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FOREWORD

This report was prepared by the Santa Monica Division of
the Douglas Aircraft Compeny, Inc., under Contract No. AF 33(616)-
2170, for the Wright Air Yevelopment Center. The authors of this
report are Messrs. E. W, Graham, P, A. Lagerstrom, B. J. Beane,
R. M. Licher, and A. M. Rodriguez, The work was accomplished
under Task No. 70166, titled, "Supersonic Wing Drag Reduction”.
Captain D, T. Barish and Mr. Fred L. Daum, both of the WADC
Asronagutlical Research Laboratory, served as Task Scientlsts,

This is a brlef summary report almed at presenting physical
explanations of the complex mathematical theoretical results
contained in Part I of thls same report, which deals with the
reductlion of supersonic wing drag through the proper distribution
of wing camber and through the application of the "supersonic-
biplane" caoncept.
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ABSTRACT

This report is a summary of WADC TR 54-524 Part II whiech
describes a theoretical study into methods of reducin. the
supersonlc drag of wings of the type used in missile design,
The reductlion of drag due to 1lift through the use of twist and
camber in monoplanes was glven speclal emphasis., 3Biplanes and
other wing systems were also investigated for possible drag
reduction or other advantages. These studies showed that it
was not possible to develop methods for rapid deslign of minimum
drag wings within the very restrictive manhour limitations
applying to thls work. 3Sut other results applicable to the
aerodynamic deslign of supersonic vehicles were obtained and
these are:

At supersonic speeds twist and camber can be used to reduce
the drag due to 1lift of monoplanes., For certain planforms
carber alone is needed. The reduction in drag due to 1ift is
largest for low supersonic speeds, for low aspect ratios, and
i1s larger for delta or diamond plenforms then rectangular plan-
forms of the same aspect ratio.

Various methods for drag minimization were considered. The
general integral equation defining optimum camber and twist was
derlved but not solved. For purposes of calculation approximate
methods were used,

From the study of 1ift distributed throughout a prescribed
volume 1t was found that such distributuions show potential for
greater reductions in drag due to 1ift than do the best mono-
planes contained within the volume. This indicates the
possibility that multiplanes may have lower drag due to 1lift
than monoplanes. :

Biplanes with wings not in sach other's Mach cones show
a possible structural weight advantage over monoplanes.
PUSLICATION REVIEW

This report has been reviewed and 1s approved,

FOR THE COMMANDER:

Chlonel, USAF :
Chief, Aeronautical HResearch Laboeratory
Directorate of Research
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CHAPTER I

INTRODUCTION




INTRODUCTION

Drag is the dissipative force acting on an airplane. A large weight
of fuel is needed to provide the energy spent by the drag and large, heavy
powerplaents are needed to convert the fuel's energy into useful work. Lim-
itations on speed, range, and other performance characteristics are imposed
by drag. For these reasons, the development of methods for drag reduction
is of great importance in the advancement of aircraft performance. While
this has always been true, it is particularly so for present supersonic
airplane configuretions because the drag of these is too great to allow
economical flight over ranges of useful length. In an effort to improve
this situation, an exploration of several means for reducing drag duve to
1lift at supersonic speeds was undertaken. These studies are reported here.

Several quéstions srise in interpreting work in the field of drag re-
duction. These are:

1. What is8 the magnitude of the improvement resulting from drag

reduction? By what percentage can performance be increased
for each percent reduction of drag?

2. What are the magnitudes of the various components of the
drag? What elements of the drag are so large that improve-
ment in them may result in large total drag savings?

The remarks that follow are intended tc indicate the answers to these
guestions.

The relationship between the magnitude of reduction 1ﬁ an element of
the drag and the resulting performance change of an airplane still in the

design stage may be a complex one. In a simple case, where the change in



the drag is the only change, and where range is the only performance char-
acteristic considered, the following argument is often used. An airplane
with meean drag D when flying a distance R expends energy DR. This energy
is obtained from burning a quantity Wp of fuel with heat content H in a
propulsion system of overall efficiency'qo. It then follows that

DR = HTbWF. For an airplane with given i{ypes of fuel and powerplant
(vhich fix H and 7),) and for constent range, dWp/Mp=aD/D. A 10% drag
decrease therefore leads to a fuel weight saving (and an increase in pay-
load, Wpp) which is 10f of the fuel weight. If the drag change is also
assumed to allow a proportionsl reduction in powerplant weight, wPP' then
for constant initial gross weight dWpy Mp= -(dD/b)-[(WPP¢WF)/WPL]. To a
rough approximation the powerplant plus fuel weight is half the gross
welght and the payload is & sixth the gross weight so that dWpp MWpr= -3aD/D.
Thus, in this example, a 10% drag reduction corresponds to & 30% payload
increase. This is of great importance to the utility of the airplane.

In the more general situation the estimation of the effect of drag
reduction on performance is not so simple. The alteration in geometry nec-
essary to achieve the original change in drag may leed to other drag éftects,
favorsble or not. It may affect, favorably or otherwise, the various com-
ponente of the gross weight, the maximum 1ift, the stalling characteristics,
the handling qualities, the stability, and the control and maneuverability.
It may influence the choice of powerplant and fuel types and the engine
size and weight. Furthermore, these effects will vary with the mission
of the airplene. Thus, & change in an important ingredient of the d&sign
necessitates re-examination of all other ingredients and the cresation of

6 new recipe. Despite these complications the drag reduction often is



favorably reflected as a performance improvement. For example, the drag re-
duction could affect the design as follows. The lowered drag would make it
possible to use engines of smaller thrust and weight. This would lead to a
smaller, lighter, lower drag fuselage or nacelles. In turn, this would
allov a smaller wing and landing gear. Additional drag improvement would
arise, and the engine size again would be favorsbly affected. The process
would converge and a much improved airplane would result. Altkough only
the range problem: has been discussed, consideration of maximum speed, cell-
ing, etc., similarly would show the important influence of drag reduction.

At the present time drag reduction is crucially needed to allow super-
gonic flight of even low efficiency. Major drag reduction at supersonic
speeds is needed before efficient, long range supersonic flight can occur.

With regard to the second question posed - the drag elements so large
that improvement in them could result in large drag savinge - Fig. 1 is
j1luminating. At subsonic speeds it is possible to design wings with max-
{mum 1ift:drag ratios in excess of 40, and complete airplanes with (L/D)gax
of almost 20. Fig. 1 shows that at supersonic speeds the L/D for only the
wing, even before allowance is made for vave drag due to thickness, is
roughly half that for complete efficient aircraft at subsonic speeds. Al-
though at the lower supersonic Mach numbers highly swept leading edges may
be used to alleviate this situation, the point illustrated is that the
shaping of the wing to minimize the drag due to 1lift is of great importance.
It is this drag that is most responsible for the degraded performance of

the supersonic wing.
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A second erea in which the drag penalties now are large is illustrated by
Fig. 2, i.e., the wave drags essociated with the thickness distributions of
the fuselage and the lifting surfaces. The minimization of these drags
through better shaping or through the discovery and application of favorable
interference (not considered in this report) is also of great importance.

To achieve large improvements in the drag due to 1ift and the wave drag due
to thickness, it may be necessary to resert to unconventional configurations.
The subsequent chapters are a discussion of several topies relating
to means for the reduction of drag due to 1lift at supersénic speeds. Ex-
cept as related to the overall problem, the topics are independent of one
another, one chapter being devoted to each topic, and each chapter being

written as an independent entity.



CHAPTER II

DRAG DUE TO LIFT OF PLANAR WINGS

OF FIXED PLANFORM
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1. SUMMARY

For a few planforms the angle of attack distribution required for min-
imum drag is already known. Also known are scme general theorems regarding
minimum drag and some methods for obtaining the required shape. Here many
of these concepts and theorems are extended for a restricted class of load-
ings. A relation is found for the interference drag between any loading
within this class and the optimum loading within the class. The integral
equation for the optimum asmong all possible loadings within the class is
found.

Specific calculations are made for the sonic edge diamond planform and
for the rectanguler planform wing. The loading and camber distribution for
the former is calculated by a method of successive orthogonalizetion of
loadings up to a distribution composed of six orthogonal loadings. The op-
timum corresponding to twelve component loadings i1s found by solving a set
of linear equations arising from the minimization of D/L2 to give the in-
tensity of the component loadings. It is found that the major drag reduction
results from the a-distributions varying with x3 and xya in optimal combina-
tion, x and y being distances in the chordwise and spanwise directions,
respectively.

From a study of the properties of rectangular wings it is concluded
that the drag due to lift of a rectangular wing may be decreased by a spen-
wlse varlation in camber, in particular by & decrease in camber in the middle
section. Same simple types of spanwise variation are investigated and a

lower bound for the drag is calculated.



The calculated results indicate that substantial savings in drag at
a given lift can be achieved only for low reduced aspect ratios. With such
geometries wing-body interference becomes importent and must be accounted

for.



2. IRTRCDUCTION

The problem to be discussed in the present chapter is that of min-
imizing the drag due to 1lift for a wing of given planform in supersonic
flow.

The analysis will be based on the customary assumptions of linearized
theory. Hence, in particular, in studying the drag dues to lift cne maYy
assume that the wing has zerc thickneas. The problem to be solved is then
to find a distribution of iocal angle of attack for a wing of given 1ift
and planform such that the resulting drag is as small as possible.

In subsonic flow this problem is essentially solved. For supersonic
flow general methods have been developed in particular by R. T. Jones(l)
and by E. W. Graham(e). The methods of Graham have been developed further
in Ref. 3. The references cited contain seversl general theorems regard-
ing and methods for obtaining minimum drag. These methods have algo been
applied to specific planforms. Jones(h) has found that for wings of el-
liptic planform a constant pressure distribution gives minimum drag. EHe

(1)

also showed that in the limit of very low aspect ratio the minimum drag
of a wing 18 obteined when both the spanwise and chordwise 1ift distribu-
tion is elliptical. Calculations have also been carried out to find angle-
of -attack-distributions which give lower drag than, say, & constant dis-
tribution without actually giving the absoclute drag minimum. Examples of
such computations, based essentially on the method of Graham, are to be

found in Ref. 5 and 6.
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8. H. TsienW) found the minimum drag of & narrow delta wing for

(10) 4na Rott(®), in-

conical distributions of angle of attack. Sedney
dependently and by different methods, found the minimum drag of & rec-
tangular wing subject to the restriction that the angle of attack has
no spanwise variation.
The present chapter is concerned both with general theorems and cal-
culations for specific planforms. The work is mainly based on Ref. 3.
Space does not permit a repetition of the definitions, theorems and dis-
cussion given there. Only a very brief review of some parta of Ref. 3,
etc., is given in Section 3 where rome additional concepts and thearems
also are introduced. For further details the reader is referred to Ref. 3.
The results of specific calculstions are presented for two examples.
In Section 4 the wing of diamond planform with sonic edges is discussed.
This example illustrates the influence of taper alone. The wing of rec-
tengular planform is discussed in Section 5. In this example there is
no influence of taper, of course, and the effects are due solely to the
tips.
The protlem of minimum drag for the diamond planform is sclved in
the following sense:
A comparatively simple procedure for successively lowering
the drag at fixed 1ift is described. This procedure ia cerried
out analytically and numerically and an angle of atteck dis-
tribution is found for which the drag probebly differs from
the minimum drag by only a fraction of a percent.

The methods used mey be extended to other planforms, in particular to

that of a delta wing with sunic edges.
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The results for the rectangular ving are less complete than those
for the diamond planform case. However, some reasonable drag reductions
are obtained and it is believed that the drag obtained is not appreciably
above the minimum. Also a lower bound for the drag is derived. The
value obtained for this bound mey be appreciably below the actusl min-
imum. The method used is very simple and general, however, and poaaibly'

may be refined further.



3. GENERAL DISCUSSION

The notation, concepts and theorems of Ref. 3 will be used as a basis
for the subsequent discussion in the present chapter. Only the most es-
sential parts of Ref. 3 will be reviewed below. In addition some exten-
sions wiil be given.

The coordinates are chosen so that z=0 is the plane of the wing and
the free stream velocity of magnitude U is directed in the positive
x-direction. The Mach number will be taken to be va. a(x,y) which denctes
the local angle of attack distribution, will, because of the assumption of
zero thickness, have the same value at corresponding points on the lower
and upper surfaces of the wing. For convenience p(x,y) will denote the
difference in pressure betweeﬁ lower and upper surfaces of the wing, i.e.,
it is the loecal 1ift. By the formulas of linearized wing theory a given
a(x,y) determines p{x,y) and vice versa. An angle of attack distribution
and ite associated 1ift distribution will be referred to as a load dis-
tribution or & loading. Since @ and p determine each other, only one of
them need be indicated. Two loadings and Q, are said to be of the
same type if (y=ca,, c=constant. For integration of any quentity f£(x,y)

over the wing planform S the following sbbreviated notation will be used:

j;(z,g)d'xdy j{dﬁ = XF (3-1)

With this notation

LIFT = L = S P (3_23)
ORAG = [ = j pa (3-2b)
The ratio D

d = 1z (3-3)



£33

is the same for all distributions of the same type. The basic problem
is to find a distribution, or rather type of distribution, which minimizes
d. It will be convenient to introduce a notation for the inverse of d.
This inverse will be given the non-dimensional form

LZ _ C|_,2

l
! 7¢5a" b5 = 5,

‘ 2
where S=wing ares, q = é elJ If @ is constant, i.e, if the wing is
a flet plate, then D=oL (leading edge suction is neglected, see Ref. 3),

and the corresponding ¢ and ﬂ will be denoted by the subseript "f":
de=a/L, fp = dc /da
An optimal loading, that is a loading with minimum dreg, has a max-

imum f and a minipum 4. The drag reduction achieved by any loading may

be messured convenlently by coﬁparing it with the flat plate loading of

d
the same planform, that is,one may form Eﬁ; or its inverse 'ff . Another

natural reference value is the two-dimensional optimum. This optimum is

achieved by a flat plate loading and is
J2’ om (dC,7/ da)z Dim =4

If two loadings &, and Oy have drag D; and Do respectively the inner
product or interference drag between the loadings will be denoted by

(a),0,) or Dy, and defined by
D,= (a,,a,) = f(p,az +p2a',) = D, = (a,a,)
The drag, D, of the loading (@3#%) is then

D=D + D+ 0,

where D, =;g'—(a,,a,) AND D,= 3(a,,a,)

(3-4)

(3-6)

(3-7)

(3-8)
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Two loadings are said to be orthogonal if they have no interference drag,
that is Dyo=0.

