin vy 8 )
F_ = Vm+_v_-(VcosB+ ————— | T pV gin (y-8) d
XK pmoo WB"D(‘Y-B)
A
at body peint
F)iKz"Z‘ﬂﬁFxl'{
F. =F. -PR@R)°
Na "Xk
-R

Zof cos f FNOL

CN and CM are calculated as in C above,
o o

D. Error Indicators: None
SUMINT

A, Subroutine
B, Calling Sequence: None

C. This routine provides a summary of body data from integration of forces

along body.
Reads Input

1) DELX, RN, NRTST, NT4
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2) RTST (J1), J1=1, NRTST

3) XMAX (J1), J1=1, NRTST
Reads binary tape from Supersonic unsteady flow run on blunt body NUMJ,
NMAX, XEND, RHOUN, VUN, X0, ELP

Computes TMP = P, sz

m=3,1415926

for each body point reads from binary tape for each J, N at each body point

J,N, XC' RC’ FN , Mza
(o4
FNa
Computes CNQ’, =..Tl — 5
js,m 2 C
Mz
C o
M2 nwTmp R
i,n C
Computes Table [
CNG____ CNa
1,0
. 2 RCl .
M
o XC Mzal,o

185



€, *C,) =———1} CN + CN
N. N .
& a X %, 0 %11
4R | #
(C + C,,)=——————— [ CMz + CMz
My My x 2 %0 %11
C
1
XC
R
Stores values in table of iwo elements. Tests R against RTST. When RTST
B

is found to lie between two elements of this table, interpolation is done to find

above quéntitit%s for RTST:

X c C C + and|.C +C
] ] ] N 4 CN '] f ]
xe NG. MZ axo qxo MGXO Mq'XO

TABLE II is calculated

)
C
is incremented from 0. 0 by increment DELX until Xmax is reached. For
L
B
Xl';‘G
each value of —
£ B

186



a o}
X0
X X
Cy =Cy CG __o Cy
a %20 2 E B %o
XCG Xo
Cn. " C% [y, *C -2 PN Cxn
@ 9 axo qxo JF‘B B Ofxo
X X
CG o
CM +CM CM + CM ﬂ - f CN& +CN
o 1 X0 Yo, B B X0 %Yo
2
CG Xo XCG Xo
- 2 e —— A — CM - 2 ——e T — CN
Lty Iy o ‘B ‘B %0

Table II is printed and calculations return to Table I. Process is repeated until

final body point is computed.

D. Interpolation above can also be done if a value for XINT (X interpolate) is
read in as input. The program will use XINT to interpolate as RTST is

used above,
E. Error Indic;ators: None.
THERMO
A. Subroutine

B. Calling Sequence: (IND)
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C. This routine computes the thermodynamic properties used in calculating

the unsteady flow perturbations and the small yaw angle perturbations.

IND = 1 Unsteady flow perturbations,
IND = 2 Small yaw angle perturbations.
3a ob JZ oz
a, b—, —, 2., —, —— are found in FLOWTL
<] S C ] p
aR aR BE a(ﬁ_)
1)
a+b PC
Y* = P
C
P
7 c
Z
Zc Bp/po c
Y¥P
2
c = ¢
Pc

NOTE: Following equations are not used in supersonic unsteady flow program,

2 2 C da db 1
+M + P
C 38/ * 2 3
L -
R 2y PCMC JMC 1

e maemamre—
3 C Zg C BS/R
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D‘

Error Indicators:

da
NOVAL = 21: Error in FLOWTL in finding a, b, —— or
5
R
dZ
NOVAL = 121: Error in FLOWTL in finding Z, —— or
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8. NUMERICAL RESULTS AND COMPARISON WITH TEST DATA.

Some representative results of the unsteady flow field solution are presented in
this section. Calculations were carried out at four flight conditions along the trajec-
tory shown in Figure 16, Figures 17 through 23 show the dynamic and static force and
moment coefficients plotted against Mach number and against center of gravity location.
Test data from Reference 16 is shown on Figures 17 and 18. While agreement is fair,
two reasons for discrepancies between computed and measured results can be given.
One is the fact that free stream conditions were not the same. The computations were
done for entry along a representative trajectory, while the free stream conditions in
the test cell were restricted to those available in the facility. The other reason for
discrepancy between computed and measured results is the difference in Reynold's
numbers, Calculations were carried out for an inviseid fluid while the tests were

carried out at finite Reynold's numbers.

The plots demonstrate the wide range of information available from the unsteady,
flow field solution. It should be noted that for each Mach number, a single solution
provided all the coefficients over the center of gravity location range, for RN/RB =

0.15, 0.3, and 0. 6.
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MACH NUMBER ~ M_

Figure 16. Trajectory Along Which Data is Presented
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TEST (RN/R

TEST (R, /R = 0.15)

=0,3)

R /R

0.3

0.6

0.15

0.0

10

MACH NUMBER

15

20

Figure 17. Dynamic Moment Coefficient vs Mach Number
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for 10-Degree Sphere Cone at xcg/L = 0.6

25



"'0. 4

-1,0

Figure 18,

0.2 0.4 0.6 0.8

Dynamic Moment Coefficient vs Center of Gravity Location
for 10-Degree Sphere Cone (Ry/Rp = 0. 3)
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MACH NUMBER

1.2 /ﬂ
/ RN/RB 0.0
0.6
o
e
0 \
0.6
\ 0.15
~——— 0.3
-0.6
0 5 10 15 20

Figure 19. Dynamic Force Coefficient vs Mach Number for
10-Degree Sphere Cone at xcg/L =0,6
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1,0

0.5

0 LN\
/e‘\\
NN
N
1.0 NN
N\

Figure 20, Dynamic Force Coefficient vs Center of Gravity Location for

10~-Degree Sphere Cone RN/RB =0,3
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CM ~ PER RADIAN

a

0.3

0.2
0.1 1:{N/R]E’:
/_ 0. 6
TEST (RN/RB = 0.3)
0 __/ﬁ
[ ]
T 0.3
TEST (R, /Ry, = 0.15)
-0. 1 l 1l
=0
TEST (R, /R = 0)
) 0.0
-0| 2 \
0.15
-0.3 d
0 5 10 15 20

MACH NUMBER

Figure 21. Staiic Moment Coefficient vs Mach Number for
10-Degree Sphere Cone at xcg/ L=0.6
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CM -~ PER RADIAN

0.6

0.4

0.2

Figure 22, Static Moment Coefficient va Center of Gravity Location

for 10~Degree Sphere Cone at RN/RB =0.3
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/M =
10
M =15
[~ M =20
1
TEST DATA (M = 10)
0 0.2 0,4 0.6 0.8 1.0 1.2
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CN ~ PER RADIAN
o8

2.4

RN/RB
0.15
2,0 ,/0.0-
—
1.6
1.2 \\
\N -
[ 0.6
0.8
0.4
0
0 5 10 15 20

MACH NUMBER

Figure 23. Static Force Coefficient vs Mach Number for
10-Degree Sphere Cone at xcg/ L =0.6
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16 T T Y
| | FLOW FIELD ANALYSIS
CENTER OF ROTATION
l AT CONE VERTEX TOBAK AND WEHREND
=™ REF. 17
14 -
C - ZARTARIAN, HSU, AND
Ny ASHLEY REF. 18
|
12 ‘ FINK, REF. 19 1
] _
“ \ q B ag_g /,/ |
'\
\ / -
\ / ‘/ /.—
-
\\ \\ | / /
\ Seane——
8
NEWTONIAN /7
6
C -
w ||
\
4 \
1 \
\ .‘/
2 — B
\'l-.._.-—" - /
\:‘ NEWTONIAN
}\\ /
0 4 8 12 16 20 24

MACH NUMBER

Figure 24, Comparison Of Theoretical Results
10-Degree Cone
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9. CONCLUSIONS/SUMMARY

An unsteady flow field solution has been developed f{o enable the Research and
Technology Division to compute static and dynamic stability coefficients for pointed
and spherically blunted bodies of revolution (and analogous two-dimensional shapes).
A small perturbation scheme has been used, together with a zero yaw steady state
solution, to obtain the flow fields surrounding bodies undergoing small perturbations
in motion about the zero yaw steady state condition, Force and moment coefficients
have been obtained by integrating appropriate perturbations in pressure over the

body surface.

Results of this flow field computation have been found to agree well with test data.
Some numerical results of this solution are presented in Section 8. Figures 17, 18,
21 and 22 provide a comparison with test data obtained in Tunnel C, Arnold Engineer-

ing Development Center (reference 16).

Figure 24 shows a comparison of theoretical results for derivatives of the normal

force coefficient, C C,, and C_  are shown separately in this figure, and the values

N’ Nq N &
for Cnq are for a center of rotation at the vertex of the pointed cone. The results from
the Flow Field analysis are compared with results from:

1) The potential theory due to Tobak and Wehrend, reference 17;

2) The shock-expansion theory due to Zartarian, Hsu and Ashley, reference 18;

3) The modified shock-expansion theory due to Fink, reference 19, and;

4) The Newtonian impact theory.
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The Newtonian impact theory gives results which are considerably lower than the
asymptotic values approached by the flow field results. They do not agree as well as

might be expected based on comparison of the static stability derivatives.

The results from potential theory agree quite well with the flow field results at the
lower Mach numbers, where the former theory is applicable. The only discrepancy
occurs with CN& at Mach numbers above 3 or 4. CN& from the potential theory goes
to the Newtonian value of zero at higher Mach numbers, while the flow field results
show a value which increases with increasing Mach number and approaches a value on

the order of 15% of Cy .
q

The results from shock expansion theory (reference 5) are in qualitative agreement
with the flow field results and are in good quantitative agreement in the vicinity of

Mach B.
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APPENDIX I
A GUIDE FOR PREPARING INPUT

CARDS FOR THE FLOW FIELD COMPUTER PROGRAMS

The first part of this Appendix provides an outline of the terms which must
appear on each input card for the pointed cone, transonic, zero-yaw supersonic
and unsteady supersonic programs. The remainder of this Appendix is a more
detailed guide to determining what value each term takes on, when carrying out

an unsteady flow field solution.
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The following terms must appear on the data cards for the pointed cone solution. *

Card No. Terms No. of Cards Comments
1. FFCASE (plus title) 1
2. IDPROG, KENSE (1 through 10) 1
3. TEST (1 through 10) 1
4, PUN, RHOUN, VUN, AMUN 1
5. DEL, RGI, ALT 1
6. OMBODY, DLTOM, NMAX 1
7. RIDEAL, GIDEAL, ZIDEAL, RHOO, 1

RHOOO, GREAL

*The first character on each card must be either X or F. If the names of the
terms on a card begin with I, J, K, L, M or N, the letter X must appear in
column 1. Otherwise, F must be punched in column 1. On cards which contain
both integers and non-integers, both letters must be used. For example, Card
6 will begin with the letter F, followed by OMBODY, comma, DL.TOM, comma,
XNMAX*, No commas are to be used between the letters X and F and the num-
ber which immediately follows them. An asterisk must follow the last number
on each card (except Card 1), unless a card ends in a series of zeros. The
symbol $ may be used in place of a series of zeros if no non-zero number appears

to the right of the zeros. For instance Card 2 will usually be: X3, -1, $.
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The following terms must appear on the data cards for the zero yaw transonic

golution: *

Card No.

1.

2,

9A,

9B.

9C.

Terms

FFCASE (plus title)
IDPROG, KENSE (1 through 10)

NBTPW, NBTPR

TEST (1 through 10)

PUN, RHOUN, VUN, AMUN

DEL, RGI, ALT

NUMPTS, NITMX, DLTRUN, TPREV,
GPREV

RIDEAL, GIDEAL, ZIDEAL, RHOO,

RHOOO, GREAL

NEQU, NDEG (1 through NEQU)

A (1 through NDEG + 1))

RDIV (1 through (NEQU-1))

*Ses footnote on page 208,
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No. of Cards

Comments

1

1

NEQU

Omit Card 3
if Kense(1)
has been set

equal to zero

Cards 9A
through 9C
describe

shock,

Omit Card 9C

if NEQU < 2



Card No.

10A.

10B.

(option 1)

10B.

(option 2)

10B.

{option 3)

10C.

10D,

10E.

Terms ' No. of Cards

Comments

NCURVE, NTST (1 through NCURVE) 1

A (1 through 12)

A (9 through 12) ﬁ NCURVE

A (1 through 8), A(12)

N
CRV (1 through (NCURVE-1) 1
P (1 through NUMPTS) 1
X (1 through NUMPTS) 1

Cards 10A

through 10C

. describe body

>

To use this
option set

NTST =-1

To use this
option set
NTST =10

To use this
option set
NTST =1
Omit Card 10C

if NCURVE < 2

The following terms must appear on the data cards for the zero yaw supersonic

solution*
Card No.
1I

2,

Terms No. of Cards Comments
FFCASE (plus title) 1
IDPROG, KENSE (1 through 10) 1

*See Footnote on page 206,
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Card No.

10,

11A.

11B.

{option 1)

11B.

(option 2)

Terms

NBTPW, NBTPR

TEST (1 through 10)

PUN, RHOUN, VUN, AMUN

DEL, RGI, ALT

NUMPTS, AKAPSH, AKDEL,
AJFRZN

RIDEAL, GIDEAL, ZIDEAL, RHOO,
RHOOQO, GREAL

XEND, XTERM, MSTART, NTERM,
NEXP

XEXP, REXP, THEXP, PEXP, NDIV

NCURVE, NTST (1 through NCURVE)

A (1 through 12)

A (9 through 12)
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No. of Cards

Comments

1

NEXP

Omit Card 10
when doing an
unéteady
solution,
Cards 11A

through 11C

describe body.

To use this
option, set
NTST = -1
To use this
option, set

NTST = 0



Card No.
11B,
{option 3)

11C.

12,

Terms

A(1 through 8), A(12)

CRV (1 through (NCURVE-1)

XC, RC, THC, RHOC, PC, $

No. of Cards

Comments

NUMPTS

To use this
option, set
NTST =1

Omit Card 11C
if NCURV < 2
The first card
must give
values at the
shock, the last
card values at

the body.

The fdllowing terms must appear on the data cards for the unsteady supersonic

golution, *
Card No.
1.'

2.

Terms

FFCASE (plus title)

IDPROG, KENSE (1 through 10)
XEND, XTERM, ELP

MSTART, NUMJ, NMAX, NTERM,
NT2, NT3, NT4, NT5

NBTPW, NBTPR

RIDEAL, GIDEAL, ZIDEAL, RHOO,

RHOOO, GREAL

*See Fooinote on page 206.
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Comments

1

1



Card No. Terms No. of Cards Comments

7. NUMPTS, XO Omit Card 7

for pointed

bodies.
8. DELX, RN, NRTST, NXINT, NT5 1
5, RTEST (1 through NRTST) 1
10. XINT (1 through NXINT) 1
11, XMAX

A, TRANSONIC PROGRAM (ZERO-YAW)

Card 1 - The monitor FFCASE must appear on the first data card. * The re-
mainder of this card (columns 7 through 72) may be used for any title the user

desires fo have printed out with the solution.

Card 2 - IDPROG identifies which link on the chain tape will be used. For the
transonic solution, IDPROG must be set equal to 2. For the usual transonic solu-
tion to be used in obtaining an unsteady flow field solution, Kense (1) through Kense

(10) should be set equal to zero.

Card 3 - NBTPW is the "logical" number of the tape drive on which the stand-

ard binary tape will be written (if Kense (1) is set equal to 1). A value of 26 is pre-

set (this means fape drive B6). Any other tape drive may be used by setting

*The letters FFCASE must occupy columns 1 through 6 of the first card. No spaces

should appear between them,

211



NBTPW equal to the appropriate ""logical" number. * The term NBTPR has no

meaning in this program, and should be set equal to zero.

Card 4 - Test (1) through test (5) are the convergence criteria used in various
iterations in this program., - zeros are punched for these terms, certain preset
values will be used in the solution. These preset values have been found to give
good results in the past. It is recommended that they be used in production runs.
Tests (6) through test (10) have no meaning this this program, and should be set

equal to zero.

Card 5 - The free stream pressure and density, the flight velocity and Mach
number, in that order, must be entered on Card 5. The units of the first three

quantities are lb/ftz, slugs/ft3 and ft/second, respectively.

Card 6 - The term DEL determines whether an axisymmetric or two-dimen-
sional solution is to be carried out. (DEL = (¢ means a two-dimensional solution;
DEL =1 means an axisymmetric solution). The real gas index, RGI, is set equal
to 1 if a real gas solution is desired, equal to 0 if an ideal gas solution is desired.
ALT is the altitude. It is merely printed out on the output sheet, and is not used

in the computations.

Card 7 - NUMPTS is the number of points on the body surface, at which
pressure and x will be provided as input (Cards 10D and 10E). An explanation of

how the number of points and the pressures, ete., are obtained, is given in

*In the usual unsteady flow field solution, Kense (1) will be set equal to zero, card

number 3 will be omitted, and no binary tape will be saved.
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Appendix III of this report. NITMX is the maximum number of iterations which
will be done in one of the iterative processes in this solution. A preset value of 5
will be obtained if NITMX is punched in as zero. It is recommended that this value
be used in production runs. DLTRUN is the spacing between streamlines upstream
of the shock. The value of DLTRUN determines on how many streamlines (between
the body surface and shock wave) computations will be carried out. It is recom-
mended that 40 to 60 streamlines be used. This can be done by setting DLTRUN
equal to . 015 for the first iterations, and adjusting it upward to decrease the num-
ber of streamlines or downward to increase it for following iterations. TPREV
and GPREV are initial estimates of temperature and ¥* used in an iteration at the
shock wave, Free stream temperature and 1.4 are the preset values. It is

recommended that the preset values be used (by setting TPREV = GPREV = 0).

