Contrails

AFML-TR-67-242 PART I

Cleared: January 12th, 1972 Clearing Authority: Air Force Materials Laboratory

PROCESS VARIABLES IN METAL EXTRUSION

Part I: Liner Friction During Extrusion

D. R. Carnahan

Westinghouse Electric Corporation

Astronuclear Laboratory

V. DePierre

Air Force Materials Laboratory

Technical Report AFML-TR-67-242 Part I

*** Export controls have been removed ***

Air Force Materials Laboratory Directorate of Laboratories Air Force Systems Command Wright-Patterson Air Force, Ohio

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Metals and Ceramics Division MAM, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

FOREWORD

Crutrails

This report was prepared by the Westinghouse Electric Corporation, Astronuclear Laboratory, Pittsburgh, Pennsylvania, under USAF Contract AF 33(615)5317. The contract was administered under the direction of the Air Force Materials Laboratory (MAMP), Research and Technology Division, with Mr. Vincent DePierre as Air Force Project Engineer.

The program was conducted under the technical direction of Mr. Daniel R. Carnahan, Westinghouse Lead Engineer and Mr. Vincent De Pierre, Air Force Project Engineer. Significant contributions have been made to this program by Messrs. T. E. Jones and R. A. Sweeney, of Westinghouse, and M. Meyers and G. Saul of the Air Force Materials Laboratory.

This report discusses research conducted from 1 August 1966 to 30 June 1967. This report was submitted for publication on 31 July 1967.

This technical report has been reviewed and is approved.

T. D. Cooper

Chief, Processing and Nondestructive Testing Branch Metals and Ceramics Division Air Force Materials Laboratory

ABSTRACT

Three-inch diameter billets of 1018 steel, maraging steel (300 ksi), titanium alloy (6A1-4V), In - 100, and aluminum alloy (7075-0) were extruded on an instrumented 700-Ton Experimental Extrusion Press to obtain quantitative friction data under processing conditions. Friction data are presented; effect of processing variables on friction values are discussed.

Calculated interface shear stresses for glass-coated billets were significantly lower and more uniform than bare billets for comparable processing parameters and materials. For glass-coated billets, the nose and tail values are generally higher than the center values because of lower billet temperatures in these areas which results in an increase in viscosity or solidification of glass in these areas. The center friction values (K_2) represent the glass lubrication effectiveness under uniform temperature conditions. Friction stresses ranged from 2.7 to 5.8 ksi and consumed a large portion of the working pressure.

For bare billets, friction stresses in the absence of galling decreased with temperature and speed of testing. Galling increased with processing temperature.

Need for improved lubricants and lubrication systems for hot metal extrusion was demonstrated.

Contrails

TABLE OF CONTENTS

7

Page

I,	INTRODUCTIONl
II.	THEORYl
III.	EXTRUSION EQUIPMENT2
IV.	EXTRUSION PROCEDURES2
۷.	BILLET MATERIALS
VI.	EXTRUSION TESTS AND RESULTS4
VII.	DISCUSSION OF RESULTS
VIII.	CONCLUSIONS
IX.	RECOMMENDATIONS
	REFERENCES
	ILLUSTRATIONS6
	TABLES10

v

ILLUSTRATIONS

Contrails

Figur	e Title	Page
1.	Schematic Illustration of the AFML Extrusion Press	6
2.	Schematic Illustration of Forces During Forward Extrusion	7
3.	AFML 700 Ton Extrusion Press	8
4.	Representative Trace of Loads, Ram Velocity and Ram Travel Recorded During Extrusion	••9

.

TABLES

Contrails

Table	e Title	Pag e
I	Chemical Composition of Materials Used for Study of Liner Friction During Extrusion	10
II	Billet Description	11
III	Extrusion Processing Parameters for Glass-Coated Billets	13
IV	Extrusion Test Results for Glass-Coated Billets	15
v	Calculated Liner Friction for Glass-Coated Billets	17
VI	Extrusion Processing Parameters for Bare Billets	19
VII	Extrusion Test Results on Bare Billets	20
VIII	Calculated Liner Friction for Bare Billets	21
IX	Summary of Interface Shear Stresses for Bare and Glass-Coated Billets	22

•

1. INTRODUCTION

In metal deformation processes, friction forces are generated at the interface between the tools and deforming materials. These forces have the following effects:

Contrails

- 1. The total deformation loads are increased.
- 2. The internal structure and surface characteristics (surface finish and surface cracks) of the product are influenced.
- Wear is produced on the tooling material.
 Tool die life is reduced.
- 5. Dimensional variations are produced in the processed material.

Because of its effects, friction is considered a major variable in metalworking operations and must be controlled to optimize processing procedures for economically producing products with desired external geometry and internal structure. For effective friction control, quantitative data on the effects of other processing variables on friction are essential.

Studies have been made by both laboratory tests and metalworking operations to obtain quantitative data on friction. Although laboratory tests furnish valuable measurements on friction behavior under controlled conditions, it is difficult to simulate processing conditions (such as temperature, speed of deformation, state of stress, lubrication system and pressure) in these tests. For obtaining the desired quantitative process friction data, the metalworking process itself with proper instrumentation to separately measure deformation and friction forces is considered more useful than laboratory tests. The extrusion process has been shown (1) amenable to instrumentation for quantitative friction studies under metalworking conditions.

This report describes metal extrusions made on the Air Force Materials Laboratory 700-ton instrumented extrusion press to obtain quantitative friction data under processing conditions. Friction data are presented; effects of processing variables on friction values are discussed. Available methods and development work for minimizing friction forces during extrusion are recommended.

II. THEORY

In the forward extrusion process (Figure 1) used in this investigation, the total force necessary to produce deformation is the sum of several forces as illustrated in Figure 2 and expressed in the following equation:

$$F_{t} = F_{d} + F_{f_{b}} + F_{f_{f}} \qquad (1)$$

 F_t = total force for extrusion

where

- F_d = force applied on the die (metal deformation force plus friction force between die and billet material during deformation)
- F_{f_b} = friction force between the container and billet material
- $F_{f_{f}}$ = friction force between the container and follower material

Pierce (2) has derived the following relationship between container liner friction forces and other forces:

Contrails

$$P_{i} = P_{d} + \frac{\mu K L_{i}}{D}$$
 (2)

where

 $P_i = \text{total pressure exerted on the billet at any instant i$

 $(F_{t_i} - F_{f_i}$ divided by cross-section area A_0 of the container liner)

 P_d = die pressure (F_d/A_o)

- L_i = length of the upset billet in the container liner at any instant i
- D = inside diameter of container
- K = average unit shear strength of the interface between the container and billet material

Equation 2 with measurements of P_i , P_d , L_i , and D during extrusion provides quantitative values of the interface friction shear stresses (K) and a basis for studying friction variations under different processing conditions.

