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ABSTRACT

The classification of an ensemble of continuous signals {f(a)(x)}
is accomplished by expansion in terms of a set of orthogonal func-
tions {;p (x)}, The coefficients ¢, @) of the expansion represent
the desu'ed information content of fhe continuous signals. A prob-
ability measure Py with respect to f(a}(x) is defined on {qb (x)}.
That set of functions {9, (x)} is desired which concentrates the
p's on a few functions instead of distributing them over many,

This is accomplished by minimization of the entropy function

S ({1 = - E 1 P log py with respect to {#;}. The p; are shown
to be the dlagonal terms of the autocorrelatmn matrix G, whose
complete set of elgenfunctions is adesired set of orthogonal functions
and whose elgenva.luea represent the associated p's, The expansion
of the set {f\% (x)} in terms of the eigenfunctions of the auto-
correlation matrix is the Loeve-Karhunen (L-K) expansion. This
expansion in addition minimizes the mean square error which re-
sults from truncating the expansion. One application of the method
is the clustering of ninety five samples of the spontaneocus activity
potential in the ventral nerve cord of a crayfish. The first L-K
expansion coefficient divides these samples into three major groups,
In another application samples of the power spectrum of twelve
isolated vowel sounds spoken by nineteen persons are separated into
roughly nine disjoint regions. This is accomplished by using the
first three L-K coefficients. Use of the fourth coefficient discrim-
inates the most troublesome remaining vowel from the rest,
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SECTION I

INTRODUCTION

First, a few general remarks about the problem of classification,
We are given a collection of objects each of which is described by a
set of predicates or a set of variables., The task of classification can
be divided into two kinds according to the modes of application: rec-
ognition and clustering, We usually speak of recognition when the
collection consists of two subcollections, such that theobjects in one
of the subcollections are already placed in different classes, and the
task consists of placing items of the second subcollection into these
ready-made classes "in imitation" of the paradigms given by the
firat subcollection, We speak of clustering, when neither classes nor
paradigms are given, and the task consists of introducing classes in
such a way that objects within each class cohere well together.

There is no unique solution to either of these problems, basically
due to the "generalized theorem of the ugly duckling” (ref 4), To
apply this theorem to the case of continuous variables, we note that
due to the inevitable error and inaccuracy of observation, the continuous
variable can be quantized so that the information can usually be ex~
pressed without loss by a finite number of two-valued variables (pred-
icates). What the theorem states is essentially the following, Ifa
particular group of r non-identical objects astand mutually in a cer-
tain formal relationship with reference to s predicates, then any
other group of r non-identical objects stands in exactly the same
formal relationship with regard to s other predicates, albeit these
predicates may not be found in the original set of predicates, but
identifiable among the possible Boolean functions of the original pred-
icates, Thus, for instance, any arbitrary pair of two objects in the
collection shares a constant number of predicates. Thus, if all pos-
sible applicable predicates have the same weight, then there cannot
be any classes or classgification, Conversely, if we recognize some
useful classes among objects, that means that some predicates are
given more importance than some others. By the same token, some
variables are instrumental in defining useful classes and some others
are not, Classes per se do not exist in any given collection of objects.
They emerge only when the purpose or usage is given for which classes
are used, since some predicates and variables are more pertinent to
the given usage of the classification.

The task of classification then becomes largely one of extracting
more important predicates or variables, This implies that elimination
of irrelevant information and compression of relevant information is
the primary goal of claassification problems,
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Suppose, for instance, we have the following recognition problem,
In the subcollection of paradigms, we have one hundred yellow roses
and one hundred white foxes, and we are told that the first hundred
items belong to class I and the second hundred items belong to class
II. Suppose that the second subcollection consists of a yellow fox,
Does it belong to class I or class II? It should belong to class I, if
color description is more important and it should belong to class II,
if biological species is more important, The first answer may be
correct for the usage with reference to color photography and the
second answer may be correct for the usage of biologists. In the
first case, for the purpose of information compression, we should
suppress all predicates other than color, and similarly in the second
case,

In addition to this general arbitrariness inherent to any inductive
process, the problem of clustering involves other types of arbi-
trariness, such as a desirable number of classes, a desirable number
of members in each class, a suitable definition of membership and
non-membership of a class, etc.

