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It is demonstrated that for a fixed number of decimal places in the
calculations the differential order of the system, the sequencing of the
computations, and the relative magnitude of the coefficients are the
primary sources of error in the solution of systems of simultanecus
equations. Accuracy can be improved by reducing the order of the sys-
tem, by keeping the multiplying factors small in the computation se-
quence, and by using realistic coefficients. The extended Choleski
method using submatrices is derived and shown to have very little error
accumulation in the calculation sequence. As inall methods it is affected
by the differential order of the system, losing six places in a beain
deflection problem for both 100 fourth order eguations and 10,000
second order equations, The transfer matrix method is described
and shown to be very accurate for atrue first order system, It lost four
places for 100,000 equations in the beam deflection problem. Methods
using forward or back substitution in the original system are shown to
have serious error accumulation in the calculation sequence, For
certain physical problems these substitution methods must fail regard-
less of the finite number of places used in the calculations,

INTRODUCTION

Every engineer at one time or another can expect to run into accuracy problems in solving
simultaneous equations, inverting matrices, and calculating high order derivatives from test
data. There has been much discussicn of these accuracy problems in the literature but there
appears to be little information on the precise reasons for the difficulties and how to avoid
them. ¥ everyone had been familiar with a statement made by a famous mathematician in
1947 (Reference 1) that it is possible to lose eight decimal places in inverting a 15 hy 15
matrix, probably even less work would have been done on the problem of solving large sys-
tems of equations.

In this report an effort is made to identify the sources of the errors that occur in the
solution of large systems and to demonstrate methods of solution that keep these errois
to a minimum. Three primary sources of error, (1) the differential order of the system, {2)
the sequencing of the computations, and (3) the relative magnitude of the coefflicients, are
considered. Also, three methods of solution, (1) the extended Choleski method using sub-
matrices, {2) the back substitution method, and (3) the transfer matrix method, are discussed.
No effort has been made to consider all error sources, to determine exact magnitude of
possible errors, or to discuss all methods of solution and matrix inversion. The discussion
and examples are presented to provide some guidance to those working with large systems
of simultaneous equations.

*Professor, Aeronautical and Astronautical Engineering,
**Specialist, Research Structural Development Group, Columbus,
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ACCURACY REQUIREMENTS IN DIFFERENTIAL EQUATION SOLUTIONS

Congider the differential equations

4

::’ = p (48]
X

2

e T (2)
X

V' = o {3}

over intervals of unit length x = 0.0 to 1.0 and y = 0.0 to 1.0, Divide the intervals into N
elements with Ax =1/N, Ay = 1/N, and write the three equations in finite difference form

4 - - ~ =
N wn—z 4Un-1 +6u, 4Un+| +Un+2) = Pn {4
2 _ _
NT(U, L, —2up Fup ) S ag (5)
4
N [Un,m-z +‘2Ul‘|"l.m—l _eun,m-u +2Un+|,m-|,
+ (U - 8u + 20U —8u +u }
n-2.m n-i,m n,m n+1,m n+tz. m
* {zun—l,mh _Bun,mﬂ +2Un+|,m+|) + Un,m+2] N rn,m ©)

If the maximum error in U is + Ue, then the maximum possible errors in p, q, r in these
three cases are

P, = I6N4 Ue . N unknowns n
Qg = an? Ug N unknowns (8
, a 2

e = 64N U, . N unknowns (92)

If the permissible error in p, q, r is of the order of unity then Equations 7, 8 and 9 demon-
strate the well known result that measured values cannot be differentiated several times to
give reasonable derivatives. If Ue = 0.01 is the error in measuring U and pe, ge, Te =1,
then Equations 7 and 9 give N between one and two while Equation 8 gives N = 5. For perfect
computation of U in an eight-place machine with Ue = 107°, N == 25, 5000, 12, respectively,
for Equations 7, 8, and 9, Thus it appears that the accuracy requirements in the solution
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sf differential equations by finite differences with a fixed finite number of places in the
calculations depends upon the order of the equation, each order increase requiring apyprox-
imately an order of magnitude increase in accuracy. Apparently, difficulties can he expected
in fourth-order equations using eight-place machines, It will be demonstrated in a later
section that one way to avoid part of this accuracy problem is to split the equation into lower-
order equations,

There is a further accuracy problem involved in making the computiations in solving the
system of equations., This is the error accumulation arising in a long sequence of calcula-
tions, .

