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FOREWORD

This report was prepared by the Hypersonic Research Laboratory
of the Aerospace Research Laboratories under Project 7064, entitled
"Hypersonic Flow Research.

The author gratefully acknowledges the contributions made to
this note by Lt. J. S, Petty and by Messrs. K. S. Nagaraja,

Anthony Fiore, and Merle Stratton.
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ABSTRACT

This report contains a series of graphs for use with hypersonic,
air wind tunnels and is most conveniently used in conjunction with
NACA Report 1135, '""Equations, Tables, and Charts for Compressible
Flows." The data presented differ from those in NACA 1135 in the
following ways: data are computed for higher total temperatures,
viscosity data due to Bromley and Wilke are used in the low static
temperature regime, mean free path data are given, and the variation
of ¥ with temperature is considered in all the computations. The
graphs are plotted for any total pressure (within the range of validity
of the analysis), for total temperatures through 5000°R, and for Mach
numbers through 30. The computed data are also used to determine
an empirical relation between the Knudsen, Mach, and Reynolds

numbers.
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NOTATION

The notation in this report is the same as that of NACA
Report 1135, '""Equations, Tables, and Charts for Compressible

1 . .
Flows."  However, some additional symbols are introduced.

SYMBOLS

B

Cross sectional area of stream tube (inchesz)
a Speed of sound {ft/ sec)

Cij; Constants (dimensionless)

F Function of M defined in text {dimensionless)
I, J Integers (dimensionless)

i, j Exponents and indices (dimensionless)

Kn Knudsen number, A/ 1 (dimensionless)

Ln Logarithm to the base e

—

Characteristic length (inches)

Mach number,V/a {(dimensionless)
Mass flow rate (slugs/sec X1bf}
Pressure (1bf/ inchz)

Dynamic pressure, p VZI 2 (1bf/ inchz)

e v ogog

Gas constant, 1716 (ftzl seczx °R)

w

e Reynolds number, p V1/u (dimensionless)
Temperature (°R)
Speed (ft/sec)
Ratio of specific heats (dimensionless)
Mean free path (inches)
Viscosity (slugs/ ft X sec or 1bfX sec/ ftz)
Density (slugs/ ft3)

T F > N a4 4
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SUPERSCRIPTS AND SUBSCRIPTS

)*
)t
)1
)2

Conditions where the gas is moving with sonic speed
Total or isentropic stagnation conditions

Conditions just upstream of normal shock wave
Conditions just downstream of normal shock wave
Total conditions just upstream of normal shock wave
Total conditions just downstream of normal shock wave

Quantity evaluated for a gas obeying the perfect gas law
{thermally perfect) and with constant ¥ (calorically
perfect)

Quantity evaluated for a gas obeying the perfect gas law,
but with ¥ varying with temperature {thermally perfect
only)






INTRODUCTION

Experimentalists using supersonic, air wind tunnels have long
relied heavily upon NACA Report 1135, " Equations, Tables, and
Charts for Compressible Flow, ' by the Ames Research Staffl.
However, the development of an ever broadening regime of super-
sonic wind tunnel tests suggests the usefulness of some additions to
the data presented therein. Higher total temperatures are of interest
when it is necessary to simulate the static temperatures, densities,
and mean free paths characteristic of high altitude hypersonic flight.
Moreover, recent data presented by Daumz suggests that hypersonic
wind tunnels may also be run liquefaction free at static temperatures
lower than previously thought possible. These new conditions in the
test section require additional data and charts for use in conjunction
with existing ones. The high temperature, low density conditions
warrant a more detailed charting of the effects of the variation of
gamma with temperature and also suggest a need for a graph of
mean free path versus wind tunnel parameters. On the other hand,
the possibility of low static temperatures coupled with recent low
temperature viscosity determinati.ons3 requires the recalculation of
Reynolds number versus tunnel parameters in this range.