Probably, the most general starting point for classification is
the assumption that each subcollection which can be taken in the entire
collection is assigned a certain degree of "cohesion" (ref 4). In some
cases, cohesion may originate from an "emergent" property which
cannot be reduced to a bilateral relation, such as similarity, dissim-
ilarity, proximity and distance, What is dealt with in the pregent
paper, however, is the case where the cohesion is reducible to a bi-
lateral relation and further the "distance" between two objects is
given or calculable, in such a way that there exists a set of variables
which subtend a space in which the Euclidean distance becomes pre-
cisely the distance in the above sense. In this particular case, the
essential algorithm of classification becomes discovery of the optimal
way of information compression which on the average loses as little

information as possible with respect to the distance between pairs of
objects,

The problem we are facing in this paper is one of classifying
continuous signals. Since a continuous curve corresponds to con-
tinuously many variables each of which can take continuously many
possible values, the first step of information compression will be to
expand the continuous function with the help of an orthogonal function
set and use the coefficients of the expansion as carriers of information,
This reduces, at least, the number of continuously valued variables to




an enumerable infinity, The next step of information compression

will be to choose an orthogonal function set in such a way that a finite
number of terms in the expansion may be sufficient to convey the
information as to the basic concept of distance to a good approxima-
tion, The following sections will be concerned with this problem of
optimal expansion, After these mathematical sections, a few examples
of application will be introduced.

Although, the above description assumes that the objects are
continuous curves, actually the same principle of extracting optimal
variables when the distance ia well defined can be applied to the cases
where the objects are vectors with an enumerable or finite number of
components. The results of those cases will be published elsewhere,

The present paper is concerned mainly with the aspect of informa-
tion compression, which is only part of the procesa of recognition,
The problem of zoning (division of the space into disjoint volumes
corresponding to classes) and the problem of decision making (such
as the Bayesian algorithm) require, among others, careful study in
connection with classification and recognition, but are left out from
this paper,

The author notes here that his attention was drawn to the Losve-
Karhunen expansion by Eugene Wong {(ref 5), and that he became in-
terested in this method mainly due to its striking similarity with the
theory of the density matrix in quantum mechanics, After the author
decided to try this method on a speech recognition problem, it came
to his attention that Kramer and Mathews (ref 2) tried a similar method
on the coding problem with vocoders, Their method corresponds to
a discrete (instead of continuous) version of the L.-K method, and
should become identical at the level of computation on a digital com-
puter, A surprising fact is that Kramer and Mathews came to this
idea through a consideration quite different fromthe L-K method, and
that the name of L-K method is not mentioned even a single time in
their paper, R. Bakis and G. Hu (ref 1) independently, but later
than these two authors, also applied the method to the problem of
isolated vowel recognition, The present author is inclined to believe
that had their results been as encouraging as ours (see section VI of
this paper) they would have followed through their initial attempts
and developed a ugeful speech handling methodology by now,



SECTION II

OP TIMIZATION OF INFORMATION COMPRESSION

By an "ensemble", we understand here the collection of a large

number N of similar objects; of which Nw( a)' @ 2,000y ¥

=1,
belong to type a, whereby the relative frequency w(a) satisfies the

whe) (a) _

postulates of probabilities; z 0 and E w » Since we

ugually consider the limiting case N — « we can make abstraction

of the number N, and represent the ensemble as a set of types,

{a)

a=1, a=2,..., with a probability measure w'" ',
We are given an ensemble of (complex) functions

f{a,(x), a=1, 2,..., of a {(real} variable x with respective weight

w(a), where each £(a)(x) is square-integrable in the domain (a,b).