Many of the concepts and theorems of Ref. 3 may be extended to a
restricted class of loadings. A collection, C, of loadings will be called
a restricted class if it does not include all possible loadings but still
18 closed in the following sense:

if the loadings a4 are in C and if M are constants

then E:‘iai is a loading in C whenever the series

converges.
Important examples of restricted classes of loadings are‘the»following.
For planforms that are symmetric abﬁut the spanwise y-axis, loadings that
are odd in x, i.e. a(a,y)= -x(-x,y) form & restricted class. If a) end
ap belong to this class the expression for the interference drag may be

simplified to (ef. Ref. 3, Eq. 30)

D2 = ZI“:PZ = ZJ.“aP.

Another example is the class of loadings on a conical planform such that
a is constant along conical rays. |

Many of the theorems of Ref. 3 are still valid for restricted classes
of loadings. So for example one may form & complete orthogonal set oy
within a given restrieted class C s0 that any other loeding & in C my be

expressed as
a = ZGLQL

(@, ,a;) =0 FOR L # j
(a;.ay) =2D; wHERE Dj = DRAG OF
g = (d2i)
i 2D
Sp,'_ = L; = uer oF a
£, = Li

(3-9)

(3-10a)

(3-10b)
(3-10c)

(3-104)
(3-10e)

(3-101)
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The optimal loading Qupt relative to the class C then has the properties

(Lopt and Dgpt are the lift and dreg of Ggpt respectively)

- f%ﬂf.jg: Le
Fopt = Lopt Dy T

I
aop‘t = i"“c:;."
’?OP'E = z IK

This corresponds to Theorem 3 of Ref. 3. Parts of Theorem 6 of Ref. 3
may alsoc be generalized. We first note that if & is in C then% %=

is in C. However, it is not true in general that & is in C. The op-
timum in C in forward flow may be decomposed into a sum of two orthogonal
loadings (aopt)de=1kH13 where ap is & constant. It is thereby assumed
that ap, and hence aB, is in C.

Consider now reversed flow past the angle-of-attack distribution
contained in C. It is then easily proved (cf. Theorem 6 and Eq. 28 and
29 of Ref. 3), that (aopt)rev=zA4aB. However, unless (Oioptls,, 15 the
absolute optimum among all loadings of the given planform, the pressure
distributions corresponding to (aopt)fwd and (aopt)rev must be different.
If theylare identical, i'e"(PQPt)fwd=(p°Pt)rev’ the sum of the a's cor-
responding to this pressure distribution in forward and reverse flow is
(ca+ap) + (p-B) = 2ap = constant. Hence the loading would be the
absolute optimum by Jones' criterion. To summarize:

If (aopt)fwd is the optimum in forward flow of & restricted class
C which contains the flat plete loadings then

(@opt )eyp= A+ A

(Aopt)pe, =2 - 25

*The notation is that of Ref. 3 where @ denotes the angle of attack dis-

tribution for a wing of fixed geometry in reverse flow and @ is the angle

of attack distribution for & wing in which the total 1lif% (and planform
geometry) is maintained fixed in reverse flow.

(3-11a)

(3-11ib)

(3-11c)

(3-12a)
{3-12p)
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where ap = constant and (@, ag) = 0
Furthermore
(popt)fwd = (pOPt)rev implies Qgpt = absolute optimum (3-12¢)

Finally ap must be the optimum among the loadings in C which are ortho-
gonal to the flat plate.

If in addition the planform is symmetrical about the y-axis and
a(-x,y) is in C whenever a(x,y) is in C, then

ag-x.y) = -ag(xy) (3-13)

This is proved in the same way as Theorem Bc of Ref. 3.

Finally a relation and an associated integral equation will be
derived which were not stated explicitly in Ref. 3. Consider a restricted
¢lass C with optimum Copt Let @ be & loading in C with 1lift L. Then

it may be shown that
2 Dopt
——ePt |, (3-14)

(aopt ’a) = L-opt
This is proved as follows. Make a the first term in a complete orthogonal
set (3) and express Qgpt as above (Eq. 3-1la). Then form the inner
product (aopt' a). Since by construction (o, aj)=0 for i Z 2 it follows

from Eq. 3-1la
(aopt,a) — Dopt —L-‘—(a,a) = Dopt L 55

which proves Eq. 3-1k.

From Eq. 3-12 one may derive an integral equation for the optimal
loading. On the wing consider a rectangular element lying between x and
x+A% and between y and y+Ay, with an angle of attack, a, such that a-Ox-Ay=l,

and let the remainder of the wing be at zero angle of attack.
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The limiting singular deflection as Ax and &y tend to zero will be re-
ferred to &s a unit deflection at the point P=(x,y). The angle of at-
tack distribution may then also be written with the aid of 2 Dirac delta
function a(Q)=b(P-§)=5(& -x, n -y} where Q=( £, n ) is an arbitrary point

on the wing. We define a Green's function G by

G(P;Q)= G(xy; £.1)

local 1ift at Q due to unit
deflection at P

G- (P,Q)=Gr(%,4; €.1)

local 1lift at Q@ due to unit de-
flection at P in reverse flow

let P and Q be two fixed points and R be & variable point. Consider
& unit deflection at P in forvward flow and a unit deflection at @ in re-
verse flow. The reciprocity theorem (see Ref. 3 Eq. 5 and references
given there) yields

| 8P R)G(QRMR = | 6(Q-R)G(AR)IR
or
Gr(Q:P) = G(PQ)

Note that G(P;Q) is zero except if Q is in the downstream Mach cone
of P. G is singular along the edges of this Mach cone (see Ref. 9, p.18 fr).
If there is no edge interference G depends on the coordinate difference
Q-P=( & -x, n -y) only.

From the reciprocity theorem and Eq. 3-14 it also follows that if

a(Q)=5(P-Q) then

fa(o)popt(owo = Popi(P) = faopt(Q)Gr(i?O)dQ=Jaopt(Q)G(Q; PdQ

If now Eq. 3-14 is applied to a=5(P-Q) and use is made of Eq. 3-17 one

obtalns

| aopt@ [6P@ +6(@:P)] da = ef:fﬂ 6(RQ)dQ

(3-15a)

(3-15b)

(3-16)

(3-17)

(3-18)
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Since G(P;Q) may be computed by stendard methods of wing theory Eq. 3-15

is an integral equation for Aopt * It may also be derived as follows:

One has
Dopt = j J dopt(p)dopt(Q)G(P-,O)d PdQ (3-198)
Lopt =”. aopt(P)G(P,Q) dPdQ (3-19b)
Furthermore
Dopt + A Lopt = miniMuM (3-20)

where A is a Lagrangian multiplier. By an elementary method of the
calculus of variation one may derive Eq. 3-17 from Eq. 3-18. It is
thereby easily seen that A = - g%gg% (ef. the derivation of Eq. 5-6).
Eg. 3-18 is actually the integral equation for the optimum among
all possible loadings. Corresponding equations for restricted classes
of loadings are easily derived the same way, either from Eq. 3-14 or by

the variational method. Examples will be given in discussion of rec-

tangular wings (Section 5).
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i, OPTIMAL LOADING FOR THE DIJAMOND PLANFORM

To illustrate the drag reduction methods outlined in the Previous
section, a diamond shaped planform with sonic leading and trailing edges
will now be discussed. This planform shape was chosen because of sim-
plicity in calculating the local lift distribution, total lift and drag
of and the interference drags between certain loadings whose angle of
attack distributions are polynomials with simple properties.

The coordinate system chosen for the diamond plaanrm is shown in
Fig.4%-1. The local 1ift distribution is computed from the angle of at-

tack distribution by means of the relation
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a(€,n) d€dn
p(x.y) =34 3/3"” (x-£)- (y-n) (4-1)
¢

L

from linearized flow theory.
By a rotation of the coordinates through 90%.Mach coordinates are

introduced

x=$(u+v) , 3=1L?(u-V)
! ! (4-2)
g =F(p+0) . n=&(u0)

Eq. U4-1 then reduces to the simpler form

u rv
_29(2 , 2 J J a(i, V) dudo
pluyv) =7 (au av) J ‘\l(“'f-‘)(v-t))

The calculations are further simplified by letting

(4-3)

U= -cose@, p=-cosd, V=-cosd, U= -cos ® (-4 )

Eq. 4-3 then becomes

e &
_ _24 _d 2 J [ a (ccos d-cos8)aindsinbdod d
PO.8)= rrain e.smé(s”"e o6 7 smea-e-) 2+ Vicos ¢-cosellcos -cos &) (4-5)

According to Ref. 3 Eq. 28, the optimal angle of attack is a sum
of two orthogonel loadings

=a,+a

Cﬁapt =

where @, 18 the flat plate loading, oy=1, and op is anti-symmetrical in

B

x and symmetrical in y. In the (u, v) coordinates this symmetry is ex-

pressed as

aglu,v) =dglv,u) = -ag-v.~u) (4-6)
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Now, any finite continuocus angle-of-attack distribution with the
symmetry properties of Eq. 4-6 may be approximated uniformly by a finite

sum of loadings of the form

T = Bm(U) Bagv) + B (u) Bm(v) (4-7)

where the P's are legendre polynomials. The corresponding pressure dis-

tribution can then be readily calculated with the aid of the relation

e
Ph(cos®)sin®d® _ 2{Z
S {cosd-cose = Tzn+y N (2'1“)% (4-3)
Writing Eq. 4-7 in the O, 9 coordinates and denoting %? by K one obtains
Amn(,6) = - [Em(cose)%m,(cos 8) + R, (cose) F?‘,m(cosé)] (4-9)
=\ — -4K -
Pmn(©:8) = SN6 G (4min(an+a) [\If snd + Do ‘9] (4-10)

WHERE 5
YV = (4m+:)cos(4m+l)'?sw(4n+3)_z"

<,
+ (4n+3)cos(4n+3)% SIN (amti)z

@ = (4n+3) siN-(Amﬂ)'?' cos (4n+3)%

+ (am+i) sm(4n+.=3)_g' cos(am+) %’

The total Lift of @y , is obtained by integrating Eq. 4-10 over the

planform. Thus

_ -64K ! N !
L(am,,_,) T (am+1)(art3) (an+ifan+s) (4m-1)(4m+3) _ (%-11)
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The interference drag between any two loadings am,n and ap’q is given by

Drn,n oXe| = (dm.n: ap.q_) = (ap,q, am,n) = Dp,q,,- m,n

= ’é’f (a'm,n Ppg +apg P mn) dS
S

= dSs (FrROM PLAN FORM SYMMETRY
5 “mn Ppg

AND Eg 3-6 OR 2-9)
T

= -zg J R micose) Bny(cos 8)P pgle.8) sine siné ded &

o

8K
(ap+i)(ag+3) {(A'P )[ 2m 2P 2n+! 2q+i

+ Azn+:,2p Bem,zgu]

+(4q—+3) l}‘zn-i-!,ZPBz m,zq.;.['*Aem,eq_-{- { BZHH,ZF;I}

where the A's and B's are given by

Apo = J Re(cos e)cos(e ou)E de
o

B(a,c =J F%(cose) sin(ea+) g sine de
o

Although the A's and B's can be computed by direct integration by
expanding Pp(cos @) in terms of cos 90, they can be computed more simply

by means of the recurrence formula for Legendre polynomials

focose) —_-f_g;’ cos e F’P_I(cose) - gé—, F?e_z (cos ©)

(4-12)

(4-13)

(4-14)

(4-15)
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Noting that

) e e
cos (ea-u)'g cose = “é‘[c:os(eo‘+a)z + cos(za-r)‘é‘]
e

siN(20+i)§ sine = ':?[COS(&G’-I)% — cos(20+3) 2]

the recurrence formula for the A's is given by

AQ,a = ﬂ’e'( p-1, O+ + A?-l o—) - _ﬁ’l A(: 2,0 (4-16)
The B's can then be computed from the A's
Beo = £ (Ae,o.. - Ae,cm) (4-17)
The initiel values of the A's for p=0 and p=1 are
Aos = -1 28, (4-18)
A = 1) 2 (eo+)
1,0 (20+3)(20-1) (4-19)

From these, any Ap g cen be computed by successive use of the recurrence
formula Eq. 4-16. The values of the A's and B's are tabulated in Tables 1
end 2 of the appendix.

The losding with minimum drag corresponds to the optimum linear
combination of a-distributions am,n of the complete set. As an approxi-
mation the minimal drag corresponding to a restricted set of am,n s
wes found. The drag when the restricted set is composed of 1,2,3,....6,12
distributions has been found and it will be seen that as the restricted

set is enlarged the drag converges on & minimum. The following rectangular

array of Oy p Was chosen:

4 =
90,0 9,1 %o,2 Q0,3
0] (¢ a 04
< 1,0 1,1 1,2 1,3 . (4-20)
%0 %1 Ga 2 *2,3
70 93,1 93,2 033
o




=D were ¢ uted for this
) m,n;p,q e

array and are given in Table 3 of the appendix. The Ab
>

interference drags (o o
The in o€ (mJn, P:q

and B needed
o p,C

for the computation of the D according to EqQ. 4-12 were taken from

m,n;p,q

Tables 1 and 2. In Table 4 are given the values of L(am n) which were
2

calculated according to Eg. %-11. A1l calculations were made with the

aid of a desk calculator.