ERROR ACCUMULATION IN SEQUENCE COMPUTATIONS
Consider the simple subtraction.:

x3:“2"‘2“—;‘[‘; v xq:k2x3“‘k312 (o

where xq, Xg, X3 are of the same order of magnitude. Let
Xo = %) + x4 . kz=k,+l,

s0 that

Xg » X, = x, (k3 -k + 1) (h

2

If x¢ is the error in xg and there is no error in x,, then the error in xg is koxe and in x4 is
(k5 - kg + 1)xg. For a sequence of N similar calculations such as in a recursion, the error

is of the order of

k, = | ) XeN ° %@
k2= 2 xeNzN’e
N [z
k, =3 XgN = (¢ - I} xg
. -1
k, > 3 : XaN = (ko )N Xg

It is evident the error accumulations can be quite large and rapid for large values of
ko, f xg = 10-8 and kg = 10,0, then xgN = 1.0 after only nine calculations. It appears thu’ when
subtraction is involved in variables of the same relative size, the average multiplying fzctors
must be less than two to keep the error accumulation small in a long sequence cf vaicuistiuns,
As will be demonstrated in a later section the method of calculation has a hig effert un this
error accumulation,

It should be noted that difficulties may be expected if some of the rouitiplying facte s ire
much larger than others and if the values change rapidly in magnitude in the sequernce.

ERRORS IN SOLVING LARGE SYSTEMS OF SIMULTANEOQUS EQUATICNS

Depending upon what the system of equations represents and upon how it is solved, it is
possible for all the above factors that affect the accuracy of the calculations to be present,
If a direct solution is made by inverting the matrix of coefficients, then depending upon the
method of inversion errors in the inverse may be serious, However, ohtaining the inverse
in structural and finite difference equations does not appear to be as difficult as the con-
clusions of Von Neuman and Goldstine (Reference 1) that it is possible to lose eight decimaj
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places in inverting a 15 by 15 matrix, ten places in a 50 by 50 matrix, and twelve places in
a 150 by 150 matrix,

Due to these error problems in direct solutions a large amount of work on indirect or
iterative methods has been published inthe literature; see for example Varga’s book (Reference
2). However, these methods also have problems of convergence, divergence, and speed
of convergence. In a large system the time for sufficient iterations to convergence may be
much larger than for a direct solution. Speed up factors help bul there is no way of knowing
the optimum factors in a large system.

After consideration of all these factors it was decided fo investigate in detail direct
methods using partitioned .natrices and taking advantage of the fact that the stiffness influence
coefficient matrix in most structural problems #s well as all matrices in finite differences
can be arranged in a diagonal form with many zeros. The method described in the next sec-
tion is a submatrix form of Choleski’s method for elements of the matrix, See McMinn
(Refct21ce 3) for a description of Choleski's method. Fox (Reference 4) and Turing (Reference
5) favur Choleski’s method as more accurate than other direct element methods,

The transfer matrix method as applied to nonhomogeneous equations is discussed in a later
section. See Pestel (Reference 6) for use of transfer matrices in vibration problems,

DIRECT SOLUTION OF SIMULTANEQUS EQUATION SYSTEMS BY SUBMATRICES

Consider the matrix equation
S$U - 6 {i3)

where § is a (p x p) square matrix of known constants with |8 # 0, Gis a {(p x g) matrix
of known constants, and Uis a (p x q) unknown matrix, f q = 1, Eq. (13) represents a system
of simultaneous equations. In fact for each column in 6 the corresponding column in U gives
a solution of a system of simultaneous equations. ¥ the inverse $™ is known then