{a)

We assume in the present paragraph that each function f '(x) is
already normalized so that
*

where the star means the complex conjugate,

Let {9 i(x)}. i=1, 2,... bea complete set of orthonormal
functions also defined in (a, b) so that

{bﬁ i*(x) ¢j(x) dx = "1_1 (2)

If we expand f(a)(x) in terms of the ¢i(x) as




£( a’)(x) = :élcl(a)wi(x) ,
M= % "0 ) ax. (3)

Then, the normalization {eq 1)} will, in virtue of eq 2 result in

{blf(“’(x) (% dx =é1"’1(a)'2 - 1. (4)

It may be considered as very natural to define the "distance™

between two functions ft a)(x) and f(ﬂ)(x) by

pist (£, . {blf(a)(x) - Py 1% ax

-2 - {b %) M + 1% £y ax (5)

(a)

or equivalently in terms of the coefficients c

=2-§ (ci(a)*ci(ﬁl * °i(a)"i(ﬁ)*’ (6)

The second term of the right-hand sides of eq 5 or eq 6 is nothing but
the "correlation" between the two functions, hence, we can say that
the larger the correlation the smaller the distance and vice versa,

which ise intuitively satisfactory,

An important fact to note in connection with the notion of distance
{hence also correlation) is that it is formally invariant both for the
unitary transformation from the x~-representation to the i-representation,
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and for the unitary transformation from the i-representation based on
(¥ 1} to the j-representation based on another orthonormal function
set {¢j}. The first transformation is characterized by the matrix

(x| T 1) =y {x) (7
which satisfies
@It e = wIT o~ 9, ) (8)

where the superscript (-1} means the inverse and the bar (-) means
the hermitian conjugate. The second transformation is characterized
by the matrix

WTin= £ 9 ) oy ax (9)
with

GIT 0 = 61T 10 = L0760 v 60 ax (10)
From TT ' =T !T=1 follows then

z lul'rlmz=§ el =1 (1)

(Q)I
i ’

The magnitude |[c or more convenlently the squared magni-

2
tude [ci(a)[ , of the coefficient for :pi(x) in the expansion of f(a)(x)
in eq 3 can be regarded as a good measure of the extent to which the
{normalized) function zpi(x) is useful in representing the given function
{a) . _
f' '(x). Those base functions zpi(x) whose coefficients are small in

magnitude in eq 3 can be ignored without altering the situation

R



appreclably, Therefore, its average in the ensemble

by = 2wl e ‘“’lz (12)

can be considered as the measure of importance of ¢ 1(x) when we
represent the ensemble of functions by the function set {'Pl(x)}. The

convenience of using the £, thus defined for this purpose stems from

i
the fact that it is a probability measure defined on {rpi(x)} satisfying

(]
Py= 0 Zypy =1 (13)

{ w(a) }l

For a given ensemble of functions { f( a)}’ the values
of the p's vary depending on the choice of the orthogonal function set
{y i}. From the point of view of information compression, which ia a
necessary step in recognition problems, those orthogonal function sets
are preferred for which the p's are concentrated on a few functions
instead of being widely spread over many functions., To formulate
mathematically this idea, it would be convenient to introduce the
entropy function in terms of the p's

S({y;})= -2 ) Py log Py (14)

which depends on the set {¢ } for a given ensemble { ¢ a)} with
{ w(a)} The desirable choz.ce of the function set {¢i} will then be
obtained by minimization of S by variation of the {dJi}. Let this
optimal function set {qu} satisfying

S({9,))=Mins((¥)) (15)

v,)

be called the optimal function set for information compreasion, or by
abbreviation OFSIC, The next section will give the way to obtain the
OFSIC.
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SECTION III

ENTROP Y-MINIMIZING PROPERTY
OF LOEVE-KARHUNEN EXP ANSION

We shall first define a special function set, which we denote by
{¢j} and then proceed to demonstrate that this function set is indeed
an "OFSIC,

A hermitian matrix G called the autocorrelation function, or
the density matrix is given in the x-representation by

(x |G ’y) = E w(a) f‘a)(x) f(a)*(y) s, AaSx<h, axysbh

-z wl® 7 I e, Y "M 00 v i) (16)

The same matrix in the i-representation based on an arbitrai-y func=-
tion system { #’i(x) } is

1l k) = {b{b(ilT-llx)dx(lely) dy (y IT1X)

-z wt® ci(a) ck(a)* (17

where the unitary transformation T is given by eq 7.

