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ABSTRACT

In this report a general method 1s outlined for the calculation
of the response of membranes wlth arbltrary boundaries to arbltrary
loadings. It 1s assumed that, by projecting the area of the given
membrane on the surface of an unbounded membrane and then applying
the given loading to this projection, the applicatlion of a suitable
load distribution around the boundary of the projection will enable
us to satisfy the boundary conditions appropriate to the given
membrane. An attempt to find the distribution in question leads to

a logarithmically singular integral equation of an unusual type. A
few solutions are outlined.
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LIST OF S¥YMBOLS

Superficial density of membrane

)

T Tenslon per unit length of membrane

c = ('l'/tS’)‘/1 Velocity of wave propagation in membrane

p Pressure on surface

P Point load or pcle

w Circular frequency

5 Distance along boundary

k =W/c Wave number

T, r* Radial co-ordinates

0. £, Angular co-ordinates

& = /R, dﬁ= r* /R Dimensicnless radialco-ordinates for circular membrane

(71 Laplace's operator

R Radius of clircular membrane

a Characteristic dimension for general membrane

W Transverse displacement of membrane

Jo(x)y Yo (x) Zero order Bessel functions of the first and second
kinds respectively

€ = 2R or 2a (According to context)

£,8) - (&St - THEENEY
®, €,8) Y, $8A)T,(48) - T, (¥ (Ee)

2(AK8) = J Q- 2ascoso+ 2

WADD TR 61-97 v






I. INTRODUCTION

The theory of vibrations is a branch of modern science that has received
considerable attention since the 17th Century. At the present time one of the
problems which has attracted attention is that of calculating the response of a
stiff metal structure to random pressure fluctuations such as may occur, for
example, in the vicinity of a jet engine exhaust. The problem of obtaining the
characteristics of the pressure field is itself extremely complex. In addition
to this, the analysis of modern airframes is difficult and some degree of ideal-
isation is unavoidable at some stage. For some purposes, for example, we may be in
a position to focus attention on a single panel and regard it as a flat plate.

Even the analysis of flat plates is by no means simple and no approach can safely
be overlooked. The two methods most familiar to workers in this field are the
Rayleigh - Ritz or Lagrange method, with all its modifications, and the method

of separation of variablesi.e. the normal mode method.

The idea of arranging a distribution of forces and couples around the
projection of the boundary of the plate in question on to an unbounded plate with
the same physical characteristics and then choosing proper forms for these dis-
tributions so as to satisfy the boundary conditions appropriate to the finite plate

does not seem to have been exploited to any extent in the literature available in

this country or elsewhere. Much of the basic work has been done by H. and L. Cremerl

and by E. Reissner2 but they have made no detalled analysis of boundary value
problems using their results. In order to develop the basic concepts of such an
approach, it is neither necessary nor wise to begin with a difficult problem. It
is therefore the aim of this report to discuss briefly the application of the
method to the well known and relatively simple problem of the uniformly

stretched membrane in free and forced vibrations. For this particular problem

many exact solutions are known for a number of boundary configurations but the

Manuscript released by the esuthors July 1960 for publication as a WALD Technical
Report.
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'influence function' method, which has been briefly described abcve, can be
used with advantage in csses where the boundaries are not simple.
II. THE INFLUENCE FUNCTION FOR AN UNBOUNDED MEMBRANE

We may make the concept of the 'influence functicn' method a little
more clear if, instead of the membrane, we consider a finlte stretched string.
Then 1f a load P exp(iwt) is applied at any point, the particular integral may
readily be found and the addition of the two general solutions of the apprcpriate
homogeneous equation to thils gilves twe arbitrary parameters tc be determined.
These are found by satisfying the boundary conditions at both ends of the string.
Alternatively, however, we could apply the same load to an infinite string and
apply two, at present unknown, loads at the points which would be fixed on the
finite string 1n guestion. A suitable choice of these unknown loads would then
allow us to satisfy the boundary conditions at those points so that the portion
of string inside the 'boundary loads' would behave in the same way as the
finite string in guestion. The problem of the vitrating string has been studied
by several investigators and the work of Professor Lyon4 is of particular
interest in connection with the mcdern interest in the vibrations of systems
subjected to randcem loads,