- The following six loadings were considered first:
Pl = %,0 o=%0 @3 *%,1
By - %, 95 =% Bs = %1

These loadings, Ga , are not orthogonal. By the method of successive
orthogonalization described in Ref. 2, a set of orthogonal loadings,
ao,al,...a6, may be constructed through linear combinations of the @L’&
and the flat plate loading. These loadings, by calculation with a desk

calecuwlator, were found to be

ab =1

% ‘@1

o, =@2 + 0.066667@1

oy =@3 - o.h15839§2 - 0.226669Ql (b-21)
o, =@l+ - 0.03969’;'@3 + o.15696h-§2 + 0.039856ql

a =§5 - o.31+6250Qh + o.1l+7251g3 - 0.27733792 - o.ohr(ua@l

% =Q¢ - 0-1652364; + 0.23950%8, - 0.03676785 + 01393958, + 0.0240508;

Since the ai's are orthogonal Eq. 3 -10 and Eq. 3.-11 may be used to find
the 1ift, drag, and optimum angle of attack distribution. This optimum,

in terms of the ai's, was found to be

Gt = 1 0.15217ka; - 0.5517T60, + 0.50361%,

- 0.535686), + 0.141531.0:5 - 0.5558880, (4-22)
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The quantities fg/ff were found to be

711— - 0.020239, %: 0.040636, 7%-: 0.096063
de Is _ do _
44 _ 0.0155kk, 7}7-- 0.000996, ]f—- 0.00872k4

72 ,
L L
where '?‘F =Dg_5 = “Cls = ﬁd% = 3.3953

for tne flat plate loading. Using the equation

I.
AD _ 2 _ fractional drag reduction
Do > ;.  from flat plate loading

| + I'F
the successive drag reductions obtained by terminating the seriles Eq. 4-20
successively at Qs Gy ey Qg over the flat plate drag are given in the
table below.
% Drag Reduction From
Copt Flat Plate Loading
Terminated at (100)AD/D
oy 1.939
a 13.56
3 3.56%
Q) .75
Ay 14,787
a 15.416

An indication of the degree of epproximation given by Eg. L-22 to
the ectual minimum drag loading was obtained by computing the optimum
linear combination of all twelve loadings in the array Eq. 4-20 combined
with the flat plate Qo=1 and comparing the drag reduction to the drag
reduction obtained from the approximation Eq. 422, The increasing com-

plication involved in the calculaetion of additional orthogonal lcadings

(L-23)



on a desk calculator was found to be too time consuming. The method of
successive orthogonalization was not used to calculate the optimum angle
of attack including the remaining six loadings. Instead the coefficient
Am " of the am n in the optimum linear combination of the a o ves

» J) m,

computed by solving a set of twelve linear equations in the Am a arising
»

D
from minimizing (aopt’ op‘t)/L (aopt = =5 Assuming
L
Z § Am,n %y, n (k-24)
m=0

the Am n must satisfy the twelve linear equations

)
O log D/1°
Ap =0, p=0, 1, 2, 3, ¢=0, 1,2
q

H

or
3D 2D 9L
OA T 3h (4-25)
P,q P.q
Substituting

D= Z Z Z Z A0 #p,q Pn,n;p,q (4-26)
n=o p=0 q=0
3 2
b= Z Z Ap,q Mo o) (4-27)
m=Q n=_0

JD 3
E Artlrii— T 2 A D
Ap;q 2;;0 h=0 m,n m,n;p,q

35 i = L, )

P,q
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into Eg. 4-25 gives

Z 2 Am:n Dm,n:p,q =i L(ap,q) (4-23)

It is easily seen that the Am n 8re proportional to D/L whence if we put
?
D=L we are only fixing the scale factor of aopt

Since D Eq. 4-28 can be written

=D
n,n;p,q P,q;m,n

3 2
A D = L{a L2
Zp=0 Zq=0 P, mn;p,q (m,n) ( 2
by interchanging the subscripts m,n with p,q. Taking the Dm n:p,q from
Lt N |
Table 3 and the L(cxm n) from Taeble 4, the A, , vere calculated by solving
» 2

Eq. 4-29 on an sutomatic computing mechine. The A, were found to be
x

Ay, o= =0-071236 A o= -0-9696h5 Ay o= -0.187903 Ay o= +0.323159

Ay 1= +0. 445643 A

R = -0.664893 A2,1= -0.603565 A, .= -0.09411% (4-30,

3,1

= +0.392242 Al,2= -0.171329 A2,2= -0.535262 A3,2= -0.458539

1,1

Bo,2

The 1lift, drag, and 4;4?{ were, by Eq. L4-27

L =D = 4.729007K
{ = 0.221672 (4-31)
e

The drag reduction obtained by adding aopt for the twelve loadings to the

flat plate loading, @o=1, is given by

= Ffl— = 0.18145 (4-32)

+ff

w18

or 18.145 percent drag reduction
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Among the twelve loadings considered the ones that give the highest

drag reduction are, in order, ao 17 ao 02 al o where
) 2 )
5(3 ?). 2 R R )-
Ay ST AU Y ‘?(u+v)——€E5 X +3xy/)-3%
= 5 5 3 B
do,z *gEsa(uw)-?o(u +v) + 15(u+v):l

=¥£—\E-.|:63(x4+ i0 thjz + 554) - 140("‘3‘* 352) * "30]

X0 =Bgv (L“V)"é'(uw) - T‘é"[% x(x‘-lf)- x]

On the other hand @y o= U+ V= 2x/2 contributes very little to the
drag reduction. From this one is led to the conclusion that the msjor
drag reduction among the first six loadings is actually due Lo using
the a-distributions which vary with x3 and with xy2 in an optimal combi-
nation. The further drag reduction effected by the remsining loadings
is probably primarily due to the loading x3y2 or xyu.

Fig. 4-2 and 4-3 are graphs which show the angle of attack
distribution for the dlamond planform with optimal loading, and the
pressure distribution corresponding to this a-distribution. The latter
was calculated on an automatic computing machine. From the requirements
for an optimum planform, Eqs. 3-12 and 3-13, it can be shown that the op-‘
timum pressure distribution will be symmetric about the y axis when the
planform is symmetric about this axis. The lack of symmetry evidenced in
Fig. 4-3 is caused by approximating the & distribution by only & finite
number of Legendre polynomials. It should be pointed out that the flat

plate pressure distribution is far from symmetric so that the distribution

of Fig. 4-3 qualitatively does approach the desired optimum quite closely
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over a large portion of the wing. One of the conditions for minimum
drag neglected in the approximetion for a is that the leading edge
meet the free stream at zero angle of attack so that the pressure will
be finite. The a distribution of Fig. 4-2 has leading edge values
greater than zero near the center and less than zero near the tips;

consequently the pressure becomes infinite at the lesding edge.
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5. SOME LOW-DRAG GEOGMETRIES FOR THE RECTANGULAR WING

In this section the optimal loading for the rectangular planform will
be determined for several restricted clasees of loadings. The potation il-

lustrated by Pig. 5.1 will be used.

u{ m=v2"
|‘ - N
X=-1 Seav=25 5 TRACE OF TIP
T \ P MACH CONE
N\ /
CHORD=2 A~ >
\\ > 4
$ | \ /
X=+1
=-b N // =b
¢ AN / ¢
¢ _ (SPAN)a_b
by A= AREA T

Fig. 5.1 DNotation for Rectangular Wing

In general, the results will be valid only for R 2 1, although in some
special cases the applicability of the formulas will be restricted to even
higher aspect ratios.

To begin with, a class of loadings C; and its subclass C, will be dis-
cussed where Cy: Loadings with @ independent of y (5-1a)

Cp: Loadings in C; with a odd in x (5-1b)

According to Eq. 3-12 and 3-13 the optimal loading in C has an angle of at-
tack distribution which is the sum of a constant and the optimal angle of
attack in C5. This optimum has been found by Rott(e) and independently by
R. Sedney(lo). Sedney's derivation is based on the integral equation, Eq.

3-18, or rather on its analogue for the restricted class Cp. This deriva-

tion will now be described. Consider a strip extending across the wing



parallel to the y-axis located between x =€ and x = § + Ag . Let the angle
of attack be a on this strip, zeroc elsewhere and let o'Ag’ = 1. The limiting
cass &as A§-—- 0 will be referred to as a unit strip at x. In this case the

angle of attack distribution is &(x - g ). We then define
,B(g;x) = chordwise lift at x due to a unit strip at § (5-2)

This function is the equivalent, for C,, of the Green's function defined for
the general case by Eq. 3-15a. From the formulas for the rectangular wing

it follows immediately that for M =2 1

41g [zb 5(x*§) *:'] 1IF X 2¢
2(g;x) =,2(x-g) = (5-3)
o F X< g
For an arbitrary loading in Cp, & = f(x), the total 1ift and drag are

+ ¥
then r-’ !

L) = j £(x-g) £(8) dgdx iy
D(f) =‘J —f(x'f)-f(x) f(g)dfdx (5-kb)

In particular the total 1ift due to a unit strip at §’ is

L[sCeg) - _f L(x-g)dx =4g[26-(-¢)] (5-5)

The optimum loading within the restricted class Cp must satisfy the

relation

D(f) + AL(.F) = MINIMUM (5-6)

vhere A is a Lagrangian multiplier whose value will be determined below.
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This equation implies

olfreg) + atlrregql - [Dlp)+Ac )]

7 =0 (5-7)
o €
for an arbitrary function g(x). Eq. 5-7 is equivalent to
+/
{ s 20c-g]ts)as
(5-8)

+ A {i(g—x)dg =0

-/
By multiplying this equation by f(x) and integrating over x one finds that

A= 2 (5-9)

The integral equation, Eq. 5-8, is the equivalent for Co of the general
equation, Eq. 3-16. This relation can be derived from Eq. 3-14 1f Qppt in
that equation is taken to be the optimal loading in C, and @ the special

loading 8(x - ¢ ){cf. a similar derivation below for the class C ).
g 5

Inserting the value of ﬂ(z~5) into Eq. 5-8, one obtains

*+1
I)C(g)dg + 4bL(x) + [—/ X +2b] =0 (5-10)
As mentioned earlier the optimal loading a = f£(x) may be written
d.OPT JNC' =-F(x) = do [,+g'(X)] (5-11)

when @, is a constant and g(x) is an odd function. The integral term in

Eq. 5-11 is then simply -2, and the equation reduces to the algebraic

relation
[(25-/)(k+2a(0)] + [46o<,,3_(x) + A x] =0

Since the first term is & constant and since the equation must be true for

any value of x it follows that



_ mAX . x . x
A=-2d, , g = 4ba, 2b 2R (5-12)
Hence the loadings of the type
X
a, = O‘o(/"ﬁ) ’ A, =CONSTANT (5-13)
are optimal within the class Cy of loadings which are independent of Y.
This result is valid for rectangular wings of AR = 1.
Thus within the class Co of a's which are odd in x and independent of
¥y the parabolic arc shape (or any multiple thereof)
d, = x (5-1%)
is the optimum. Let Ly and D} be the 1lift and drag of @, as defined by Eq.
5-13 and L, and Dy the lift and drag of Qo. It then follows from Eq. 3-lls
that
DIL2 Ao A D,
= R, SINCE O =— 55— = =L gy Fgq.45-9
L0, " zm 9% o=~ 72 Z, g5
Lz /
D T IR 5-158)
From Eq. 5-3 and 5-4, or from Eq. 5-5, it follows that
8g
Ly = 3 (5-150)
The optima.lf in Co 18
Lz /
= 2 = -15¢
‘Eeon' 023_3 32 (5-15¢)
Now for the loading on a rectangular flat plate
de. ( /
A= Ta 2R (5-16)
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so that from Eq. 3-llc and 5-15a the optimal £ in Cy is then

A B, Lo, ) i
Loy = =40 +1 = 4(/—2794-,2—%2 (5-17)

for AR > 1.

For rectangular wings with AR > 2 it is useful to consider certaln re-
gions according to their spanwise location: part of the outer or tip re-
gions, b - 2 = |y| < b, is affected by the side edges; no part of the inner
or middle region, |y|= b - 2 (which exists only when AR > 2), is affected
by the side edges. Since the camber is symnetric, & is odd in x. Hence,
the integral of & over the middle section is zero. It then follows from
Theorem I of Ref. 9 that the 1ift contributed by the camber in the middle
section ig zero. On the other hand, the drag there is not zero. It is
plausible, then, that the drag due to 1ift may be decreased by a spanvise
variation in camber - in particular by a decrease in camber in the middle
section. We shall first study a simplified case of such variation. For
convenience we define two functions of y:

0 in the middle sectlion

T(y) = (5-18a)
1 in the tip sectlion
1 in the middle section
M(y) = (5-18v)
0 in the tip section
and we consider the two restricted classes of loadings
C3: Loadings of the form ol =3(7()M (y) +.f.'(x)T(g) (5-19a)
Cy: Loadings in C3 with & odd 1n X ( 5-19b)

Thus @ = £{x) in the tip regions and @ = g(x) in the middle section.
The optimum in Cy will first be found for AR = 3. Some auxiliary formu-

las can now be introduced. Consider a unit strip located at x = 3" » &and
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extending only between y = -(b-2) and y = (b-2), that is, the middle section
(see Fig. 5.2). The angle of attack distribution is then a(x,y) = M{y)

5(x -g’l). The pressure downstream of the strip is zero except in the Mach
cones from E and F. The total 1lift on & strip extending from A} to Ao at

& chordwise station § 5 > §, is zero (cf Ref. 9, Theorem I).