We define a special function system {¢

j(x) } as the set of
eigenfunctions of G, i, e,,

£ x1G1y) 9,1y = A, 9,0x) (18)

When there is degeneracy, the eigenfunctions are not uniquely defined,
but we assume, for the present, that within this freedom one complete
orthonormal function set is arbitrarily chosen, If there are u lin-
early independent functions among { £f{®) }, there will be § non-zero
eigenvalues, allowing the definition of u eigenfunctions, To make
{d.(x) } a complete function set, we have to augment this set of 4
functions with the eigenfunctions corresponding to the multiply degen~-
erate eigenvalue zero, The expansion of a function (@) in terms of

o e AT T R R T e

e e A R T e T



such a particular set {qu L

) = 2, 8,0 0,00 (19)

is nothing new and is known under the name of the Lo\eve-Karhunen'
expansion (ref 3} usually with an additional condition (eq 30) below,
but the property we are now going to prove is something so far un-
noticed, If we insert eq 19 in eq 16 and write out eq 18 we obtain

(a) (a) (a)*
Zv g g =\ 8y (20)

In other words, if we tranaform eq 17 to the j-represlenta.tion based on
{ ¢,} with the help of the unitary transformation T"® of eq 9 it be-
comes diagonal, i.e,,

GIT™ 1) (116G k) (k[T 1) = A8y, (21)

and conversely

alelk = F @lT(n xjul'r‘llk) (22)

where (1 ]G |k) is the i-representation based on {wi ).
Whether or not the special function system { tj: is used, the

diagonal elements (i |G |i) of eq 17 are all non-negative and sum up
to unity, for they are nothing but p; of eq 12

p, = |G [1) (23)
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From eq 22 follows then

0y =3 Ay N (24)

where the matrix

Ay = lalTint®= o (25)

is "double-stochastic', due to eq i1,

J@ Ag=F A=l (26)

Now we are prepared to prove

Theorem 1, For a given function ensemble, the value of the
entropy defined in eq 14 on the basis of an arbitrary function system

{ wi} cannot be amaller than its value based on a Loéve-Karhunen
function system { ¢j }.

In other words, the Logve-Karhunen function system is an OFSIC,
If there is more than one OFSIC it is only due to the degeneracy of the
matrix G. To prove theorem 1 we need only introduce as a lemma
the well-known H-theorem in its simplest version, to which we need
not give any demonstration here,

Lemma 1 (H-Theorem), Let Py i=1,2, ..., beaprobability
distribution, i,e., P, = 0 and )i P, = 1, and let Aij be a double
stochastic variable, i.e, it is a matrix satisfying eq 25 and eq 26,

Then

- Ip.logp. = -2 q.1 . 2
jpj ng ¥ q; log q (27)

10
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where
W Ay P (28)

All we need to prove theorem 1 is to replace {pj } and {qi}
by {JLJ} and {pi} respectively in the lemma, Eq 27 becomes here

-}J Rj log kjs - i," Py log Py (29)

satisfying eq 15, The question as to when the equality sign in eq 27
becomes valid, i.e., as to when two function systems become both

optimal, will be discussed in Appendix I,

11
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SECTION IV

ERROR-MINIMIZING PROPERTY
OF LOEVE-KARHUNEN EXPANSION

In the discussion of this section, we have to agree that the labeling

of the eigenvalues Jlj of G is so made that

11 = azz A;_- {30}

This is often included in the definition of the Lo8ve-Karhunen expansion
but is irrelevant to the theorem of the last section, (Let us note here
that relabeling can be considered a unitary transformation), The
Loéve-Karhunen expangion is usually characterized as the one which
minimizes the mean square error committed by taking only a finite
number of terms of expansion, in the following sense, The average

of the squared error committed by taking only n terms in the ex-
pansion is

B a2 w2180 - 8 oMy 00 ax (31)