III. EXTRUSION EQUIPMENT

The 700-ton experimental extrusion press shown in Figure 3 was used for studying friction forces generated during extrusion at the interface between the container and billet material. A detailed description of the equipment is furnished in Reference 1. The following press characteristics are pertinent to the subject container friction studies:

- 1. Water plus soluble oil hydraulic system with a 3000 psi accumulator.
- 2. Ram speed, 20 to 900 inches per minute.
- 3. Ram stroke, 30 inches
- 4. Peak capacity, 700 tons
- 5. Container liner (H12 Die Tool Steel, Rockwell C 46-50) I.D., 3.062 inches at room temperature and 3.072 inches at 800° F.
- 6. Container temperature, room temperature to 800°F.
- 7. Instrumentation for continuously recording on a Model 1508 Visicorder (30-millisecond response) force on the stem, force the die, and position of the stem during extrusion. A representative trace identifying data points and their identification terminology appears in Figure 4.

IV. EXTRUSION PROCEDURES

A. Billet Preparation

A 0.5 inch long 30° or 45° bevel was machined on the front or "nose" of the billets and the sharp nose edges were rounded. Both bare and glasscoated billets were extruded. Bare billets required no further preparation; the others were sandblasted, cleaned with acetone, and warmed from 170° to 190° F. before glass lubricants were applied. These billets were removed from the oven, and while hot coated by brushing with a glass suspension made in accordance with the recipe in Table VIII, Reference 1.

Contrails

The heat of the billet caused the water in the suspension to evaporate leaving a glass residual coating 0.020 to 0.030 inches thick on the billet. The bottom of the billet was left uncoated. After being coated, the billet was allowed to dry at least 10 minutes prior to being transferred to the heating furnace. At the extrusion temperature the glass became liquid and the surface roughness prevented the liquid glass from flowing off the billet. The liquid film had a thickness of about 0.010 to 0.015 inches.

B. Billet Heating

Billets were heated in electric resistance furnaces in argon atmospheres and held at temperature for 60 minutes.

C. Press Calibration

All load cells and the press were calibrated. This was accomplished by utilizing the hydraulic pressure gauge as the standard and then setting the voltage on the stem to enable agreement with the hydraulic gage at maximum tonnage. After verification of the linearity and agreement between the hydraulic system and the stem, the stem became the standard and was employed as such for load cell calibrations. Further discussion on press calibration may be found in Reference 2.

D. Extrusion Practice

Billet transfer to the container was accomplished manually with tongs in six to ten seconds. A graphite block was inserted immediately behind the billet; this was followed by a tool steel block. Then the press ram was moved forward at 1 to 4 inches per second and the ram stem pushed the tool steel block and graphite billet through the container liner to the insert die in the exit end. The billet was extruded through the die opening and the back end of the extrusion was forced through by the graphite which was partially extruded. The extrusion traveled through the die and press backup tooling into a runout tube. The extrusions were removed from the runout tube and were permitted to cool in air, or if necessary, in Sil-O-Cel which enabled a slow cooling rate to be maintained concomitant with oxidation protection.

V. BILLET MATERIALS

The following materials were used for liner friction studies:

- 1. 1018 Steel (As Rolled Condition)
- Maraging Steel (300 ksi) (Rolled and Annealed Condition)
 Titanium Alloy Ti-6Al-4V (Rolled and Annealed Condition)
- 4. IN 100 Nickel Base Superalloy (As Cast Condition)
- 5. Aluminum Alloy 7075-0.

The chemical compositions and description of the machined materials are given in Tables I and II respectively.

VI. EXTRUSION TESTS AND RESULTS

Extrusions were made of glass-coated billets to furnish quantitative data on liner friction. Processing parameters for these tests are shown in Table III. Load and billet length measurements are furnished in Table IV. Equation 2 and Table IV values were used to calculate liner friction values in Table V.

For further information and comparison with glass-coated billets, several bare billets were extruded. Processing parameters for these extrusions are given in Table VI. Test results and calculated liner friction values for bare billets are furnished in Tables VII and VIII respectively.

VII. DISCUSSION OF RESULTS

For purposes of discussion the interface shear stresses for glasscoated and bare billets are summarized in Table IX. It is evident from the listed results that glass coating of billets results in significantly lower and more uniform liner friction values than bare billets for the given processing parameters and materials. For glass-coated billets, the nose and tail friction values are generally higher than the center values. This is attributed to temperature losses at the nose and tail of the billet and a resulting increase in viscosity or solidification of the glass lubricant at these locations. To provide uniform lubrication conditions with glass, heated nose blocks and follower blocks have shown promise in reducing temperature losses at the billet nose and tail. Quantitative measurements of the effectiveness of this method will be made in future liner friction studies. The center friction values (K_2) represent the glass lubrication effectiveness under uniform temperature conditions. These values range from 2.7 to 5.8 ksi and indicate a large portion (4KL/D) of the working pressure in extrusion will be consumed in overcoming liner friction even under desired controlled temperature conditions. Although glass lubrication is a major step forward in reducing liner friction, more reduction in liner friction is desired to utilize a greater percentage of the working forces for useful deformation of billet materials. For this purpose better lubricants and lubrication techniques must be developed for extrusion processes.

Bare billet extrusion tests furnished the following information:

1. In the absence of galling, friction shear values decrease with increasing temperature, e.g. maraging steels and aluminum alloy 7075-0.

2. In the absence of galling, friction shear values decrease with speed, e.g. 7075-0.

3. Galling increases with temperature and varies with different materials. Galling was observed in extrusion at the following working temperatures:

a. With 1018 steel at 1800°F, 2000°F and 2200°F.

- b. With maraging steel at 1800°F.
- c. With Ti-6Al-4V at 1550°F, 1750°F, 1850°F and 2150°F.

d. With 7075-0 at 900°F.

Friction shear values obtained for bare billets as well as glasscoated billets can serve as a quantitative base line for evaluating effectiveness of lubricants for reducing liner friction in extrusion.