Card 8 - RIDEAL is the real gas constant for air, preset at 1716.5 ft Ib/slug
°R. GIDEAL is the ratio of specific heats used in ideal gas calculations, preset
at 1.4. ZIDEAL is the compressibility factor used in ideal gas calculations, pre-
set at 1.0, The remaining terms, RHOO, RHOOO and GREAL, are used in con-
nection with the thermodynamic tables that have been provided with this solution.
The preset values of these three terms should always be used (unless a different
set of thermodynamic tables is provided in the future). The preset value of any

of the above terms will be used, if zero is entered in its place on Card 8.

Card 9 - This "card" really consists of 2 to 6 cards, depending on how com-
plicated a description of the shock wave shape is used. Some detail on how to

choose a shock shape is given in Appendix III. They are:
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1. Card %A (one card) - NEQU is the number of equations of the form:

X = A(l) + A@2)R + A(3)R% +... + A(11)R10, which will be used to describe
the shock wave shape. * NDEG is the highest exponent of R which has a non-zero
coefficient. One value of NDEG must be entered on this card for each equation,

the first value corresponding to the equation which is valid at the axis of symmetry.

2, Card 9B (one card for each equation) - Each of these cards contains the
coefficients A(1), A(2), etc. for one equation. The number of coefficients is al-
ways one greater than the value of NDEG which corresponds to that equation. The
coefficients for the equation which is valid at the axis of symmetry, go on the first

of these cards. Note that symmetry requires A(2) to be zero for this one equation.

3. Card 9C (one card if more than one eguation is used-otherwise omit) -
This card lists the R values at the points where the various equations are tangent
to each other (RDIV), starting with the tangency point nearest the axis of symmetry.

The number of values of RDIV is always one less than NEQU.

Card 10 ~ This "card" really consists of 4 to 10 cards (or more), depending
on the complexity of the body shape and on the method chosen to express the input

information at the body. **

*As many as six equations may be used, although usually only one is needed.
**The present discussion will be limited to the usual transonic solution to be used
in obtaining an unsteady flow field solution. By this ig meant the solution which

results when Kense (1) through Kense (10} on card 2 are set equal to zero.
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1. Card 10A (one card) - As many as six equations may be used fo describe
the body shape. NCURVE is the number which will actually be used. In the usual
unsteady solution for a spherically blunted body, only one equation (that of a circle)

will be needed. NTST indicates which of the coefficients in the equation:

8 (n-1) A(8)
r= A(n)[x - A(lZ)] + AT | x-A0Q2)
-1

n

+ A(9) J[A(IO)] 2 ;[x-A(n)-A(lz)] 2

will be punched on Card 10B. If NTST is set equal to minus 1, a number must
appear on Card 10B for each of the 12 coefficients. * If NTST is set equal to zero,
only A(9) through A(12) are to be punched on card 10B. The latter case is con~-
venient for the spherically blunt-blunted body. One value of NTST must appear for

each equation to be used.

2, Card 10B (one card for each equation ) - This card must contain the
twelve coefficients A{n) if NTST was set equal to -1, or the four coefficients A(9)
through A(12) if NTST was set equal to zero. The latter case is equivalent to
setting A(1) through A(8) equal to zero. The coefficients of the equation which is

valid nearest the stagnation point must appear on the first of Cards 10B.

3. Card 10C (one card if more than one equation is used to describe the body,

otherwise omit) - This card contains the x values (CRV) at the intersections of the

*Zero may of course be entered for any of these coefficients.
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various equations used to describe the body surface. There will always be one
less value of CRV than the number of equations used. In the usual unsteady flow
field, only one curve is needed in the transonic region, and Card 10C will be

omitted.

4. Card 10D - This card will contain the values of pressure at the body.

The number of entries on this card must be equal to NUMPTS, (See Card 7.)

5. Card 10E - This card will contain x values corresponding to the points
at which pressures are given on card 10D. Again, the number of entries on this

card must be equal to NUMPTS.

Cards 10F through 10H will be used only if KENSE (3) is not set equal to zero,
(See Card 2.) They will be omitted in the usual unsteady flow field solution, and,

therefore, won't be discussed here.

B. POINTED CONE PROGRAM. (ZERO YAW AND UNSTEADY)

Card 1 - The monitor FFCASE must appear on the first data card, * The re-
mainder of this card (columns 7 through 72) may be used for any title the user

desires to have printed out with the solution.

Card 2 - IDPROG identifies which link on the chain tape will be used. For the
pointed cone solution, IDPROG must be set equal to 3. Kense (1) determines

whether or not the unsteady solution will be carried out, and whether or not a binary

*The letters FFCASE must occupy columns 1 through 6 of the first card., No

spaces should appear between them,
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tape is to be written (on tape drive A6), If an unsteady solution is to be done in the
supersonic region, Kense (1) must be set equal to minus one. * I no solution is to
be done in the supersonic region, Kense (1) should be set equal to plus one. Kense
(2) through Kense (10) have no meaning in this program, and should be set equal to

zZero.

Card 3 - Test (1) through Test (5) are the convergence criteria used in various
iterations in this program. If zeros are punched on Card 3 for these terms, cer-
tain preset values will be used in the solution, These preset values have been found
to give good results in the past. It is recommended that they be used in production
runs. Test (6) determines when a point is too close to the body surface for use as
input in the supersonic programs (i.e., when a point should be omitted from the
binary tape which is written when Kense (1) is set equal to -1), Test (6) should be
set equal to approximately .2 of the spacing DLTOM (See Card 6) converted to
radians (e.g. set Test (6) equal to . 0035 x DLTOM)**, Tests (7) through (10)

have no meaning in this program and should be set equal to zero.

*If Kense (1) is set equal to minus one, the solution will be written on a binary
tape on tape drive A6. The tape should, of course, be retained for use in the
unsteady solution in the supersonic region.

**Whenever a point is omitted from the binary tape, the perturbations at that point
are also omitted from the pointed cone printout. The zero yaw values at that
point, however, appear on the printout. Care must be taken to omit them when

preparing input for the zero yaw supersonic solution.
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Card 4 - The free stream pressure and density, the flight velocity and Mach

number, in that order, must be entered on Card 4, The units of the first three

quantities are h/ft2, slugs/ft3, and ft/second, respectively.

Card 5 - The term DEL determines whether an axisymmetric or two-dimen-
sional solution is to be carried out. (DEL = 0 means a two-dimensional solution;
DEL = 1 means an axisymmetric solution). The real gas index, RGI, is set equal
to 1 if a real gas solution is desired, equal to 0 if an ideal gas solution is desired.
ALT is the altitude, It is merely printed out on the output sheet, and is not used

in the computations.

Card 6 - OMBODY is the cone half angle in degrees. DLTOM is the incre-
ment in angular position where results will be provided; i.e. results will be

printed out at the shock wave, w = wg, and at @ = Wy - DLTOM, w = wg -2 X

s
DILTOM, etc. It is suggested that a value of DLTOM be obtained by estimating
the shock angle (e.g., Chart 5 of NACA Report 1135), and then choosing DLTOM
to give 10 to 15 increments between the body and the shock wave, NMAX deter-

mines how many of the coefficients in the series:
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will be calculated. For example, if the term CpMy is desired (but not Cpg;),

NMAX should be set equal to 1.
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Card 7 - RIDEAL is the real gas constant for air, preset at 1716. 5 ft Ib/slug
‘R. GIDEAL is the ratio of specific heats used in ideal gas calculations, preset
at 1.4. ZIDEAL is the compressibility factor used in ideal gas calculations, pre-
set at 1. 0, The remaining terms, RHOO, RHOOO and GREAL, are used in con-
nection with the thermodynamic tables that have been provided with this solution.
The preset values of these three terms should always be used (unless a different
set of thermodynamic tables is provided in the future), The preset value of any of

the above terms will be used, if zero is entered in its place on Card 7.

C. SUPERSONIC PROGRAM (ZERO YAW)

Card 1 - The monitor FFCASE must appear on the first data card. * The re-

mainder of this card (columns 7 through 72) may be used for any title the user

desires to have printed out with the solution.

Card 2 - IDPROG identifies which link on the chain tape will be used. For the
supersonic solution, IDPROG must be set equal to 5. For the usual supersonic

solution to be used in obtaining an unsteady solution for a spherically blunted body

(input line information is obtained from the Transonic solution), Kense (1) through

Kense (10) should be set equal to zero. For a pointed body (input line information

is ‘obtained from the pointed cone solution), Kense (2) should be set equal fo +1,
and the remaining 9 Kenses should be set equal to zero. In some cases where a

supersonic solution has been carried to a certain point in the field, and the appropriate

*The letters FFCASE must occupy columns 1 through 6 of the first card. No

spaces should appear between them,
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binary tape has been saved (see remarks on Card 3), the solution may be re-
started where it was left off, * and carried on downstream from there, If this
is the case, Kense (6) should be set equal to ~1. The other Kenses should be

treated as indicated above.

Card 3 - NBTPW is the "logical" number of the tape drive on which the
standard binary tape will be written, It is preset to use tape drive B6 if NBTPW
is set equal to zero. I the unsteady solution is to be used, this tape must be re-
tained and used as inpuf in that solution. NBTPR is the "logical' number of the
tape drive on which the binary tape from the previous zero yaw supersonic solu-
tion must be placed if a "restart" run in being done (i.e., if Kense (6) has been
set equal to -1). The normal zero-yaw supersonic solution for use in obtaining
an unsteady flow field solution will not be a restart run, and NBTPR should be set
equal to zero. However, whenever the restart option is used, NBTPR must be as-
signed a different tape drive number than NBTPW (e.g., set NBTPW equal to 26 and
NBTPR to 16, then place a blank tape** on drive B6, and the tape with the beginning

of the zero-yaw solution on drive AG***),

Card 4 - Test (1) through test (7) are the convergence criteria used in various

iterations in this program. Test (5) and test (6) should each be set equal to 1E-05

*It may also be started up anywhere upstream of the point where it was left off.

See remarks on Card 9.
**This tape will then be input to the unsteady solution.

***See Section 7.1.3 of this report.
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for the usual unsteady solution. All other terms on this card (Test (1) through
Test (4) and Test (7) through Test (10)) should be set equal to zero in order to call

for preset values,

Card 5 - The free stream pressure, density, flight velocity and Mach num-
ber, in that order, must be entered on Card 5. The units of the first three

quantities are Ib/ft2, slugs/ft3, and ft/second, respectively.

Card 6 - The term DEL determines whether an axisymmetric or two-
dimensional solution is to be carried out. (DEL = 0 means a two-dimensional
solution; DEL = 1 means an axisymmetric solution.) The real gas index, RGI,
is set equal to 1 if a real gas solution is desired, equal to zero if an ideal gas
solution is desired. ALT is the altitude. It is merely printed on the output sheet,

and is not used in the computations.

Card 7 - NUMPTS is the number of points on the "starting" line* at which in-
put information is given, AKAPSH is the shock angle (in radians) at the point where
the "starting" line meets the shock wave. The terms AKDEL and AJFR ZN should
be set equal to zero in the usual (chemical equilibrium) calculations done with an

unsteady flow field solution.

Card 8 - RIDEAL is the real gas constant for air, preset at 1716.5 ft Ib/slug
"R. GIDEAL is the ratio of specific heats used in ideal gas calculations, preset at

1.4, ZIDEAL is the compressibility factor used in ideal gas calculations, preset

*When doing a "restart" (Kense {6) = -1), NUMPTS should be the number of points

on the original starting line.
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at 1. 0. The remaining ferms, RHOO, RHOOQ and GREAL are used in connection
with the thermodynamic tables that have been provided with this solution. The pre-
set values of all these terms should always be used (unless a different set of thermo-
dynamic tables is provided in the future). The preset value of any of the above terms

will be used, if zero is entered in its place on Card 8,

Card 9 - XEND is the x value at the end of the body. XTERM should always be

set equal to zero. MSTART will be non-zero only in a restart run (in a run where
Kense (6) has been set equal to -1). It specifies the M number of the last left hand
characteristic line along which the results of the original run are to be used, Cal-
culations along all characteristic lines downstream of it will be done as usual,
NTERM should always be set equal to zero. NEXP is the number of expansion cor-
ners present on the body. For the unsteady flow field calculation it must be set

equal to zero.

Card 10 - This "card" really consists of as many cards as there are expan-
sion corners. It gives information about the expansion corners. For the unsteady

flow field solution it must be omitted,

Card 11 - This "card" really consists of 4 to 10 cards (or more), depending

on the complexity of the body shape.

1. Card 11A (one card) - As many as six equations may be used to describe
the body shape. NCURVE is the number which will actually be used. NTST indi-

cates which of the coefficients in the equation:*

*The origin of the X, r coordinate system should be placed at the stagnation point.
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6 (n-1) A(8)
T= Z An) | x-A(12) + A7) | x-A(12)
n=1 :

+ A(Q)J [A(lO)] 2 [x-A(ll) - A(IZ)] 2

will be punched on Card 11B, If NTST is set equal to -1, a number must appear
on Card 11B for each of the 12 coefficients, * If NTST is set equal to zero, only
A(9) through A(12) are to be punched on Card 11B. The latter case is convenient
for the spherically biunted body. One value of NTST must appear for each equa-

tion to be used.

2. Card 11B (one card for each equation) - This card must contain the {welve
coefficients A(n) if NTST was set equal to -1, or the four coefficients A(9) through
A(12) if NTST was set equal to zero, The latter case is equivalent o setting A(1)
through A(8) equal to zero. The coefficients of the equation which is valid nearest

the stagnation point must appear on the first of cards 11B.

3. Card 11C (one card if more than one eguation is used to describe the body,
otherwise omit) - This card contains the x-values (CRV) at the intersections of the
various equations used to describe the body surface. There will always be one less

value of CRV than the number of equations used.

*Zero may, of course, be entered for any of these coefficients.
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Card 12 - There will be one Card 12 for each point on the "starting' line
(NUMPTS). The first of these cards will provide data at the shock, the last one
at the body. Each card will contain x, r, THC (flow angle in radians}, RHOC
{(density in slugs/ft3), and PC {pressure in Ib/ft%y. The pressure entry on each
card should be followed by a comma and a dollar sign. The information for Card
12 will come from the transonic or pointed cone solution. When doing a ''restart",

no card 12 is needed,

D. UNSTEADY SUPERSONIC PROGRAM

Card 1 - The monitor FFCASE must appear on the firat data card. * The re-
mainder of this card {columns 7 through 72) may be used for any title the user

desires to have printed out with the solution.

Card 2 - IDPROG identifies which link on the chain tape will be used. For the
unsteady supersonic solution, IDPROG must be set equal to 7. Kense (1) should
be set equal to zero for a blunt body, and equal to -1 for a pointed body, Kense (2)
should always be set equal to zero. If Kense (3) is set equal to zero, values of all
the flow field parameters at all points where calculations were performed will be
printed. If Kense (3) is set equal to 1, only force and moment coefficients will be
printed. Kense (4) through Kense (10) have no meaning, and should be set equal

to zero.

*The letters FFCASE must occupy columns 1 through 6 of the first data card. No

spaces should appear between them.
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CLard 3 - XEND is the x value at the end of the body. The same
XEND value should be used here as on Card ¢ of the zero yaw supersonic
solution., XTERM should always be set equal to zero, ELP is the
length used in non-dimensionalizing o and q in part of the output (See
Appendix III). It may be set equal to any desired length for the blunt
boedy. For a pointed body, it must be compatible with the tape inmput
from the pointed cone solution (i.e., it must be set equal to the tan-

gent of the cone half angle which was used in the pointed cone soclution).

Card ly - MSTART is the M-number of the left running characteristic
line on which calculations are to begin, Since unsteady flow field
computations must start atleast two left running characterlstic lines
downstream of the body point on the zero yaw starting line, a reasonable
way to determine a value for MSTART is to find the M-value of the zero
yaw starting line body point (from the zero yaw supersonic printout), and
add 8 to it. NUMJ should always be set equal to 2. NMAX governs the

point where the series:
2

L . L .
aa ——— Tm— a +no.
P=P Py 507 pl,l(Vm) @ TPie (Vm)

is to be truncated, It should always be set equal to 1 for a blunt body.
For a pointed body it must be set equal to the value of NMAX used on

Card 6 of the input to the pointed cone program. NTERM, NT2, NT3, NTL,
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NTS should slways be set equal to zero.#
Card 5 - NBTPW and NBTPR govern tape assignments, and should always

be set equal to zerc 1in order to use the preset values.

Card 6 - The terms on this card have the same meaning as the corres-
ponding terms on Card 8 of the zero yaw supersonic program. They should
all be set equal to zero in order to use the preset valuss (unless an

ideal gas with y#1.L is being investigated).

Card 7 - This card is to be used in a blunt body solution only. It
must be omitted when investigating a pointed body. For a blunt body
NUMPTS must have the same value as on Card 7 of the zero yaw supersonic
solution, X0 is the distance from the origin of the coordinate system to
the center of the spherical nose. In the usual solution, the origin will
be placed at the stagnation point, so that X0 will be equal to the nose

radius.