=4

{a)

where c is given by the second line of eq 3. The above mentioned

characterization of the Lodve-Karhunen function system {¢j} implies
then

E ({#,},n) = Min E ({#, },n) (32)
i () i

for each n, This property is, of course, also very desirable for the
purpose of information compression, but it is rather interesting that
the entropy-minimizing requirement and the error-miriimizing re-
quirement result in the same function system,

In this section, with the help of Appendix 1I, we shall give a proof
for eq 32 through an approach a little different from the usual one.,
Namely, we shall introduce a theorem (presumably new) which has an

interesting implication also in connection with the theory of Markov
chains,

12
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We can write eq 31 also as

E({¢i}on)= % w(a). T e

(a)lz
i=n+l

i

n
=1-§p

izl "1 (33)

where Py is given by eq 12 and eq 13, Hence, eq 32 becomes simply

thg

717 % 1 i

where the A, are defined by eq 18, and constitute a special case of
the p; in thg representation diagonalizing G, Eq 32 or eq 34 asserts
its validity no matter how the p's are labeled, provided the A/'s are

arranged as in eq 30, In view of eq 24, we can further rewritejeq 34
as
n e
2 a=2 2 a4, (35)

The theorem we need then in order to prove eq 34 or eq 35 is the
following:

Theorem 2, Two probability diatributions {pi} and {X }
satiafying, p, =20, A, 2 0 Z: pi 1, }..‘ A =1 are

i h] 'i=1 =l )
connected by a double stochastic matrix Aij as in eq 24, The labeling
of the A, is done in 2 descending order as in eq 30, Then, for any

j

arbitrary n, the sum of the first n elements of the {Jlj } is not
less then the sum of the first n elements of the [pj b
I conjectured without proof validity of Theorem 2 and told Profes-

sor S. Kakulani about it, who thereupon immediately provided me with

13
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an intuitively interesting proof., I reproduced the orally transmitted
proof in Appendix I in my own language, Any defect is to be attributed
to me,

Eq 20 can be interpreted as showing that the L-K coefficients
g, 's with different £'s are statistically uncorrelated. This provides
another argument for using the L.-K coefficients as variables to re-
present economically the members of the ensemble, It would be
desirable from the viewpoint of elimination of redundancy to use var-
iables which are naturally statistically independent, but in the absence
of such variables, statistically uncorrelated variables may be the next
beat, Further, if each of the g!'a has a Gaussian distribution, they
become statiatically independent.

For the purpose of discrimination it is advisable to subtract the
average function E w(a) f(a )(x] from each function f( a)(x) before
applying the L-K method, for if this average is not zero, the first
eigenfunction tends to represent this average function which has no

discriminating usefulness,

14




SECTION V

EXAMPLE OF CLUSTERING:
ACTION POTENTIAL SPIKES IN NEURON BUNDLE

The following is an example showing that in some cases the dis-
tribution of objects along the axis representing a Looeve~-Karhunen
coefficient already displays obviously disparate peaks so that cluatering
can be done without further elaborate methods such as one proposed
in reference 4,

It is desirable but not practicable to measure simultaneously the
potential of each of several neurons separately. We could achieve the
same goal, however, if we measure the electrostatic potential of a
bundle of neurons altogether, and then let a computer recognize the
classes of shapes of action potentials, since each neuron in the bundle,
due to its geometrical position relative to the electrode, gives rise to
a different but definite shape of action potential on the gross electrode,

Dr, W. Makous of IBM Research took a digitized record of poten~-
tial (quantized into 64 amplitude categories) of spontaneous activity of
the ventral nerve cord of a crayfish at a sampling rate of 13,400
cycles per second, At the same time, a photographic record of the
oscilloscope display of the same measured potential was taken, The
results explained below are those obtained in the first attempt of this
kind, and by no means represent the limitation of the method,