U= §'@ (149)

However, if § is large the calculation of $-1 may have many of the accuracy problems
desicribed above as well as storage and time problems on the computer. I appears that in
many cafes it may be preferable to partition § into submatrices and selve for Y without
uging S-+,

Partition § into (M x M) submatrices $ij with the properties

8. squoare, IS“| #O0, i =1, 2, ..., M,

11
(15)
si,iijzo' for >N, N<M, i=1,2, .., M

That is, all submatrices in $ are zero outside of (2N+1) diagonals with N diagonals above
the main diagonal and N diagonals below the main diagonal. if $§ has no zero submatrices
then N = M-1. Partition U and G into a column of M submatrices 11; and 64, i=1, 2,...,
M, with the number of rows in Uj and 6 the same as in the correspunding Sjj. Note that the
§ii do not have to be the same size, although in many practical problems they will be taken
the same size. Now § can be expressed in the form

B, i =01 i i,it |

s =[s s S. S -8 " 16)
i, i-N i, i NELRE

The matrix § in Equation 16 can be expressed as the product of a Jower triangular matrix
B times an upper triangular matrix ¢ with B and ¢ partitioned in the same way as §, or
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(17)

c ci,i+N]T

“lultiply BC and equate to the corresponding submatrices in § to get recursion formulas
for the calulation of Bi i and ci i+
s ’

H
| —1
H
2
+

Nij
B. . .-8§. . . - B. . .. ¢c. .
Iy i=j byt =] Lok Pi-j—k,i~|j '
k=1 . (8)
Jo= Ny N~-1, ., W O, i< i, k< (i-j)
. N |
c... . =B.. (S . -
i, i+]j i ivit+j kzlai,i-k ci-k,i+j) 1
=1 2, y NS js M=), k< |
=1, 2, 3, M
If P is defined hy
Cu-=" {9

where P is partitioned in a column of M submatrices P the same as U, then from Equations
13 and 17
. -1 N .
BP =6 . P, = B, (6, kl; B iy P
(20)
k< i3 i =4,2,3 ..., M

Note that this recursion for Pi can be carried out simultaneously with the recursion {or
8 i,i-j and c i,i+j in Equation 18,

From Equations 17 and 19 the backsweep recursion for U; is

k SA{M-i), i=M, M-1,.. 1 ten

Me

Vi © B - CiivkYian
k=|
Thus for any number of columns in G the solution for the matrix U can be obtaincd by a
forward recursion calculating the submatrices 8 ii-j» €i,i+j» Pj and a backward recursicn
calculating the submatrices Uj of U, The determinant of S can be calculated directly from

the submatrices Bjj, as

|3|= 'BHC| = |B||,|Bzzl-“ |BMM||]1 tzz)
!

The inverse of 8§ can be obtained by the above procedure by taking 6 =I, whence P=g -1
and Y =8-1, Since each column of §-1 is calculated independently of the others, the accuracy
of 8-1 is the same as that for one load column, Although this method is one of the shortest
and most accurate for getting $-1 when 8 is large, it is evident that a system of simultaneous
equations with one column for G can be solved much quicker than § = can be calculated.
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The above procedure for the case of the submatrices as one by one, or elements, is

cred.ted to Choleski in References 3 and 14.