Card § - At the end of the printout for the unsteady supersonic program,
a Table of Cy_, Cy , (Cy + CMq) and (Oy, + ch) vs Xog/L is provided for bodies
with any desired Ry/Rp ratio, or bodies of any length desired. Cards 8
through 11 determine how many tables {and how many lines in each table) are to

be printed out. DELX is the increment in Xcg/L at which the information is to be

# There is one exception to this rule, Occasionally the zero yaw supersonic
golution will not converge at a shock point, and the solution downstream
of the right running characteristic line which passes through that shock
point will not be valid., In that case NTERM should be set equal to the
N-value of the right hand characteristic line which emanates from the
shock point immediately upstream of the bad shock point.
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printed. RN is the nose radius of the (blunt) body. For a pointed body, zero should
be used. NRTST is the number of RN/ Ry ratios for which tables are to be provided,
A maximum of ten is permitted. NXINT is the number of body lengths for which
tables are to be provided. A maximum of ten is permitted, * NT5 is a tape as-
signment which should be set equal to zero in order fo use the preset value. In

no case should NT5 on Card 8 be given a different value than it was given on Card 4.

Card 9 - RTEST are the values of Ry/Ry, for which tables are desired. The
number of entries on this card must be equal to NRTST. The largest value of
RTEST must appear first, followed by the next largest, etc. If NRTST on Card 8
has been set equal to zero, F$ should appear on Card 9.

Card 10 - XINT are the values of x for which tables are desired, ** The num-
ber of entries on this card must be equal to NXINT, The smallest value of XINT
must appear first, followed by the next smallest, etc. If NXINT on Card 8 has heen
set equal to zero, F$ should appear on Card 10.

Card 11 - XMAX is the largest value of xcg/ L desired in the tables. Only one
term will appear on this card. All the tables in a given computer run will then

terminate at the same value of X, g/ L.

*The option to specify body lengths rather than RN/RB, is provided to permit
calculations for pointed cones where RN/ Ry is always zero, and for bodies
with cylindrical sections where Ry/Rp is ambiguous.

**If the origin of the coordinate system has been placed at the stagnation point,

the values of XINT will be equal to the body lengths of interest.
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Summary of Tape Assignments - Since as many as 7 special tape drives may

be needed in the unsteady flow field solution, a summary of tape assignments is
given below. It is assumed that NBTPW, NBTPR, NT2, NT3, NT4 and NT5 have

been set equal to zero.

Tape drive Description of Tape
Ad Chain Tape
BT Atmospheric Tables (real gas solution only)
A6 Output of pointed cone program (pointed body only)
A6 Scrateh tape (blunt body only)
A7, A8, B Scratch Tapes
B6 Output of zero yaw supersonic program,
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APPENDIX &I

A GUIDE TO READING THE COMPUTER PRINTOUTS

The meaning of most of the information which appears in the various computer
printouts is self evident. This guide provides information on some areas (such as
the units used) where some additional comment is necessary. It is assumed that

the user will have the various printouts on hand when reading this guide.

A, ZERO YAW SOLUTIONS - GENERAL

The following units are used in all zero yaw solutions:

RHO = density —  slugs/ft3

P = pressure - Ib/ft2

V = VEL = velocity - ft/sec

angles — radians (unless marked otherwise)

(Th = THETA = flow direction,
SIGMAC = shock angle, both

measured from the axial)

T = TEMP = TEMPERATURE — degrees Rankine

S/R = entropy — non-dimensional (S/R) where R is the gas
constant

PSI = stream function -~ glugs /ft2 sec (e.g. upstream of the shock

wave the stream function is defined
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U= (%) 0 rp_V_, wherer is non-
dimensionalized against any reference
length chosen by the user).
X and R = axial and radial non-dimensionalized against a reference
coordinates length chosen by the operator (in preparing

the coefficients of the body shape).

The first two pages of all three zero yaw solutions (transonic, pointed cone and
supersonic) show the title and values of the constants RIDEAL, GIDEAL, ZIDEAL,
RHOO, RHOOO, GREAL, (See Cards 1 and 8, Appendix I.) The remainder of the

printout for each solution must be explained separately.

1. The Zero Yaw Transonic Solution

The third page of the transonic solution indicates the coefficients of the shock-equa-
tions which were used (Card 9, Appendix I). The first column represents the curve

closest to the axis,

The fourth page prints the free stream conditions (which were also a part of the

input). Altitude is in any units the user chose when punching Card 6, Appendix 1.

The fifth page prints the body curve coefficients punched on Card 10A and B
(Appendix I). If more than one curve is used, the X and R values at the intersections
are also printed, as well as the flow direction at each intersection, computed from the

upstream and downstream body curves,

The printout of the solution begins on page 6. The paragraph headed M = 1 repre-

sents the body streamline, The next paragraph (M = 2) represents the next streamline
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from the body, etc. The line N = 0 in each paragraph provides the flow field
parameters immediately inside the shock wave on each streamline. The lines
N = 1, N = 2 ete, provide the flow field solution at the intersections of the
streamlines with the normals (i.e. with lines emanating from the various points
at the body where pressures were given (Cards 10D and E, Appendix 1), and
drawn in such a way that they are normal to each streamline they cross). Since
entropy and stream function are constant along streamlines in the shock layer,

a single value of each is printed at the top of each paragraph. The shock angle
at the point where the streamline crosses the shock wave is also printed at the top of

each paragraph.

Interspersed with the paragraphs of information on streamlines, are the "continuity
points”, These are the points where the normals intersect the shock wave, At these
points, a comparison is made of the pressures and X values at the shock computed from
the assumed shock wave shape with the corresponding values computed from the pres-
sure distribution (at the body) and the conservation laws. The headings XS, RS, and
PS refer to values computed from the given shock shape, while XC, RC and PC refer
to the values computed through use of the congervation laws, The same information
on the continuity points is repeated near the end of the printout, under the heading
"Summary of Continuity Points'. This summary is useful in the process of converging

the transonic solution. (See Appendix IV.)

The final part of the transonic printout is a "Summary of Normals" which emanate
from the body at the two points* immediately downstream of the sonic point, This
* Points where pressure was provided on Card 10D (Appendix I).

231



summary of normals is convenient in preparing input for the zero yaw supersonic
solution. All information in this summary also appears in the earlier part of the

printout,

2. The Zero Yaw Supersonic Solution

The third page of the supersonic solution prints out the body curve coefficients
which were punched on Cards 11A and B (Appendix I). If more than one curve is used,
the X and R values at the intersections are also printed, as well as the flow direction

at each intersection, computed from the upstream and downstream body curves,

The free stream conditions appear on page 4. Altitude is in any units chosen by

the user when punching Card 6.

The next six pages provide a tabulation of properties downstream of an obligue
shock against shock angle for the given free stream conditions. The shock angle is

given in degrees in column 1 and in radians in column 2.

The eleventh page is headed "Test to Check Conservation Laws", If all the (in-
ternal) iterations in the program converged properly, all numbers on this page (except

those in the first column) will be equal to 1,0 to at least five significant places,

Page 12 prints the information provided on input Card 12, and provides some
additional flow field values computed from that input. Scanning this page (particularly
the Mach number and entropy columns) for "smooth" variations, generally provides an

excellent check for input errors on Card 12,

232



The printout of the sclution begins on page 13. The first paragraph is a repetition
of page 12*%, The following paragraphs provide the flow field parameters along left
running Mach lines, each paragraph providing data downstream of the preceding para-
graph. The shock angle on each Mach line appears at the end of the paragraph, The
values MC {column 1) are constant along left running Mach lines, and NC (column 2)
are constant along right running Mach lines, The last column in each paragraph
(NITER) indicates the numbers of iterative cycles performed in the computation, It

has no physical significance,

At the end of the printout are two summaries, which provide information at the
body surface and at the shock wave, In the "Summary of Body Data" the following con-
ventions are used:

P- P>

CP = pressure coefficlent = — ——
1/2 P, sz

CPMAX = stagnation point pressure coefficient
CX = axial force coefficient = Fy /1/2 p= V=2 Apgge

PT = stagnation point pressure in 1b/ft2
The "Summary of Shock" data provides the shock shape, and is self explanatory,

When the restart option is used (See Card 2, Appendix I), the sequence of the in-

formation on the first few pages of the output will be somewhat different (e,g. the values

* This repetition occurs only when a pointed body is being investigated. It is not there
for a blunt body.
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downstream of an oblique shock will not print out). Basically, however, the output will
be the same as that described above, so that the user will have nodifficulty in recognizing

it.

3. The Zero Yaw Pointed Cone Solution

Page 3 of the pointed cone solution prints the free stream conditions.

The next two or three pages provide a history of the iterative process used in
obtaining the solution. The number of pages used in this Section of the output depends
on the number of iterative cycles performed before reaching convergence. The itera-
tive process consists of choosing a shock angle and computing the corresponding cone
(body) angie, then choosing a new shock angle and repeating the process until the com-
puted body angle is equal to the desired value, For each step of the iteration the shock
angle and body angle, as well as the flow field properties just downstream of the shock
and at the body are printed*. In general, this Section of the printout will not be of

interest to the user.

The next page after this history, prints the zerc yaw solution along conical surfaces
(at angle OMEGA)**, with vertex at the body vertex. The top line of the printout pro-
vides values immediately downstream of the shock wave, the bottom line provides values
at the body surface, and the remaining lines provide values elsewhere in the shock layer,

The X and R values are along a left running Mach line emanating from the body at x=1.

* The values printed in the columns marked X and R have no significance.
** Note that for a pointed cone the flow field values are constant along these cenical

surfaces.
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It is this tabulation which must be used as input to the zero yaw supersonic program

(when the pointed cone represents the nose of a more complex body).

The remainder of the printout is the unsteady flow solution for a pointed cone,

and will be discussed in Appendix IL. B,

B. THE UNSTEADY SOLUTIONS - GENERAL

Printouts of unsteady flow field solutions will result from two programs: the
pointed cone program, and the unsteady supersonic program. It should be noted that
the normalizing factors are not the same in the two programs, nor are the velocity
components taken in the same coordinate systems. The printouts are described

separately below,

1. The Unsteady Pointed Cone Program

The unsteady flow field solution for the pointed cone is performed by the same pro-
gram as the zero yaw pointed cone solution, and the results are printed out immediately
after the zero yaw results. The j and n combination is indicated at the top of each page,

The force and moment coefficients which appear in the next line are defined by:

m

D
_ . Base
Force Coeff =3 [FNormal /1/2 5V 2 ABase] 3 [aLn ]

2V

D m
2 Base
and Moment ff = M /1 D A ——
ent Coe a[ z/ /2 oV Dgage Base}/a ,:G‘j,n 2V ]
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where: m =n for j=1

=n+l for j =2
. = = . = a » etc.
and: ('I,l'o o. ’ 0’.1’1 o ' 0»1’2 Q
- = q etc.,
P T T N

All results are for rotation about the body vertex,

The term DELTA which appears on the next line ig used in the denominator in
several divisions carried out by the program. I it ever is equal to zero, it will serve
as an error signal. Otherwise, it is of no interest to the user, OMEGA PRIME is the
perturbation in shock angle, The normalization used in this term, as well as in all the

perturbation terms printed below it, is indicated in the typical expansion

R R 2
W = w + oW 0 CoB @+ w (—)&coscp+w (-—-) o cosm+ ...
8 B 51,0 8.1\ Ve 81,2\ Vs
(R) R 2 R 3
+ 1w o~ Jcosopqt w (—) cosSpmq +w . cos o q
85,0 Ve 8y 1\ Y, 89,2 " Ve
where R = x2 + r2

It should be noted that the velocity components U, V and W are inthe R, 8 and ¢ di-
rections respectively, in the spherical coordinate system shown in Figure 3, Section

4, HP is the perturbation in stagnation enthalpy.

The final page of the pointed cone printout summarizes the force coefficients (N)

and moment coefficients (M). The usual force and moment coefficients (for rotation
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about the body vertex) are found in this summary for j=1 (&) and J = 2 (q). The values

included for j = 3 are defined:

N3,n =Ny n /Tan € Body? Mg 0= '"Ml,n/TaIl 6 Body

they will not be of interest to most users.

2, The Unsteady Supersonic Program

The unsteady supersonic program printout begins with the title and with RIDEAL,
GIDEAL, etc, like the zero yaw solutions. This is followed by the starting line in-
formation. In the case of the blunt body, this information is computed in the unsteady
flow program (using the zero yaw solution as input). The location of this starting line
is determined by the choice of MSTART (Card 7, Appendix I). In the pointed body case,
the starting line information represents the inputf from the pointed cone solution {on
binary tape), after conversion to the cylindriéal coordinate system (Figure 9, Section
4), and after a change in non-dimensionalizing constants. Note that each point on the
starting line (as well as each point elsewhere in the field) requires as many lines of
output as there are j, n combinations. The starting line tabuiation can be distinguished

from the data that follows it, by the absence of the columns headed MC and NC,

The major part of the printout consists of paragraphs*, the first line of which

prints the value of j and n, x and R at a point on the body, force and moment (about

* There are j x n paragraphs for each left running characteristic line.
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x = x0), the force and moment coefficients and center of pressure location*. The
next line provides the perturbation in shock radius and in the tangent to the shock
angle (dRS/dX = Tan g). The remainder of each paragraph provides the perturbations
in the flow field parameters along a left running characteristic line. It is possible to

print out only the first line of each of these paragraphs by setting Kense (3) = 1 (Card

2, Appendix I).

The information of greatest interest to most users of this solution, appears at the
end of the printout, It is tabulated in two forms. The first is headed "Summary of
Body Data', and the location of the reference axis for that tabulation is indicated. This

ulati i ok C Cy+ +C and (Cpy. + C ; center of
tabulation simply summarizes** Cy , CpM,» (CNg + ON) (Cmg, * Oy
pressure location, and the nose to base radius ratio {for a body with base at the given x

value).

* These coefficients, ete. are those which would exist if the body ended at the given x
value. In the solution for the blunt body, several characteristic lines stretch from
the starting line to the shock, and do not include a body point. For these charac-
teristic lines, the first line of the paragraph will give only the j and n values, but
no values for force and moment coeificients, ete.

** The non-dimensionalizing length in the summary is not the same as the non-dimen-
sionalizing length in the body of the printout, See the definitions at the end of this

Section.
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The second tabulation is interspersed between the lines of the first, It is headed*
"Summary of Force and Moment Coefficients for Ry/Rp = M oInit, CNa » CMy»
(CN& s + CNq) and (CMo't + CMq) are tabulated against center of gravity, for the radius
ratio or body length indicated in the heading. The user has the option of printing this
tabulation for as many as ten radius ratios and ten body lengths (See Cards 8, 9, 10

Appendix I).
The coefficients printed in the unsteady supersonic flow field program are defined
as follows:

In the body of the printout
2 (F/A q )

Base ‘=
CN (1,0) = CN = ‘ per radian
p4 Yo
aM_/D q
CM (1,0) = C.. = Z’ ~Base AB&SB )
M
a An

CN (2,0) + CN(1,1) =C.. +C

N N,
q o
F .
= Al N/ABase qm) A (FN /ABaseqm)

afq ELP 3 /o ELP”
\ Vo Voo

*If the Table is for a requested body length, the heading will Be "Summary of Force and

Moment Coefficients for XINT = ",
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CM(2,0) + CM{(1,1)=C_, +C

M M
q o
=9 (MZ/ ABase DBase qan) A (MZ / ABase D Base qm)

3 fqg ELP ¥ 3 /% ELP
Vo, Vo

In the two tabulations at the end of the printout

CN = CN =9 (FN /ABase qm) per radian
b 3
-B(MZ /ABase La m)
CM= CM =
s} 3

(CNA + CNQ) = (CN + ch)

2 FN/ABase a, B(F /A q )
+

N Base "=

2 Ve 2V,

(CMA + CMQ) = (cM. + O )
a q

= M _/A L +
ak Z/ Base qm) aQ,IZ/ABas.eL qco)

) (3)

2V

where: L = body length

and q_ = free stream dynamic pressure.
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APPENDIX III

CAPABILITIES AND LIMITATIONS OF THE UNSTEADY FLOW FIELD SOLUTION IN

COMPUTING STATIC AND DYNAMIC FORCE AND MOMENT COEFFICIENTS

This Appendix presents a brief list of the capabilities and limitations which should
be kept in mind when using the unsteady flow field solution. The limitations on shape
listed are those encountered in obtaining an unsteady (and small yaw) solution, and do

not necessarily apply when only a zero yaw solution is needed.
1. Capabilities

Body Shapes: 1. Spherically blunted axisymmetric bodies, with no sharp ex-
pansion or compression corners. The afterbody must be
tangent to the spherical nose downstream of the sonic line.

2. Two-dimensional bodies with a right circular cylinder (axis
perpendicular to flow) nose. The affterbody must be tangent
to the cylindrical nose downstream of the sonic line.

3. Axisymmetric pointed bodies with no sharp expansion or
compressgion corners.

4. Two-dimensional pointed bodies may be approximated by

using a blunted two-dimensional body with very small rN/ o

Gas: Any of the above shapes may be investigated using either real

air, or an ideal gas with any desired specific heat ratio, ¥
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Altitude: Solutions may be carried out at any altitude where the assump-
tion of continuum is valid. They may also be carried out at any
(continuum) free stream conditions which might exist in a test
facility.