The sams approach may be adopted in the case of the finlte membrane.
The end loads are now replaced by a load distribution around the boundary of the
projected area of the given membrane on to an unbounded membrane, An attempt
to satisfy the boundary conditim then leads to a logarithmically singular
Integral equation for the boundary distribution., For a flat plate we must use
two Influence functlons, corresponding to a peint load and a point couple, and a
pair of simultaneous integral equations for the two distributions is obtained.

The motion of a unifcrm membrane of superficial density § and tension

T is given by the well known equation:i~




VA - (1135 22 = sy, ty/r (2.1)

where p(x,y,t) is the pressure distribution over the surface and c 1s the velocity
of propagation of small transverse disturbances. If an oscillating point load or
pole P exp(ltwt) is applied at the origin of co-ordinates of such a membrane, assumed

to be unbounded, then the singular part of the solution must be:-

W) = (P/4T) Y (Kr) exp(iwt) (2.2)

with k =W /c. For a circular membrane with a point load at the centre we now

add the non-singular solution of the homogencus equation, namely A Jg(kr), and
make use of the boundary condition to determine A. When the membrane is unbounded,
this cannot be done, and for all finite time after the first application of the

load an outward travelling wave must result far from the origin. We are not here

interested in this aspect of the matter, as we shall always be seeking
stationary wave solutions for finite membranes and (2.2) will be used merely
as a particular integral or "influence function".

For membranes which are of shape other than circular, it is difficult, if
not impossible, to write down a general solution which can then be specialized by
introducing the boundary conditions. We must therefore seek some means of finding
the appropriate special solution directly. The method used has already been
briefly described and will be discussed in more detail in the following sections.

It is also of some Interest to consider the effects of damping. If the
damping is assumed to oppose the motion in such a way that it is always proportional

to the veloclty at a point, then the equation of motion becomes:-

W = VW v ey B/ @ - paW/E (2.3)



I1I.

where ﬁ is a constant. If a harmenically varying sclution of the form
W= W(r) exp(iw t) is assumed to apply for the case pf forced vibrations

and p(x,y.t) is of the form p{x,v) exp{iw t) then the equation cf mction becomes:-

(V2 + k2% = oy} /& (2.4)

where K = MI—EN?)% (2.5)

sl

This equaticn is identicai with that obtained in the absence of damping provided
that we are prepared to make use of solutions Involving Bessel functions with
complex arguments. If g is very smail we may replace equaticml(Z-B) by the

approximate expressioni=

ko = KU = o m) (2.6)

A~

where &JFiZ%ﬂA- The inccrporaticn of damping of the type postulated is therefore
simply a2 matter of repiacing k by ko 1n any results that we may derive later.
GENERAL INTEGRAL EQUATION FOR MEMBRANE WITH ARBITRARY BOUNDARILES
In Fig. 1l iet C bhe any curve, of class C2, which represents the projection
of the boundary of a given finite membrane on to an infinite membrane of identical

physical characteristics.

Fig. 1

The contribution to the transverse displacement W at any point of G due to the
applied pressure field is know and is denoted by Wi(e). Consider a distributlon

on P(£) of loads around C, where £ is 2n auxiliary co-ordinate (see Fig. 1).
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We note that W, (0) must have a single discrete frequency (W) from the point of
view of this analysis but the generalisation would be fairly simple 1f it were
required. Then the total contribution of P(4), in the absence of damping, to

the response at any point @ of C is:-
an
W, (6) = (l/4T5£ P@) Y, {kLi6,0)} 55 (1) 4f (3.1)