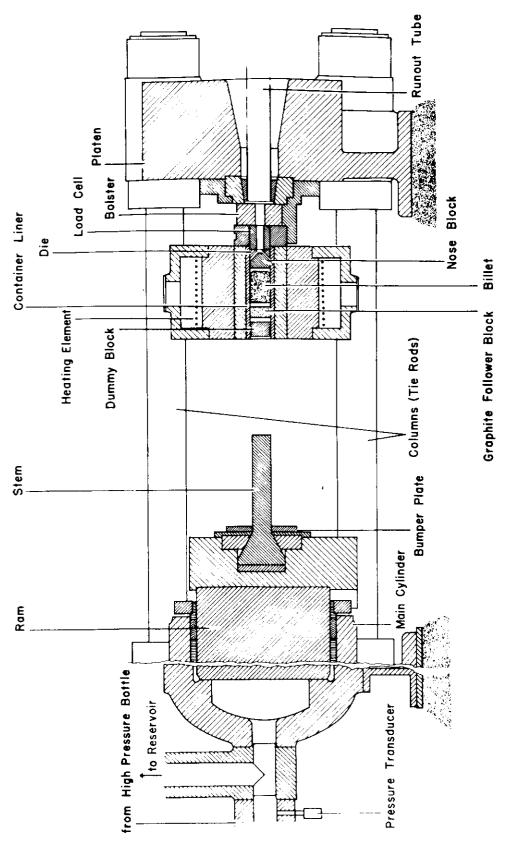
Contrails

VIII. CONCLUSIONS

1. The AFML instrumented extrusion press is an effective means for testing lubricants under extrusion processing conditions.

2. Although glass lubricating techniques furnish lower interface friction shear values than those obtained with bare billets, better lubricants than glass can provide significant advances in extrusion processing.

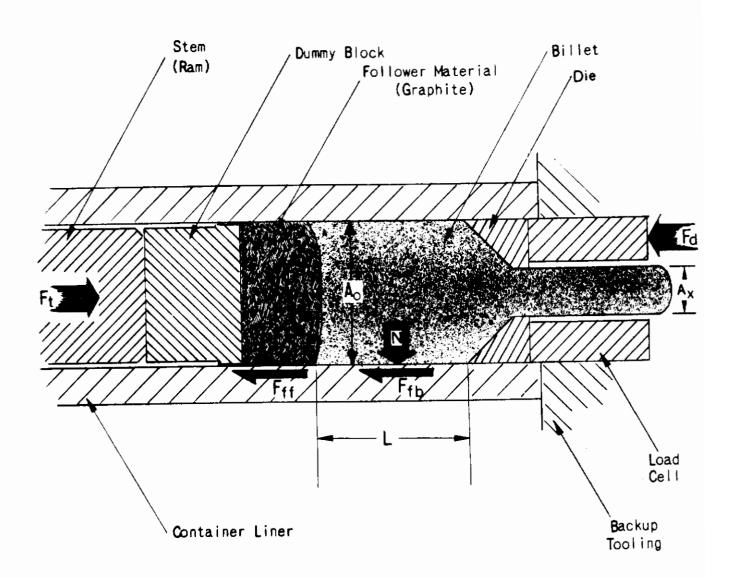
IX. RECOMMENDATIONS

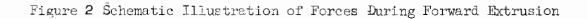

1. Development work to produce better lubricants and lubrication systems for extrusion should be continued.

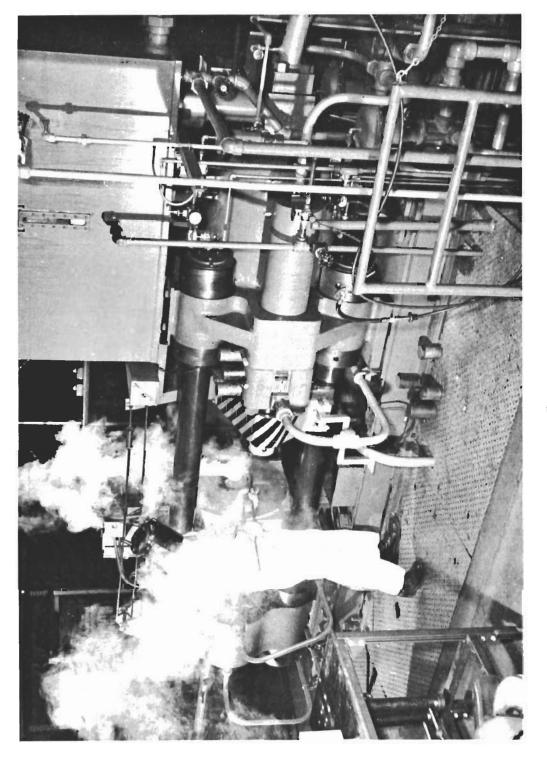
2. Methods for improving present lubrication techniques should be investigated to provide more uniform lubrication conditions.

REFERENCES

1. D. R. Carnahan, D. S. Michlin, and V. DePierre. <u>Extrusion of Refractory</u> <u>Metals and Superalloys.</u> AFML-TR-66-344, December 1966.


2. C. M. Pierce, <u>Forces Involved in the Axisymmetric Extrusion of Metals</u> <u>through Conical Dies</u>. AFML-TR-67-83, May 1967.





FORWARD EXTRUSION WITH LOAD CELL

Contrails

AFML 700 Ton Extrusion Press

Figure 3.

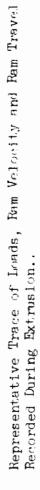


FIGURE 4

9

TABLE I

Contrails

CHEMICAL COMPOSITION OF MATERIALS USED FOR STUDY OF LINER FRICTION DURING EXTRUSION 1

)18 Steel (Actual)	Maraging Steel (Actual)	Ti-6Al-4V (Actual)	IN - 100 <u>(Nominal</u>)	Aluminum 7075-0 (Nominal)
C	.19	.02	.02	.18	
S	,22	.09			.50
Mn	.90	.05			.30
S	.026	.005			
P	.010				
Ni		18.12			
Mo		5.05		3.0	
Co		9.01		14.0	
Ti		.73	Bal.	5.0	
Al		.08	6.4	5.7	
Fe	Bal.	Bal.	.05		.70
Mg					2.1/2.9
Cu					1.2/2.0
V			4.3	1.0	
Zn					5.1/6.1
Cr				10.0	.18/.40
Zr				.06	
B				.015	
N			.009		
0			.189/.192		
ΗŢ	рш		•39/•53		

(1) Weight Percent

Contrails

TABLE 11

.