Flight Real gas solutions have been carried out at flight velocities

Velocity
ranging from 4000 feet/second to 35, 000 feet/second. It is pos-
sible to go to still higher velocities in some cases. (Ideal gas
solutions can be carried out at much higher velocities. ) Some
difficulties should be expected in obtaining solutions on bodies
which are very long compared to the nose diameter (blunt bodies)

or to the conical nose (pointed bodies), particularly at low Mach

numbers.

Outputs: 1. The quantities computed for blunted bodies (axisymmetric

or) two-dimensional are:

Cy » Cn. ¥ Oy
44 o q

N N-'" 'N..” "N...* "'
o o o
CM ? CM- ' CM..' CM...’
o o o o
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2.

Limitations

Body Shapes:

Timing:

3. In addition, the flow field variables and the perturbations
in them (due to the unsteady motion) are computed at a

large number of points in the flow field.

The unsteady solution cannot, at present, handle expansion
corners or secondary shocks. It has been used successfully in
a case where an expansion corner was approximated by an arc
tangent to both of the surfaces which intersect in the (expansion)

corner,

1. The zero yaw transonic solution requires from 5 to 20
iterations on the input values (i.e., inputs must be sub-
mitted to the computer up to 20 times, waiting in each case
for the output from one iteration to be returned before sub-
mitting the next input). The user should not expect to com-
plete a zero yaw transonic solution in less than two weeks.
This difficulty is usually overcome by making use of the
zero yaw transonic solutions which have been solved during
the past six years (usually an old solution is available

adequately close to the desired free stream conditions).
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The usual unsteady flow field solution is carried out in three

steps:

a. Zero yaw transonic solution or pointed cone solution
(depending on whether the body is pointed or blunt nosed)

b. Zero yaw supersonic solution

¢. Unsteady supersonic solution

Output from step a. must be available in order to go on to

step b. It is desirable {but not usually essential) to inspect

the output of step b. before submitting the input for step c.

If inputs for steps b and ¢ are submitted to the computer

simultaneously, the machine operator must be given special

instructions for handling of magnetic tapes.

The pointed cone solution and the transonic solution (one
iteration) can each be expected to use approximately one
minute of computer time per run. The zero yaw supersonic
solution and the unsteady supersonic solution, however, can
be expected to take five to twenty minutes per run. The
following factors tend to require longer running times:

a. Real gas calculations {as opposed to ideal gag)

b. Finer mesh grids

c. Bodies which are long compared to the nose diameter

(blunted bodies), or to the conical nose (pointed bodies)
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Retaining many terms in the expansion for force co-

efficients and moment coefficients (e. g., CN = CN o+
o
¥ + ot ¢+ ...t + g+ ... )
Oy & tar Oy @ °N q" Cn 9 )
[43 (47 q q

This last factor applies to the unsteady flow field

solution only.
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APPENDIX IV

GUIDE FOR CONVERGING THE ZERO YAW TRANSONIC SOLUTION

The zero yaw transonic solution requires the user to participate in an iterative
process in the sense that he must make a first estimate of both the shock shape and the
pressure distribution at the body; and then make use of the information provided by
the computer solution to make repeatedly befter estimates of these values, i.e., to
approach convergence. A method for making these estimates will be indicated in this

Appendix.

The initial estimates are probably the easiest fo make. They can be based on any
approximate knowledge of the flow field the user may have. For instance, a Newton-
ian pressure distribution could be used at the body surface. It is, however, suggested
that the available solutions given in Appendix V be used for this purpose. A good first
estimate of the shock shape can be gotten simply by using the shock shape from an
available solution which was carried out at free stream conditions which are similar to
the free stream conditions for the new solution. A first estimate of pressure distribu-
tion at the body should be obtained by scaling the pressure distribution from the same

available solution, by the ratio of free stream pressures.

Obtaining improved estimates from the previous iteration is a much more complex
matter. Agreement between the estimated shock shape and the computed shock points
is, of course, a necessary condition, and a rule of thumb has been developed for im-
proving this agreement. Before stating this rule of thumb, it is necessary to explain
the coordinate grid on which the transonic solution is carried out, The grid consists

of approximately 40 to 60 streamlines, and eight to ten lines which are normal to the
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SHOCK WAVE

7 STREAMLINES

NORMAILS

streamlines where they intersect. One of these normals emanates from each point
on the body where a pressure was given. A shock point ("continuity" point) is com-
puted at the other end of each normal. When a converged solution has been achieved
the pressure (and other flow field parameters) at the continuity points, and the loca-
tion of these points, agree well with the corresponding values computed from the
assumed shock shape. The following rule of thumb has been useful in obtaining this

agreement:*

If the pressure at the body surface is raised at any normal, the pressure at the
continuity point on that normal will also rise, and
a, The continuity point will move away from the body if the normal is primarily
upstream of the sonic line, or

b. The continuity point will move toward the body if the normal is primarily

downstream of the sonic line.

*This rule was established by R. H. Edsall and Mrs. S. F. Hill.
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The reverse will happen if pressure at the body surface is lowered. This rule oh-
viously is useful only if both pressure (at the continuity points) and location of the
continuity points dictate the same change in pressure at the body. It is, in effect,

a rule for adjusting the continuity points to make them "fit" the assumed shock.

The alternate possibility is to adjust the shock to make it "'fit" the continuity
points, Obviously, steepening the shock will raise the pressure computed down-
stream of it and making the shock less steep will have the opposite effect. The
effect a change in shock shape will have on agreement in location between the con-

tinuity points and the shock shape is also apparent, *

Whether a better solution will result from changing the shock shape or the
pressure distribution, will become more apparent as the user gains experience with
the program. Generally, it is better to change one or the other at any step in the

iteration, not both simultaneously.

The preceding discussion applies primarily to a situation where the result of
the previous iteration is a smooth, complete solution (i. e., the streamlines converge
smoothly as they approach the sonic line and then diverge; and the solution has con-
tinued until a continuity point is computed at the shock end of each normal). If the
estimate of the shock shape or of the pressure distribution is not a good one, it is

possible that the result not be smooth, or that the solution may not go to completion,

*While a small change in shock shape will have some effect on the location and
pressure at the continuity points, that effect is much less pronounced than the ef-
fect on the pressure which is computed directly from the assumed shock shape
(by the Rankine Hugonoit equations).
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When this happens, it is necessary to combine an understanding of the programming
of this solution with an understanding of flow field characteristics, in order to de-

termine what needs to be done. No more specific directions can he provided,
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APPENDIX V

SUMMARY OF AVAILABLE ZERO YAW TRANSONIC SOLUTIONS

This Appendix contains Figure 25 which is a graphical index of the altitudes and veloci-
ties for which solutions are included. The remaining pages in this Appendix provide the input
information needed for supersonic solutions (upper part of each page), and the shock shape
and pressure distribution which were used as input to the converged transonic solution

(lower part of each page).
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Shock Equation

A1)
A(@3)
A{D)
A(T)
A(9)
AQl)

]

. 42868578
1.5644642
-5, 6965067
12,413087
~10,805891

Mo = 7,7 Real Gas

Shock Angle = ., 97853 Two-Dimensional
Test Cell
X T 8 D P

F,03447,.47282,.8353, ,12989E-4,166, 62, $
F,03570, .47030,.8351,.12520E-4, 165,20, $
F.04000, . 46810,,8345, .12200E~4,164.00, $
F. 04500, . 46350, . 8332, .11600E-4, 161,80, $
F.05000,.45910, ,8314,.11080E-4, 159,70, $
F. 05500, . 45460, , 8290, , 10600E-4, 157,70, $
F. 06000, , 45010, ,8262, , 10225E-4, 155,80, $
F. 08500, . 44550, , 8230, , 99100E-5, 154,00, $
F.07000, . 44100, ,8194, ,96600E-5,152. 35, §
F. 07500, .43645,.8152,,94500E-5,150.70, $
F.08000, , 43160, .,8110, . 92750E-5, 149, 20, $
F. 08500, .42690, .8072,.91250E-5, 147,70, $
F. 09000, . 42200, . 8038, . 89900E~5, 146, 20, $
F.09500, . 41725, ,8010, .88200E-5,144,75, $
F.10000, . 41240, ,7985, ,87500E-5,143,30, $
F.10500, . 40740, ,7961, ,86500E-5,141.75,$
¥.11000, , 40240, . 7939, .85500E-5,140.20,$
F. 11500, .39750, .7918, .84400E-5,138.55, $
F. 12000, ,39260,.7899, .83250E-5,136,80, $
F. 12500, . 38760, .7877,.82300E-5,135.10,$
F.13000, . 38270, . 7855, . 81250E-5,133.10, $
F.13500,.37750, .7832, .80100E-5,131,00, $
F.14000, , 37250, . 7805, . 78400E-5, 128,80, $
F. 14500, .36750,.7775,.77600E-5,126,45, $
F. 15000, .36250, .7732, .76300E-5,124, 00, $
F.15267,.35967,.7679,.75612E-5,122,57,$

Input
-.10445148 P, = 3.168
D = 1.26E-6
Vo = 14190.0

All Other Coefficients = 0

252

X

. 009187
.019369
.033210
.050603
.071416
. 095492
. 122645
. 152671
. 185340
. 220405
« 257595

P

241.00
231.40
217,97
202,25
183.74
163.00
141.80
122,57
103.95

85.50

68,00



Shock Equation

A(l)y=-.146
A(@®)=.520

Me= 10
Shock Angle = 1,0368
Altitude = 40,000 Feet

Real Gas

X r A ol P

F.02065, 56853, .8014, , 41882E~2, 35892, $
F.02450,.56471,,7970,,41077E-2, 35468, $
F. 03059, .55868, .7910, , 39890E-2, 34838, $
F.03469, 55461, .7875, . 39163E-2, 34440, $
F.04128,.54802, ,7830, . 38086 E-2, 33856, $
F.04585, .54342, . 7793, . 37442E-2,33510, $
F.05297,.53618, .7747, . 36492E-2, 32995, $
F.05821, ,53080,.7709, . 35853E-2, 32630, $
F.06590, 52284, , 7654, . 34968E-2,32114, §
F.07104,.51748,.7618, . 34424E-2, 31780, $
F. 07930, .50877, .7561, . 33591 E-2, 31254, $
F, 08734, .50020, . 7508, . 32846E-2, 30751, $
F.09190, . 49529, . 7479, . 32441 E-2, 30468, $
F.10102, .48541, ,7423, . 31667E-2, 29902, $
F. 10609, . 47986, . 7394, , 31255E-2, 29586,
F.11572,.46924, , 7340, . 30496E-2, 28975, $
F.12199,,46227,.7306, .30014E-2, 28566, $
F.13211,.45091,,7252, . 20249E-2, 27880, $
F.14248,.43915, .7194, , 28457E-2, 27128, $
F. 15304, . 42701, . 7128, . 27626E-2, 26292, $
F. 16375, .41453, . 7049, . 26731E-2, 25348, $
F.17454,.40172, 6946, . 25740E~2, 24265, §
F. 18534, .38857, . 6807, . 24606E-2, 23000, $

Input

Po = 393.12
P = .OB8T2TE-2

All Other Coefficients = 0 V, — 9680.8

Two-Dimensional

X

.009186
.019369
. 033210

. 050603
. 071416
. 095492
. 122645
.152871
.185340
. 220405

253

49300
47400
44800
41400
38200
34200
30300
27000
23000
19500



Mo = 20 Real Gas
Shock Angle = 1, 0574 Two-Dimensional
Altitude = 60,430 Feet

X T A n P

F. 03952, , 46990, .8885, . 22889E-2, 56703, $
F. 04412, .46581,.8670,.22122E-2,55694, $
F.04672,.46348, 8600, ,21724E-2,55155, §
F. 65168, , 45901, .8470,.21032E-2,54183, $
F,05471, , 45625, . 8410, . 20650E-2, 53629, $
F,06021,,45119,.8310,,20023E-2,52691, $
F.06373, . 44793, . 8260, . 19660E-2, 52127, $
F. 086985, , 44220, , 8170, , 19094E-2,51206, $
F.07374,.43851,.8130,,18769E-2, 50654, $
F.08053, . 43202, .8049, , 18255E-2, 49742, $
F.08486,.42784,.8013, . 17959E-2, 49189, $
F.09238, .42052, .7956, , 17494E-2, 48271, $
F.09778,.41520,,7920,,17188E-2, 47634, $
F.10607,.40698,,7872,,16757E-2, 46681, $
F.11479,.39826,.7832,.16341E-2, 45685, $
F.12389,.38909,.7798,.15931E-2, 44623, $
F.13330,.37953,.7766, .15517TE-2, 43465, $
F.14293,,36970,.7730,.15086E-2, 42173, $
F.15267,.35967,.7679, .14619E-2, 40700, $

Shock Ecuation Input X

A(l) = -.0970 Peo = 147,31 .019369
A@3)= .60 0w = .22E-3 .033210

All Other Coefficients = 0 V, =19,362 . 050603
.071416

. 095492
.122645
.152671
+ 185340
. 220405

]

2b4

71400
67500
63000
57900
52400
46500
40700
35200
29900



Mx= 30 Real Gas
Shock Angle = 1,0315 Two-Dimensional
Altitude = 275, 000 Feet

F.05326, ,38484, ,9346,,32795E-6,8.5476, $
F.05450,,.38391,.9320, .32087E-6,8. 4606, $
F.05645,,38245,,9290,,31074E-6,8. 3335, $
F.05791,.38135,.9259,.30378E-6,8, 2398, $
F.06009,.37970,.9221,.29438E-6,8,1069, §
F.06242,.37793,.9181,,28555E-6,7, 9772, §
F.06424, .37654, .9150,.27959E-6,7.8843, 3
F.06685,,.37452,.9107,.27191E-6,7.7608, $
F.06897,.37286,.9072,.26626E-6,7, 6687, $
F.07193,.37054,,9024, .25938E-6,7.5510, %
F.07510,. 36803, .8975, .25289E-6,7, 4366, $
F.07787,.36581,,.8933,.24809E-6,7.3452, $
F.08147,.36289,.8882, .24249E-6,7. 2367, $
F. 08496, .36004, .8835,.23779E~6,7.1407, $
F.08908, .35665, ,8785, . 23296E-6,7.0373, $
F.09347,.35298,.8737,.22842E-6, 6, 9359, $
F.09639,,35054, .8710,.22581E-6,6.8725,$
F.10123,.34644, .8670,.22181E-6,6.7722,%
F.10633,.34210,,8636,.21802E-6, 6. 6708, $
F.11164,.33754,.8607,.21444E-6,6.5665, 3
F.11710,.33283,.8580,.21091E-6,6.4572, $
F.122865,.32803,.8552,.20731E-6, 6.3400, $

Shock Equation Input
A(l) = -.06 Px = ,0098
ARy = .T775 Pee = ,1909E-7
All Other Coefficients = 0 Vo = 25,395

255

X

. 009186
. 018363
. 033210
. 050603
.071416
. 095492
. 122645
. 152871
.185340

P

11.280
10,820
10,120
9.230
8.270
7.250
6,340
5.510
4. 670



Shock Equation

A(l)
A@)
A(5)
A7)
A(9)
A1l

H

I

-. 028

. 835645
. 638545
4.68223
-20.7557
18,9403

Me = 38,5007 Real Gas

Shock Angle =, 9228 Two-Dimensional
Altitude = 200, 000 Feet

X T G D P

F.09515,.35234, ,8398,.98167E-5,591.04, §
F.09658,.35108, ., 8399, .91875E-5,575.82, §
F.09827, .34960, .8400, .85721E-5,560,77, $
F.10000, .35807, ,8401, .80669E-5,548,68, $
F.10186,.34643,,8402,.7627TE-5,537.42, $
F.10291,.34549,.8403,.74225E-5,531.74, $
F.10486,.34376,.8410,.70859E-5,522,15, §
F.10608,.34268,.8417,.69070E-5,516.73,%
F.10810,.34088, .8422,.66501E-5,508. 60, $
F.11012,.33909, .8435, .64292E-5,501,.34, $
F.11145,,33791,.8442, .63072E-5, 496, 98, $
F.11341,,.33616, .8448,.61429E-5, 491,09, $
F.11472,.33500, .8454, . 60456E-5, 487,47, $
F.11652,.33340, .8467,.59247E-5, 482,88, $
F.11817,.33195,,8483,.58236E-5,479,02,
F.11918,,33106, ,8495,.57698E-5,476,.82, $
F.12048,.32992,.8513,.57024E-5,474.13, §
F.12107,,32940, .8523, .56726E-5,472. 96, $
F.12193,.32865, .8538, .56314E-5,471,.31, $
F.12247,,32819, .8548,,56061E-5,470,33, $
F.12265,.32803, .8552, .55973E-5,470.00, $

Input
Px = .4715
Po = .681180E-6
Vo = 40,000

All Other Coefficients = ¢

256

X

. 002739
. 009186
.019369
.033210
.050603
.071416
. 095492
. 122645
.152671
. 185340
. 220405
« 257595

b

930.00
896.00
857.00
802.00
735.00
650,00
560. 00
470.00
385.00
311.50
242.50
187.00