L(e,¢) = |rlé - r (@] (3.2)
as in Figure 1. The vectors r(4) and r(0) are the position vectors of the
points A and B respectively. The integral equation which P(4) must satisfy can
now be derived by making use of the fact that the sum of W (8) is zero at all

points of the boundary i.e.

o

an

J; P(¢) Yo{kL(e,cb)} ﬁ(qs) df = - 4TV (6) (3.3)

This equation represents the most general fermulation of the membrane vibration
problem. Once a solution has been obtained, it is a relatively simple matter to
combine the effects cf the loading and the boundary distribution to obtain the
response at any point. The real problem is to solve equation (3.3) which is an
integral equation ofa type that does not seem to have been studied previously,
although it bears a resemblance to some standard forms. We note that the integral
equation 1s logarithmically singular since Y0§;kL(9,6)} becomes logarithmically
infinite as 8 > 4.

If we now suppcse that a solution has been cobtained in some way, so

that P(£) is known, then the response at any point is found in the followling manner:-




Consider the response at the point A(r,8) of Fig. 2  and iet L be the vector AR.
The contribution of the losding is known and is denoted by Wi(r,e)g The contribution

of P(4) to the response at A is, evidently:-

W, (r,0) = U/4T)J:P(¢) Y, {k(re,9) ‘;—%(&J d¢ (3.4)

where L 1e the length of AB. The total response at A 1s thereforei—

Wir,e) = Wi(re)+ (t/n)jw) Yoikttne,e)}%(é) & (3.5)

Once P(ﬁ) has been determined, therefore, the calzuliation of the response at
any point is simply a matter of substituting P(£) into equation (3.5). We shall
next consider as an example the simple problem of the memkrane with a clirculer
boundary. This will ensble us tc make a comparison beiween the present solution
and the known solution cobtained by the methcd of separation of varlables.
IV. THE RESPONSE OF CIRCULAR MEMBRANE
Fer a ¢irzular membrane the integrel equation (3.3)may be simplified,

for:-

dsfdd = R and L = 2R Sin 5lg-6|

i.e. equation (3.3) takes the form

21

(WMLP(&) v,fesindld-al]l &b+ W (0) = o (4.1)

where “§= 2kR. Let Wi (8) be caused be a pressure field p(rg*l,l/) over the
membrane surface, Then, if we regard the elementary load p(r,*yz)r?dr?dvf as a
discrete peoint load and then integrate over the surface we may use equation

(2.2)to obtain:=




booav
Vv (8,8) = R /47) f f pLaLW) Y, fHeR(a Ny faddy  (4.2)

where A& (= r’/R)and Y are auxillary angular co-ordinates and radial co-ordinates.

This expression for Wi(Lk,e) with A= 1 may be expressed as the Fourier Series:-

[=2>]
W ©) = W, o+ Z(w"“ Cosn@ + W, Sin ne ) (4.3)
where the coefficients are given by:-
uo (e?/smf{f pR) Y, {382 (1, By-ol] K d Ry do
= (/40| ff p(B%) Y, {48L(1,8y-0)} Cos no e dy de (4%.4)
- R /4171-)‘”; PUESW) Y L 8L (1, R )] Sinne de dyd©

sa o

These triple integrals are complex in form but it may be shown that one of
the integrations can be carried out irrespective of the form of P(ﬁﬁf)

Using some results glven in Ref. 3 it may, in fact, be shown that:-
Vo= (REMTYY (%&)jjzp@ y) T, 4R sdaFdy

=X ¢]
P

Wy = Ry, ([ pty) 3, (488) Cos ny RAFdpt  (4.5)
W = RY97) Y,(38) [] pp) T, G2e) Sin my €48 dy

in
In the same way, we may expand P({) as a Fourier Series in f#:-

ol .
MKg) = P+ Z(Pmoasné b PaSwAd)  (h.6)