TRI-DIAGONAL MATRICES

A particular case of Equation 16 that arises in many structural problems and in finite
difference equations is that of N =1 giving S three diagonals in submatrices. For this case

Equations 16 to 21 simplify to

a|| = S” ! Bn c sii si,i-l.ci*l,l
c|,|+| B-|: iyitr ! b=h2, ' M
P, =B,6 ,P, = B, (6, ‘:sa,a-."i-." iz 2,3,...,M
UM= PMfui:zpi-_chi+Hh+|' iz M-I, M-2,. .., |

(23)

(24}

\25)

(26)

(27}

Once the B;il and G, matrices are obtained the inverse of § can be calculated directly

i,i+l
in submatrix form. For the symmetrical case with

Q” Qiz .......... Q“_M
T
- °|z °22"""""°2M
S = :
T T
| Qm Qm - Quam _
the main diagonal of the inverse is T
-1 - =1 PR ’
QMM=BMM' Qi] _a|| +ci,i+l°i+i,i+lc|.l+l
i = M-, M-2, ..., |
By columns above the main diagonal
. = i i = - he ca ey |
Q, =C i Ay, g 1 K2H T ML M 2

The rest of the inverse is.given by symmetry,

For some of the literature on tri-diagonal matrices see References 7 through 13.
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FINITE DIFFERENCE SOLUTION FOR BEAM DEFLECTIONS
(ONE-FOURTH ORDER EQUATION)

The beam deflection Equation 1 with definite difference form (Egquation 4) was solved for
the simple supported case by the procedure of Equations 15 to 21 using one by one submatrices.
Equation 16 has five diagonals with Si,i-2 =1, Si, 1= -4, S,ii = 6, Si.i+l = -4, Si,i+2 =1,
The term p was selected to give an exact deflection of unity at the center of the beam. Table
1 shows the results for both single precision (8 places) and double precision (16 places)
on the IBM 7090 computer for various values of M, Some computation times for double
precision were 10 seconds for M = 200, 15 seconds for M = 500, 12 minutes and 12 seconds
for M = 15,000. Table 1 also shows some single precision solutions for 100 elements using
the tri-diagonal procedure with various sizes of the submatrices.

The results in Table 1 appesr much better than might be expected on the basis of the
maximum errors discussed in connection with Equations 7 and 12, The Choleski method
of Equations 15 fo 21 appears to have very little error accumulation due to sequence calcu~
lations in this case. That is, the inversions of the submatrices in Equation 18 at each step
in the sequence appears to maintain the multiplying factors in Equations 20 and 21 near unity.
Algo the use of Pjand € j ) from the forward sweep calculations in the backsweep of Equa-

tions 21 reduces the accumulation effect, :
TABLE 1

BEAM DEFLECTIONS BY FINITE DIFFERENCES IN
FOURTH-ORDER DIFFERENTIAL EQUATION

Single Precision (8 places) Double Precision (16 places)
Number of Deflection at Number of Deflection at
elements center elements center

M M
exact 1.0000000 exact 1. 000000000000000
lhyl 1by1l
submat, submat.
50 0. 99867544
100 0.97705088 100 1. 0000799
200 0.73315608 200 1. 0000100
250 0.53907152
500 1.0000021
100 1000 1. 0000002
2by 2 1500 1.00G0000::
submat, 0.99986310 2000 1. 0000902
4 by 4
submat. 0. 98772007 3000 1. 0000002
5 by 5 4000 1. 0000006
submat, 0.98101705 5000 1. 0000015
106 by 10
submat. 0.97795213 10000 1.0000210
15000 1,0001084
15
2by 2
submat. 1.0002720 ,J
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As might be expected the double precision calculations show an optimum number of ele-
ments for the best accuracy, the representation approximations showing up for a smallea
numbher of elements and the round-off and method errors showing up for a larger number o:
elements. The decrease in accuracy for the larger number of elements probably arises
from the large value of N in Equation 7 and the least value of U_for the number of places ir
the calculations. ©

Table 1 shows an improvement in the results for the tri-diagonal calculations using sub-
matrices over the five diagonal element calculations. However, this improvement may no:
always occur, Some eleven place calculations show 2 by 3 and 4 by 4 submatrices to be worse
than the 1 by 1 elements but the 2 by 2 submatrices to be better than the 1 by 1 elements.