; @Mﬁ—é’—

Fig. 5.2 Unit Strip in Middle Section, AR = j

Let the 1ift between A) and By at x =§o due to the corner effect at E be lg ¢ .
It then follows from symmetry arguments that the 1ift carried between B} and
C1 is -kgo’. (Note that if the Mach cones from E and F overlap at x = £p
this statement is true only for the effect of E alone.) From the fact that

the pressure distribution may be obtained as an x-derivative of a conical
pressure distribution (cf. the distridbution of Eq. 5-42 below), it follows

that & 1is independent of g o a5 long as S o 351. Actually

¢ = 7}— (5-20)

although for the following only the fact that & 1is a constant will matter.

Consider now the two elementary loadings from the class Cy

of(x,}) = 7(y) [S(x*g,) - 5(x+g)] (5-21a)
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3y = My [50(‘8’2) - 5(x+8)] (5-21b)

These loadings are shown in the figure below:

*) v /-(d\**)

Becauge of symmetry, the interference drag (%, ax*) is twice that obtained
by considering only half the wing. If ve define p;, pp, and p3 &s the pres-

sure distributions due to T(y) 8(x + §1), M(y) &(x + 32) and M(y) &(x - ga),

respectively, then

8 -g+73 D §+F
(o\*, a\**) = 2Lm —J + d*’:lxdy - fj : c&**dxdg
dx=o | A ~S27e ¢ gz_d?x
G g.-"'i.aJE G r+é?£
_g S‘/ﬁ? o(*dxdy -+ S fg a dXd#
) &z
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for Sl > 52 a8 shown in the figure. Because of the constancy of c s each
of these integrals is equal to hqd and the interference drag thus is zero;

a similar argument holds for g s> §1 50 that
» A T
a ,d =0 (5-22)
for R> 3. Consider further two loadings of €y of the form

o' = T(y) f(x) (5-23a)
A= My g(z) (5-23v)

where f and g are odd functions. ©Since f and g may be approximated by series
of the form 2 ( )
0-1;[5(1”3'1, - 2lx+g)| , o=g =

it follows from Eg. 5-22, by superposition, that

(dla d") =0 (5-24)
for R = 3.

Now any loading in C) (Eq. 5-19b) may be written in the form &' + "
where o' and " are defined as in Eq. 5-23. The loading @" has zero lift
whereas its drag is greater than zero except for g(x) = 0. This fact together
with the orthogonelity relation (Eq. 5-24) implies that for any fixed choice
of f(x) the optimsl choice of g(x) is zero. Thus, for R = 3’[7[ the optimal

loading in C3 and C), are the same as the optimal loadings in the sub-classes

/{Note that for /R = 3 the aspect ratio of the middle section is = 1. It is
known that a rectangulsr wing at zero angle of attack with thickness distri-
bution which is even in x and independent of y has a drag coefficient which
1s independent of aspect ratio for R 2 1. This fact is closely relatdd to
Eq. 5-24 and may be proved by the same symmetry principles. A simple case
of this drag formule was found in Ref. 11 and was explained in terms of
conical symmetry by R. T. Jones.
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05 and Cg, respectively, where

C5: Loadings of the form & = £{x) T(y) (5-25a)

C6: Loadings in C5 with @ odd in x (5-25b)

The optimum in Cg may be found in the same manner as the optimum in C;.
To illustrate the fact that several methods are available, the integral equa-
tion corresponding to Eq. 5-11 will be derived by a variant of the method
previously used. We start with the general equation where we let Qopt =
£(x) T(y) be the optimum in Cg and @ = G* as defined by Eq. 5-2la. Since

a* = 5(x -€) - 5(x + 3 ) - o* and L{a**) = 0 it follows from Eq.5-5 that

L(d™) = g% (5-26)
If p* is the pressure distribution corresponding to a* we define
P(x) =/;>*(x,g)d‘c’{ ForR b-2< I‘jl <p (5-27a)
and
P(x) =000 panr or Px) = LA =PEX (5-2m)
Then

fdxopr¢>*d5=f7ﬁ(x)P(x)dx =2f_}?(x} P, (x)d x (5-28)

To evaluate P(x), note that the pressure in the tip regions caused by the
outer tip of the loading T(y) &(x -g’) is the same as that caused by &(x -g).
Thus, for x >g we may use the result for ,e(g;x) gilven in Eq. 5.3, adding
to it the contribution from the inner edges, ]yl =b = 2 (cf. the discus-

sion preceeding Eq. 5-20). Thus, for the loading T(y) &(x -? )

Ls) = #g [teg)-r-20] | g
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With the corresponding result for_£ (-g’;x), P(x) may be determined, and

from Eq. 5-27b,

Po(x)=89[5(x—g)—8(x+§)j y o< KL/ (5-29)
If one novw lets Cgpy in Eq. 5-14 be the optimum in Cg and @ the a* de-
fined by Eq. 5-2la one cobteinsg with the aid of Eq. 3-9, 5-26, 5-28, and
5-2G:
4£(g) = Deer (5-30)
§) =g

oPT

Thus, the integral equation, Eq. 3-14, for f(x) immediately reduces to the
trivial equation, Eq. 5-30. This 1s due to the fact that the kernal Po(x)
consists of delta functions only. According to Eq. 5-30, ag or any multi-

ple thereof is an optimum in Cg where

K = XT(Y) (5-31)
If Lg and Dg are the 1lift and drag of ag then by Eg. 5-30

Dg

Ls =4 (5"32&')

Furthermore, ag = xT(y) has the same 1ift as Gp = x so that according to
Eq. 5-15b

8
Le= SH (5 -320)

The optimum,z.in the class Cg is then
_t
Lo opr= 6R (5-33)
Combining ag with a flat plate loading we obtain that the optimum Cg is of

the form

XT{Y) _ Ds
d5 = do |:/+_4_H':| , O =CONST.= —Z;— (5-34)



oo

The optimum £ in Cg is then
= = 4 —
Lsoor = Af + Loopy = 4 (1-5% + 255 (5-35)

This formula is valid for the class Cg for Ra 3. The class 05, in which
the spanwise variastion of camber is stepwise, contains the class C;, where
camber is constant spanwise. A comparison of Eg. 5-33 and Eq. 5-17 shows
the improvement obtained by allowing the camber to vary.

For R« 3 the tip sections overlap and the middle section has R e 1
80 that the drag coefficient of xM(y) is no longer two-dimensional. These
facts invalidate the derivation of Eg. 5-33. A related formula valid for

2= AR <« 3 will now be discussed. Consider the class of distributions

C,: a= Az TCyp) + Bz My) (5-36)

where A and B are arbitrary constants.

To find the optimum for this class, consider the two loadings

a’=x (5-372)
a’=xMy) (5-370)
If 1" and D' are the lift and dreg of a', and L" and D" those of a", it

then follows from Egq. 5-15a and 5-15b that

=282 :
3 (5-38a)
/. 162,4?
o 3 (5-38p)
As stated previously
LII = O

(5-39)
D" cannot easily be evalusted by elementary superposition procedures be-
cause the aspect ratio of the middle section is less than unity. To deter-

mine D", first consider a unit strip of width 2(b-2) at § as shown in
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Fig. 5.3. 1If this strip is at an angle

74

N S — 7 X-g
N / \1(/ \\ 7 -“g
7

Fig. 5.3
Unit Strip in Middle Section, 2 < AR < 3
of attack @ the pressure distribution induced on the wing can be determined
from the solution for a deflected control surface. The latter solution in

the region (ABC) of Fig. 5.4 is (Ref. 11)

4g C‘OS.!(X) » IY' <| (5_34.0)

vhere the control surface is at an angle of attack ¢ and the rest of the

ving is at @ = Q0; p is the pressure difference between lower and

N —4
e P I <
, N\
- o\"O\ >
-4" J = \\ -
< N
//A AN
Y
X
Fig. 5.k

Wing and Control Surface Junction



upper surfaces. The pressure distribution due to a semi-infinite unit
strip can be derived by differentiation of Eg. 5-40 with @ = 1. By sub-
tracting & similar solution shifted the width of the middle section the
pressure distribution caused by the finite span unit strip in Fig. 5.3 is

obtained. In the tip Mach cones, the corner effects are

-(5-2) y+b-2 ~-(b-2)
A%’“_"ﬁ %e vl Z Z | s l-62) sl (5-41)
T (Ne-8°-(y-6+2)2  V(x-5F - (y+b-2) x-$
At the strip itself Ap has the two-dimensional value bq. The formula for
,E(g ;x) ag defined in Eq. 5-2, for the middle section only, is
b-2
,E(g,-x) = f apdy + 89(b-2)8(x-%) (5-42)
- (b-2)
D" is then determined from Eq. 5-4b, 5-41, and 5-42;
v _ 16g(R-2) < L
= SER) , 2<R<3 (5.43)
whers /

F(R) = 3A 2 i A -1
B =) 232 (1-E)casi’ % = VR — % cos A

and A = AR - 2 is the aspect ratio ¢f the middle section.

In determining the interference drag (a', ") of the two o distribu-
tions (Eq. 5-37), we next examine the effect of & unit strip of one dis-
tribution on & unit strip of the other. There are three cases to consider,

as shown in Fig. 5.5.

v & vy vy

//V\ /ﬁ\ *
./ //\\\\ AV AR A ././\\ \\
v N s/ AN ayd o0
s AN S NN /s AN
(a) (b) )
Fig. 5.5

Cases Involved in Determination of (a', o)
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In the first case, the longer strip is ahead of the shorter so there is
no interference drag due to the preasure distribution of the shorter; also
since the shorter is in the two-dimensional region behind the longer there
will be no pressures Induced on the shorter. Thus, there is no interference
drag in this case. If the longer strip is behind the shorter as in Fig. 5-5b,
it will not induce pressures on the latter, and also, by application of
Theorem I in Ref. 9, the total 1lift induced by the shorter on the longer will
be zero. Thus, again there is no interference dreg. The only interference
drag which exists occurs when one strip 1s superimposed on the other; in this

case the drag is two-dimensional and is

/
() = 8- [aqeite = 222L52) (-0
since ® = R. ~
The optimal @ in CT mey be written in the form
ok, = Ax + B8 X M(y) (5-36")
where A' and B' have to be determined. Let L7 and D7 be the 1ift and drag of

@7. From Eq. 5-38 and 5-39

4
£7=§_§i (5-145)
and from Eq. 5-38, 5-43, and 5-4k,
12 4 2 Fpl ppt
D,=A 0 +8 0 +4'8 L ,«")
LY NS L o] (5-46)
T3 [ARY gy tE(R-2)AB

Since LT is independent of B', D'T can be minimized with respect to B' by
settingaD-T/aB' = 0. This gives

B =-A F(R)
Hence, the optimum in 07 if of the form

oA, = A’X/-/"F(A?)M(y_)/ , A= consranr (5-4Te)
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and 12

D, = 222 [/R - (ﬁ—?)F(A?)] (5 -b7v)

The optimm [ in the class Cq is then

’27097' ey [®R —/ (A?—E)F(A?j]_ G -48)

The optimum in the class Cg formed by superposition of flat plate loadings

and loadings from C7 1s then

_ x[1-F(RM()] el
dg = da{ /', [m-(m-e)ﬁ(mﬂ} (5-49)
where Q, = constant = g% ;3 the corresponding‘g is
- - _ 1 /
'gaapr_ 'g'f+£7opr- M {’ 2R +/2/ﬂ [R‘GR-ZJF(A?)] } (5-50)

For AR = 3, F(R) = 1 and Eq. (5-50) reduces to the result given by Eq. 5-35.
For 2< R < 3, F(AR) » 1 and there must be negative camber 1in the center
section if the lift is positive.

As a last problem we shall study the introduction of further spanwise

variation. Consider a wing of AR > 3 with an & distribution as shown in

Figure 5-6. U @
-l Ek =
N A=X  |a=ax Ad=0 A= AX} A=k /ﬂ
N
yd
N V4 a-;(
I N I /
N\ /
AN Vd
AN 7
Yx
Fig. 5.6

Special Bpanwise Variation of «
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The values of A and k which give EEXiHBJ.Je will be found under the assump-
tion that the section where & = O has R = 1, i.e., (b - 2 - 2k) = 1.

The left half of the wing does not interfere with the right half.
Hence, to compute the drag it is sufficient to find the drags of Sections
I and IT and their interference drag. The drag of 1I, DII’ has been com-
puted previously. The drag of I, DI’ is & quadrstic function of A and is

hence

2
DI(A) =A DI(I)
where DI(l) is given by Eq. 5-43 with k replacing the quantity (/R- 2).
The interference drag DI 11 is & linear function of A and hence

Oy g (A) = AL (/)

Here D 1) is easily determined from previous results since the interfer-

1 II(

ence drag is unchanged if a plate with & = 0 is placed adjacent to the out-

board tip. Denote the corresponding drags when @ = O to the right of the
+ R 1 - 1 = 1

wing by primes; then D 1= DI’ D I 1I DI 11 and hence, if D I+1IT is the

total drag,

! _ ‘
£2r+az“'£2z'+'£§r 4h£}1t

In this equation all terms are known except the last which is thus determin-

ed. We may then write the drag of the wing in Fig. 5.6 as
2

_329 Ak /
OD=—3 /+F(A')+k'4[/_f:(-}6]

The 1ift is L= 3q/3 since the distribution a = Ax carries zero total 1lift.