BILLET DESCRIPTION

Extrusion Number	Overall Length (in.)	Diameter (in,)	Paul Shape	We t <i>e</i> lit (1.66 ,)
		1018 STEEL		
,2158	5.5	2,950	90 ⁰ x .5"	10.4
2159	5,5	2,950	90 ⁰ x . ""	ic.h
2160	5.5	2,950	90 ⁰ x .5"	te.h
2161	5.5	2,950	90 ⁰ x .5"	10,4
2162	5.5	2,950	90 ⁰ x .5"	10,4
2163	5.5	2.950	90 ⁹ x .5"	10,4
2165	5.5	2,950	$90^{\circ} \times .5^{\circ}$	70'#
2238	5.45	2,950	No Chamfer	10.1
2342	6.0	2,955	60 [°] x .5"	11.6
2343	6.0	2,955	60 [°] x .5″	11.6
2344	6.0	2,955	60° x .5"	11.6
2345	6.0	2.955	60 ⁰ x .5"	11.6
2346	6,0	2,955	60 ^{°°} x .5"	.11.6
2347	6.0	2,955	60 [°] x .5"	11.6
2348	6.0	2.955	60° x .5"	11.6
2349	6.0	2,955	60 ^{°°} x .5"	11.6
2389	5.5	2,950	90 ⁰ x .5"	10.3
2390	5.5	2,950	90 [°] x .5"	10.3
2391	5.5	2,950	90 [°] x .5"	10.3
	MAR	AGING STEEL (300) kei)	
2094	5.5	2.950	 60° x .5″	10.6
2114	5.626	2.950	60 [°] x .5"	10.7
2115	5.5	2.950	60 [°] x .5"	10,6
2126	5.625	2,950	60 ⁰ x .5"	10.7
2127	5,625	2,950	60 ⁰ x .5"	10,4
2133	5.625	2,950	60 [°] x .5"	10.4
2135	5.625	2,950	60 [°] x .5"	10,4
2197	5.625	2.950	No Chamfer	9,8
2231	6,189	2.940	60° x 2.44"	9,1
2232	6.125	2.941	60° x 2.44"	9.0
2233	4,189	2,938	No Chamfer	8.2
2250	4,125	2.941	90 ⁰ x 1.06"	9.1
2252	4.75	2,942	120 ⁰ x 1"	8.25
2253	4.75	2.939	120 [°] x 1"	8.4
2254	4.75	2.937	120 ⁰ x 1"	8.4
2368	6.0	2.951	90 ⁰ x .5"	11.7
2369	6.0	2,950	90 ⁰ × .5"	11.7
2370	6.0	2.950	90 ⁰ × .5"	11.7

TABLE 11 - BILLET DESCRIPTION (cont'd)

Extruction Number	Overall Length (in.)	Dameter (in.)	End. Shape	Weight (Lbs.)
	T	LTANIUM ALLOY (GAL	4V)	
2267	6.0	2,940	 60 ¹² x , 5"	6.3
2268	6.0	2,940	60 ⁰ x .5"	6.3
2269	6.0	5.940	60 ⁰ x .5"	6.3
2270	6.0	2,940	60 ^{°°} x .5"	6.3
227)	5.5	2.925	60 ⁰ x .5"	5.7
2316	6.0	5.940	60 ⁰ x .5"	6.3
2317	6.0	5.910	60 [°] x ,5"	6.3
2318	6.0	2,940	60° x .5"	6.3
2319	6.0	5-940	90 ⁰ x .5"	6.3
5350	6.0	2.940	90 ^{°°} × . 5"	6.3
2321	6.0	2.740	90° × .5"	6.3
\$353	6.0	5°àµo	90 [°] x .5″	6.1
232h	6.0	2,940	90 ^{°°} x .5"	6.3
2325	6.0	2.940	90 ⁰ ж.5″	6.3
2326	6.0	2,940	90° x .5"	6.3
2362	6,063	2.947	60 ⁰ ж.,5"	6,5
2366	6.00	2.947	60° x .5"	6.49
2384	6.00	2.940	90 ⁰ x .5"	6.3
2386	6.00	5 .900	60 ⁰ x .5"	6.45
2347	5.75	2,96	60 ⁰ x .5"	6.2
2388	5.9	2.955	90 ⁰ x .5"	6.25
		<u>1N - 100</u>		
2021	5.1	2.937	60° × .5"	9 . h
5154	5.1	2.933	60 ⁰ x .5"	9.3
2125	5.1	2,938	60 ⁰ x .5"	9.4
2131 	5.06	2.933	60 ⁰ x .5"	9.3
2132	5.06	2.938	60 [°] x .5″	9.4
2216	5.0	2,930	бо ^о х.5"	9.3
221.7	5.0	2.934	60 [°] x ,5"	9.4
2218	4.3	2.935	60 ⁰ x .5"	7.9
2219	5.0	2.935	60 ⁰ x .5"	9.4
2220	5.0	2.932	60 [°] x .5"	9-3
5551	5.0	2,935	60 ⁰ x .5"	9.4
2223	5.0	2,930	60° x ,5"	9.4
2224	5.0	2,930	60° x ,5"	9.3
2225	4.88	2,930	60° x .5"	9.1
	ALUM	INUM ALLOY (7075-0		
2355	5.0	3.000	60 ^{°°} x .5"	3.5
2356	5.0	3.001	60 ⁰ x .5"	3-5
2357	5.0	2,999	60 [°] x .5"	3.5
2358	5.0	2,999	60 [°] x .5"	3.5
2359	5.0	2,998	60° x .5"	3.5
2367	4.125	3.002	60 [°] x .5"	2.9

.

TABLE III

Contrails

EXTRUSION PROCESSING PARAMETERS FOR GLASS COATED BILLETS

Extrusion Number	Billet Lubrication	Extrusion Temperature (^o F.)	Extrusion Reduction	Extrusion Die Angle (Degrees)	Remarks (Surface & Others)
		10	18 STEEL		
2158	0010	1600	6.6:1	60 ⁰	Good
2159	7052	1600	6.6:1	60 [°]	Good
2160	0010	2000	6.6:1	60 ⁰	Good
2161	7052	2000	6.7:1	60 [°]	Good
2162	0010	1800	6.6:1	60 ⁰	Good
2163	7052	1800	6.6:1	60 ⁰	Good
2165	7052	2200	6.6:1	60 ⁰	Good
2346	0010	1600	4.3:1	60 ⁰	Fair, glass re- tention entire length
2347	0010	1600	4:1	60 ⁰	Excellent, glass re-
2348	0010	1600	4.4:1	90 ⁰	tention entire length Good, glass re-
2349	0010	1600	4:1	90 ⁰	tention entire length Excellent, glass re- tention entire length
		MARACITNO	STEEL (300 ka	(1)	centron entire rengen
2094	0010	2100	8,6:1	90 ⁰	Good
2094	0010	2200	8.6:1	50°	Good
2115	0010	2200	8.6:1	90°	Good
2126	0010	2200	3.9:1	60°	Good
2127	0010	2200	8.6:1	60°	Good
21.33	0010	2200	12.5:1	60 ⁰	Good
21.97	0010	1600	4:1	60°	Good
2206	0010	2000	8.6:1	60 [°]	Good
2231	0010	1700	4:1	60°	Good
2232	0010	1700	4:1	90 [°]	Good
2233	0010	1700	4:1	90 ⁰	Good
2252	0010	1800	6.6:1	90°	Good
2368	0010	2000	9.8:1	120°	Good
2369	0010	2200	9.8:1	120 ⁰	Good
2370	0010	1800	9.6:1	120 ⁰	Good
-31*	0020	2000	,		