FINITE DIFFERENCE SOLUTION FOR BEAM DEFLECTION
WITH EQUATION ORDER REDUCED

Since Equations 7, 8, and 9 show the order of the differential equation to have a large
effect on the errors in the finite difference calculations, the fourth order beam equation was
split into two second-order equations and the finite difference results for one equation usex
as input for the second equation. From Equation 5, the second-order equations are tri-diagona
in elements. The results are shown in Table 2. Comparison of the results in Tables 1 and &
shows the 8-place double integration for 10,000 elements to be slightly better than the
8-place single integration for 100 elements (as Equations 7 and 8 predict).

TABLE 2

BEAM DEFLECTIONS BY FINITE DIFFERENCES
WITH EQUATION ORDER REDUCED

Single Precision (8 places) Double Precision (16 places)
Number of Deflection at Number of Deflection at
elements center elements center
M M
Two Second-Order Equations
100 1, 0000507
200 1.0000213 :
200 0.99999984 500 1. 0000032
1000 1,0000211
2000 1, 0000467
3000 0. 99995088
4000 0.99974568
5000 0,.99929824
7000 0.99752952
10000 0, 98744416 20000 0. 99999944
Four First-Order Equations
1000 1. 0000005
20000 0.99998515
100000 0.99997171
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Jhe fourth-order equation was algo split into four first-order equations. Direct transfer
‘olutions were made in this case (see discussion of transfer matrices in a later section), the
matrix procedure of Equation 13 not being necessary. Since all terms in the calculations
were positive, there was no subtraction error accumulations so that only round-offg in addi-
tion affected the accuracy. There is little order effect in the first order equations, The result
in Table 2 for 100,000 elements is much better than the possible round-off error accumula-

From Tables 1 and 2 it is evident that reducing the order of the differential equations has
a large effect on the accuracy of the calculations in finite differences. Also, the time of com-
putation is reduced for the lower order equations. The time for the first order case of
100,000 elements on the IBM 7090 computer was less than two minutes,

BACKSWEEP USING ORIGINAL EQUATIONS

In some cases, after the Uj are obtained for = M, M-1, ..., M-N+1, the backsweep
recursion in Equations 21 and 27 can be replaced by a backsweep using the original Equation
13. If the system is arranged so that I8,i-n1 #0, then

N

-1 . .

Ui = Siyn. 8 4N~ kE Sien, ik Yia)r T MN, 0 (1)
=y

This procedure avoids the storage of the Ci, i+j and P; submatrices in the computer and can
Save consgiderable time, However, it may not be possible to make the backsweep in Equation
31 due to error accumulation in the subtractions. From Equaticns 4 and 6 the ko factor in
Equation 12 may be quite large so that the error builds up rspidly. This effect does not
appear to be serious in the simple beam problems discussed above, but in a plate problem
using Equation 6 with 11 by 11 submatrices the stresses became meaningless after about ten
steps in the sweepback using Equation 31, No difficulty arose in using the Equation 21
sweepback for forty steps in the same problem,

There is a technical reason for not using Equation 31 in certain physical problems, If

in the structure, then the sequence in Equation 31 coming from an average region cannol pics
up the local effects. In a long plate with concentrated loads on the ends there is a local shear
lag problem near the ends with a uniform stress away from the ends. In g backsweep from
one end with Equation 31 there is no way to detect the shear lag at the other end,

Thus, it appears that regardless of the finite number of Places used in the calculatiope Airet
methods of solution based on forward or back substitution in the original system of eoratinag
must fail for certain types of physical problems under certain boundary and loading conditions.
In such a problem it would appear that an inversion method based on this soir ion method
inust always fail, since the inverse must give a solutipn for any load case.