This note was prepared to fulfill these needs. The data herein
presented were originally intended only for use within the Aerospace
Research Laboratories (and, to some extent, the parameter range
was dictated by ARL facilities), but the generality of the charts

suggested that they be made available in a technical report.
CONSIDERATION OF NONCONSTANT GAMMA

The equations describing the flow of a compressible gas may

be integrated immediately under the following assumptions: the flow
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is one dimensional and steady, the gas is thermally perfect (p~p T),
the gas is calorically perfect {¥ = constant), and the gas is inviscid
and nonconducting. This analysis is given in detail in Reference 1.
In the present report one of these assumptions is relaxed: VY is
allowed to be a function of temperature only; that is, the gas is con-
sidered calorically imperfect. The effects of caloric imperfections
in the one dimensional flow equations may be accounted for if ¥ is a
known function of temperature. In this case, the solution becomes a
function of total temperature as well as Mach number. This analysis
is also carried out in Reference 1. All the dafa presented in the
present report were calculated using a form for ¥ which varied with
temperature as given in Refefence 1.

Now as fhe gas is acéelerafed through a wind tunnel, eventually
the static temperature reaches a value below which ¥ is nearly
constant. For lower static temperatures and- higher Mach numbers
the ratio between the one‘di.mensional flow dependent '{rariables (for
example, T/ Ty} computed for constant and nonconstant ¥ remains
constant, This may be seen from the algebraic form of the correc-
tions for varying ¥ given in Reference 1 (for example, equation 186)
and is illustrated in Charts 9 through 20 of that reference. Specifically,
for total temperatures of 5000°R and less, the correction factors
become constant for Mach numbers greater than about seven (depending
on the variable of interest and upon the total temperature). Then we
may graph these correction factors versus total temperature only for
Mach numbers greater than about seven. This has beeﬁ done in
Figure 1, which is simply a cross plot of the asymptotes of the above-

mentioned charts of Reference 1.



Figure 2 is a graph of the mass flow through an air tunnel per
unit throat area, per unit total pressure versus total temperature.

The function plotted is

m _P_’I: Y *

pf* Pt RT*

and depends only upon total temperature.
CONSIDERATION OF VISCOSITY AT LOW TEMPERATURES

In the test section of a supersonic, air tunnel whose total

temperature is 5000°R or less, the Sutherland equation for viscosity,

g 17?2

po= 2.27 % 10" TT196.6"
will provide an acceptable value for the viscosity, providing the total
temperature is not too low. However, when the test conditions are
such that the static temperature is less than about 200°R, the
Sutherland value for viscosity becomes doubtful. Low temperature
viscosity data (somewhat higher than the Sutherland values) due to
Bromley and Wi]ke3 and presented by Gregorek and Lee4 {see
footnote) may be used at these lower temperatures. For the compu-
tations in the present report, 180°R was chosen as the border between

the Sutherland law and a parabolic fit to the Bromley and Wilke data.

The parabola used was

-8
4= 1072 (0. 887 + 0.0663T + 0.0000589T2), 0<T<180.
At the matching point of 180°R, this equation gives a value of

viscosity 1. 8% higher than the Sutherland equation. Since this figure

Footnote: The vertical axis of the viscosity plot, Figure 19, in
Reference 4 is mislabeled. The line labeled'' 0" should be "' 2"; the
line labeled " 2" should be " 4', etc.
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of 1. 8% represents about the reading uncertainty of the viscosity
and Reynolds number graphs, no attempt was made to srnooth the
transition. Figure 3 is a plot of this viscosity function versus
temperature.

Finally, Figure 4 is a graph of Reynolds number per unit length,
per unit total pressure plotted versus Mach number for various total
temperatures. In calculating the data presented in Figure 4, the
above described viscosity law was used, The function plotted is

Re 12 P M Y

= 2 = —

lpg Py H RT

and depends upon Mach number and total temperature.
CONSIDERATION OF THE MEAN FREE PATH

The mean free path of a gas at rest is usually taken to vary
inversely as the densityB. However, the mean free path depends
upon the frame of reference in which it is evaluated. Thus the charac-
teristic mean free path of a wind tunnel test section depends not only
on the dengity in the test section, but alsoc upon the Mach number there.
This dependence of the mean free path upon Mach number has been
analyzed by Muckenfussé. Using the hard sphere molecular model,
he shows that the mean free path in a moving gas is given by

1
A~ = F(M),
. (M)

where

2 1
1 5 2 5M” + 3 Ny !
F(M) = 3 Exp (-2 M) + ;’20 [ — ]Erf [ g M.