Minimizing Eq. 5-51 in the usual manner places the following restrictions

on A and k:

A=—% [F{k)-J

(5-51)
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and

20F _ =F(F-1)
3k = (P (5-52)

The value of k for minimum drag, as determined graphically is

k = o025
Then A = -320
D= _@ﬁg)ﬁa_ (5-53)
and
6/
For convenience, define
b-2k-2=lyleb-2k
B(g) =
o ELSEWHERE

Combining the a distribution leading to Eq. 5-53 with the flat plate results

in the final optimunm,

dg_ = %o [/ *+ 0.26/ X7 (y)-0.83+X B( g)] (5-5ka)
and
gs = 4[/-2% +£~—§ , R =305 (5-54b)
oPT

This is & slight improvement over the optimum obtained in Eg. 5-35 for the
simpler o distribution.

We shall now discuss certain general qualitative properties of the ab-
solute optimum for the rectangular wing. This optimum has the form
Topt = BA * OBy Popt = PA + Pp Where ay = constant and &g is odd in x.
Furthermore, Popt, is even in x since the class of loadings is not restricted.

In the middle section PA is constant and hence, in particular, even in x.



It then follows that pg is even in x in the middle section. Since Qg is odd,

the drag per unit span of the loading Gp must be zerc in the middle section:

f,g d dx = O, |3l[ <hb-2 {5-55)
-/

One may easily generalize Egq. 5-55 as follows. In Eq. 3-14, let Qopt be the
optimum in the restricted class of loadings which are odd in x, i.e., Og;

let a be 5(y - y5) ap(x,y) and L(y,) denote the lift of a. Then, since

(chg, o) =2£fﬁ(g—8o)dz (x,g)ﬁ(x,g)dxdy
+f

-] a(e4)4, () dx

Eq. 3-14 reduces to

D, o
f (X,Ho 4’ (x;yo)d'x = '—B"LL%J_) (5-56)

In words, this equation states that the drag per unit span, at the spanwise
station y,, of the optimal loading op is DB times the lift caused by the
strip, S(g-go)dg(x,g), at the same stetion. In the middle section this
1ift is zero by the previously quoted Theorem I of Ref. 9. Thus Eq. 5-55 is
seen to be a special case of Eq. 5-56.

Eg. 5-55 is, of course, satisfied for loadings when @ = O in the middle
section. However, it is easyio construct nontrivial loadings which also
have the same property. The following idea may be used to construct solu-
tions of Eq. 5-55. To fix the ideas, consider only a's of the form x£(y)

where f{y) is even in y. Since we are concerned with the middle section
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only, we may, to begin with, consider the wing to be of infinite aspect
ratio. The station y = O then plays no distinguished role.
to expect that if f(y) is a solution, and if one takes as a new solution
that part of f(y) which is even around any station y = Yo, then this new

solution is & multiple of the original solution, the coefficient depend-

ing on yo-

Putting 2 = y - y, one then obtains the functional equation

F(g+2) +f(4-2) = 29(4,)f(Z)

Putting Z = O gives

34 = L&

where one may normalize

£(0) =1

8o that Eq. 5-5T7 may be written

:Ff}b'*zi)'*1f(95“ii) ::éif(yb)fT(ZJ

with £(y) even, £(0) = L. Solutions of Eq. 5-53 are

ffﬁi) = cos ay

ng)= cosh 4?

where a and b are constants which must be determined by substituting
a = xf(y) into the integral equetion, Egq. 5-55. It is found that only

the hyperbolic cosine term satisfies the integral equation, and then

It is natural

(5-57a)

(5-57b)

(5-57¢)

(5-58)

(5-5%)

{5-59b)
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only for one value of b. The approXximate value obtained in this manner
is

b =173

(5-60)

Thus & solution of Eq. 5-55 is of the form & = xC cosh 1.73y. A more
general x varietion could alsc be studied. If these loadings are used on
a wing of finite aspect ratio, the drag in the middle section will be
zero although the tip sections will have drag. Where there is no tip ef-
fect the total lift gemerated by each strip is zero whereas the 1lift per
unit span is not zero. As a curiosity, one may find e loading for a wing
of infinite aspect ratio which has zero drag but positive lift per unit
span. However, if the wing is cut off, the tip sections will of course
have drag. Among the meny possible lcadings which satisfy Eq. 5-55 in
the middle section the optimal loading is the one which alsoc satisfies
Fg. 5-56 in the tip section. This idea may possibly be utilized for
finding loadings of low drag although no computations of this nature have
been carried out.

We shall now show that the drag of the optimal distribution cannot lie
appreciably below the drag of the distributions discussed ebove. By a rather
simple procedure, due essentially to R. Struble, one may construct a lower
bound for the drag at given lift, i.e., an upper bound for‘l?.

As sbove, let o be the optimum within the restricted class C of load-
ings such that the angle of attack is odd in x. Denote the forward half
of the planform (-1=< x <0) by S, and the aft half (0 €£x £1) by Sy. Let
¢ be the special loading in C such that a = -1 on Sl and @ = +1 an 32. if

p and L are the pressure and 1ift respectively of @ it follows from Eq. 3-1k

that
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L= ;—i (d,95) = z—ifdpj dsS = é—: prdS-afg as (5-61)
S S ;z
or
2
Dy = LL_B[ B ‘{LA;J (5-62)
vhere 4= Sfﬁg s

To fix the ideas let us assume Lp to be positive. Since Qp is odd in x, it
may be considered as a sum of a pair of deflected elements of opposite signs
at (-x,y) and (x,y). Since the losses due to edge effects are greater for
the forward one of the two elements in a pair it follows that the forward
elements have predominately negative deflection for Ly positive. This makes
it plausible that A as defined above 1s negative. This estimate is borne

out by the optimal distributions for restricted classes, as constructed above

(Eq. 5-13, 5-34, 5-4Ta, 5-54a). Hence, Eq. 5-62 implies

2
D= P2 (5-63)
By linearized wing theory L = 4q = £
Hence, ,
s =D§_;3r =R (/— %) = "A/T (5-6k)

end, cf. Eq. 5-16,

Lopr= B+ Ay =4(1-575)+ 500 “%j‘f -m) o

Comparing this again with Eg. 5-16 it follows that

’Eopréq-") f"»E_F(EA?) (5-66a)



or

‘EOPT Z 4/‘?—/
Ly T 4m-2

(5 -66b)

Thus the optimal ,E for a rectangular wing with aspect ratio AR can never ex-
ceed the ,E of s flat plate rectangle with aspect ratio 2AR. A lower bound
for dopt is then

dopr(R) .z.,c(;‘ﬁ) _ /- 5m _4AR-2

/
A
de (R) ~— Le(2R) /——4;'? T 4R-/ (5-67)

Thus E’éﬁlégform = 2 and %ﬁé% for R = L,

This formula shows that substantial drag sé.vings are not possible for
rectangular wings. Furthermore, it should be remembered that the lower
bound for the drag was obtained by rather crude methods, and hence, may be
somewhat lower than the actual minimum drag. The meximum values of ,P,
actually obtalned for the rectangular wing are plotted in Fig.5.7 on the
same graph as the upper bound for ,E .

The results obtained for the rectangular wing may be summarized as
follows: Loadings of low drag have been constructed which have parabolic
camber, a = xf(y), where £(y) 1s a step function. The best result obtained
for R = 3 is the loading as (Eq. 5-34) vhich has no camber in the middle
section. For MR = 3.05 there is & slight improvement if the loading g
(Eq. 5-5ka) is used; in this case part of the middle section has no camber,
8 narrov strip at each side of the middle section has negative camber, and
the tips have positive camber, for positive 1lift. For 2= AR =< 3, the best
loading examined is ag (Eq. 5-49) in which the entire middle section has
negative and the tips positi;re camber for positive lift. For 1= R=2,
the loading @ (Eq. 5-1%4) has no spanwise variation in camber. It is be-
lieved that the choice of paraboli; camber is quite good. Some further

improvement may be obtained by allowing for greater y-variation in particu-

lar in the tip section. It seems plausible that the camber should increase



-5h -

OPT/IIMUM L AS A FUNCT/ON OF ASPECT RAT/IO
AFOR A RECTANGULAR W/NG

Mm=ve
J £18 !
s X TO0 FATA =/
2
416
/14
L2
UPPER BOUND
410

e \ |

L0686

-z \
z.02 \
\

7/ 2 3 -+
ASPECT RAT/O

2=c2/cp

1F=FLAerAr£.£

1.00

FIGURE 5-7



-55-

tovards the side edges. The corresponding computations are quite straight
forward in principle slthough they may be lengthy. The discussion in the
present section was based on rather short calculations and was meant to
establish certain general trends. As will be discussed in Chapter V the
fuselage interference is of great importance in most practical problems,
and hence, it seems unwarranted to msake lengthy computations for wings
alone. |
Some typical numerical results are set forth in the table below and

in the graph, Fig. 5.7.
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TAGLE 7

VALUES OF Aggo

Xl o|z |2 ]3] 4| 5|6

-6 |-./8/8/8|./80034

=8 |.22z2222|-233766| .263248

~4 |~2857/4|.34¢ 111 |-.383 6/0].789 743

~3 | .400 000|~476 190 |.933333|.389 610| .263 248

—2 666 667|.200000|.476190| .311 111|.233 76€| . /188 034

=/ |2.000 000\ .666 667|.400000| .285 7/4| .222222| .18/ 818|./53 846
O |2.000000|.666 667|.400 000|285 14| .222 222| .18/ 818,153 846
I . c666671.200000|.476 190|.311 111|.233766| .188 034} .157 576
2 | 400000-476190|.933333|.389 6/0|.263 248| .202 597 ./65 913
3 |-2857s4| .31 117 |-.385 6/0|.789 743| .337 662| .232 278| .18/ 27
4 222 222[|-233766| .P63 248|337 662| .696 B32]|.302 18| .2/01/57
5 |-1871 8i8].188 034\-.202 597 .232 278|~302 119|. 630467|.275 847
6 | /53 p46|=/57576|.165 913|~181 271} .210 156 |~ 275 848| . 580030
7 |~133 333|135 747|~/40 989\ .150 112~ 165509| . 193344|-2554/5
8 | 117 6471-119 298| .122 819|-. 128 730 .138 104|-./53 249
® |-.105263|.106 443}-.108 925| .112 994|119 194
/0 | .095238|-096 1/0|.097 928|100 856
/! |-~o0g6957| ‘087 6/9|-.088 950
/2 | .080 oool-.080515

TABLE &
VALUES OF By g

S @, 7 2 3 <t 5 6
o /.333333|=266 667|038 095|=0/2 698|005 772|003 /08 [=00/ B65
2 | . goocoo| .57 428|266 667|~057 928|-~0205/3|-0103%0|~006 034
2 |.190476| 444 444|.432 s00|-239 316 |~051 948|-.022 1221011 848
3 | .088 g85|=r2/ 202|. 335043 .363636|-.2/6 792|-.049 760}~ 022 122
4 |~051948| .06/ 538|~ 093 506| .278 732| . 319 890|199 094~ 047 288
5 |.034i88|~0368 095|.048668|-078 196| .243338| .288 983|-.164 936
6 |-.024242|.026 /144)-.030804] .04/ 083 0es 305 .2/8 562]|.265 63/
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TABLE 4

LIFT7T CORRESPONDING 7O ANGLE CF AT TACK

DISTRIBUTION Xy, 1,

L

(XCom,n)

O

e

2.844 444

3.982 222

2.969 475

-, 760 846

-0.297 989

-0./7/ 173

~0.908 744

-0.090 /36

-0.039 376

-0.627 994

-0.05/ 7/7

-0.0/19 072
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SPATIAL LIFT DISTRIBUTIONS
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1. SUMMARY

A preliminary study is made of non-planar wing systems (viplanes, mul-
tiplanes, etc.) for use in supersonic flight. Such arrangements offer the
possibility of aerodynamic or structural improvements over monoplanes, and
s0 require investigation.

This study is general in that 1ift distributions throughout volumes of
prescribed shape are considered without detailed analysis of the wing sys-
tems required to support the 1lift. The restriction of the location of lift-
ing elements to & given volume is necessary to insure that the aercdynamic
optimum is structurally feasible.

For ellipsoidsl volumes and other special shapes the optimum distri-
butions of 1ift are found, and (for some cases) minimum drag values are ob-
tained. (The optimum lift distribution is defined as that which gives mini-
mum possible wave plus vortex drag for any wing system contained within the
volume and supporting a given 1lift.) For special cases the necessary wing
areas are determined.

For planar wings the drag due to thickness and drag due to 1lift are
separable. This is not generally true for distributions in three dimen-
sions. Such interference problems are discussed, and it is shown that, in
some cases, there is no interference drag between thickness distributions
and the optimum distribution of lifting elements alone.

For planar wings the optimum distribution of 1lift is generally unigue.
For 1lift distributions in space the optimum is not generally unique. This
suggests such problems as determining which of the optimum distributions

can be supported on the least wing area.
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2. INTRODUCTION

Much attention has been devoted to the study of planar wings (monoplanes)
for use in supersonic flight. Many different planforms have been studied us-
ing linearized theory, and the problems of determining drag due to lift and
drag due to thickness have been investigated. These investigations have led
to searches for "optimum" pressure distributions (those giving minimum drag
for a given lift or minimum drag for e given frontal area, etc.).

Such studies should be extended to include non-planar wing systems (bi-
planes and multiplanes), which offer the possibility of aerodynamic and struc-
tural improvements. The reduction of drag due to thickness by the Busemsnn
biplane effect is one possible advantage. The reduction of wave drag due to
lift by more efficient distribution of lifting elements may be possible.
Reductions of vortex drag are obtained in multiplane systems without increas-
ing the span. Also the increased depth available may make external structure
useful if drag penalties are not too large.