Q0

After a little simplification, equation (4 1) then reduces to:-
(re, /z*r)j Y, (Esin ¢)A¢+(r</2-r) (f* CosugaP,, SH\"O)‘S-Y (8Sinyd) Cosmpdd +

4 \Jao + Z (\J Cos né + w,hSm ne)

We now equate to zaro the coefficients of Sin nB and Cos n® in this egquation

to obtain:- -
arvt WOQ

foo = T RED®
QTH.NA
on RAL(&)
27 Wi,
fin 7 T RR®) |

-

> (4.7)

o
i
{




T

where A, ('g) = f Y, (£ Sin Zch Cos né 44 (4.8)
C ]

It may be shown, again using some results given in Ref. 3, that:-

A1l

I}

where A < 1, It now remains to ca culate the response at any point. In Figure

Y588, , 9l Cos ngdd - T T, HEA) Y, (48)  (4.9)

3 below we consider the contribution of a lcad element P(ﬁ) ds at the boundary

to the response at an interior peint (r,8) of the membrane:~

L p (&)
R
r () S

¥ig.3

Then it may readily be shown that:-

r ]

W(8,0) = (R*/47) f: forsy) Yitsa(auo) Sdddy -

hj W
N Yof{-ﬁ‘é(&i()é)} d¢ -

o4 i
Wy Cos ne+Whn din he}[ , .
P,,Z_\{ 2@ oYafzéﬂ(Q',')@}C\?‘S né dé (4.10)

Using equation (4.9) we may reduce this to the form:-

¢ N

V(b e) = (R’/h)f f p(&5¥) Yu{%ﬁ-?(ﬁ,ﬁ*,v-e)} N dot dy -

o4
WQQJ; (%E A) _ meG‘;nﬁ ‘}wlﬂ S;'“ ﬂ‘e 4

It will be noted that this is exactly the result obtained for the same problem
by the normal mode method. The conditlon for resonance is evidently that

Jn(%j§ ) = 0. The equation for the respcnse is still rather complicated but a

very simple expression can be found for the ressponse at the centre of the membrane,



as many terms in (#.11) will then vanish. We denote the response at this

particular point by W(0O) and it may be shown that:-

X1}

l w .
W)= ;.%@JT p(&%6)B) (8, &) & ot &l (4.12)

where B, (&,8) = v, ¢e8) L G.) -JER) YV (8) (4.13)

when p( &¥ 4) 1s independent of 4 1.e. when the membrane is being subjected

to an axi-symmetric oscillating pressure field, this expression for W(O) reduces
to a particularly simple form and the results are illustrated In Fig. 9 for the
case of a uniform pressure field, For points other than the origin this
simplicity is lost even 1n the case where pf Cﬁ;ﬁ) 1s idependent of g. If we
consider the axi-symmetric case then, for points other than the origin, two
sltuations arise according as Asfor A>& and the range of integration must be

split. If this is done we have the flnal solutlon:-

2 ( , '
). RRD [ @ geneas

> Toden) [
T‘{‘ﬂ?}({g) X P(&‘)@‘@)S‘) [l 1

A similar but far more complicated expression may be derived for the case where

(4.14)

P depends on both & and 4. This problem is well known, however (see, for
example, Refs 5 and 6}, and will not be discussed further. For more complex
boundary shapes exact solutions are not always avallsble, however. For example,
in the case of the elliptical membrane, a separable solution can be obtained in
terms of the Mathieu functions but the analysis is far more complex than for
the circular membrane and the 'influence function' method offers some advantage.
For unusual shapes such as the cardloid, lemniscate etc., 1t offers the only

practical method apart from integration of the equation of motlon by purely



numerical methods. Such shapes are mainly of theoretical interest, of course.
V. THE ELLIPTIC MEMBRANE
Consider an ellipse of semi-major axig 'a' and eccentricity 'e'. Take
the centre as origin and the semi-major axls as initial line. A single load
element (denoted by +) can be separated into a linear combination of unit

symmetric and anti-symmetric components as in Figure 4.