TABLE III (cont's)

EXTRUSION PROCESSING PARAMETERS FOR GLASS COATED BILLETS

Contrails

Extrusion Number	Billet <u>Lubrication</u>	Extrusion Temperature (^o F.)	Extrusion Reduction	Extrusion Die <u>Angle (Degrees)</u>	Remarks (Surface and Others)
		TITAN	IUM ALLOY (6A1	-4V)	
2267	0010	1750	4.1:1	60 ⁰	Excellent, no glass 3" from nose
2268	0010	1750	6.1;1	60 ⁰	Excellent, no glass
2269	0010	1750	7.6:1	60 ⁰	4.5" from nose Excellent, no glass 5.5" from nose
2270	0010	1750	10.1:1	60°	Excellent, no glass
2271	001.0	1750	10.1:1	60 ⁰	6.5" from nose Excellent, no glass
2316	0010	1850	4.1:1	60°	7" from nose Good, glass re-
2317	0010	1850	8.2:1	60 ⁰	tention entire length Good, glass re-
2319	7052	2150	4.1:1	60 ⁰	tention entire length Good, glass re-
2320	7052	2150	8.2:1	60 ⁰	tention entire length Good, glass re-
5351	7052	2150	10.2:1	60 ⁰	tention entire length Good, glass re-
2323	7052	2150	17:1	60 ⁰	tention entire length Excellent, glass re-
2324	0010	1550	4.8:1	60 ⁰	tention entire length Excellent, glass re-
2325	0010	1550	6.8:1	60°	tention entire length Excellent, no glass
2366	0010	1800	6:1	60 ⁰	retention in middle Good, no glass 5" from nose
			<u>IN - 100</u>		
2021	7052	2050	5.6:1	60 ⁰	Good
2124	7052	2050	5.3:1	60 ⁰	Good
2125	7052	2050	5.3:1	60 ⁰	Godd
2131	7052	2050	3.9:1	60 ⁰	Good.
2132	7052	2050	3.9:1	60 ⁰	Good
2216	7052	2050	3.8:1	60 ⁰	Excellent
2217	7052	2050	3.8:1	60 ⁰	Accellent
2218	7052	2050	3.8:1	60 ⁰	Excellent
2219	7052	2050	3.8:1	60 ⁰	Excellent
2220	7052	2050	3.9:1	60°	Excellent
2221	7052	2050	3.9:1	60 ⁰	Excellent
2223	7052	2050	3.6:1	60 ⁰	Poor
2224	7052	2050	3.9:1	60°	Poor
2225	7052	2050	3.9:1	60°	Poor

Contrails

)

TABLE IV EXTRUSION TEST RESULTS ON GLASS-COATED BILLETS

at runion	_	Contair	Length I her (1n.)			tal Pre (kai)			(Presau ksi)				Rem f (In.	hpeed ,∕See.)	
Mumber	L ₁	r ⁵	1 ₃	L _{l4}	Pt1	Pt2	P t3	P _{t4}	P _{d1}	Pd2	Pd3	P _{dl4}	v ₁	٧ _₽	¥3	v ₄
								<u>1018 ST</u>	TREL							
2158	4,25	3.60	1.95	D	128	100	92	54	81	78	76	54	1,00	1.75	1.50	1.75
2159	4.35	3.25	2.85	o	122	93	86	54	85	76	76	54	1.25	1.75	1.50	1.75
2160	4.55	3.40	2.05	0	70	58	58	14	45	43	43	14	2.00	5°(X)	1.75	2,00
216)	4.36	3.40	2.30	0	85	66	62	в	Ŀя	47	46	8	J.50	1.75	2.00	2.25
2162	4.50	3.40	2.45	0	95	73	70	31	54	54	5h	11	2.25	2,00	1.75	1.75
2163	4.55	3.65	2,50	0	81	65	63	11	55	54	54	11	1.75	2.00	5.00	1.50
2165	4.55	3.60	2.35	0	70	51	46	8	38	32	32	5	2.00	2.00	1.50	1,25
2346	4.55	4.10	3.40	0	135	1.05	103	14	73	72	70	14	1,50	2,25	2,25	2.50
2347	4.40	3.45	2.75	0	144	100	97	16	8 6	76	76	16	1,00	2.00	2,00	2,50
2348	4.50	3.90	3.15	D	127	100	97	11	68	66	65	16	1.50	2.00	2,00	2.50
2349	4,60	4.00	3.40	0	127	103	100	14	74	73	70	11	2.00	2.50	2.50	3.00
								MARAGIN	C STREL (3	OG kei	2					
2094	2.45	2.10	1,40	0	119	108	92	22	73	72	7 0	55	2,25	2.25	2.25	1.25
2114	4.50	3.10	1.45	0	95	86	78	5.1	68	68	68	32	2.25	2.25	2.25	1.25
2115	4,20	3.40	1.75	0	124	108	105	16	72	72	78	27	2.00	1,75	1.75	1.25
2126	4.70	3,50	2.10	a	70	62	54	5	46	46	46	5	2.50	2.50	2.25	1.50
2127	4.60	3.60	2.20	0	96	86	81	8	74	73	72	8	2,25	2.25	2.00	1.29
2133	4.40	3.75	3.10	0	139	13 8	135	11	85	84	82	11	1,50	2.00	8.00	2.00
2197	3.40	2.75	.95	0	146	122	112	16	86	85	88	16	1,50	1,50	1.50	2,00
2231	3.55	2,65	2.05	0	97	9 1	92	0	84	88	86	0	3.00	2.00	2.25	2.50
2250	3,60	2.70	1.45	0	162	148	136	32	96	93	90	11	3.00	2,25	2.00	1.25
2368	4.75	4.30	1.45	0	լիկ	134	140	5	111	107	113	5	2,00	5.00	1.75	1.00
2369	4.65	3.70	1.65	0	155	112	116	22	97	96	100	55	2.50	2.50	2.25	2.00
2370	4,70	4.30	1.10	0	163	144	142	5	135	127	130	5	1.50	2.00	1.75	2.5
								TITANI	m alloy (6	(A1-4V)						
2267	4.40	3.10	2.30	0	61	54	49	5	41	39	38	5	2.75	2.75	2.75	
2268	4,80	3.55	2,25	٥	61	65	59	11	58	54	53	11	3.00	2.25	2.50	1.75
2269	4,95	3.85	3,60	0	93	78	76	22	73	68	66	19	2.75	2.50	2,50	2,50
2270	4.35	3.80	2.90	0	97	86	81	35	76	74	73	35	2.50	2.50	2.50	3.50
2271	3.95	3.50	2.85	D	115	103	97	38	68	85	84	38	2.25	2.25	2.25	5.00
2316	4.25	3,15	1,75	0	57	43	42	11	28	27	26	11	2.50	2.75	2.75	5.00
2317	4.90	3.40	2.95	0	74	65	54	16	35	35	35	16	3.00	2.50	2.50	2,50
2319	5.30	4.30	2.70	0	42	41	39	11	19	22	24	11	3,50	1.75	2.50	2.00
5350	5.00	4.25	2.85	D	66	59	54	28	35	38	38	28	2,00	2.75	2.50	2.50
2321	5,15	4.40	3.95	o	68	62	59	32	35	38	39	33	2,00	2.75	2.75	3.00
2323	4.70	3.55	2.10	0	65	54	59	111	32	34	41	86	2.50	2.25	2.00	2.50
2324	₩.80	3.35	1.75	o	154	109	105	11 .	88	86	81	11	1.50	2.25	5.00	2.50
2325	4.75	3.90	2,85	0	146	115	109	27	99	93	95	21	1.50	2.25	2.00	2.50
	4.30	3.60	2.10	0	51	49	46	16	43	39	36	16	2.75	2.50	2,00	1.50