Mo =3.5 Ideal Gas

Shock Angle = , 94796 Three- Dimensional
Test Cell
X r ] i) 1%

F.09081,,51841,,5886, .92591E-2,19544, $
F. 09250, ,51580, ,5890,.91900E-2,19425, §
F.09500,.51200,.5897,.90900E-2,19275, %
F.10000,,50490, .5920,.89050E-2, 18990, $
F, 10500, . 49750, .5950, . 87200E-2, 18710, $
F.11000, . 49000, . 5988, ., 85500E-2, 18450, $
F.11500, . 48280, . 6035, .83900E-2, 18225, $
F.12000, .47550, . 6092, .82350E-2,17990, $
F,.12500, , 46830, .6150, .80850E-2,17750, $
F.13000, .46100,,6209,.79400E-2,17500, $
F. 13500, ,45400, . 6265, , T7T900E-2,17240, $
F.14000, 44700, ,6322,,76450E-2, 16950, $
F.14500,.44040,.6379, .75000E-2, 16675, $
F. 15000, ., 43350, . 6435, .73500E-2, 16380, $
F.15500, , 42700, . 6492, ,72000E-2, 16060, $
F.16000, ,42070, . 6550,,70400E-2,15725, §
F.16500, ,41440, ,6607,.68700E-2, 15375, $
F.17000, , 40770, .6664,,67000E-2, 15000, $
F.17500, . 40150, . 6721, ,65150E-2, 14610, $
F.18000,.39500,.6775, .63200E-2,14190, $
F. 18250, .39190, . 6794, .62200E-2, 13950, $
F.18534,, 38857, .6807,.61105E-2,13705, $

Shock Equation Input X
A(l) = -.08700622 Px = 2109.5 .019369
A@3) = .79591112 Pw = 2.498E-3 .033210
A(B) = -.65590844 Ve = 3804.6 .050603
AT = 47566722 .071416
A@®) = 5.8931018 . 095492
A(ll) = -,11875398 .122645
All Other Coefficients = 0 .152671
. 185340
. 220405
, 257595

267

31864
29945
27581
24926
22099
19324
16446
13705
11306
9182



Shock Equation

A(l)
A@3)
A({5)
A7)
A(9)
A(lY)

Me=5 Real Gas
Shock Angle = , 98482 Three-Dimensional
Altitude = 25, 000 Feet

X r a 0 P

F.07936, . 44570, . 6861, .52168E-2, 15986, $
F.08100, , 44350, . 6861, .51450E-2, 15880, §
F. 08200, . 44230, . 6861, . 51100E-2, 15830, $
F. 08400, . 43970, , 6861, . 50500E-2, 15710, $
F. 08800, . 43460, . 6861, ,49600E-2,15485, $
F. 09200, , 42960, . 6863, . 48850E-2, 15275, $
F. 09600, , 42450, . 6868, . 48084E-2,15063, $
F. 10000, , 41960, . 6876, , 47280E-2, 14860, $
F. 10400, . 41460, . 6895, , 46410E-2, 14660, $
F. 10800, . 40980, . 6925, . 45520E-2, 14460, $
F.11200, . 40500, . 6975, , 44570E-2, 14260, $
F. 11600, . 40020, . 7030, . 43530E-2, 14060, §
F. 12000, , 39550, . 7090, , 42500E-2, 13855, $
F. 12400, .39080, .7154, . 41450E-2, 13655, $
F.12800, .38630, ,7218, , 40500E-2, 13455, $
F.13200, 38190, ,7289, .39550E-2, 13255, $
F.13600,,37750,,7364,.38630E-2, 13040, $
F. 14000, , 37200, . 7441, .37800E-2, 12840, $
F.14400,.36870,.7527 37050E-2,12625,$
F.14800, . 36440, .7613, ,36301E-2, 12410, $
F. 15000, , 36230, . 7660, , 35970E-2, 12300, $
F. 15200, . 36020, . 7675, , 35650E-2, 12180, §
F. 15267, .35967, .7679,.35528 E-2, 12143, $

Input X
= -,06968884 Px = 786,33 . 009186
= .50731073 pew = 1,0663E-3 .019369
= 4,7113288 Vo = 5080.,5 . 033210
= -31,137102 . 050603
= 85,974197 .071416
= 87.1717 .095492
All Other Coefficients = 0 .122645
. 152671
. 185340
. 220405
+« 257595

258

24384
23307
21814
19832
17886
15826
14064
12143
10416
8500

7550



Snock Equation

Me=5 Real Gas
Shock Angle = . 9593450 Three~Dimensional

Altitude - 100,000 Feet

X r A 0 P

F.07896, ,44647,.6722,.15514E-3, 452,66, $
F.08100,.44390,,6725,.15380E-3,449. 60, §
F.08500,., 43880, . 6733, ,15075E-3, 443,60, $
F.08900, ., 43370, .6745,,14750E-3, 437.50, $
F. 09300, . 42860, . 6760, . 14400E-3, 431,60, $
F. 09700, .42360,.6782,.14060E-3,426,30, $
¥,.10100, . 41860, .6815,,13740E-3,421.40,
F.10500,.41360, .6864,,13425E~3,416,30,$
F.10900, . 40880, .6915,.13130E-3,411.00, %
F.11300, . 40400, .6970,,12890E~3, 406,00, $
F.11700,.39940, .7026,.12650E-3,400.70, $
F.12100,.39460,.7083,,12410E-3,395.50, $
F.12500,.39000,.7146,.12190E-3,390,00, $
F,12900,.38550,.7216,,11960E~3, 384,40, $
F.13300,.38090,.7286,,11740E-3,378,75, $
F.13700,.37650,.7360,,11500E-3,373.00, %
F.14100,.37220,.7437,,11275E-3,367.00, $
F.14500,,36780,.7520,.11050E-3,360.50, $
F.14900,,.36350,.6701,.10810E-3,354.10, %
F.15267,.35967,.7679,.10598E-3, 348,00, %

Input X

A(l) = -.074132599 Px = 23.085 .009187
A@) = .73981921 Pw = 3.2114E-5 -019369
AT) 8.40033686 ® = ’ . 050603
A(9) = -31.186169 .071416
A{11) = 33,588193 095492
All Other Coefficients = 0 . 122646

. 152671

. 185340

. 220405

259

P

718.50
686,00
635,00
577.00
524.00
467,46
406.00
348,00
297.50
250,00



Shock Equation

A(l)
AQB)
A)
A(T)
A(9)
AQ1l)

Me= 6 Real Gas

Shock Angle = . 96271 Three-Dimensional

Altitude = 100,000 Feet

X T B 0 P

F.08387, . 43880, ,7008,,17214E-3, 660. 61, $
F. 08600, . 43625, , 7004, , 16950E-3, 654,00, §
F. 09000, , 43145, . 6995, . 16500E-3, 642. 60, $
F. 09400, . 42650, . 6988, , 16050E-3, 632,50, $
F.09800, ,42170, . 6986, ,15610E-3, 623.20, $
F.10200, . 41685, . 6990, , 15220E-3, 614,50, $
F.10600, ,41210, .7004, .14900E-3, 605, 60, $
F.11000, , 40725, .7031, ,14610E-3,597,00, $
F.11400, . 40250, ,7075, . 14300E-3, 588,00, $
F.11800,.39790,.7124, ,13960E-3,579.50, $
F.12200,.39325,.7176,,13625E~3,571.00, $
F.12600, .38875,.7231,.13300E-3,562.40, §
F. 13000, . 38440, .7286,,13010E-3,553.50, $
F.13400,,37980, .7345, .12725E-3,544.50, §
F. 13800, .37550, , 7407, .12425E-3,535.00, $
F.14200,.37100,.7475,.12150E-3,526.00, $
F.14600, . 36675, . 7547, ,11850E-3,516.80, $
F.15000, . 36250, . 7625, ,11580E-3,507.50, $
F.15267,.35967,.7679,,11407E-3,501,00, $

Input
-.0656719962 Px = 23,085
- 7791446 P = 3.2114E-5
.41018938 Vo = 6019.2
3,7485976
~-0,8680425
6.1913265

All Other Coefficients = 0

260

X

. 009187
.019369
.033210
. 050603
.071416
. 095492
. 122646
. 152671
. 185340
. 220405

P

1032.00
986.16
915,00
839.50
760,00
670.00
580.00
501.00
421,87
352,85



Shock Equation

A1)
A@)
A(3)
AN
A(9)

i

-.0697619

= ,63076

1l

A(ll) =
All Other Coefficients = 0

3.3759
-22.369
65. 1042
-70.2076

Mo = 8 Idea! Gas

Shock Angle = , 94912 Three-Dimensional

Sea Level

X r 8 p P

F.08560, . 43650, . 6946, . 12754E-1, 104060, $
F.08740, . 43440, . 6947, . 12600E-1, 103230, $
F.08920,.43210, , 6948, , 12440E-1, 102500, $
F. 09120, . 42975, . 6951, .12275E-1,101700, $
F. 09480, . 42540, . 6960, . 12000E-1, 100500, $
F.09860, , 42070, . 6970, . 11715E-1, 99300, $
F.10240, . 41625, . 6982, . 11435E-1, 98000, $
F.10600, .41180, ,7002, . 11160E-1, 96800, $
F. 10980, , 40730, .7031, . 108 /0E-1, 95500, $
F. 11360, . 40280, . 7073, . 10580E-1, 94050, $
F.11720,,39870,.7115,.10315E-1, 92800, $
F.12100,.39430,,7162, .10020E-1, 91400, $
F. 12480, . 39000, . 7212, . 97350E-2, 80000, $
F. 12840, .38610, . 7264, . 94750E-2, 88650, $
F.13220,.38150, .7323, .92100E-2, 87920, $
F. 13600, 37740, . 7383, .89750E-2, 85800, $
F. 13960, , 37350, . 7453, . 87650E-2, 84500, $
F. 14340, , 36950, . 7520, .85600E-2, 83150, $
F.14720, . 36550, , 7586, . 83600E-2, 81650, §
F. 14900, .36350, , 7618, . 82750E-2, 81000, $
F. 15080, , 36170, , 7647, . 81900E-2, 80350, $
F.15270, . 35970, . 7679, .81100E-2, 79500, $

Input
P = 2116.2
Po = 2,.3769E-3
Ve = 8931,2

261

X

. 0027390
.0091863
.0193690
.0332097
. 3506030
.0714163
. 0954917
. 1226453
. 1526707
.1853397
« 2204050
. 2575850

P

171500
166370
157840
146000
132400
117930
103400
91530
79500
67000
54200
42500



Mw = 8§ Ideal Gas

Shock Angle = .9984 Three-Dimensional

Altitude = 100,000 Feet

X T A, 0 P
F.05675,.39538,,7187,,17350E-3,1214.1, $
F. 06000, .39175,.7204,.17125E-3,1205.0, §
F.06400,.38170,,7243,.16810E-3,1193.0, $
F.06800,,38260,.7300,.16460E-3,1180,5, §
F.07200,.37840,,7365,,16090E-3,1168.4, §
F.07600,,.37380,,7439,,15725E-3,1156.0, §
F.08000,,36940,,.7513,,15340E-3,1143.5, §
F.08400,.36520,.7592,,14975E-3,1130.4, §
F,08800,.36100, ,7675,,.14600E-3,1117.0, §
F.09200,.35690,,7760, .14240E-3,1103.5, §
F. 09600, ,35300,.7850,,13890E-3,1090.3, §
F. 10000, 34890, ,.7945,.13550E-3,1077.0, %
F.10400,.34500, .8045,.13250E-3,1063.9, $
F.10800,,34120,,8150,.12960E-3,1050.5, $
F.11200,,33750,.8267,.12725E-3,1037,0, $
F.11600,.33380,.8390,.12475E-3,1023.0, $
F, 12000, . 33040, .8502, ,12250E-3,1008.8, $
F.12265,.32803,.8552,.12121E-3,998.59, $

Shock Equation Input
A{l) = -.0697619 Po = 23.085
A@) = .63076 P = «32114E-4
A(B) = 3.3759 Vo = B8025.6
ATy = -22,369
A(9) = 65,1042
A{ll) = -70,2076

All Other Coefficients = 0

262

X

. 0027390
0051863
. 0193690
. 03320097
. 0506030
.0714163
. 0954917
. 1226453
. 1526707
.1853397
+ 2204050
. 2575950

P

1871.1
1815.1
1722.0
1592,9
1444,5
1286.6
1128.1
9985.9
8673.4
7309.7
5913.2
4636.8



Shock Equation

Al
AQ®)
A()
A
A(9)
A(11)

-. 046719
= .564527
= 4,19503
= -19.7608
= 27.071
= 4,729

M= 10 Real Gas
Shock Angle =, 9732098 Three~-Dimensional
Altitude = 20, 000 Feet

b4 T 8 p P

F,.07098,.37793,.7863,.91053E-2, 83869, $
F.07280, .37600, ,7863, .90400E-2,83050, $
F.07440,, 37440, .7863,.89550E-2, 82350, $
F.07800, .37060,.7863,.86950E-2, 80760, $
F.08140,.36710,.7864, .84300E-2, 79280, $
F.08480,.36360,,7869,.81550E-2, 77800, $
¥.08820,.36025, ,7880,.78900E-2,76450, $
F.09160, .35690,,7915,,76400E-2,75150, $
F.09500, . 35355, , 7968, . T4000E-2, 73940, $
F.09840, .35040, .,8029,.71900E-2, 72830, $
F.10200, .34690, ,0096,.69800E-2,71770, $
F. 10540, .34375,.8164, . 68100E-2, 70820, $
F. 10880, ., 34050, .8235, . 66600E~2, 69950, $
F.11220,, 33740, .8315, ,65350E-2, 69060, $
F.11580,.33400, ,8407,,64150E-2, 68150, $
F.11920,.33100, .8497,.63100E-2, 67320, $
F, 12100, .32956, . 8545, . 62600E-2, 66900, $
F,12265,.32803, .8552, . 62096E-2, 66500, $

Input
Po = 972.5
P = »12664E-2
Vo = 10,369.0

All Other Coefficients = 0

263

X

. 0027390
.0091863
.0193690
. 0332097
. 0506030
0714163
. 0954917
. 1226453
. 1526707

1853397
. 2204050
. 2575950

P

119850
119110
115770
108400
98550
87150
76000
66500
59650
53000
47000
41500



Mo = 10 Real Gas
Shock Angle = 0,98914 Three-Dimensional
Altitude = 40, 000 Feet

X r G o P

F.06849, ,38025,,7730,,40676E-2,33267, $
F.07000. . 37850,, 7725, . 40100E-2, 33055, $
F, 07400, .37440,.7726,,38900E-2, 32535, $
F. 07800, ,37030, .7757,.37700E-2, 32050, $
F. 08200, , 36630, .7804, ,36600E-2,31610, $
F. 08600, , 36230, .7855, .35550E-2, 31185, $
F. 09000, , 35830, . 7910, . 34550E-2, 30750, $
F. 09400, . 35450, . 7967, . 33600E~2, 30355, $
F. 09800, . 35070, . 8030, , 32700E-2, 29970, $
F. 10200, . 34670,.8102, , 31880E-2, 29575, $
F.10600, . 34300, .8177,,31100E-2, 29200, $
F.11000,.33925, .8265, .30450E-2, 28835, $
F. 11400, .33575,.8360,,29840E-2, 28450, $
F.11800,.33210, .8458, ,29280E-2, 28065, $
F.12264,.32803,.8552, . 28645E-2, 27620, $

Shock Equation Input X
Al) = -.04928334 Po = 393.12 .002739
A@3) = .63243631 pe = 5,8727E-4 .009186
A(B) = 2.9626085 Vo = 9680, 8 .019369
AT = -17.932815 .033210
A(®) = 50.928433 .050603
A(ll) = -54.532132 .071416

All Other Coefficients = 0 . 095492
.122645
» 152671
. 185340

264

50400
495000
46600
43700
39900
35712
31445
27620
23500
19400



Me= 11,46 Real Gas
Shock Angle = .97788 Three-Dimensional
Altitude-50, 429 Feet

X r 8 p P

F.07304,.37576, .7838,.26923E-2,26423, $
F.07400,,37475,,7841,.26790E-2,26275, $
F. 07600, .37275,.7850, .26400E-2,26040, $
F.07800,.37075, .7862,,25860E-2,25795, $
F. 08000, .36875,.7876,,25340E-2, 25550, $
F.08200, .36680, .7892, . 24840E-2, 25310, §
F.08400, .36485,.7910,.24350E-2, 25095, $
F. 08600, ,36290, .7928,.23900E-2, 24875, $
F. 08800, .36095, ., 7947, .23480E-2, 24680, $
F. 09000, .35896, .7967, , 23090E-2, 24480, $
F. 09200, .35700, .7989, .22725E-2, 24300, $
F.09400,,35510,,8012,,22375E-2, 24100, $
F. 09600, .35310, ,8036, . 22020E-2, 23925, $
F.09800,.35120, .8062,.21700E-2, 23750, §
F.10000, .34930, .8090,,21400E-2, 23575, $
F.10200, .34737,.8119,,21110E-2, 23410, $
F.10400, , 34550, .8150, . 20860E-2, 23250, $
F.10600, . 34360, .8182,,20625E-2, 23100, $
F.10800,.34180,.8217,.20380E-2, 22925, $
F.11000,,33990, .8255,, 20150E-2, 22775, $
F.11200,. 33800, .8294, . 19940E-2, 22625, $
F.11400,,33610,.8335,.19725E-2, 22460, $
F.11600, ,33425, .8380,.19520E-2, 22300, $
F.11800, ., 33240, .8428,.19325E-2, 22150, §
F.12000,.33050, .8480,.19140E-2, 21980, $
F.12100, . 32960, .8508, .19030E-2, 21900,
F.12265, .32803,,8552,.18883E-2,21768, $