This difficulty with local effects produced by certain loads in certain physical probiems
does not occur in the modified Choleski method, The backsweep in Equations 21 and 27 uses
& load term P; calculated on the forward sweep so that the effect of all loads is included at the
point, In Equation 31 the P effect is included only indirectly through its effect, if any, on
P a1 at the far end,

SINGLE SUBMATRIX INVERSION IN TRI-DIAGONAL SYSTEM
It 185;4] #0 in Equation 23, all submatrices are the same size, and §; ;_; is easy to

Obtain, then Schechter (Reference 8) gives a brocedure which avoids all the By; inversions in
Equation 25 except the last one. Multiply Equation 23 by the diagonal matyrix sﬁ—l to give
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~ — — _ - M —
Su=8, §- (I § 5:,i+;]|' Sii *Si,i-Sii>

(32
S 4" s_i:i—usi, ee 0 8 =87 _,6;
Equation 25 becomes
B, * S” » By o= §|| _c|—|,1 '
— (33
c|,1+|= i-i-'sl,i+t"-l' 2, v M
Define
By =H I H, , Q; =HP, (34
whence Equations 33 and 26 become, respectivsly,
Ho = I, H =8, , Hizﬂi-—l'—s-ii _Hi"z-s-i'l,i {35
Q, - El ) Q = I""i“l"é_i - Q- (36
The recursion formula for @ in Equation 36 can be written as a sum so that
M -1 -
Qy° i)_:_l )] H._ 6, (37
whence Equations 27 and 34 give
- 4 9 M- i ,
Uy = Py =Hy @y =Hy 2 00 W, 5 (38
1=
and only Hps has to be inverted. The backsweep by Equation 31 gives
Uy-, =8y~ SyylUy+ V., =8,- 8, TP
i = M-{, M-2, ..., 2 (39}

By taking 6= 6k =1 for I =k and @; = O for i #k and solving for U; as a square matrix
for each i, the inverse of § in Equation 32 can be obtained by rows from Equations 38 and 39 as
follows (see Equation 28 for notation for submatrices in the inverse)

! M-k - -
Qg "My N7 M S e 8 T
Om-im = Smm-r “SuvQum s Quoy kT T Sl
_ _ _ | (40)
Ok T S - QT ML, M2, 2,0 # K,
Y & - s
Qu—.,k - sk,k-l Sk Ui su,u+|°k+;,k

This method gives very simple solutions for certain classes of problems. For example, ir
Reference 13 the three-moment equation of a uniformbeam is solved by this procedure for any
number of supports. Also, in Reference 13 any element of the inverse of the matrix of coeffi-
cients can be written down from a simple formula. However, for more involved problems
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the method has serious error accumulations, The nurrerical values of the Mj matricee increase
in magnitude so that it may not be possible to calculate the inverse of Mpni. With eleven place
calculations on the beam problem of Table 1 above, this procedure on a single matrix
inversion (2 by 2 submatrices in Equation 35) failed after about M = 200 elements when the
terms in My reached the order of 1011 and 1012, The regular tri-diagonal procedure gav:
satisfactory results to M = 1200 elements with eleven place calculations. On a plate problenm
with 18 by 18 submatrices Hg could notbe inverted after eight steps. The reguiar tri~diagonal
was satisfactory with forty steps. The H; matrices apparently will grow in size if the $:;
matrices have elements much larger than those in $i11

RELATIVE MAGNITUDE OF MATRIX ELEMENTS

If some terms in & matrix are very large or very small compared to the other terms i:
may not be possgible to invert the matrix. In a structure such a siteation may occur if one

up to a relative stiffness ratio of 10 , off some at 107, and no good at 108, There was 1iiil
effect of the stiffness ratio on the other terms in the inverse in the range above 103 for tur
ratio, so that an effective stiffness can usually be used to keep within the accuracy range. If
a member is quite flexible, omit it,

TRANSFER MATRICES

Basically, transfer matrices can be used for the solution of a system of first order equa-
tions by finite differences, From the finite difference form