One possible approach to the study of non-planar systems is to choose
and analyze specific multiplane arrangements, and make comparisons with planar
systems. A second approach, which is somewhat more general in nature, is to
study distributions of 1lift through a given volume, and attempt to determine
optimum distributions. The latter procedure is adopted here.

In studying 1ift distributions through a volume of prescribed shape,
the detailed structure of the wing system and 1ts viscous and thickness drag
are temporarily neglected. The optirmum distribution is then one which gives
the least possible wave plus vortex drag for any wing system contained within

the prescribed volume.
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The most obvious application of such & study is to the design of air-
planes or missiles having some "compactness" requirement (for example,
vhere a missile must be stowed within a given space). However, the volume
restriction also introduces a primitive control of structural weight. The
necessity for such a control can be seen as follows. The vortex (or
"induced") drag of a wing is inversely proportional to the square of the
span. This means that the aerodynamically desirable wing is one of infinite
span and, therefore, structurally impossible. Similarly the wave drag of a
wing is inversely proporticnal to the squares of certain projected dimen-
sions of the wing, and the aercdynamic optimum sgain requires infinite
dimensions for the wing.

In order to make the aerodynamically optimm wings structurally posei-
ble it is necessary to apply some dimensional limitations. A limit on wing
area is not sufficient, since the trend is then towards infinite sspect
ratio wings swept behind the Mach cone. (Por exammple see Rel. 1.) Another
possibility is the restriction of lifting elements to a volume of prescrib-
ed shape, and this is the restriction applied in this report. Its applica-
tion may be regarded as a first concession to the importance of structural
problems.

Another factor which must be considered in studying lift distributions
through volumes is the wing area required to suppert the lift. If this area
is infinite the viscous drag becomes infinite. However, the minimm value
of wave plus vortex drag can be cbtained with finite wing aresas in many

(and possibly all) instances.



.3. _ INTERFERENCE EFFECTS

For the planar wing there is no interference between the drag due to
1ift and drag due to thickness. This corresponds to the fact that a source
and lifting element have no interference drag if the axis of the lifting
element is normal to the plane containing the source, the lifting element
and the free stream direction. This was shown by Hayes(e). The lifting
element is the elementary horseshoe vortex, and its axis is defined to be
in the direction of the force produced.

However, for general distributions of sources and lifting elements in
space there is interference drag. An example of this is the reduction of
drag due to 1lift by the insertion of a thicknees distribution in the pres-
sure fleld of a lifting wing (see Appendix III-A).

Although in general such interference effects exist it can be shown
(see Appendix III B) for many volumes that the interference disappears vhen
the optimum distribution of lifting elements alone has been attained. This
means that such an optimum cannot be further improved by introducing a
thickness distribution. For this reason the minimum drag valueg cbtained
by studying lifting elements alone are significant.

A complete study of non-planar wing systems should include those in
vhich side forces are developed (for example, "ring"” wings) since side
forces and lift forces may produce interference drag. This part of the
investigation will be undertaken later.

In the following discussion it will also be assumed that the wing sys-
tem 1s isolated, and so does not feel interference effects from the ground

or from any other wing system.
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4. METHODS FOR EVALUATING SUPERSONIC WING DRAG

The non-viscous drag of a wing moving at supersonic speeds may be
obtained from two different points of view(a) using linearized theory.
First, the drag may be evalusated by integrating the local pressure times
local angle of attack over the wing surface. Second, the drag can be
evaluated from momentum {and energy) considerations involving the flow
field at a great distance from the wing. In the latter case part of the
drag is assoclated with the production of kinetic energy im the trailing
vortex system, and is called vortex drag. This drag is identical with
that produced by the same spanwise lift distribution in an incompressible
flow (frequently called "induced" drag). The remainder of the drag is
associated with the production of kinetic and potential energy near the
surface of the Mach cone whose vertex is the wing system. This is called
wave drag. The wave drag plus the vortex drag is equal to the drag

evaluated at the wing surface by the first method.
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5. THE “"COMBINED FLOW FIELD" CONCEPT

The idea of the "combined flow field" was introduced by Munk‘s)

and extended by R. T. Jones(l’h). Consider a distribution of lift-
ing elements in a free stream of given velocity. A certain down-
vash veloclty and pressure are produced at each point in the field.
If the direction of the free stream is now reversed without moving
the lifting elements or altering their intensities, then in general
different downwash velocities and pressures sare produced at esch
point in the field. The sum of the downwash velocities produced in
the forward and the reverse flows is called the downwash velocity
of the combined flow field. The difference of the pressures in the
fovard and reverse flows is called the pressure in the combined
flow field.

It should be remembered that in the flow reversal the 1lift
distribution is kept fixed, not the geometry, i.e., angle of sttack

distribution, of the wing.
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6. CRITERIA FOR IDENTIFYING OPTIMWM LIFT DISTRIBUTIONS

A necessary and sufficient condition for minimum wave Plus vortex drag
vas given by R. T. Jones(h) in connection with planar systems. The condi-
tion is that the downwash in the combined flow field shall be constant at
all points of the planform. This result depends on the fact that a pair of
1ifting elements has the same drag in forward and reverse flow, which is
also true when the lifting elements are not in the same horizontal plane.
Hence, the above criterion can be extended immedlately to lift distribu-
tions in a volume by requiring constant downwash {in the combined flow
field) throughout the volume.

A necessary and sufficient condition for vortex drag alone tc be a mini-
mum is that the downwash velocity throughout the wake of the wing system
shall be constant far behind the wing (the wake is defined as the projection
of the lifting regions on the Trefftz plane). This condition was given by
wunk(3)

In special cases elliptic loadings identify minimum wave drag configura-

(1)

tions, as has been shown by Jones Such a criterion can also be derived
from Hayes' method(e). The loadings for the latter method are obtalned as
follows. Let the lifting volume be cut by a set of parallel planes each in-
clined at the Mach angle to the flow axis (see Fig. 1). Place all the lift
intensity cut by any one plane at the intersection of the plane with the
flow axis. When this has been done for each plane in the set a load distri-
bution is obtained. If a second set of parallel planes is used a second

loading is obtained, etc. If the loadings are elliptical for all possible

sets of parallel planes inclined at the Mach angle, then the wave drag is
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a minimum. In Hayes' procedure for calculating drag this condition corres-
ponds to obtaining the minimum possible drag contribution at every angular
position on the cylindrical control surface. Such mipnima cannot be attain-
ed in general, but if they are attained and if the vortex drag is also a
minimum then the more general criterion {constant downwash in the combined
flow field) is satisfied.

I1f the wake of the wing system has an elliptical cross-section and is
symmetrical right to left, then a constant intensity of lift over the
cross-section gives the minimm possible vortex drag. Mnnk(S) gave this
criterion for a circular cross-section, and his method can be used to obtain
the generalization indicated. In particular, vhen the crosg-section of the
wving wake degenerates into a horizontal line, (corresponding to a planar
ving) the familiar requirement of elliptic spasnwise load distribution is
obtained. The general requirement of constant downwash in the wing wake

(far behind the wing) is satisfied by the above lift distributions.



7. THE OPTIMUM DISTRIBUTION OF LIFT

THROUGH A SPHERICAL VOLIME

Consider a sphere of radius "a" with its center at the origin, and

let a total 1ift "L" be distributed through the sphere with local inten-

L
sity '}E“ . If,£= 257 3 5 » ¢ being the radial distance from the
7ch1/a, —79

origin, then elliptic loadings are obtained when the sphere 1s cut by
any set of parallel planes. The fact that elliptic loadings are produc-
ed when the planes are inclined at the Mach angle (to the free stream
direction) }nsures that the wave drag is a minimum. The cross-section
of the wake is circular, and if the lift intensity is projected oato a
plane normal to the free stream direction it can be shown that the lift

is uniformly distributed over this circular cross-section. This insures

that the vortex drag is also & minimum.

L
The 1ift distribution.e = ~5 5 r—=— then gives the minimum possi-
el Va2-74

ble wave and vortex drag. By Hayes' procedure it can be found that the

2 (M)

minimum weve d.ra..g is Dmin wave = W » the minimum vortex drag(s}

égiﬁiﬁ?aJEZr J]

The largest planar wing of circular planform contained in the sphere

(1) 2413 .
has a minimum drag which 1s greater by the ratio -E———;? This is a

factor of 1.885 at M =\/2. However the wing area required to obtain mini-
mum drag for the spherical volume is not yet determined and the drag com-
parison 1s of course not complete without consideration of the viscous

drag (and thickness drag).
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8. _THE OPTIMWM DISTRIBUTION OF LIFT

THEROUGH AN ELLIPSOIDAL VOLUME

The spherical volume with its optimm 1lift distribution can be chang-
ed into an ellipsoidal volume with a corresponding 1ift distribution by a
scale transformation of one of the Cartesian coordinates. This transform-
ation transforms planes into planes so that elliptical loadings are pre-
served for the ellipsoid and minimum wave drag is obtained. Also,a con-
stant intensity of lift over the wake cross-section is maintained for the
ellipsoid, and if this cross-section is symmetrical right to left, then
the vortex drag is also & minimum. Although the optimum 1irt distribu-~
tion for an ellipsoid is obtainable froﬁ the spherical case, the value
of'the minimum drag is not necessarily the same. (Minimum drag values
for ellipsoids will be given in a later report.)

In one limiting case an ellipsold is collapsed into a horizontal
planar wing of elliptic planform carrying constant pressure. Optimum
cases of this type were first discussed by R. T. Jones(l). Another limit-
ing case which gives minimum drag occurs when an ellipsoid is collapsed
into a plane normal to the flow direction. Then the wing system can be
interpreted as a uniformly loaded airfoil cascade (of zero chord and gaD)
within the elliptical cross-section. The entire cascade can be analyzed
as a two-dimensional system.

If the chord is chosen to be Y4/  times the gap then the air-
foils in the cascade are non-interfering, but the lift distribution is
gufficiently continuous (see 11lustration). In other words, when the
cascade is cut by planes inclined at the Mach angle, the resulting load

distrivutions used in Hayes' method will be continuous. The total wing
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9. THE OPTIMWM DISTRIBUTION OF LIFT TEROUGH

A "DOUBLE MACH CONE"

Consider a volume consisting of two Mach cones placed base to base.
If a uniformly loaded cascade of airfoils (with
zero gap and chord) is placed at the maximum v - RADIUS =
cross-section of this volume then elliptic
loadings will be obtained when the volume 1is
cut by planes inclined at the Mach angle.
This airfoil cascade consequently produces
the minlmum possible vave drag for wing systems contained within the
volume and carrying a specified 1ift. The uniform distribution of load
over the circular cross-section insures minimum vortex drag also, so the

1ift distribution is an optimum for the double Mach cone.

The value of the minimum wave drag {obtained by Hayes' method) is
2 L2

Dyave = E?iiiEEESE' and the vortex drag has the same magnitude in this
case.
Le
The wave plus vortex drag is then D = ;;5?5333 . This is egual to

the minimum vortex drag alone for a planar wing of span 2a. If the air-
foil cascade is compared to the largest planar wing of diamond planform
whizh can bhe contained within the double Mach cone, the minimum wave plus
vortex drag of the diamond planform is approximately 1.52 times greater
than for the cascade. (See Chapter II for analysis of the diamond plan-
form.)

Agein it must be emphasized that the drag comparison is not complete
without the inclusion of viscous drag and thickness drag for the wing sys-

tem.
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Since the ci:cular cascade is an optimm arrangement it satisfies
Jonea' downwash criterion; this can be checked as follows. By two-
dimensional analysis it can be shown that the downwash, & , in the aft
Mach cone is 20, where a = the angle of attack of each airfoil. Since
the downwash is zero in the fore Mach cone, the downwash in the combined
flow is then constant and equai to 2@ throughout the double Mach cone.
(Far behind the cascade in the wake of the wing system & = @. This

can be shown by equating lift to rate of change of vertical momentum.)



10. NON-UNIQUENESS OF OPTIMUM LIFT DISTRIBUTIONS

In incompressible flow an elliptic spanwise 1ift distribution in-
sures the minimum possible drag due to lift. According to Munk's stagger
theorem(s) the chordwise locatlon of the lifting elements is unimportant
s0 there are infinitely many distributions of 1lift over a given planform
which produce the minimum drag.

In supersonic flow this non-uniqueness of optimum distributions still
persists. For example the minlmum wave drag for a double Mach cone vol-
ume can be attained with each of three dlfferent simple 1ift distributions.
The first is a constant intensity over the circular disc at the maximum
cross-section of the volume. The second is an elliptical Intensity con-
centrated on the axis of the volume. The third is a constant intensity
throughout the entire double Mach cone. 1If the first two distributions
are superimposed, one carrying a unit of positive 1lift and the other a
unit of negative 1lift, the result is a net 1lift equal to zero. Also the
net strength of the lifting elements intercepted by any cutting plane in-
clined at the Mach angle is zero. This means that the combined distri-
bution has zero wave drag. Furthermore, there are no disturbances what-
soever produced far out on the Mach cone and no wave dfag interference
can exist with any other loading. If another such combined distribution
with opposlte sign is placed on the same streamwise line with the first
one, then,by Munk's stagger theorem, the vortex drag is zero also. This

may be called a "zero loading" (see illustration).
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A "Zero Loading" Placed Within an Ellipsoidal Volume

Such a "zero loading" placed within any volume alters neither the
1ift nor the drag of the original 1ift distribution. For this reason op-
timum 1ift distributions in three dimensions are never unique (unless
the volume degenerates into a surface).

In incompressible flow the infinitely many optimum 1ift distribu-
tions over a planform (all of which produce elliptic spanwise losding)
are indistinguishable as regards the vortex pattern produced far behind
the wing. This is also true in supersonic flow and in addition the opti-
mum lift distributions for a given volume are indistinguishable in their
effects far out on the Mach cone.