					ы	TABLE EXTRUSION TEST RESULTS	TEST R	TABLE IV (cont'd) ESULTS ON GLASS-CO	IV (cont'd) ON GLASS-COATED BILLETS	TED BIL	SURT						
Extrusion		Billet Contain	Billet Length In Container (In.)		Total (1	al Pressure (kai)	ure		Die Die	Die Fressure (k _{si})	о Ч			Ram Speed (Tn /Sec	peed /Sec.)		
Munber	년	ц ^{си}	.1	ਤ [‡]	Pt1		\mathbf{F}_{t_3}	Pt4	Pd1	р Ч	Pd_3	$^{P}d_{t_{t}}$	۲	V2	° A	^† ^	
								<u> 100 - 100</u>									
2021	2.10	1.80	1.15	0	170	143	140	5	132	911	113	5	2.50	2.25	2.50	2.00	
7124	3.65	2.45	1.15	0	177	071	130	5	135	130	12T	5	1.00	2.25	2.00	2.50	
2125	3.65	2.40	1.40	0	19	148	143	5	146	140	138	5	.50	2.00	1.50	2.00	l
2131	3.60	2.20	.65	0	151	130	12T	ц	131	119	611	רו	-75	2.50	2.00	1.75	2
2132	3.50	2.55	01.1	0	18t	071	138	38	134	126	124	38	.75	2.25	2.25	2.50	ur.
2216	3.70	2.55	1.50	0	162	122	911	5	123	211	111	5	1.00	2.25	2.25	4.00	źn
2217	3.55	2.70	1.40	0	117	130	124	27	134	122	911	27	1.25	2.75	2.75	2.50	a
2218	3.05	2.30	1.50	0	167	130	122	5	130	611	711	5	1.25	2.75	2.50	3.00	éŔ
2219	3.65	2.70	1.50	0	170	1 46	124	S	124	115	113	5	1.25	2.50	2.50	3.50	A.
2220	3.60	2.55	1.35	0	173	124	, 5 11	16	127	911	113	7 6	1.25	3.00	2.75	2.50	
5221	3.60	2.35	1.50	0	175	123	122	70	136	120	120	70	1.00	2.75	2.50	2.50	
2223	3.80	2.95	1.80	0	167	135	130	38	122	115	115	¹	1.50	2.75	2.50	3.00	
2224	3.60	2.35	1.30	0	159	611	9TT	16	130	113	211	16	1.50	3.00	2.75	2.50	
2225	3.60	3.20	2.85	0	165	124	122	5	130	113	108	· ւչ	1.25	3.25	3.00	3.00	

- ----

Cout TABLE Y

CALCULATED LINER FRICTION VALUES FOR GLASS-COATED BILLETS

EXTRUSION	BILLET TEMPERATURE	BILLET	PRE	SSURE RA (kej			RAM SPEE (in/sec)		ŗı	NER FRI (kst)	
NI IMERICA	(°F)	LIBRICATION	LJ	L ₂	r ³	۷	v ^S	٧ ₃	ĸı	ĸ	к ₃
				1	018 STEEL						
2158	1600	0010	128/81	100/78	92/76	1.00	1.75	1.50	6.1	4,6	6,4
2 150	1600	7052	122/85	93/76	86/76	1.25	1.75	1.50	6.4	4.1	5.9
21.60	2000	0010	70/45	58/43	58/43	2.00	5.00	1.75	4.3	3.4	5.6
2161	2000	7052	85/49	66/47	62/46	1.50	1.75	2,00	5.1	4.3	5.4
2162	1800	0010	95/54	73/54	70/54	2.25	2,00	1.75	6,8	4.3	5.1
2163	1800	7052	81/55	65/54	63/54	1.75	2.00	2,00	4.3	2.3	2,9
2165	2200	7052	70/38	51/32	46/32	2,00	2.00	1.50	5.5	4.0	4.4
2346	1600	0010	135/73	105/72	1.03/70	1,50	2.25	2,25	, 10.5	6.3	7.3
2347	1600	0010	144/86	100/76	97/76	1.00	5.00	2.00	10.1	5.4	6.1
2348	1600	0010	127/68	100/66	97/65	1.50	2.00	2.00	10.2	6.7	7.9
2349	1600	0010	127/74	103/73	100/70	5.00	2,50	3.00	8.8	5.7	6.7
				MARA	GING STEE	L (300)	ui)				
2114	5500	0010	95/68	86/68	78/68	2.25	2,25	2.25	9.6	9.7	5.7
5156	5500	0010	70/46	62/46	54/46	2,50	2,50	2,25	4.0	3.5	3.0
7127	2200	0010	96/74	86/73	81/72	2.25	2,25	2,00	3.6	2.9	3.3
23.97	1600	0010	146/86	122/85	1 12/ 82	1.50	1.50	1.50	5.6	5.9	6,4
2231	1700	0010	97/84	97/88	92/86	3.00	2.00	2.25	2.9	2.7	2.0
2368	2000	0010	144/111	134/107	140/113	2,00	2,00	1.75	5.5	4.8	14.3
2369	2200	0010	122/97	1 1 2/96	116/100	2,50	2.50	2.25	4.0	3.4	7.5
2370	1800	0010	163/135	144/127	142/130	1.50	2,00	1.75	4.6	3.1	8.5
				TITAN	TUM ALLOT	(6A1 -	<u>4V)</u>				
2267	1750	0010	61/41	54/39	49/38	2.75	2.75	2.75	3.5	3.7	3.2
2268	1750	0010	81/58	65/54	59/53	3.00	2.25	2.50	3.7	2.3	2.6
2269	1750	0010	93/73	78/68	76/66	2.75	2,50	2.50	2.7	2.2	2.0
2270	1750	0010	97/76	86/74	81/73	2.50	2,50	3.50	3.8	2.5	2,1
2271	1750	0010	115/88	103/85	97/84	2.25	2.25	2.00	5.2	3.8	3.6
2316	1850	0010	57/28	43/27	42/26	2.50	2.75	2.75	5.1	3.9	7.1
2317	1850	0010	74/35	65/35	54/35	3.00	2,50	2,50	6.1	6.7	4.9
2319	2150	7052	42/19	41/22	39/24	3.50	1.75	2.50	3.3	3.4	3.1
2320	2150	7052	66/35	59/38	54/38	2,00	2.75	2.50	4.7	3.9	4.4
2321	2150	7052	68/35	62/38	59/39	2.00	2.75	2.75	4.8	4.2	3.9
2323	2150	7052	65/32	54/34	59/86	2.50	2,25	2.00	5.3	4.4	6.9
2324	1550	0010	154/188	109/86	105/81	1.50	2.25	2,00	10.6	5.25	10.7
2325	1550	0010	146/99	115/93	109/95	1.50	2.25	2.00	7.6	4.3	4.0