—da:—zg, Wi Tw;_, +glAx) ()
the matrix form of a two equation system can be written as
w; a, (i) 0, (1) a,, {i) w
v = a,, (i) a,, i) a,, (i) Vi- (42
! 0 0 I I
or
VU, = DU, .,

where the third column represents the non-homogeneous terms in the equat:on, It can br
deleted in homogeneous systems. For M elements with

K, =DD_ D, ,i=2,3,. .M (4.3
i I i1 2

it follows that
Ui =KiU, Upy=KuU, , i=2,3, ., w @4

1 i t

where Dy is the transfer matrix from Vi1 to U; and K, transfers from U, to U;. For
given boundary conditions Uy and UM can be calculated from Um = KpVUy and afl the values
of Uj determined from Equation 42 by starting at i = 2, Except for the solution for U; and
UM only simple matrix multiplications are involved in the transfer matrix procedure. it
also allows various boundary conditions to be used without recalculating Kpp. Any number of
load columns can be used and these load columns do not affect the calculations for the oths:
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columns. Since first order equations are involved, there is little order effect so that the
calculations will be quite accurate (see Table 2).

In many cases, in order to maintain accuracy and to simplify calculations, it would appear
desirable to convert the problem to first order equations and use transfer matrices. Ordinarily,
this conversion should be made on the physical problem before the system of equations are
set up. However, it may be possible to split the matrix equation system (Equation 13) into a
transfer matrix form. Consider the tri~diagonal Equation 32 with all submatrices the same
size: -

Uioy t85iU;+ 8 4, Uiy, =6 (45)

Define
e, = U. +A. U, (48)

where A; is to be selected to give as simple and as accurate transfer matrix as possible,
From Equations 45 and 46

Y, Ay I 0 Vit
. = | 9 R; G, ® iy 47
{ 0 0 | |

It is evident that if A;isselectedas A i = 5;j the transfer matrix is congiderably simplified.
Lowever, this makes Equation 47 equivalent to a backsweep in the original equations 31 and
makes the recursion in Equation 43 equivalent to the recursion on the H matrices in Equation
35, except the recursion is made from -the right end instead of the left end. Thus, accuracy
problems as discussed above for these procedures can arise with this value of A; in the
transfer matrix,

I Equation 45 represents a true second-order system then & = -I will ordinarily convert
the system to first order so that Equation 47 will have the accuracy of a first order sys-
tem. However, if Equation 45 represents a repartitioned higher order system, it is unlikely
an Aj can be found to maintain the tri-diagonal accuracy in the transfer form of Equation
47,

From Equations 26 and 27 it is apparent that the tri-diagonal solution can be expressed in
transfer matrix form on both the forward sweep and the backsweep. The forms are

P. -83is. ,_. B G, P._ [ I
|] i} [ i Ji,i=-1 it vi l: i-1 i i 1 49)
1 ) i ' o 1] Lt

=1 il ]
Py Um “BmmSm, M- Bmm Oy Ov- Fu-o[ | P (50}
| { 0 | o] | |

R

b
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Ul _ -ci,i+1 PI i+ \
| 0 ! | !
" - -y —-
U: c|,|+i Di l.:i i+ AIM A|| GII M
P, | = o 0 =l 1 o | (52)
...l 0 0 I_ | _ 0 0 I |
U, A!M An Gn UM
PI = 0 P 0 P 53
i 0 | |

Once DM-1, FM-10 A7 and Gy3 have been calculated, Equations 50 and 53 permit
y; and Uy to be calcu ated %or any selected values of @; and 8yy. Also, 8, and @y can be
determined for specified values of U; and Uy

CONCLUSIONS

It has heen demonstrated that, for a fixed number of decimal places in the calculations, the
differential order of the system, the sequencing of the computations, and the relative mag-
nitude of the coefficients are the primary sources of error in the solution of systems of
simultaneous equations. All these error sources can be avoided or recduced by reducing the
order of the system, by keeping multiplying factors small in the sequence of computations,
and by using realistic coefficients in the equations, The transfer matrix procedure for a
true first order system is very accurate and has practically no limit on the number of
equations (it lost four places for 100,000 equations in a heam deflection problem). The modified
Choleski method using submatrices has little error accumulation in the calculation sequence
but depends on the differential order of the system (it lost six places for 100 fourth-order
equations and lost six places for 10,000 second-order equations repeated to give the beam
deflections), Matrix inversion using this method is as accurate as the solution method for each
column independently.