In view of the non-uniqueness of the optimal distributions, it is
desirable to find that one which requires the minimum wing area, or is

best adapted for structure.
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APPENDIX III-A

REDUCTION OF DRAG DUE TO LIFT

BY ADDITION OF A THICKNESS DISTRIBUTION

Consider the two-dimensional system sketchéd in the figure below. The
cross-hatched area is a thickness distribution lying partly in the pressure
field of a flat-plate wing. The relative geometries of the thickness dis-
tribution and the lifting surface are indicated in the figure. Also, the
pressure distributions, relative to the two-dimensional pPressure c"dgﬁ

are shown in parentheses.

As long as the pressure field of the thickness distribution does not

intersect the flat-plate, the l1ift of the system is the same as for the
flat-plate by itself. On the other hand, the interference between the

pressure field of the flat-plate and the thickness distribution produces



a negative drag contribution. In the example shown, negative drag is con-
tributed by the pressure P = - 1/2 on the front part of the thickness and
positive drag by the pressure P = -l/k on the rear part of the thickness;
the net drag contribution of the thickness, based on its frontal area,is
- 1/4. For the flat plate, the drag is + 2 based on the same frontal
area, and this drag is not influenced by the presence of the thickness
distribution. Omitting friction, the total drag of the system (wing plus
thickness) is 12—1/2 percent less then the drag of the flat-plate alone.
Thus, the total 1lift in this case is unaffected by introduction of the
thickness distribution and a drag reduction is obtained.

This example is similar to the Busemann biplane, and is consistent
with the fact that in the general case (non-planar systems) sources and

lifting elements have an interference drag.
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APPENDIX III-B

THE RNON-INTERFERENCE OF SOURCES WITH OPTIMUM

DISTRIBUTIONS OF LIFTING ELFMENTS IN A SPHERICAL VOLWME

In general there 1ls interference between non-planar distributions of
sources and lifting elements, as shown by Hayes(a) (For an example see
Appendix I.) This suggests that it might not be possible to separate the
1lift and thickness problems, so that the optimum distribution of lifting
elements alone might not be significant.

It, therefore, becomes important to establish whether or not a single
source placed within a volume has an interference drag with the optimum
distribution of lifting elements s&lone in that volume.

Following is a proof that a single source placed at any point within
& sphere has no interference drag with the optimum distribution of lifting
elements alone in the sphere.

An optimum distribution of the total 1ift, L, within a sphere of rad-

ius "a" (center at the origin) is given by
Zz

b . L .z
oprr T2 7 a2

vhere r = spherical radius to any point. Let

a source located at an arbitrary point, P,

within the sphere be denoted by S, and let p'

be the projection of P on the horizontal

(x-y) plane. The potential of S is identical
/
vith\hat caused by some lifting element distribution, .f,, on the line be-

tween P and P' plus a source S' at P'. (This followe from Appendix III-C.)



-83-

The distribution./g' has zero net 1lift.

The interference between.gopt and S is equal to the interference betveen
.Eopt and S' plus the interference between 'Zopt and ,8' « The first component'
is zero because of the symmetry of,gopt about the x-y plane. That is, the
interference drag between a downstream source in the x-y plane, for example,
and two equal 1lift elements located symmetrically with respect to the x-y
rlane is due to the pressures induced at the source by the lifting elements.
(See 1llustration,) These will be equal in magnitude and of opposite sign,
s0 that the net interference drag is zero. Similarly, the interference drag
between the lifting elements and an upstream source arises from the downwash
velocities induced by the source at the lifting elements. These again are
of equal magnitude and opposite sign and the interference drag is zero. If
the interference between_ﬂopt and,f' vere not also zero 1t would be possible
to obtain a distribution of lifting elements alone with lower drag than,gopt
Since opt has the minimum drag by definition, the second interference com-

ponent is zero. This completes the proof for a particular,fopt.

& g s
kg 7~ s i /
2 7 //"ga'
N o +Pswvoucen sy L, Y } -w/woucep sy 5
S — % Lo=2, 15/ - X
5.7 N -ewoucep avlk, N i +W INDUCED BY &,
ﬁ( \\\ \\Bb
‘\\\ N\

This proof can be extended to the entire family of optimum lift distri-
butions in the sphere as follows. As previously mentioned, all of the opti-
mum distributions produce identical effects far out on the Mach cone and far
behind the wing system. Interference drag terms can be computed from these

distant effects alone. Hence, a source has the same interference drag with



each of the optimum distributions, and this is zero for all cases since it
has been proved zero for one case.

This proves that source distributions in a spherical volume cannot re-
duce the drag attained with any of the optimum distributions of lifting
elements alone in that volume.

Similar methods may be applied to ellipsoids having one principal axis
vertical, to double Mach cones, and to many other volumes. It is sufficient
that the volume has a horizontal plane of symmetry, and that the vertical
lines connecting all points in the volume with this plane are entirely con-

talined within the volume.
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APPENDIX III-C

INTERCHANGEABILITY OF SOURCE AND LIFTING

ELEMENT DISTRIBUTIONS

The disturbance field of & unit source located at Xgs» 0, 25 is represent-

ed by the velocity potential

_ 1
2TY(X-Xo)?-y (22502

and that of a unit lifting element by

$=2_ (x-X0)(z-2,)
Y @ 2 NP 7o)

(Ref. 2)( Note that the unit lifting element is an elementary horseshoe vortex,

the potential of which is obtained from the source potential by integrating
axially and differentiating vertically. The factor pV in the denominator of
the above is introduced in order to define the strength of this singularity in
terms of its lift rather than its circulation.)

Consider, first, lifting elements of constant strengtn (pVK) distributed
uniformly on a vertical line extending from z) to 25. If this distribution
of 1lifting elements Is transferred in the free-stream direction from x = Xy

t0 x = X, the change in velocity potential is

(z-Zp5)d Zo

[P @2 ] Y% P52 (Z20)2

Zz
)

/

¢5=é£;%r&"xé

e 72 (Z-Zo)dzo .
)] T oo ewT

(a)



Similarly, sources of constent strength (K) are considered to be distributed
along a horizontal line extending from x; to xp. The transfer of this source
distribution vertically from z = 2z; to z = zé results in a change in velocity

potential given by

X

X2
P ’[:‘ N x Py 222)% ‘x/,’ &-Xo)%y % (2-2,)% )

Integration shows that ¢ is identical in these two cases. Thus, the
source distribution (b) 1is equivalent to a transfer of lifting elements
streamvise, while the lifting element distribution (a) is equivalent to a
transfer of sources vertlcally. This derivation applies, of course, only to
points whose upstream Mach cones contaln the entire source and lifting ele-
ment distributions. However, the proof can be extended to cover all points
external to the area enclosed by the two lines of lifting elements and the

two lines of sources.
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Consider also the limiting case when the line of positive lifting ele-

ments (Fig. (a) sbove) and the line of negative lifting elements are allowed

to approech one another while the product of lifting element strength and

the distance separating the two lines retains a constant finite value.

The:

velocity potential in this instance is the derivative of the velocity po-

tential of a single line of 1lifting elements, and can be shown to be the

same as the wvelocity potentizl due to a source and a sink located at the

two ends of the lifting element distribution.

7 74
7 W %2 0 SOURCE
Y L/FTING ELEMENT
N SINGULARITY HAVING
}F ZERO NET LIFT
}I - ’ }7 - e SINK
¥ _.' x ) —"X
x, X,
(@) (6)

??a.) ) %

Thus, the singularity described can be used to transfer a single source

vertically, as illustrated in the figure below.
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From these examples, it is evident that there is a certain interchange-
ability of source and 1lifting element distributions. Source distributions
within the volume may have the effect of transferring 1ift in the free stream

direction, and 1lift distributions may correspond to the vertical displacement
.of a source. In the first case the net source strength is zero. In the

second case the net strength of the lifting elements is zero.
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CHAPTER IV

BIPLANE LIFT DISTRIBUTIONS

by
E. W. Graham

and
R. M. Licher
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1. SUMMARY

The use of biplanes for supersonic flight is investigated. Two
types of biplanes are considered. The first is the Busemann biplane which
makes use of interference effects between the upper and lower wings to
eliminate (in large part) the thickness drag of the wings at the design
Mach number. The second is the non-interfering biplane, each of whose
wings acts as an isolated monoplane at and above the design Mach number.

Analyses made by other authors indicate that the Busemann biplane
does not offer any obvious advantages over a monoplane arrangement for
the design conditions now contemplated for supersonic flight.

For non-interfering biplanes, as compared to aerodynamically
equivalent monoplanes, an inherent structural advantage appears. This
advantage is the result of a scale effect for geometrically similar
structures.

Such an advantage might be most fully realized for a supersonic
missile launched from & supersonic aircraft. Here performance below
the design Mach number might be unimportant.

A possible disadvantage of the "non-interfering” biplane is the
transfer of 1ift from one wing to the other that may occur below the
design Mach number.

Means for reducing this lift transfer (or its consequent struc-
tural penalties) are discussed, and more detailed study of some con-

figurations is recommended.
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2. INTRODUCTION

The use of biplaﬁcs for supersonic flight has been suggested many
times. Busemann showed(l) that the thickness drag of an infinite aspect
ratio biplane could be reduced essentially to zero at one prescribed Mach
number by proper design of the airfoil sections. However, such a biplane
must have twice the wing area of & monoplane supporting the same 1ift at
the same angle of attack or must operate at twice the angle of attack
of the monoplane for fixed wing area. This means that the elimination
of thickness drag for the infinite aspect ratio Busemann biplane is
accompanied by a doubling of either the viscous drag or the drag due to
1ift. If a monoplane at its design operating conditions has a thickness
drag greater than the viscous drag of the wing, or greater than the drag
due to 1lift, then the biplane offers a possible drag reduction for the
design conditions.

The aerodynamic properties of the Busemann biplane of finite* aspect
ratio have been investigated by Sears and Tan (2’3),and the practical
application of this arrangement has been studied in detail by George(h).
Preliminary analysis of George's results indicate that the Busemann bi-
plane is inferior to a monoplane for the design operating conditions now
contemplated for supersonic aircraft. This is true because the thickness
drag of the monoplane wing is not ordinarily great enough to justify its
elimination by essentially doubling the viscous drag or drag due to 1lift.

However, the Busemann biplane is not the only type of biplane which
warrants consideration for supersonic use. In this report a preliminary
analysis of non-interfering biplares will be initiated (this was suggested

by the airfoll cascades of Chapter III).

*For the rotationally symmetric version of the Busemann biplane see Ref. 5.



3. POTENTIAL ADVANTAGE CF THE NON-INTERFERING BIPLANE

In the overall design of an aircraft, structural and aserodynamic
properties must be weighed simultaneocusly. In the following comparison
serodynamic eguivalence is maintained, and the structural properties of
the monoplane and biplane are compared.

Consider & monoplane wing of given aspect ratio, wing area and
thickness ratio. Compare this with a biplane system having two identical
wings each with the same aspect ratic and thickness ratioc as the mono-
plane and each having half the monoplane wing area. If the individual
biplane wings are spaced so that there is no interference at the design
Mach number, then the biplane system will have the same 1ift and total
drag as the monoplane at the same angle of attack. In this example
Reynolds number effects are neglected, and external wing bracing is not
considered. The two wing systems are then aerocdynamically equivalent
at the design Mach number.

For geometrically similar wings the total weight of structural
material required for bending and shear is proportional to the total
ving volume. The volume of the two biplane wings is 1/{2 times the
volume of the monoplane wing, and a corresponding saving in structural
welght is indicated for the biplane. This saving amounts to approxi-
mately 29% of the bending and shear material in the monoplane wing.
(Greater savings would be obtained for triplanes, quadriplanes, etc.)
The structural material which depends on wing area would have the
same weight for both wing systems; hence the percent saving on total

wing weight would be somewhat less than 29%.
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The above comparison suggests a potential advantage for the non-
interfering biplane, this advantage belng essentially the result of &
scale effect. In comparing the non-interfering biplane with the Busemann
biplane two differences should be noted. The potential advantage of the
non-interfering biplane applies at and above the design Mach number.

For the Busemann biplane the potential advantage was confined to the
design Mach number. The non-interfering biplane retains its potential
advantage for high and low aspect ratios. The Busemann biplane principle
is confined essentially to high aspect ratios. (It will be shown later
that the non-interfering biplane msy, for practical reasons, be better

suited to the low aspect ratio range.)
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4. UNEQUAL DISTRIBUTION OF LIFT BETWEEN BIFLANE WINGS

At supersonic Mach numbers below the design value, and at all
subsonic speeds there will be interference between the two biplane wings.
As & result of this interference the equal distribution of lift between
the two wings, present in the design condition, may be lost. In the
extreme case of infinite aspect ratio staggered rectangular wings,
having the same incidence, the 1ift itransfer is complete at scme Mach
number between unity and the design value, so that all of the lift is
carried on one wing. (A related problem arises for the Busemann bi-
plane.(h)) Designing the wing structure for this condition would
eliminate all of the potential advantage of the biplane arrangement;
hence this is one of the major problems to be solved. (For a missile
launched from a supersonic aircraft this problem might not arise.)

If the aircraft, or missile, operated under the above unfavorable
interference conditions for a very small fraction of its flight time, it
might be Justifiable to accept reduced safety factors. The probability
of encountering destructive gusts, for example, while in the interference
condition would be reduced in proportion to the time interval.

If the time spent operating in the interference condition is not
sufficiently small to Jjustify reduced safety factors, then two different
design philosophlies may be considered.