Shock Equation Input X
A{l) = -.045543984 P = 238.67 002739
AQ3) 67726273 Pes = +35653E-3 . 009187
A(BG) = 1.3225792 Vo = 11,097 . 019369
AN = .35915569 . 033210
A(9) = -18,290546 . 050603
A(ll) = 31,481946 .071416

All Other Coefficients = 0 . 095492
.122646
. 152671
.185340
. 220405

265

40650
39420
37500
35011
31960
28596
25074
21768
18600
15500
12500



Shock Equation

AQ)
A@) =
A(B) =
AT =
A9y =
A(ll) =

= -,035654124

. 63308299
3.7249846
-21.642120
61.998513
-73.963013

Moo= 13
Shock Angle = , 96954
Altitude = 100,000 Feet

Real Gas
Three Dimensional

X r 8 o] P

F.08082, .36736, .8098, . 20066E-3,3326.8, $
F. 08200, .36620, . 8098, . 28695E-3,3295.0, $
F. 08400, . 36430, , 8100, . 28000E-3,3242. 0, $
F. 08600, .36235,.8101,,27325E-3,3194,0, $
F.08800, .36045, ,8104, , 26675E-3,3194,0, $
F. 09000, . 35858, . 8107, . 26075E-3,3108.0, $
F.09200, . 35660, .8112, ,25500E-3,3071.0, $
F. 09400, . 35470, ,8119, . 24940E-3,3035.0, $
F.09600, . 35280, . 8127, , 24395E-3,3000.0, $
F.09800, . 35092, . 8139, , 23880E-3, 2967.5, $
F.10000, , 34900, , 8152, . 23400E-3, 2936.0, $
F.10200, , 34715, . 8170, . 22925E-3, 2907, 5, $
F.10400, , 34530, .8192, . 22510E-3, 2880.0, $
F.10600, , 34340, .8218, , 22125E-3, 2855.0, $
F.10800, .34155, ,8247,.21775E-3, 2830.0, $
F.11000,.33970, .8278, ,21440E-3, 2807,5, $
F.11200,.33785,.8313,,21125E-3, 2785.0, $
F.11400,.33600, .8350, , 20840E-3, 2762.5, $
F. 11600, .33420, ,8390, , 20580E-3,2741,0, $
F. 11800, .33240, . 8433, , 20340E-3, 2720.0, $
F. 12000, . 33050, . 8480, , 20100E-3, 2700,0, $
F.12200, .32865, .8535, , 19875E-3, 2679.0, $
F.12265, .32803, .8552, ,19811E-3, 2672.0, $

Input
Po = 23,085
Po = 3.2114E-5
Vo = 13,041,.6

All Other Coefficients = 0

266

X

. 002739
. 009187
.018369
. 033210
. 050603
.071416
. 095492
. 122646
.152671
. 185340
« 220405

P

5040, 7
4860,0
4653.7
4364,1
3973.9
3529.9
3071.7
2672.0
2310.3
1972,.2
1660,0



Sheck Equation

A(l) = -.03287870
A@®) = .5060770
A(B) = 4.347600
A(M = -17.19080

A(® = 21,62380
A(lY) = ,00493944

Mo =15 Real Gas

Shock Angle = . 9460100 Three-Dimensional

Altitude = 33, 000 Feet
X T 8 o P

F.07834,.36931,.7920,.70887E~2,101130, $
F.07980,.36780,.7935,.69500E-2, 100300, $
F. 08120, .36650, .7950, . 68200E-2, 99520, $
F.08420, ,36360, .7980, . 65500E~2, 97900, $
F.08720,,36075, .8010, . 63000E-2, 96250, $
F. 09020, , 35785, , 8040, . 60600E-2, 94750, $
F. 09300, .35520, ,8070, . 58450E-2, 93400, $
F.09600, , 35240, ,8102, , 56300E-2, 92000, $
F.09900, . 34950, .8138, ,54350E-2, 90750, $
¥.10200, . 34670, . 8175, . 52650E-2, 89600, $
F. 10500, , 34380, .8217, .51200E-2, 88570, $
F.10780,.34130, .8262, .50050E-2, 87640, $
F.11080,.33850, .8317,. 40908E-2, 86680, $
F.11380,.33580, .8380,.48000E-2, 85740, $
F.11680,.33315, ,8440,.47200E-2, 84800, $
F.11960, .33065, . 8495, .46550E-2, 83950, $
F.12120,.32920, .8526, .46200E-2, 83450, $
F.12265,,32803, .8552, .45890E-2, 83000, $

Input
P = 5H46.6
Po = T.938E-4
Vo = 14,722.5

All Other Coefficients = 0

267

X

. 0027390
. 0091863
.0193690
. 0332097
. 0506030
. 0714163
. 0954917
. 1226453
. 1526707
. 1853397
» 2204050
. 2575950

P

153900
152340
147470
138760
125930
111250
97500
83000
69650
57200
45000
33200



Mo = 15

Real Gas

Shock Angle = .9538400 Three-Dimensional
Altitude = 50,000 Feet

X

8 o} P

F. 08007, , 36830, ,7992, ,32914E -2, 45650, $
F.08100, . 36730, .8016, .32400E-2, 45270, $
F. 08200, . 36640, . 8035, . 31950E-2, 44920, $
F. 08400, . 36450, . 8068, . 30940E-2, 44240, $
F. 08600, . 36260, . 8096, . 30050E-2, 43550, $
F.08800, . 36075, .8119, . 29250E-2, 42900, $
F.09000, . 35850, . 8138, . 28450E-2, 42350,%
F. 09200, . 35690, . 8155, . 27750E-2, 41800, $
F. 09400, . 35505, . 8170, . 27080E-2, 41300, $
F.09600, . 35320, . 8185, . 26430E-2, 40860, $
F. 09800, . 35130, . 8202, . 25800E-2, 40430, $
F. 10000, . 34945, . 8220, , 25270E-2, 40000, $
F. 10200, .34760, . 8238, . 24750E-2, 39600, $
F. 10400, , 34570, , 8258, . 24290E-2, 39200, $
F. 10600, . 34385, . 8280, . 23830E-2, 38825, $
F. 10800, .34210, . 8304, , 23410E~-2, 38470, $
F.11000, .34025, , 8330, , 23050E-2, 38125, $
F.11200, 33835, , 8360, , 22700E-2, 37770, $
F.11400, , 33640, ,8394, . 22320E-2, 37425, $
F. 11600, ,33430, .8428, ,21980E-2, 37090, $
F. 11800, .33240, . 8463, . 21620E-2, 36750, $
F. 12000, , 33050, . 8500, . 21300E~2, 36450, $
F.12140, ,32920, .8527, .21080E-2, 36240, $
F.12264,.32803,,8552,,20910E-2,36051, $

Shock Equation

A(l) =-.038794354
A@) =.81766091
AG) = .22304873
A(T) =5.8552453

1

A9 =-31,560219
A(11) =40,547567
All Other Coefficients = 0

Input X

243,61 . 002739
3.6391E-4 . 0091886
14,521 .019369
.033210
. 050603
.071416
. 095492
. 122645
.152671
. 185340
. 220405
. 257595

Po

(o]
8
1]

Ve

268

71220
68854
65398
61156
55482
49584
42932
36051
30616
26324
22237
18600



Shock Equation

A(l)
A@3)
A(3)
A7)
A(9)
AQL)

= —.03943039

- 8668105

= .1154097

2.158591
4,130238
-52,30871

Mo = 15 Real Gas

Shock Angle = .9642800 Three-Dimensional

Altitude = 85,000 Feet
X T 5] D P

F.08214,.36533,.8147, ,66754E-3,8993.8, $
F.08360,.36395,.8137, .65400E-3,8878.0, $
F.08480, , 36285, . 8133, . 64400E-3,8788.0, $
F.08760,.36015, ,8130, .61900E-3,8585,0, $
F.09020, . 35770, . 8135, . 59700E-3,8421.0, $
F.09300, , 35550, . 8149, . 57450E-3, 8260, 0, $
F. 09560, . 35260, .8167, ,55400E-3,8120,0, $
F.09840, 34995, .8192, ,53450E-3,7980.0, $
F.10100,, 34755, .8217,.51750E-3,7864,0, $
F.10380,, 34492, . 8246, , 50000E-3, 7744, 0, $
F.10640, , 34260, . 8280, , 48500E-3,7649.0, $
F. 10920, .34000, , 8320, , 47100E-3, 7550, 0, $
F.11180,.33765,.8361, . 45950E-3,7460.0, $
F.11460,.33515, .8410, , 44900E-3,7375.0, $
F.11720,.33280, . 8455, , 44100E-3,7297,0, $
F. 12000, . 33040, , 8505, . 43200E-3,7215.0, §
F.12120,.32930, . 8576, . 42900E-3, 7180, 0, §
F.12265, .32803, . 8552, . 42440E-3,7140.0, $

Input

Po = 47.0

P = 0.698E-4
Ve = 14,565

All Other Coefficlents = 0

269

X

. 0027390
. 0091863
. 0193690
0332097
. 0506030
.0714163
. 0954917
.1226453
. 1526707
.1853397

13930
13460
12750
11850
10760
9580
8330
7140
6100
5160



Shock Equation

A)
A(3)
A(S)
A(T)
AQ9)
A(1D)

-.0386601
. 78635600
1, 0005400
2.8262
-31,3266
49. 6393

Me = 17.56 Real Gas

Shock Angle = ., 9520200 Three-Dimensional

Altitude = 50, 300 Feet
X r e o P

F,08173,.36556, .8082, ,35283E-2, 62829, $
F. 08300, , 36430, .8091, , 34550E-2, 62100, $
F. 08420, 36305, .8102, . 33775E-2, 61380, $
¥. 08720, . 36040, ,8126, . 32200E-2, 59990, $
F, 09000, ,35795, . 8150, . 30700E-2, 58690, $
F. 09260, . 35535, . 8174, , 29400E-2, 57580, $
F. 09540, , 35270, . 8197, , 28180E-2, 56500, $
F. 09900, . 35030, . 8221, . 27T125E-2, 55600, $
F. 10080, .34770, .8247, . 26150E-2, 54700, $
F.10360,.34510, .8275, . 25300E-2, 53850, $
F.10620, . 34270, .8302, . 24600E-2,53150, $
F.10800, . 34020, , 8339, . 23950E-2, 52450, §
F.11180,.33760, 8380, .23375E-2,51780, $
F.11440,.33525,,8422, . 22890E-2,51200, $
F.11720,.33275, .8467, , 22400E-2, 50620, $
F.12000, . 33030, .8511, . 21960 E~-2, 50500, $
F.12120, . 32930, .8530, . 21800E-2, 49800, $
F.12265, . 32803, 8552, . 21587E-2, 49496, §

Input
P, = 243,61
O = 3.6391E-4
Vo = 17,000

All Other Coefficients =0

270

X

. 0027390
. 0091863
.0193690
. 0332097
. 0506030
.0714163
. 0954917
.1226453
. 1526707
. 1853397
« 2204050
. 2575950

97750
94500
B9741
83924
76130
67397
58208
49496
42066
36566
30948
26100



Mo = 18 Ideal Gas

Shock Angle = .9875700  Three-Dimensional

Sea Level
X r A o P

F. 05854, .39274, . 7349, . 13952E-1, 556960, $
F, 06000, , 39120, . 7350, . 13770E-1, 553500, $
F. 06200, , 38890, , 7357, . 13530E-1, 548900, $
F. 06600, , 38450, . 7375, . 13080E-1, 540500, $
F.07000,.38000, . 7408, . 12700E-1, 534200, $
F. 07400, , 37550, . 7460, . 12330E~1, 528500, $
F.07800, . 37140, ,7522, . 12000E-1,523400, $
F.08200,,36700, .7595, ,11690E-1, 518000, $
F. 08600, .36300, .7677,.11410E-1, 512900, $
F. 09000, , 35900, . 7745, . 11150E-1, 507600, $
F. 09400, . 35480, . 7827, . 10800E-1, 502500, $
F. 09800, .35100, .7917, . 10670E-1, 497000, $
F. 10200, ,34700,.8013,.10445E-1, 491500, $
F. 10600, . 34320, . 8110, . 10245 E-1, 485600, $
F. 11000, . 33950, . 8217, . 10045E-1, 479700, $
F.11400, 33580, .8327, , 98500E-2, 473500, $
F.11800, , 33210, . 8440, , 96600E-2, 466750, $
F. 12000, . 33030, . 8490, . 95700E-2, 463400, $
F. 12200, . 32850, . 8537, . 94800E-2, 459700, $
F.12264, .32803, .8552, , 94428E-2, 458650, $

Shock Equation Input X
A(l) = -.061114073 Po = 2116,2 .009186
A3y = ,.T73766679 Po = 2,3769E-3 . 019369
A(B) = .048917737 Vo = 20,095.2 .033210

~ A(M = 4.6635489 . 050603
A(9) = -21,582338 .071416
A(ll) = 24.521790 095492

All Other Coefficients =0 122645
. 152671
. 185340

271

P

835000
791000
735000
675470
604700
535140
458650
385550
321500



Shock Egquation

A1)
A(3)
A(5)
A(T)
A(9)
A(11)

]

Me = 18,1 Real Gas
Shock Angle = , 95576 Three-Dimensional
Altitude 175,000 Feet

X r A ) P

F.08945,.35778,,8369, , 16746E-4, 346,780, $
F. 09040, , 35690, . 8369, , 16450E-4, 343, 400, $
F.09160, , 35580, , 8370, . 16100E-4, 339,100, $
F. 09360, . 35400, , 8370, , 15540E-4, 332, 600, $
F.09580, , 35200, . 8370, . 14960E-4, 326. 100, $
F. 09780, , 35020, , 8371, . 14480E-4, 320, 600, $
F. 09980, . 34840, ,8373, . 14030E-4, 315. 500, $
F.10200, . 34640, . 8375, . 13580E-4, 310, 250, $
F. 10400, .34460, .8379, .13225E-4, 306,000, $
F.10600, . 34280, ,8383, ,12890E-4, 302,000, $
F. 10820, 34080, .8390, . 12550E-4, 297. 900, §
F. 11020, .33900, . 8401, . 12280E-4, 294,500, $
F.11220,.33720,.8419, .12050E-4, 291, 400, $
F.11420,.33525, .8445, , 11800E-4, 288, 400, $
F.11640, 33350, ,8472,.11610E-4, 285,800, $
F.11840,.33170, .8506, , 11450E-4, 283,500, $
F.120860,,32980, ,8540,.11275E-4, 281,000, $
F.12160,,32895, .8547,,11210E-4, 279,900, $
F.12265, 32803, .8552, .11141E-4, 278,840, $

Input X

-.02820980 Po = 1,2334 0027390
. 7464340 P = ,14123E-5 .0091863
2. 949250 Vo = 20,000 . 0193690
-21,32760 . 0332097
94. 07350 .0506030
-188, 7800 .0714163
All Other Other Coefficients = 0 . 0954917
.1226453

. 1526707

.1853397

272

P

523.97
512,84
492,23
460.79
419, 64
372.41
324.41
278,84
236,78
196, 57



Me= 19,25 Rezl Gas
Shock Angle = , 94404 Three Dimensional
Altitude = 200,000 Feet

X r A o P

F.08988,,35707, . 8303, , T3945E~5, 147. 660, $
F.09100, ,35610, ,8310, . 72950E-5, 145. 600, $
F. 09200, .35520, . 8316, . 71400E-5, 143, 850, $
F. 09400, . 35340, . 8328, . 68450E-5, 140,550, $
F. 09600, , 35160, .8340, . 66050E-5, 137,700, $
F,09800, . 34985, , 8352, . 63750E-5, 135.100, $
F.10000, . 34805, ,8364, . 61650E-5, 132, 600, $
F.10220,.34610, .8379, .59600E-5, 130, 250, $
F. 10420, , 34435, .8392, . 57950E-5, 128, 400, $
F. 10620, . 34250, . 8406, . 56500E-5, 126, 600, $
F.10820,,34075, .8420, .55150E-5,125, 000, $
F.11040, , 33880, . 8437, ,53800E-5, 123,350, $
F.11240,,33700, . 8454, .52700E-5, 122,000, $
F.11440,.33525, .8471, .51750E-5,120, 800, $
F. 11660, , 33330, . 8495, , 50800E-5,119, 850, $
F.11860, 33150, .8520, .50100E-5, 118, 400, $
F. 12060, .32980, . 8541, ,48400E-5,117, 500, $
F.12160, .32895, ,8547, .49100E-5, 117, 050, §
F.12265, .32803, . 8552, . 48791E-5,116. 620, $

Shock Equation

A(l)
A(3)
A(D)
A(T)
A®9)
A(11)

Input X

= -.0272035 Po = ,47151 .002739
= 775645 fw = .6118E-6 .0091863
= 1.56676 Vo = 20,000 .019369
= -2.63521 . 0332097
= .593935 . 0506030
= -28,3261 .0714163
All COther Coefficients = 0 . 0954917
.1226453

. 1526707

. 1853397

273

P

232,39
223,01
211,16
197.89
183.13
162,51
139,44
116, 62
97,18
80,96



Shock Equation

A1)
A@3)
A({5)
A(T)
A(9)