Figures 1 and 2 are results obtained by applying the L-K method
to 95 spikes measured in one series of observations made on the
ventral cord of a crayfish, As the histogram of figure 1 shows, the
first L-K coefficient classifies these 95 into 3 major groups, The
left group consists of dull concave-shaped mono-phasic spikes, The
right group consists of dull convex-shaped mono-phasic spikes. The
central group consists of tri-phasic spikes which are definitively
genuine action potentials. This separation into three groups is a case
of "natural" clustering., Figure 2 is the classification of the same 95
spikes, according to the value of the curve at the point farthest from
zero, BSince, the L-K method normalizes every curve, it is advisable
to use the size of each curve as another characteristic variable. The
three kinds of shaded ared on figure 2 correspond respectively to their
counterparts in figure 1, The tri-phasic action potentials are sepa-
rated again into three sub-classes in figure 2, and this distinction
corresponds very well with human discrimination made on the
photographic record.

The eigenvalues of the G-matrix were showing fast descent with
increasing number of the index 0,4678, 0.2849, 0,0432, 0, 0335,
0.0196, 0.0173, 0.0140, 0,0122, 0,0112, 0,0098, ... The entropy
was 2,586 bits,

15
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Histogram of first L~K coefficient for 95 samples of spikes of spontaneous
activity In the ventral nerve cord of a crayfish.
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Figure 2 Histogram of the peak amplitude of 95 samples of spikes of spontaneous
activity in the ventral nerve cord of a crayfish.
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SECTION VI
EXAMPLE OF RECOGNITION:
POWER-SPECTRUM OF VOWELS

Figure 3 representa results obtained by applying the Li-K method
to the deviation from the average of the power-spectra (obtained by 36
bandpass filters) of twelve different vowels (i, 1, €, a2, e, 0, A, u, U,
Y X', ¥ ) spoken by 19 different persons {(male and female). The
center-frequenciea of the filters range from 100 to 10, 000 cycles per

second and their bandwidths from 50 to 1,200 cycles per second.

Figure 3 represents 12 x 19 points in the space defined by t,an“1 (CZICI)

and tan-l (c3/ c 2 +c z), where cl. €y and ¢

] 2 are the first,

3
second and third L-K coefficients, Figure 3 shows a rough determi-
nation of 9 disjoint regions, purposely tolerating intrusion of some
"alien" elements in each territory in order to avoid excessive ger-
rymandering. This zoning can be considered as an aid for recognition,
The o and the ) occupy a common region, and this may lie in the
nature of things. The distinction between I and e is so small that

a confusion of these two may be forgiven at this stage of the game,

The most troublesome one is ¥ (er, ir, or ur in the usual spelling)
which intrudes different regions. However, figure 4, which represents
the distribution along Cy shows that the & forms almost a separate
island in the c, space. It is to be expected from the beginning that
considerable overlapping of regions is inevitable in speech recognition,

We should probably be surprised that the extent of overlapping is not

more than seen on Figure 3, Location of a newly arriving asignal in one

18
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of the nine zones can be done by a machine, A better result is to be
expected if we make emaller meshes than these nine zones and apply
the Bayesian decision method, Automatic determination of zones by

a computing machine may be done by a method like that of M, A,
Aizerma.nl, but the reward may not be as great in the present problem

in comparison with the complicated computer calculation required,

1, See, e.g., Alzerman, M. A,, "Experiments on Teaching Machines to Recognize Visual Images®
in Biological A pects of Cybernetics USSR Publishing House, Moscow 1962,

21
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APPENDIX I

DISCUSSION OF EQUALITY CONDITION
FOR THE H-THEQOREM

To digcuss the case where there are more than one OFSIC, we
have to complete lemma 1.