DD ep-eh -

Fig. 4

For the sake of illustration we shall consider only the first of these cases,
namely that where the loading is symmetric about both axes. This is the most
important case as the first eigenvalue corresponds to a mode with this type of

symmetry. Let wi(e) be expressible in the form:—
(o0

W-(e) = Zwm&:s‘zme (5.1)

m=0
It can readlly be shown that the integral equation for the load distributlion

around the boundary now takes the form:-

f f Y, fesle, 0 b fimadd db - - GV (5.2)

where 6le,6,$) = \/I-QZCOSI%(&(I')‘ sin 114-4 (5.3)

We now expand P(£) as a Fourier Series in 4 (see equation 4.6) and after some

simplification equation (5.2) reduced to the form:-

el
a

o2 o4
gwmaszma:r (ca/m)z0 Phj Y, f‘@G(e,H,qﬁ)F fl- £2Cos’d Cosangdd = 0 (5.4)
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where terms in Cos2nf only have been retained in the Fourler series for P(£4).
We now expand the integrals involved in thls equation in the form of Fourier

Series in 9:-
2% ob )
fYO&G(?,G,dJ)} Jf-e"(‘oslﬁ Cos2npdg = 7 Arm Cos 26 (5.5)
¢ M=

where the coefficlents 4 o 2T given by:-

"'\l .\“

Alm = —r(i+5 Sg Y€§G(e 8, ¢v)}/t— ¢ Cas’ ¢ Cos2ng Cos2m0 A8 46 (5.6)

with the symbol So representing a particular form of the Kronecker delta.

We may further write (5.i¥)in the following form, if use is made of equation

od od
(6:6)3- E {w +  {(a/s1) Z F’,,A,,,h} Cos2m6 = O
m=o n= 0o
> B A, = - TN, (5.7)

n= o
This infinite array of algebraic equations may be solved, in principle, for all
Pn. In practice, the array must be curtailed after a finite number of terms. The
cut off point depends on the degree of accuracy required and on the values of the
parameters © and e. The coefficientSJAmn may be obtained by numerical integration
ory, If e is small, the functions invoclved in the kernel of Amn may be expanded as
Taylor series in e2 up to a specified number of terms, and the double integrals
can then be evaluated in terms of known functions. Moreover, the array of
equations now terminates automatically, this belng endured by limiting the
number of terms in the Taylor serles.

For resonance in a mode of the type under consideration we have the

infinite determinanta) equation:-

[Awf| = © (5.8)

11



and from this may be determined the allowable values of & for free vibration.
If e2 is so small that e4 may be ignored, it may be shown that the first
resonance condition 1c given by the first root of the equation:i-
SUE(-E = o

|2 €= 4.30(1 + L&) (5.9)
If terms in e4 are incorpeorated, the determinantal equation is far more
cumbersome and will not be Included, It is sometimes useful to consider a
different eigenvaliue f%l corresponding to the radius R of a circle with area
equal te that of the given figure. 1In this case:~

€. 2kR= 21ka (R/a)
= 4.9} (5.10)

if terms in 54 are ignored. This means that the first eigenvalue, defined in
this way, 1s very insensitive to quite large changes of shape from the circular
form. Thils fact was rirst explicitly stated by Rayleigh5 and allows us to obtaln
an apprcximation to the first eigenvalue of any shape of membrane.
VI. CONCLUSIONS

The fundamental influence function for membrane vibrations is given
and the result is sufficient to enable us to solve the most general problems of
infinite and finlte membranes subjected to arbitrary loadings. The foundation
has therefore been laid for the solution of particular problems of academic and
practical interest. Partlicularly simple expressions have been derived feor the
response of a circular membrane to an axi-symmetric pressure field and these

could be used as a basis for the investigation of the response of a circular

membrane to an axi-symmetric pressure field wlth a random time dependence.

12
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