	on K3		ы. В	3.0	6.4	9.4	2.7	9.4	2.1	5.5	0.8	0.7
	Liner Friction (ksi) Kl K2 K3		3.4	2.6	3.8	4.5	2.8	2.3	3.6	8.8	2.3	۰.4
	Liner (K ₁		8.8	8.2	4.3	OTT	8.1	9.6	9.5	9.7	9.8	8.4
t.d)	v ₃		2.00	1.50	2.00	2.25	2.25	2.75	2.50	2.50	2.75	2.50
<mark>'S (con</mark>	n Speed (in./sec.) V2		2.25	2.00	2.50	2.25	2.25	2.75	2.75	2.50	3.00	2.75
D BILLEI	Ram Speed (in./se V1 V2		1.50	.50	.75	.75	00.1	1.25	1.25	1 ,25	1.25	1.00
ASS-COATE	r ₃	8	130/127	143/138	6TL/42L	138/124	τττ/9ττ	911/421	LTT/221	£TL/₩ST	2τι/3τι	021/221
UES FOR GI	Pressure Range (ksi) 1 L2	00T-NI	140/130 130/127	041/841	611/0E1	92T/041	311/3 21	130/122	6TI/0EI	5LL/94L	911/471	123/120
FRICTION VALUES FOR GLASS-COATED BILLETS (cont.d)	Pressu Ll		177/135	184/146	151/131	184/134	162/123	177/134	167/130	₩2 Γ/0 <i>L</i> Ι	173/127	175/136
	Billet Lubrication		7052	7058	7052	7052	7052	7052	7052	\$052	7052	7052
TABLE V - CALCULATED LINER	Billet Temperature (^{GF.}) I		2050	2050	2050	2050	2050	2050	2050	2050	2050	2050
TABL	Extrusion Number		わらし	2125	2131	25132	2216	2217	2218	2219	2220	2221

EXTRUSION PROCESSING PARAMETERS FOR BARE BILLETS

Extrusion Number	Extrusion Temperature (°F.)	Extrusion Reduction	Extrusion Die Angle (Degrees)	- Remarks (Surface & Others)
		1018 STEEL		
2342	1600	3.9:1	60 ⁰	Fair
2343	1600	4.1:1	6 00	Good
2344	1600	4.3:1	60 ⁰	Excellent, Front 9" Fair, remainder
2345	1600	4.0:1	60 ⁰	Excellent
2389	2200	7:1	60 ⁰	Good
2390	1800	6.9:1	60 ⁰	Good, long suck-in from die back to container
2391	2000	7:1	60 ⁰	Good, long suck-in from die back to container
	M	ARAGING STEEL (300) ks1)	
2252	1800	9.9:1	120 ⁰	Good
2253	2000	9.9:1	120 ⁰	Good
2254	2200	10.9:1	120 ⁰	Good
2385	1600	4:1	60 ⁰	Billet stuck
	<u>1</u>	ITANIUM ALLOY (6A)	<u>L-4V)</u>	
2362	1800	6.1:1	60 ⁰	Excellent, $\frac{1}{5}$
2384	1550	4.1:1	60 ⁰	Good
2386	1750	10.2:1	60 ⁰	Good, entire carbon follow block surrounded by flashing
2387	1850	4.1:1	60 ⁰	Good, residual billet material left in container
2388	2150	7:1	60 ⁰	Good, entire carbon follow block surrounded by flashing
		LUMINUM ALLOY (70	<u>75-0)</u>	
2355	600	4:1	60 ⁰	Stuck
2356	900	4.1:1	60 [°]	Good
2357	90 0	8.1:1	60 ⁰	Good
2358	900	2.1:1	90 ⁰	Good
2359	600	2.1:1	90 ⁰	Good
2367	600	3.8:1	60 ⁰	Good
		19		

Contrails

TABLE VII EXTRUSION TEST RESULTS ON BARE BILLETS

Extrusion		Contair	Length I mer (In.)			tal Pres (ksi)				ressur si)				Ram (In	Speed. /Sec.)	
Number	LJ	L ₂	L (11.)	ĽĻ	Pt1	Pt2	Pt3	Pt4	Pdl	Pd2	Pa3	Pdu	٧ı	v ₂	v ₃	٧Ļ
								<u>1018 ST</u>								
2342	4.3	3.30	2.65	0	161	108	91	11	75	70	67	11	1.00	2.00	2:00	0
2343	4.3	3.65	3.30	0	172	143	132	8	90	86	83	8	.75	1.50	1.50	٥
2344	4.4	3.55	2.50	0	167	116	97	5	83	81	75	5	.75	1.50	1.50	0
2345	4_4	3.75	3.20	0	178	121	110	5	81	70	7 0	5	.50	1.75	1.75	0
2389	4.55	1.50	0.4C	0	108	75	109	81	24	24	1434	51	2.00	1.50	1.25	0
2390	4.35	3.45	1.65	0	175	151	118	54	50	47	46	43	1.50	1.50	1,50	٥
2391	4.55	3.45	1.85	0	145	118	106	78	39	36	38	48	1.25	1.50	1.00	0
								MARAGIN	STREEL (90	0 kmi)	L					
2252	3.30	2.35	0.80	0	193	166	158	5	130	125	132	5	1.00	.75	1.00	٥
2253	3.50	3.15	1.45	0	166	144	145	5	111	107	116	с	1.50	1.50	1.00	۵
2254	3.60	3.15	1.20	0	129	113	106	5	86	83	86	c	2.50	2.00	1.50	0
2385	4.38			-	199			-	84				STUCK			-
								TITANIUM	ALLOY (6A1	<u>-4</u> ¥)						
2362	4.30	3.85	3,10	C	125	100	89	54	59	56	55	54	1,75	2.25	2.25	C
2384	4.45	3.40	0.85	0	193	160	123	81	86	83	83	72	.75	1.75	1.50	с
2386	4.15	2,85	2.15	0	115	120	100	81	29	31	29	40	1.25	2.00	2,25	G
2387	3.80	2.85	2.05	٥	102	100	135	189	- 25	27	32	54	2.25	2.00	2.50	0
2388	3.90	3.10	2.05	0	185	135	111	194	58	54	51	83	2.50	2,25	2.00	0
								ALUMINU	ALLOY (70	<u>75-0)</u>						
2355	4.13			-	210			-	54				STUCK		••••	-
2356	4.10	2.80	1,10	0	140	98	65	48	52	47	42	40	1.00	1.25	1.25	C
2357	3-95	2.10	0.55	С	180	101	77	59	73	59	56	54	.75	1.50	1.50	c
2358	4.05	2.40	1.35	с	124	78	51	22	26	22	19	8	1.00	2.00	2.00	c
2359	3.75	3.00	2.50	0	200	161	135	40	54	48	48	46	1.00	1.00	1.00	0
2367	3.15	2.25	0.40	с	148	100	65	22	74	62	62	55	16.00	13.50	14.00	c