A(1l)

Mx= 19,52 Real Gas
Shock Angle = . 95119
Altitude = 150, 000 Feet

X r 8 0 P

F.08833,,35876, ,8296, .40887E-4, 994,57, §
F.08940, ,35780, . 8300, .40150E-4, 984, 40, $
F.09060, . 35670, .8305, .39300E-4, 973,00, §
F. 09300, .35450, .8314, ,37700E-4, 952,00, $
F. 09520, . 35255, . 8323, .36310E-4, 934.40, $
F, 09740, , 35050, . 8332, .35050E-4, 918,00, $
F. 09980, , 34840, . 8343, .33800E-4, 902,00, $
F.10200, .34635, .8353, .32790E-4,888.00, $
F.10440, . 34425, .8366, ,31840E-4,874,00, $
F.10660, .34225,.8379,.31050E-4,863, 00, $
F.10900,.34010,.8395, ,30300E-4,852,10, $
F.11120,.33810,.8412,,29690E-4,842,.00,%
F.11340,.33615, .8434,.29175E-4,831,00, $
F.11580, . 33405, .8464, ,28640E-4,824,50, $
F.11800, .33210,.8501, ,28200E-4,816.60, %
F.12040, .32995, .8539, .27750E-4,808.80, $
F.12140,.32910, . 8547, , 27600E-4, 805, 50, $
F.12265, 32803, .8552,.27397E-4,802,00, $

Input
-.028473534 Po = 3.0597
. 76620454 Pe = 3,.5642E-6
1.3474288 Vo = 21,400
1, 9468755
-16, 885667
27.864783

All Other Coefficients =

274

Three-Dimensional

X

. 002739
.009186
. 019369
. 033210
. 050603
.071416
. 095492
.122645
. 152671
. 185340

P

1535.1
1486.8
1425.9
1334.0
1218.3
1084. 6
943.21
802,00

675,75
555.00



Shock Equation

A(l) = -.03248550
A@) = .694825
ABG) = 4.279610
A = -28,2064
A(9) = 89.5846
A(1l}) = -115.997

Mo = 20 Real Gas
Shock Angle = ,951 Three-Dimensional
Altitude = 60, 430 Feet

X r a o P

F. 08408, .36347, .8349, , 22413E-2, 51485, $
F. 08540, . 36225, . 8345, . 22040 E-2, 50850, $
F. 08680, ,36090, . 8340, . 21600E-2, 50190, $
F. 08920, .35865, . 8332, . 20875E-2, 49150, $
F. 09180, . 35620, , 8326, . 20120E-2, 48180, $
F. 09440, . 35375, . 8321, .19390E-2, 47325, $
F. 09700, .35130, . 8317, . 18690E-2, 46500, $
F. 09960, . 34890, . 8316, . 18050E-2, 45750, $
F. 10200, .34670,.8319, . 17500E-2, 45125, $
F. 10500, . 34390, . 8325, .16910E-2, 44425, $
F.10720, .34180, .8334, . 16545E-2, 43950, $
F. 10980, . 33950, . 8350, . 16150 E-2, 43450, $
F.11240,.33710, .8376, . 156800E-2, 42975, $
F. 11500, . 33470, , 8412, . 15510E-2, 42525, §
F.11760, 33240, .8455, ,15250E-2, 42100, $
F.12000, . 33030, . 8500, , 15025E-2, 41740, $
F.12140,.32905, .8527,.14910E-2, 41520, $
F.12265,.32803, . 8552, , 14816E-2, 41333, §

Input
Po = 147.31
peo = 2.2E-4
Vo = 19,361.6

All Other Coefficients = 0

275

X

. 0027390
. 0091863
.0193690
. 0332097
. 0506030
,0714163
. 0954917
. 1226453
. 1526707
. 1853397

74948
73657
70799
66207
60054
53160
46921
41333
35233
30100



Shock Equation

Me = 20 Real Gas
Shock Angle = , 9504800 Three-Dimensional
Altitude 120,000 Feet

X r 2] o P

F,08810,.35930,.8281,,14453E-3,3336.8, §
F.08900,,35850,,8286,,14275E-3,3307.0, $
F.09100,,356865,.8302,,13775E-3,3249.0, $
F.09300,.35483,.8312,,13250E-3,3189,5, §
F. 09500, ,35300, .8317,.12795E-3,3135.0,
F.09700,.35115,.8322,,12375E-3,3086.0, $
F.09900,,34930,.8329,,12000E-3,3040.0, $
F.10100,,34750,.8335,.11665E-3,3000,0, §
F.10300,,34565,.8344,,11355E-3,2962.5, §
F.10500,.34385,.8356,.11100E-3,2927.0, $
F.10700,.34205, .8367,,10850E-3,2894.0, $
F.10900,.34025, ,8382,.10600E-3, 2862.5, §
F.11100,.33850,,8400,,10425E-3,2834.0, $
F.11300,.33670,.8422,,10250E-3,2805.0, $
F.11500,.33490,,8447,.10095E-3, 2780.0, $
F,11700,,33315,,8476,,99350E-4,2758,0, $
¥.11900,.33137,.8512,,98000E-4,2734.5, $
F.12100,, 32950, . 8545, ,96850E-4,2712,0,§
F.12264,,32803,.8552,,95800E-4,2693.2, §

Input

X

A(l) = -.028473534
A@B) = .76620454
A(G) = 1.3474288
A(7) = 1.9468755
A(9) = -16.885667
A1) = 27.864783

All Other Coefficients = 0

Px

Do
Ve

= 9,8372
= 1,2697E-5
20,830

i

276

. 002739
.019186
. 019369
.033210
. 050603
.071416
. 095492
. 122645
.152671
.185340

P

51565,5
4993,3
4788.8
4480.1
4091.5
3642, 4
3167.5
2613.2
2269.2
1863. 6



Shock Equation
= -,0641084

Al
AQ3)
A®B)
A(T)
A(9)
A(ll

. 865146
-1,14338

= 10,2636
= -32,75981

26,3273

Mo = 20 Real Gas

Shock Angle = .9734600  Three-Dimensional

Altitude = 200,000 Feet

X T A 0 P

F.09255,.35501,.8602, . 78322E-5,168.33, $
F. 09360, .35410, .8585, , 76900E-5,165, 95, $
F. 09460, , 35315, . 8566, . 75500E-5, 163. 60, $
F.09660,.35135,.8531, .72800E-5, 159. 40, $
F. 09860, . 34955, . 8497, . T0100E-5,155.50, $
F. 10060, .34770, . 8467, . 67450E-5,151,95, $
F.10260,.34590, . 8440, . 65150E~5, 148,85, $
F.10460, . 34410, . 8418, . 63000E-5, 146,00, $
F.10660, , 34230, . 8402, . 61100E-5,143,30, $
F. 10880, , 34050, , 8397, . 59400E-5, 140, 90, $
F.11060, .33875, . 8405, , 57900E-5,138,85, $
F.11260,,33700, . 8425, , 56450E-5,137.05, $
F.11460,,33520, .8445, .55100E-5,135.40,
F.11660, ,33340, ,8470, , 54000E-5, 134.00, $
F. 11860, 33160, .84¢ 5, , 53000E-5,132,80, $
F.12060, .32980, .8525, ,52100E-5,131. 70, $
F.12160,,32898,,8538, ,51700E-5,131,20,§
F.12265, ,32808,.8552, . 51248E-5,130.70, $

Input

P = 47518

Ppwo= 6,0583E-7
Vo = 20,958.0

All Other Coefficients = 0

277

X

.0027390
.0091863
.0196390
. 0332097
. 0506030
.0714163
.0554917
. 1226453
. 1526707
. 1853397

P

249,70
242.00
230,70
215.00
194.50
174.55
152, 60
130.70
114.48
103,75



Me = 20 Ideal Gas

Shock Angle = .95712 Three-Dimensional

Altitude = 200, 000 Feet
X r 8 o) p

F.08901, , 43181, .7206, . 35682E-5,148,13, $
F. 09100, , 42949, .7200,.35120E-5, 146.50, $
F. 09300, . 42700, .7196, . 34550 E-5, 144,85, $
F. 09700, ,42220, .7184,, 33350E-5, 141, 60, §
F. 10100, .41750, .7182, ,32150E-5, 138, 60, $
F.10500, , 41265, ,7180, . 30940E-5, 135,70, $
F. 10900, .40795, .7180, . 29780E-5, 133. 00, $
F. 11300, ,40325, .7186, . 28730E-5, 130,35, $
F.11700, .39850, . 7200, , 27740E-5,127.70, $
F.12100,.39395, .7225, , 26850E-5,125.30, $
F. 12500, . 38950, . 7268, , 26000E-5, 122, 90, $
F.12900, , 38500, .7325, . 25250E-5,120. 45, $
F. 13300, . 38060, . 7384, . 24550E-5, 118,15, §
F.13700, 37625, .7445, . 23870E-5,115,90, $
F.14100,.37190, 7510, . 23220E-5, 115, 60, $
F. 14500, , 36750, , 7575, , 22550E-5, 111, 40, $
F.14900, . 36345, . 7646, , 21920E-5, 109,10, $
F. 15100, . 36140, ., 7679, , 21600E-5, 108, 00, $
F.15267,, 35967, .7679,.21338E-5,107.00, $

Shock Equation Input
A(l) = ~-.06410840 Pw = .47518
A@3) = .8651460 Pw = 6.0583E-7
A(B) = -1,143380 Vo = 20,958,0
A(M) = 10.26360
A(9) = -32.75910
A(ll) = 26.32730

All Other Coefficients = 0

278

X

. 0027390
, 0091863
. 0193690
. 0332097
. 0506030
.0714163
. 0054917
+ 1226453
. 1526707
. 1853397

P

242,75
234.41
221.60
204,91
186,56
167,09
148,17
127,03
107,00

89.20



Shock Equation

A1)
A@)
A()
AN
A(9)
A1)

It

-.0255625
. 792294
1.93497
-12,9126
57,7919
-99, 9061

Mo = 20.7 Real Gas

Shock Angle = , 94767 Three-Dimensional

Altitude = 225,000 Feet
X r A ¢ P

F. 09126, .35625, .8382, , 29852E-5,57. 429, $
F. 09240, . 35520, . 8382, . 28900E-5,56. 775, $
F. 09340, . 35430, . 8382, . 28200E-5, 56. 200, $
F. 09540, , 35245, . 8384, , 27130E-5, 55,100, §
F. 09760, . 35050, . 8386, , 26180E-5, 53, 960, $
F. 09960, . 34870, . 8388, , 25360E-5,52, 980, $
F.10180, ,34670, .8392, . 24500E-5, 51, 990, $
F.10380, ,34490, .8397, ,23850E-5,51, 150, $
F.10600,,34295, .8404, . 23150E-5,50.325, $
F.10800,,34120,,8412,,22550E-5, 49. 650, $
F.11000,,33940, ,8422, ., 22025E-5, 49, 040, $
F.11220,,33745, ,8437,.21525E-5, 48, 400, $
F.11420,,33570, .8455, ,21125E-5,47.875, $
F.11640, .33370, .8481, .20740E-5,47, 375, $
F.11840,.33190, . 8508, . 20410E-5, 46. 930, $
F. 12060, ,32990, ,8536, , 20075E-5, 46,475, $
F.12160, ,32900, , 8545, , 19930E-5, 46. 285, $
F.12264,.328083,.8552, . 19794E-5, 46,100, $

Input
Ps = ,15719
0, = 23571
Ve = 20,000

All Other Coefficients = 0

279

X

. 002739
. 0090186
.019369
.033210
. 050603
.071416
. 095492
.122645
.152671
. 185340
« 220405
. 207595

P

88,750
85.875
82,127
76.803
70. 800
63. 500
54. 000
46,100
39,100
32. 600
26.500
20, 600



Shock Equation
= -.0333964

AQ)
A@3)
A(5)
A(D
A9)
A(ll)

. 575621
6,53032
-53, 6613

= 214,951

-327, 995

Mo =21 Real Gas

Shock Angle = . 9504200 Three-Dimensional

Altitude = 74, 870 Feet

X T A ) P

F.08459, ,36263,,8179,,11810E-2, 27951, $
F. 08600, .36120,.8189,.11480E-2, 27640, $
F. 08800, . 35945, .8202, . 11150E-2, 27245, $
F. 09000, , 35760, , 8215, . 10835E-2, 26855, $
F.09200, , 35575, . 8227, . 10520E-2, 26515, $
F. 09400, , 35400, . 8239, . 10250E-2, 26190, $
F.09600, ., 35205, . 8251, . 99850E-3, 25860, $
F.09800, .35015, . 8261, . 97200E-3, 25500, $
F. 10000, , 34830, . 8272, . 94900E-3, 25250, $
F.10200, , 34655, . 8284, . 92650E-3, 24950, $
F. 10400, . 34465, . 8298, , 90450E-3, 24685, $
F.10600, . 34280, .8316, . 88400E-3, 24435, $
F. 10800, . 34100, . 8336, , 86500E-3, 24200, $
F,11000, . 33920, . 8357, .84800E-3, 23975, $
F.11200,.33745, .8384, .83250E-3, 23770, $
F.11400,,33565, ,8415,.82100E-3,23600, §
F. 11600, .33400, , 8450, , 80850E-3, 23385, $
F.11800,.33275, . 8488, . 79750E-3, 23210, $
F.12000, , 33030, . 8525, . 78800E-3, 23030, $
F.12140,,32915, .8544,,78200 E-3, 22910, $
F.12264,.32803,.8552, . TT675E-3, 22800, $

Input
P = 75,305
0w = 1.125E-4
Ve = 20,329,7

All Other Coefficients = 0

281

X

. 002739
. 009186
.019369
.033210
. 050603
,071416
. 095492
.122645
. 152672
. 185340

43400
41871
40173
37429
33916
29935
26241
22800
19000
15300



Shock Equation

A(l) = -,02430903
A(3) = .68683618
A(G) = 4.5451286
A(T) = -32.063228
A(9) = 113,92778
A(l1)= -157.14619

All Other Coefficients =0

Mo = 23,716 Real Gas
Shock Angle = , 94568 Three-Dimensional
Altitude = 150,000 Feet

X r 4] p P

F.09404, , 35358, , 8470, . 49899E-4, 1474, 6, $
F. 09500, 35270, , 8445, . 48800E-4, 1458.0, $
F.09700, ,35090, .8421, . 46650E-4,1426,0, $
F. 09900, . 34910, . 8409, , 44700E-4, 1393, 5, $
F.10100, . 34730, , 8404, . 42800E-4,1363,0, $
F.10300, 34550, , 8404, . 41200E-4,1336.0, $
F.10500,,34370, . 8406, . 39650E-4,1311,0, $
F.10700, , 34190, .8410, . 38350E-4,1290.0, $
F.10900,,34010, .84186, . 37150E-4,1271.5, $
F.11100, , 33840, .8426, . 36100E-4, 1254, 0, $
F. 11300, .33660, .8439, ,35200E-4,1240,0, $
F.11500, , 33485, , 8458, . 34450E-4,1226,5, $
F.11700, . 33310, . 8485, .33800E-4,1214,0, $
F.11900, , 33130, , 8516, .33230E-4,1204,0, $
F. 12100, , 32950, . 8543, .32700E-4,1194,0, $
F.12264, 32803, ,8552, , 32416F-4,1186. 2, $

Input X
Ps =  3,0597 . 002739
0e = 3.5642E-6 .009186
Vo = 26,000 .019369

.033210
. 050603
.071416
. 095492
. 122645
. 152671
. 185340

282

P

2269,70
2198,30
2108,30
1972, 40
1801,40
1603,80
1394.90
1186.20
999,58
821,08



Me= 25 Real Gas
Shock Angle = . 94102 Three-Dimensional
Altitude = 225,000

X T A D P

F.09527,.35237, . 8483, . 34798E-5, 83, 903, $
F.09600,,35170, ,8479, .34375E-5, 83,100, $
F. 09800, . 34990, . 8470, , 32550E-5, 81,050, $
F. 10000, .34810, .8463, .30950E~5,79, 150, $
F.10200, . 34630, . 8458, , 29550E-5, 77, 350, $
F. 10400, , 34460, , 8455, , 28350E-5, 75,800, $
F.10600,.34280, ,8453, . 27300E-5, 74. 400, $
F. 10800, . 34100, , 8456, . 26500E-5, 73, 200, $
F. 11000, .33930, . 8459, . 25750E-5,72, 100, $
F. 11200, . 33750, . 8465, . 25080E-5,71, 100, $
F.11400,.33580, . 8476, . 24500E-5, 70, 200, $
F. 11600, 33400, ,8491, . 23980E-5, 69, 450, $
F.11800,.33220,.8512,, 23500E-5, 68,700, $
F. 12000, .33045, ,8533, . 23150E-5, 68,100, $
F. 12200, , 32870, . 8548, . 22750E-5, 67.550, $
F.12264,.32803, .8552, . 22625E-5, 67, 321, $

Shock Equation Input X
A{ly = -,022431390 Px = ,15719 . 002739
A(3) = .85812356 Do = ,23571E-6 .009186
A(B) = ,014637381 Vo = 24156,2 .019369
AN = 10,.910602 .033210
A(9) = -52.590469 . 050603
A(1l) = 73.959399 .0714186