The function F increases monotonically with M and becomes nearly

U

. 5
linear for M greater than eight. Probstein has recently suggested

a value for the proportionality constant between A and 1/p, the use
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of which in the above equation for A results in

11

Apg = 3.97 X 107 %’E R T F(M),

a function of Mach number and total temperature,

Muckenfuss also concludes that the simple 1/ p dependence of A
is inaccurate for real gases, and that A should generally vary with the
viscosity. However, in the absence of a more generally agreed upon
form for the variation of the mean free path of a stationary gas, the
inverse dependence upon density was chosen for use in this report.
Figure 5 is a plot of the foregoing equation for Ap{ versus Mach number
for various total temperatures.

A RELATION BETWEEN KNUDSEN, MACH,
AND REYNOLDS NUMBERS

We now have both the Reynolds and Knudsen numbers (based on
unit length and unit total pressure) given as functions of Mach number
and total temperature. This suggests the possibility of eliminating T,
and attempting to find Kn as a function of M and Re only. The form
of this function may be a,pproximated? by letting viscosity behave as
predicted by rigid sphere kinetic theory (i ~ pAa, in which A refers
to static mean free path) and assuming F to be proportional to Mach

number., Then it follows immimediately that
2z
Kn ~ Re °
In fact, the data used for the graphs in this report yield a value of
KnRe/ MZ which varies from about 0.9 to 3.9 for Mach numbers from
0.5 to 30 and total temperatures from 600° to 5000°R. Considering

the crudeness of the approximate relation, this spread {which results

primarily from the discrepancy in viscosity laws) is relatively small.



So the possibility arises that we may find an empirical relation of

the form
I J-i
an‘ez Z z CjyLn'RelndM, JzI.
M i=0j=0

The logarithms of M and Re are used because of the large variation
of M and Re compared to the corresponding variation of KnRe/ Mz.
A bivariant least squares fit to all the calculated data points
(M, Re, Kn), for which the static temperature was 20°R or greater,
was used to obtain the Cij for various values of I and J. Of the various
functions that resulted from different selections of I and J, two are
presented here, The simpler (I =1, J = 2) gives a root mean square
error in Kn of 8. 5% and a maximum error of 28. 7% The more complex

function (I = 2, J = 4) gives a root mean square error in Kn of 4, 6% with

a 13, 3% maximum error. The functions are

2
Kn = %IZ (-1.09-1. 81 LnM + 0. 301 LnRe + 0.974Ln’ M
4+ 0.107 Ln M LnRe),
and
M2 2
Kn = = (4.544-1.042LnM -0. 9386 LnRe -0. 6130 Ln° M

Re
+ 0.05205LnMLnRe + 0. 06869 LnZRe + 0.1413 Ln3 M

+ 0. 08289 an MILnRe -0. 006913 LnM an Re

+ 0. 03366 Ln4 M +0.01220 Ln3 MLnRe

+ 0. 006696 anMan Re).
These functions were computed for, and the above errors refer to,
the range 0.5 = M = 30 and 200°R = Tt £ 5000°R, with the additional

restriction T Z 20°R. This range is illustrated in Figure 6.




COMMENT ON THE UNCERTAINTY OF THE GRAPHS

The data herein presented were calculated to four significant
figures, The range of validity of the graphs is imposed by the
assumptions of the analysis, for example, that the air is condensa-
tion free and gamma is independent of pressure. Within this range,
the limits on the accuracy of the graphs result from their plotting
and reading, and from the uncertainty of the inputs to the calculations,
for example, the low temperature viscosity. The latter uncertainty
can be assessed only as new information becomes available. We have,
however, estimated the uncertainty due to plotting and reading by
employing an independent observer to read values from the finished
graphs and compare these values with the computed ones. This test
resulted in a root mean square error for Figures 1 and 2 of 0. 2%,
with 95% of the readings less than 0.4% in error, and a root mean
square error for Figures 3, 4 and 5 of 1. 1%, with 95% of the readings
less than 2. 0% in error. This test did not include interpolation

between curves.
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Figure 4b: Reynolds number per unit length, per unit total pressure
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Mean free path times total pressure versus Mach number
for various total temperatures.
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Mean free path times total pressure versus Mach number
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