(1) L Represents - Billet length at maximum break-thru-pressure.

(2) L_{4} Represents - Distance where sharp change in die load indicates zero billet length in container.

(3) Billet length measured after removal from container liner.

TABLE VIII

Contrails

CALCULATED LINER FRICTION VALUES FOR BARE BILLETS

Extrusion	Billet Temperature	Pres	sure Rar (ksi)	ıge		Speed in/sec)		Liner 1	Priction (ksi)	L
Number	(°F.)	L	L ₂	L_3_	<u>v</u> 1	V ₂	V 3	ĸ _l	<u>K</u> 2	к.,
			1018 STI	EL VERSUS I	I - 12 IO	OL STEEL				
2342	1600	161/75	108/70	91/67	1.00	2.00	2.00	15.4	8.8	7.0
2343	1600	172/90	143/86	132/83	.75	1.50	1.50	14.7	11.8	13.3
2344	1600	167/83	116/81	97/75	.75	1.50	1.50	14.6	7.6	6.6
2345	1600	178/81	121/70	110/70	.50	1.75	1.75	17.0	10.5	9.7
2389	2200	108/24	75/24	109/44	2.00	1.50	1.25	15.5	26.2	72.5
2390	1800	175/50	151/47	118/46	1,50	1.50	1.50	22,2	23.1	33.9
2391	2000	145/39	118/36	106/38	1.25	1.50	1.00	18.5	18.0	24.1
		MARAGIN	G STEEL	(300 ks1) V	VERSUS H	- 12 TOC	L STEEL			
2252	1800	193/130	166/128	3 158/132	1.00	.75	1.00	15.1	12.3	24.4
2253	2000	166/111	144/10	7 145/116	1.50	1.50	1.00	11.7	7.3	14.3
2254	2200	129/86	113/83	106/86	2,50	2.00	1.50	8.1	5.9	9.5
2385	1600	199/84					••••	20.2		
		TITANI	M ALLOY	(6Al - 4V)	VERSUS 1	H - 12 TC	OL STEEL			
2362	1800	125/59	100/56	89/55	1.75	2,25	2.25	10.6	8.6	8.4
2384	1550	193/86	160/83	123/83	.75	1.75	1.50	19.3	17.4	35.4
2386	1850	115/29	120/31	100/29	1.25	2,00	2.25	22.6	20.0	22.2
2387	2150	102/25	100/27	135/32	2.25	2,00	2.50	15.8	24.7	25.5
2388	1750	185/58	135/54	110/51	2.50	2.25	2.00	15.5	20.0	75.2
		ALUMIN	M ALLOY	(7075-0) V	ERSUS H	- 12 TOO	STEEL			
2355	600	210/54						30.0		
2356	900	132/52	90/47	57/42	1.00	1.25	1.25	14.9	11.1	13.5
2357	900	175/73	95/59	71/56	0.75	1.50	1.50	19.9	13.45	1 8 .85
2358	900	110/26	65/22	39/19	1.00	2.00	5.00	20.9	19.5	14.0
2359	600	184/54	145/48	119/46	1.00	1.00	1.00	27.1	24.8	22.4
2367	600	145/74	97/62	62/55	16.00	13.50	14.00	17.4	12.0	13.0

NOTE: H - 12 Tool Steel (Room temperature hardness, RC 46-48) at 800° F.

		SUMMARY	OF INTERFA	CE SHEAR	STRESSI	EN POR BARE	SUMMARY OF INTERFACE SHEAR STRESSES FOR BARE AND GLASS-COATED BILLETS	ATED B.	STALL				
Temperature	Glass Avera Shear (<u>ksi</u>)	Glass Coated Average Interface Shear Streas (ksi)	rface			⊈ 4 Ω ∕	Bare Actual Interface Shear Stress (ksi)	a ce					
	For A	For All Material	rial	JL	1018 Steel	Ţ	Maraging Steel	ng Ste	el	Ē	itanium (Arinum	Alloy	
	Кı	К2 К2	K ₃	Ч Ч	K ₁ K ₂ K ₃	K3	K1 K2 K3		ד	м,		, K ₃	
1550	9.10 4.78	4.78	7.35		4		8			19.30	19.3C 17.40 35.40	35.40	
1600	8.20	8.20 5.20	6.20	15.40	15.40 9.60 8.70	8.70	20.2				8 9 9 1		
1700	2.90 2.70	2.70	2.00		1 1 1								
1750	3.80 2.90	2.90	2 ,50	1 						15.80		24.70 25.50	
1800	5.20 3.20	3.20	5.50	22.20	23.10	23.90	15.10 12.30 24.40	30 21	4.40	10.60	8.60	8.6c 8.4c	
1850	5.60 5.30	5.30	6.00	1 9 1 1	ł					19.30	17.40	35.40	3e-
2000	5.00 4.20	4.20	8.30	18.50	18,00	18.00 24.10	11.70 7.30	30 IJ	14.30				
2050	9.10 4.50	4.50	5.00										
2150	4.60	4.60 3.90	4.60	1 1 1 1				ł	1	15.80	15.80 24.70 25.50	25.50	

| | | |

9:50

8.10 5.90

26.20 72.50

15.50

6.20

6.15 5.75

2200

TABLE IX

SUMMARY OF INTERFACE SHEAR STRESSES FOR BARE AND GLASS-COATED BILLETS