All Other Coefficients = 0 . 095492
. 122645
.152671
. 185340
. 220405
« 257695

283

P

130. 500
125,730
120, 240
112,570
103,030
92,174
79, 670
67.321
56,888
47,000
37,050
28,200



M_ = 25,031 Real Gas
Shock Angle = ,9329000 Three-Dimensional
Altitude = 200,000 Feet

X r B o p

F.09526, ,35216, , 8433, .91906E-5, 249,610, $
F.09600, .35160, .8434, .89800E-5, 247,100, §
F.09800, .34980, ,8439, .85100E-5,241,400, $
F,.10000, . 34800, , 8444, . 80750E-5, 235,600, $
¥,10200, , 34620, . 8449, ,76950E-5, 230,400, $
F,10400, . 34440, , 8455, ,73750E-5, 225,900, $
F.10600, .34270, , 8461, .71000E-5, 221,800, $
F.10800, .34090, , 8466, . 68700E-5, 218,200, $
F.11000, .33910, . 8472, ,66700E-5,215,050, $
F.11200, ,33740, , 8478, ,64900E-5, 212,100, $
F.11400, .33560, , 8486, ,63400E-5, 209,500, $
F,11600, ,33380, . 8499, .62050E-5, 207.200, $
F.11800, ,33210, , 8518, ,60800E-5, 205,100, $
F. 12000, .33030, . 8541, ,57750E-5, 203,150, $
F.12200, ,32860,,8551, ,58750E-5, 201,350, $
F.12264, ,32803, ,8552, .58460E-5,200,870, §

Shock Equation Input X
A(l) =-.,022431390 P, =.47151 . 002739
A(3) = .85812356 P = 6.118E-7 .009186
A{(5) =.014637381 Vo = 26,000 .019369
A(T) =10.910602 .03321¢0
A(9) =-52,590469 .050603
A(11) = 73,959399 0714186

All Other Coefficients = 0 - 095492
. 122645
. 152671
. 185340

284

P

392.29
379,50
361.45
338,39
309,71
277,08
238,75
200,87
166,36
134,00



M =25,917 Real Gas

Shock Angle = .94351 Three-Dimensional

Altitude = 100, 000 Feet
X r A v P

F.09125, ,35646, ,8366, ,41298E-3,13149, §
F.09300, .35485, ., 8365, ,39750E-3, 12920, $
F.09500, ., 35305, . 8364, ,38050E-3, 12665, $
F.09700, .35120, , 8364, ,36490E-3, 12420, $
F.09900, , 34940, .3764, ,35080E-3, 12200, $
F.10100, .34755, ,8365, .33860E-3, 12000, $
F. 10300, .34575, ,8368, .32780E-3, 11825, §
F.10500, .34392, , 8374, .31800E-3, 11660, §
F.10700, .34214, ,8383, ,30960E-3, 11500, $
F.10900, ., 34040, , 8394, .30200E-3, 11370, $
F.11100, .33860, ,8408, ,27550E-3, 11240, $
F.11300, ,33680, ,8427, ,28950E~3,11120,
F.11500, ,33508, , 8450, ,28450E-3, 11020, $
F,.11700, .33320, , 8478, ,27950E-3, 10915, §
F,11900, ,33140,,8511, ,27520E-3, 10815, §
F,12100, ,32960, ,8540, .27080E~3,10720, $
F.12265, .32803, .8552, .26725E~3, 10646, $

Shock Equation Input X
A(l) = -,025465172 P = 173.784 . 002739
A@B3) = .79267501 o, = 1,1022E-4 . 009187
A(5) = .58500589 Vo = 26,000 .019369
ATy = 6,1853521 .033210
A(9) = -33.088087 .050603
A(1l) = 40,844931 .0714186

. .085492

All Other Coefficients = 0 122646
.152671

. 185340

. 220405

.257595

285

205620
19819
18926
17704
16168
14392
12513
10646
8960
7356
5920
4687



M_ = 26,857
Shock Angle = ,94235
Altitude = 75,000 Feet

Real Gas
Three-Dimensional

X

r

3| 0 P

F,.08989, ,35780, , 8302, . 13469E-2, 44851, $
F.09100, . 35680, . 8306, , 13170E-2, 44400, $
F.09300, , 35492, . 8313, . 12640E-2, 43575, $
F.09500, .35310, . 8320, . 12110E-2, 42775, $
F.09700, .35130, . 8328, , 11660 E-2, 42040, $
F.09900, . 34950, . 8336, . 11240E-2, 41375, $
F.10100, .34770, . 8343, . 10880E-2, 40775, $
F.10300, .34580, . 8351, ,10575E-2, 40220, $
F.10500, , 34400, . 8361, , 10285E~2, 39695, $
F. 10700, .34220, .8371, ,10030E-2, 39200, $
F.10900, . 34040, , 8384, ., 98100E-3, 38775, $
F.11100, . 33865, . 8401, ,96100E-3, 38350, $
F.11300, .33690, . 8420, .94200E-3, 37950, $
F,11500, ,33510, , 8445, ,92550E-3, 37600, $
F.11700, . 33330, . 8474, ,91000E-3, 37250, $
F.11900, ,33148, , 8508, . 89600E-3, 36940, $
F.12100, .32960, . 8538, . 88200E-3, 36600, $
F.12265, .32803, . 8552, , 87173 E-3, 36352, $

Shock Equation Input X
A(ly = -.02725 P_ = 73,784 .002739
AB) = .79267501 Po = 1,1022E-4 1009187
AG) - . 58500085 V. = 26,000 .019369
A(T) = 6,1853521 -033210
A(9) = -33,088187 -050803
A(11) = 40, 84493 -071416

. .095492

All Other Coefficients = 0 .122646
.152672

, 185340

.220485

.257595
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70228
67875
64816
60630
55370
49288
42852
36352
30508
24994
19909
14800



Shock Equation

A(l)
AB)
A(5)
A(M
A(9)
A(11)

= -,020016780

i

. 83564530
. 63854486
4,6822268
-20,755696
18,940326

M_ =30 Real Gas
Shock Angle = ,93288 Three-Dimensional
Altitude = 275, 000 Feet

X r 8 o} P

F.09719, .35046, , 8529, ,32142E-6,7,483, $
F, 09800, ,34975, .8526, .31180E-6,7.390, §
F.10000, ,34800,,8519, ,28900E-6,7,175, $
F.10200, . 34625, .8512, ,27000E-6, 6.980, $
F.10400, ,34448, . 8506, .25480E-6,6,816, $
F.10600, ,34274, . 8499, ,24310E-6,6,670, $
F.10800, .34097, . 8494, .23350E-6,6,542, §
F.11000, ,33%20, . 8491, .22550E-6,6.430, $
F.11200,.33744, ,8492, .21870E-6, 6,33
F.11400,,33587, , 8496, .21300E-6, 6,25
F,11600, ,.33390, .8505, ,20850E-6, 6,1
F.11800,,33218, ,8521, .20450E-6,6,1

6.0

5.9

5,9

F.12000, .33042, . 8538, .20100E-6,
F. 12200, ,32860, , 8549, .19770E-6,
F.12264, ,32803, , 8552, ,19680E-6,

.

o

7
1
o
9
.98

Input

9,771E-3
1.909E-8
25,395

PCO
Pos

Vv

@

I}

1

All Other Coeificients = 0

287

8, %
5%
9,3
0,$
0,%
8, %
2,%

X

.002739
.009186
.019369
.033210
,050603
071416
. 095492
» 122645
. 152671
. 185340
.220405
. 257595

P

11,660
11,276
10,784
10.096
9,2394
8.26564
7.1268
5.9819
4,9975
4,1300
3.2500
2,4600



Mo = 35,885 Real Gas
Shock Angle = . 92413 Three-Dimensional
Altitude = 100,000 Feet

X T 8 o] P

F.09270,.35474,,8348,.47485E-3,24732,7, $
F. 09340, ,35415, .8350, ,46520E~3, 24560,0, $
F. 09400, . 35350, , 8351, , 45350 E-3, 24345.0, $
F.09600,.35174, .8357, . 42015E-3, 23752.0, $
F.09800, , 34995, . 8363, , 39200E-3, 23215.0, $
F. 10000, .34815,.8369, .36750E-3,22740,0, $
F.10200, . 34635, , 8375, , 34650 E-3, 22325, 0, $
F.10400, . 34455, . 8382, . 33050E-3, 21960.0, $
F. 10600, 34280, .8389,,31600E-3, 21635.0, $
F.10800,.34095, .8398, .30450E-3, 21335.0, $
F.11000, , 33920, .8410,,29450E-3, 21075.0, $
F.11200,,33735,.8425,,28600E-3, 20825.0, §
F.11400,.33560, ,8444,, 27850E-3, 20605.0, $
F. 11600, .33380,,8469, . 27200E-3, 20400.0, $
F.11800,.33200,,8499,,26600E-3,20210.0,$
F.12000,.33025, ,8532, ,26050K-3, 20035,0, $
F. 12200, , 32850, ,8548, , 25575E-3,19860,0, $
F.12265,.32803, .8552,,25423E~3,19819.0, %

Shock Equation Input X
A{ly = -,02800 Po = 23,085 002739
A@y = .835645 Pe = 3.2114E-5 .009187
A(B) = .638b45 Vo = 36,000 . 019369
ATy = .468223 .033210
A® = =-20,7557 . 050603
A(1l) = 18,9403 071416

All Other Coefficients = 0 - 095492
.122646
. 152671
. 185340
. 220405
L 257595

288

39326
37916
36222
33934
31027
27480
23677
19819
16344
13150
10260

7900



APPENDIX VI

DERIVATION OF THE GOVERNING EQUATIONS FOR
THE FLOW FIELD PERTURBATIONS

The governing equations for the perturbations in the supersonic region of the
flow field are given in Section 4. 4. 2. These equations are derived from Equations
(4. 6) through (4. 9) by specializing to theJ ’ ﬁ,(_a, coordinate system of Section
4. 4, 2 and making use of the perturbation forms (e. g. , Equation (5. 1). The de-
tails of the derivation of Equation (4. 63) will be given in this appéndix. The

remaining equations of Section 4. 4. 2 can be obtajned through a similar process.

The continuity equation
- +V - pV =0 (4. 6)

can be specialized to the J R ‘1}{, (3 coordinate system of Section 4. 4. 2 by using

Equation (4. 6. 2) to conclude that:

— g -
VoV v (pvd + dpwo) (A. 1)

- - IR A
ovv-f+f - vV +0w 0 +60-7(OwW, (A. 1)

iy
-l
The vectorsJ and n have been defined as

-

/

-
n

-t -
Xcos®+rsinb

1

N R (4. 60)
-xsin@+rcos b
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so that

6 6 h
=
f _ Qcos ) (1 a[(r) sin 9]
v J - 3x +(r) or '
a - 36 . P 36 i 6 sin 6
= -sin® — +cos & -
_ 286 N 6 sin 8
T r > (A-2)
and
—
j'V(PV)=coseaE§—le +sin98(§?
o (pV
(PV) y,

Y

A

3 3 -
where g and 3n represent derivatives in the /J and n directions.

Similarly N\
-
dpwVv 90 =0

and

> _ s/ 1\ [ Pw)
0+ ViPw) = 5(?)(W)
/

Equations (A-2) and (A-3) substituted in Equation (A-1) result in:

- 28 0pVsin® = 2(RV) 6 3 (pw)
va‘pvan+ T * BJ *T 3P

290
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and Equation (4.6) becomes:

3 3P 39 6 a(Pw) . 6pVsinf _ (A-5)
st T o] TPV mtT 3o T =0

The perturbation forms (e.g. Equation (5.1)) can now be substituted in Equation (A-5).

The perturbation forms will be written in the following notation:

2 ® L\™
P=po+ 2. 20 Pin \ya @in (4-6)
=1 n=o0
where
m =n when j = 1
=n+1 whenj=2,
n
B d" a;
%,n= g
and
p'j,n=pj,n cos (pd).

When Equation {A-6) and similar expressions* for V, @ and w are substituted in Equa-
tion (A-5), the following equation results (neglecting higher order terms in the per-

turbations o j n):

* It should be noted that w, = 0, and that sin (pb) appears in the expression for Wi n

in place of cos (p9).
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2 m
L 3 (Po Vo) 3(R Vo) L\®
E X () s TR T Do,

2 = L\"
3{Po Vin+ Vo Pj,n (—\}';) 380
+Z Z a}o Cjnt P Vo S—

j=1 n=o

=]

2
38 L\™"
* The 2 2 (Po"j.n”opj,n’(v;) %n
j=1

n=o

2 oo 2 w©
ae L m ae]’n L 111
_po VO a“ol Zl Z Gj’n ‘?; a]’n +po VOZI E ano Ve ],1
J: n=o ]: n=o

=1 n=o
6 sin 8, 2 ® L\ ™
y— Z Z (o Vi,n* Vo Py, 5o o =0 (A=
j=1 n=o

* An explanation of the difference between 3/ B,J and d/d,,0 is given af the end of

this appendix.
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However, we note that Equation (3. 1) implies that the zero yaw terms in Equation (A-7)

add up to zero, i.e, that:

3 (Pp Vo) 38, 6 P, V, 8in 8,
310 + Po Vo 3ng + - = 0 (A-8)

We also note that the various perturbation motions 0y p are independent of each other

at any instant, so that Equation (A-7) implies an infinite number of equations, each con-

taining only one of the motions ozj,n. These facts permit us to drop the summation nota-

tion, and to divide each term in the equation by the quantity:

L m
aj.-an (V—“)

The result is:

Ve 9 {Bo Vo) 8 (Po Vj,n* Vo Pj,n
(1 = 60,n) Pj,n-l L + ej,n ano + BJO
380 390 aej’n
+ (Po Vi,n* Vo Pj,n an, - B Vo 84 ajo * P Vo ang

3 (P, Wj,n 6 py Vo (cos 8,) 8. n
+

, 8
T 17 T
6 (sin ;)

+ r (po V],ll+ VO pj,nJ = {

The above equation is seen to be Equation (4. 64).
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In obtaining the first term of Equation (4.64) from the first term of Equation (A-7), use

was made of the following identity:

1
o
e
1
[
_—
<ait-
e
8
1
[y
R
=

2 )
Z Z pj,n(vim)m %,ml

j=1 n=o

DERIVATIVES WITH RESPECT TOJ AND n

When taking derivatives with respect to distance along the streamlines or the lines
normal to them, care must be taken to differentiate between the streamlines and nor-
mals of the perturbed field, and those of the zero yaw steady state field, In Equations
(A-1) through (A-5) the derivatives were taken in the perturbed field. In carrying out
the solution, however, it is8 more convenient to deal with a grid consisting of the zero
yaw streamlines and normals. It is therefore necessary to express the derivatives
aF/ d and 3F /> (where F can represent any variable, e,g. p as given in Equation
(A-86)) in terms of 3F/ BJO and 3F/3dn,, where the subscript zero signifies derivatives
along the zero yaw grid.

In obtaining the desired expressions, it is convenient to make use of the x - r
coordinate system by noting that the differential distances in thej and; directions

are given by:

dd = (cos §) dx + (sin @ dr

]

dn

It

~(sin 9) dx + (cos 68) dr
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so that

3F _ 3F 3F
2.4 = (cos8) L+ s =

and

o/

F oF 3 F
3a - -{sin 8) -5-;+ (cos 8) 3T

The variable 6 can be expanded in the perturbation form given by Equation (A-6), so

01|01
Yol
|

o

o]

o

@

1)
+
D
B
< &
\E—/
'_.Q

B
ajos
Mlh:l

+
£ r]
=3
(o v]
)
+
M
'__m
=
o~
<
~B
g
._.Q
B
culcv
|

and

cvlw
=N L]
[}
]
®
=]
[+
Q
+
M =
i e
P
B
o
al )
I
_Q
e
wlcu
" |

+

(]

S

v/

@

o

+

M

WE

P

B

<

8L
B

R

e

| Qv

|y
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Applications of the well known trigonometric identities for the sine and cosine of the

sum of two angles yields*:

il
—
Q
Q
m

dF
3.4

+
w
5
D
Q.

[e AN Y)
e
+
)

[=]

7]
O‘D
OJIOJ
i
NI
D

-

=
—
8 (o
A
g

R

bt

=

and
2 « L m
8F _ _ 3F oF _
>n - "8I &) 3 ~(cos By s Z Z eJ‘,n(Vm) %,n
=1 n=o
2 ® L\ ™
3 F oF
+ (cos 8,) 37 - (8in 90) S0 Z E ej,n (‘“}';) & o
= n=o
2 o L m
* The approximations cos Z: Gj 1 (;‘;) 4G, )= 1.0 and
? ]
j=1 n=o
2 @ L m 2 @ L m
520 DX 5 BN >3 >R C- R
’
j=1 n=o =1 n=o

also been used.,
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The differential lengths dd and dn {when used without subscripts) signify distance
along streamlines and normals in the perturbed flow. If we use the subscript zero to

signify the zero yaw steady state field, we note that

oF _ oF 3F
ﬁo = {cos 6,) 55t (sin §,) e
and
3F 0 gy 2F F
om, - GG 5t s fo) 5

Using the expressions for 3F/ aﬂo and 3F/dn; in the preceding expressions for

3F/34 and 3F/3n yields:

j=1 n=o
and
2 @ m
E —EE - oF a i o
3n  an, 38, Z Z hn \ye jsn
j=1 n=o

These expressions have been used in Equation (A-T7),
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