The first poseibility is to design the biplane wing system for
the minimm possible 1lift transfer. This suggests using low aspect

ratlio wings, and possibly dissimilar planforms for the upper and lower
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wings. Both of these trends should tend to eliminate the complete 1lift
transfer which may occur for the infinite espect ratio rectangular wing
system. (The ratio of gap to span should be a mejor parsmeter here.)
The second possibility is to connect the wings by external struts
and so distribute the load more evenly between them. This of course
involves additional drag for the struts and some additional weight. An
aerodynamically cleaner arrengement would be the "pyramid" type biplane
illustrated. The simultaneous taper of chord and gap would result in

a non-interfering biplane at the design Mach number.

Comparing the first and second procedures, the design of low aspect
ratio dissimilar wings for the biplane has the advantage of tending to
eliminate the 1ift transfer trouble at its source. This means that
another unfavorable consequence of the lift transfer, the corresponding
increase of vortex drag, would be avoided. Another point in favor of

the low aspect ratioc wings is that they are structurally efficient.



The second procedure, especially as represented by the pyramid type
wing, has the fundamental advantage of making use structurally of the
overall depth of the wing system. This overall depth is not utilized
structurally in the cantilever type biplene.

Another possibllity for the reduction or elimination of 1ift transfer
between the biplane wings is the use of movable wings or the use of aerc-

elastic wing properties. However, these methods sesm less desirable than

the procedures previously discussedq.



5. COPERATION AT LOW SUBSONIC SPEEDS

The aerodynamic equivalence of the monoplane and non-interfering
biplane exists at and sbove the design Mach number. Below the design
Mach number the interference of the two biplane wings generally results
in aerodynamic inferiority for the biplane.

Thare is very little informetion available on the subsonic char-
acteristics of the particular biplane arrangements that seem desirsble
for supersonic operation. However, the characteristics of a low aspect
ratio rectangular wing biplane are available and are of some interest.

In the followlng comparison the biplane wings are assumed to have
no stagger or twist, and both wings are at the same incidence. For an
aspect ratio of 3 and a gap/chord ratic of 1 the biplane has a vortex
drag (induced drag) 1/3 grea‘ter(6) than the geometrically similar mono-
plane having the same total wing area. (Increasing the gap/span ratio
would reduce the vortex drag for the biplane.) Such a drag increase
would involve an appreciable performance reduction for the biplane.

The importance of this would depend (to some extent) on the fraction of
total flight time spent in subsonic operation.

éc

The biplane would also have a lowver EEL than the monoplane by about

20$(6) and probably a reduction in CL also (7). The order of magnitude
max
of this reduction might be 5 or 10% (this is uncertain). Both CL
ac max

and EEE presumably could be improved by further separating the biplane
wings, eince in the limiting case of infinite separation the system must

behave as twe non-interfering monoplanes.



6. BSTABILTTY AND CONTROL

In addition to the problems slready discussed there will probably
be new stabllity and control problems requiring investigation for the
biplane arrangement. These problems might arise from alteration of the
downwash field (compared to that produced by a monoplane), from the
1ift transfer between the biplane wings, and possibly from the reduction
of span (compared éb the monoplane).

However, no attempt will be made to investigate such problems

here since they can be studied more easily for specific configurations.



7. CORCLUSIONS

It is tentatively concluded (largely from the results of Ref. 4)
that the Busemann biplane does not offer any obvious improvements
over a menoplane arrangsment for the design conditions now con-
templated for supersonic airecraft.

An inherent struectural advantage of non-interfering superscnic

biplanes as compared to aerodynamically equivalent monoplanes
appears as the result of a scale effect for geometrically similar
structures.

One possible disadvantage of the non-interfering biplane is the
trangfer of lift from one wing to the other which may occur below
the design Mach mmber. A second disadvantage is the reduction in
subsonic performance (compared to a monoplane).

Further investigation of non-interfering supersonic biplanes is
warranted, especially when subsonic performance is relatively un-
important. (Subscnic performance might be completely unimportant
for a supersonic missile launched from a supersonic aircraft.)

Low aspect ratio biplanes (possibly having connected upper and lower
wing tips) are suggested for more detailed study.

More information will be needed on the subsonic and supersonic

aerodynamic characteristics of low aspect ratio biplane arrangements.
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APPENDIX IV-A

STRUCTURAL WEIGHT COMPARISON BETWEEN
A MONOPLANE AND AN "EQUIV. " BIPLANE

The example considered in Sectdon 3 1is discussed in more detail
here. A monoplane with a given wing area S and arbitrery planform is
replaced by a biplane in which each wing of area 3/2 is geometrically

similar to the monoplane wing as shown below. At the same angle

of attack each wing system will have the same total 1ift L and drag D.

z /’t/w‘ﬂ’
b

Ve

Azﬂ(g) /l(.f)g\

AMONOPLLANE WING

E/PLANE WIS

Not only are the wing shapes similar, but so also are the supporting
structures (spars). Thus, at each non-dimensionsl spanwise station
£ = y/ymax, the cross-sectional area of the monoplane structure is A(g)
while that of each biplane wing is %-A(S’). Because of the gecmetric

similarity the corresponding 1ift distributions will also be similar;
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on the monoplane wing the lift per unit spa.n is 1 ,f () while on
each biplane wing ‘eb 1(5), L= bf,f(g)dg For the mono-

b is

plane, the shear stress a.t the spanwise station Yp = g 1

A b _ |
ss.m=Am€3mJ£m(y)dg = A0 !l(g)dg

vhile that of each biplane wing at y, = §,bA2 is
b

!
s.s.b"',qb(_,jb)f £b(3)dg = K’(bg_l]—fi(f)d‘f
4s £
Thus both wing systems exhibit the same shear stress throughout.
The maximum bending stress at each station is b.s.=Mzm/I, where
M is the bending moment, zma.x the half-depth and I the moment of inertis
of the spar cross-section. By geometric similarity Im = hlb. The

bending moment for the monoplane at the spa.nwise gtation Y is

&
Myn =yf (y-ym) gy = b f (5-5)4(s)4s

and for the biplane at b

75 :
_ b |
My, ‘J (4-y) Lo (y)dy = zﬁ! (3-5)A(5)ds
) , :

M
b.s.,. = Im = f(g g)l(g)dj b.s.,
3

and the bending stresses are equivalent. The bending deflections can

be shown to be geometrically similar, also.
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The final comparison relates the weight of structural material
required for bending and shear in each of the two systems. For the

monoplane
b

W, "-'IAm(_H)P(H)dﬂ = b[ A(s)e(s)ds

where W is the structural weight and p the specific welght of the

material. For the biplane
b

Wm

vE
Wy =’*?f"‘b(y)f°(y)dy = vz

Thus the biplane will effect a saving in structural weight.
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CHAPTER V

SURVEY OF PRESENT STATUS

SUGGESTIONS FOR FURTHER RESEARCH




-105-

1. PLANAR SYSTEMS

Study of the results for planar wings shows that gubstantial drag re-

ductions, through the use of spanwise distribution of camber, may be
achieved only for low reduced aspect ratios. Fig. 1 summarizes the im-
provements resulting from camber and twist distributicns. With rectang-
ular wings the best camber distributions found here gave increases in
CLE/CD of 16.7% for an R = 1, 2.8 for an M= 2, and only 1.2% for an
/R = 4. These are the improvements in CLQ/CD over that of a flat wing
with the same planform. Although the camber distributiocn found was not
the absolute optimum, still it is not to be expected that much improve-
ment in CLa/CD remains. For the diamond planform wing of aspect ratio*
two it was calculated that CLQ/CD could be improved 13.1% over the flat

plate value.

#*Here the aspect ratic has been computed dy the conventional formula
M= (span)?/area. The concept so defined loses its significance for
planforms vhich deviate markedly from the rectangular shape. If, in-
stead, the aspect ratioc is defined as (area)/ (chord)2 the value remains
the same for the rectangular wing but becomes 1/2 for the diamond wing.
This shows that "low aspect ratio" is a relative concept. 1In the
present context "low' might be taken to mean near unity or lower for
rectangular wings and near two or lower for diamond wings. It is in-
teresting to note that the aspect ratio defined both ways appears in
the formula for the drag of slender wings with elliptical chordwise
and spanvise loadings"

Fmm) (5

(Jones, R. T., "The Minimum Drag of Thin Wings in Frictionless Flow",
Jour. Aero. Sci. Vol. 18, No. 2, Feb. 1951.
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SUMMARY OF CALCULATED IMPROVEMENT IN C£/Cp
RESULTING FROM TWIST AND CAMBER
FOR SEVERAL PLANFORMS

L&

L5

£-C£/C,
Le=FLaT PLATE £
L4
UPPER BOUND FOR
\ RECTANGULAR WING (a)
L3

DIAMOND PLANFORM
CONTINUOUS VARIATION
OF CAMBER (b)

12 \
DELTA PLANFORM
STEP(%STL_:WV:';;?? G'ION

/ST (C
\ 7
RECTANGULAR WING
~WEDGE CAMBER (d)
PARABOLIC CAMBER (a)

o / 4 3 4 5

1.0

REDUCED ASPECT RAT/O
(@) SEE CHAPTER II, SECTION 5

(b) SEE CHAPTER II, SECTION 4
(C) SEE REF. 6 OF CHAPTER IT
(d) SEE REF. 5 OF CHAPTER IT

FIGURE /
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Thus, noticeable drag reductions can be achieved for low reduced
aspect ratios. For flight at maximum L/D the improvement in CrL2/Cp for
ARC; ior ARO; 2 corresponds* roughly to an 8% reduction in drag. 3By the
analysis given in Chapter I this would lead to nearly a 25% increase in
payload.

The reduced aspect ratio, MRy, referred to above is related to the
geometric aspect ratio at any arbitrary supersonic Mach number by the
formula R, = fJiﬁrifijAR. The calculations were carried out for the
Mach number at which the reduced and geometric aspect ratios are identi-
cal, M = /2 .

The examples considered illustrate the cases in which the camber dis-
tributions are affected by taper exclusively (diamond wings) and by finite
tips exclusively (rectangular wings).

The results obtained indicate the desirability of shaping low aspect
ratio wings to decrease the drag due to 1lift. Wing alone results, how-
ever, are to be regarded as incomplete for practical design purposes.

Such results do show qualitatively the nature of the drag saving tc be
expected, and the methods developed should prove a valuable starting point
for the study of more complex cases. Whenever the reduced aspect ratio is
small, the pressure distribution on a wing attached to a fuselage 1is strong-

ly affected by the upwash field around the Tuselage. Beane** has studied

¥For the most part in this report Cp refers to the sum of wave and vortex
drag only. It is easy to show that at (L/D)pay

0, _ 4 d(efeo)
B % ceo
where the total drag, D¢, includes the parasite drag.

*¥Beane, Beverly J., "The Effect of Planform on the Lift to Drag Ratio of
Wing-Body Combinations at Supersonic Speeds," Douglas Aircraft Company
Report No. SM-1khkSk, July 1952.
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the influence of the fuselage upwash field on the lift of flat plate wings
of various planforms. It follows from the calculations made there that it
is necessary to account for fuselage interference in order to cbtain the
optimal shaping of a lov aspect ratio wing attached to a fuselage. Future
study should be directed toward combining this work with that of the
present report.

The effect of wing incidence should be included in the study of wing
and fuselages in combination. The drag due to lift of the fuselage also
should be taken into account. An example illustrative of the necessity
for considering the entire wing-fuselage combination in evaluating 1ift
and drag due to 1lift is that of a wing at zero angle of attack attached to
a fuselage vwhich is at positive angle of attack. Under such circumstances
a flat plate wing will carry lift but no drag. The drag penalty, of course,

will appear as drag due to 1lift of the fuselage.
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2. SPATIAL LIFT DISTRIBUTIONS

The study of spatial 1ift distributions is still in an early stage,
and it is perhaps most important to list briefly the problems yet to be
solved.

In proceeding from the study of planar 1ift distributions to the study
of spatial distributions three new factors are encountered. First, the
1ift and thickness effects are not completely separable as they were in the
planar case, since in spatial distributions an interference drag term appears.
Second, the intrcduction of side forces is possible, as in the case of "ring"
wings, and interference may exist between lift and side force. Third, for
lifting elements alone the optimum distribution in a given space is not gen-
erally unique, there being a family of 1lift distributions each member of
which produces the same minimum of wave plus vortex drag. (For planar dis-
tributions the optimum is generally unigue).

sach of the above factors suggests problems for further research, some
of which are currently being studied. The investigation of spatial thick-
ness distributions and their interference with lift distributions has been
initiated. The interference between side force and lift should be studied
to determine under what circumstances this interference disappears and
separsble problems result. Also the non-unigueness of optimum 1ift dis-
tributions raises the problem of determining which member of the optimum
family has the least wing area or is best suited for structure.

Perhaps the biggest problem is the approximation of theoretically
optimum lift distributions by practicable wing systems. However, the
theoretical optimum should at least serve as a useful guide In practical

design.
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3. BIPLANE LIFT DISTRIBUTIONS

For non-interfering biplanes, as compared to aerodynamically equivalent
monoplanes, a potential structursl advantage has been shown. This advan-
tage 1s the result of a scale effect for gecmetrically similar structures.

Further research is required to determine whether or not this potential
edvantage can be realized in practice. The possible transfer of 1ift be-
tween the wings of the biplane at Mach nunbers below the design value should
be studied. It is desirable to find a biplane configuration which produces
an even distribution of 1lift between the wings for all flight conditions.

At subsonic speeds the performance of the biplane is inferior to that
of the monoplaﬁe. Design studies are necessary to determine whether or
not the subsonic performance is a critical factor in the design.

It is recommended that further studies be made on low aspect ratio
biplane wing arrangements in an effort to solve the problems mentioned and

thogse which may arise in stability and control.