Also, it has been shown that any direct method using forward or back substitution in the
original system of equations has not only the differential order problem but also un error
accumulation in the sequence of calculations so that it may fail much quicker on both the
solution and the inverse than the Choleski procedure. It was also found that efforts to reduce
the number of submatrix inversions can make the elements of the matrices large and lead
to difficuties in the sequence of calculations. Finally, it was shown that the tri-diagonal pro-
cedure can be written in a transfer matrix form which maintains accuracy but that splitting
the tri-diagonal form to force an apparent first order transfer matrix system may fail
unless the system actually becomes & true first order system.

1

923



AFFDL-TR-66-80

10,

11,

12,

13,

14,

REFERENCES

Von Neuman, John, and Goldstine, H. H., ¢ Numerical Inverting of Matrices of High Order,”’
Bulletin American Mathematical Society, Vol. 53, p. 1021, 1947,

Varga, Richard S,, Matrix Iterative Analysis, Prentice Hall, Inc., Englewood Cliffs,
N. J., 1962,

McMinn, S, J., Matrices for Structural Analysis, John Wiley and Sons, Inc,, New York,
1962,

Fox, L., Huskey, H. D., and Wilkinson, J. H., ““Notes on the Solution of Algebraic Linear
Simultaneous Equations,’”’ Quart. Journal of Mechanics and Applied Mathematics, Vol. 1,
p. 149-173, 1948,

Turing, A. M., ‘“‘Rounding~Off Errors in Matrix Processes,’? Quart. Journal of Mechanies
and Applied Mathematics, Vol 1, pp. 287-308, 1948,

Pestel, Eduard, and Leckie, F. A., Matrix Methods in Elastomechanics, McGraw-Hill Book
Co., New York, 1963,

Kosko, Eric, ‘“Matrix Inversion by Partitioning.” Aeronautical Quart., Vol. VIII, p.
157-184, May 1957,

Schechter, Samuel, ‘‘Quasi-Tri-Diagonal Matrices and Type-Insensitive Difference Equa~
tions,’’ Quart. of Appl. Maths., Vol. 18, p. 285-295, October 1960, '

Oliphant, Thomas A., ‘An Extrapolation Procedure for Solving Linear Systems,’* Quart.
of Appl. Maths,. Vol. 20, p, 257-265, October 1962.

Cornock, A, F,, “The Numerical Solution of Poisson’s and the Bi-Harmonic Equations
by Matrices,” Proc. of Cambridge Philosophical Society, Vol. 50, p. 524-535, 1954.

Karlqvist, Olle, ‘‘Numerical Solution of Elliptic Differential Equations,” Tellus 4,
p. 374-384, 1952,

Asplund, 8. O,, Inversion of Band Matrices, ASCE 2nd Conference on Electronic Computa-
tion, Pittsburgh, Pa., No. 1960-42, September 1960.

Gatewood, B, E,, and Norik Ohanian, ‘*Note on Solution of a Syatem of Three Moment
Equations,’” AIAA Journal, Vol. 1, p. 1965, January 1963; “*Tri-Diagonal Matrix Method
for Complex Structures,’® ASCE Structural Division Journal, Vol, 91, No. ST2, p. 27-41,
April 1965,

Bodewig, E., ‘*Matrix Caleulus,’”” North Holland Publishing Co., Amsterdam 1959,

924