Lemma 1 - continuation. KEquality in eq 27 holds if and only if the

pi‘s having indices belonging to each "terminally connected" family
have the same value,

Definition. Two indices i and k are said to be "terminally
connected” (a term borrowed from a consideration of Markov chains,
hence it may sound a little awkward here) if there exists a chain of
indices (i,,..,m,n, ..., k) in which each pair of consecutive indices,
say, m and n, are such that there is, at least, one index r which
satisfies Arm » 0 and Arn = 0., A family of terminally connected
indices is such that any two members of the family are terminally
connected and a member and a non-member of the family are not
terminally connected,

Applying this idea to our problem, let us assume that {l,ﬂ’i} and
{¢j} are such that equality in eq 27 holds. The lemma then tells us

that each non~degenerate eigenfunction ¢, constitutes a family with

only one member, and that more than one;1 eigenfunction corresponding
to a multiple eigenvalue can constitute a terminally connected family,
Now, Aij = 0 means that ¢j and wi are orthogonal and Aij =0
means that they have mutually non=vanishing projections, Hence, if
a subspace subtended by a certain number, say, d, of ¢'s is also
subtended by d #'s in such a way that no subspace of lesser dimen~
sion within it is shared by ¢'s and ¥'s, then the d ¢'s are "ter-
minally connected”. From this we can conclude that {qﬁj} and {‘bi}
yield the same entropy value if and only if they are systems of eigen-
functions of the same matrix G and they differ only through the ar-

bitrariness allowed by the degeneracy of the eigenvalues,
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APPENDIX II

PROOF OF THEOREM 2

The proof given below of theorem 2 stems from Professor S.

Kakutani,

Lemma 2, For any given integer n and for a given double-

stochastic matrix Aij(i. j=1, 2, +.4, » )}, there exists another double-

stochastic matrix Bij' such that B,, =0 for i» n or j>n and

ij
= =i < ijis
Bij Aij for 1Si=n and 1< j=n,

Proof, Let D denote the class of n x n matrices with non-

negative elements Cij{i. j=1, 2, ..., n) which satisfy

n n
0,= X C,,=]1 and 0O = £ C, , 5], A row (column) whose row-
joa=1 i I =1 ij
sum (Ti (column-sum 0:1) is less than unity it is said to be deficient, S

The total number & of deficient rows and columnsa is called the degree

of deficiency., The degree zero, 6 = 0, means that the n x n matrix

s

is double stochastic, A simple fact to note about the deficient rows
and columns is that if there is one or more deficient rows (columna)}
then there is, at least, one deficient column {row). This can be seen

easily if one notices that the sum of all row-sums is equal to the sum

n n

of all column-sumas 121 O'i = _21 O'j We shall now prove the following
= =

statement by induction with respect to 6, If ”Cij“ ie a matrix

belonging to D and has degree of deficiency &, then there exiasts
*

J

%
such that Ci. = Cij' Among 6 deficient row-sums and column=-sums
of Ik:ijll , let the row-sum 0, be (one of) the largest, (The argument

another matrix ||(J1 || belonging to D with degree 6 -1 or &§ -2

k
goes exactly the same way when a column-sum is the largest}), Due to

the above mentioned fact, there is, at least, one column, say, the
th
¢ , which is deficient since there is a deficient row O'k < 1l. Increase
o th
the element Ck[ until its k row becomes non-deficient, The

% *
matrix thus obtained will be denoted ”Cij ]l . This matrix | ICij M
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differs from ”Ci_]” only by one element at the intersection of the

&
kth row and the { column, and Ck > C hence we can write

R ke’

in general C,, = Cij(i' j=1, 2, ..., n}. The degree of deficiency

1j

#

of ”Cij || will be either 6 ~1 or & - 2 according as O'k;v 0'! or
G'k = Oi . The case 0'k< Oi is excluded since Uk is the largest

non~unity sum, We can continue this process until the degree of
deficiency is two, and then these two deficient rows will be elim-=-
inated by one stroke, (The case 6= 1 cannot happen). Coming
back to the statement of the lemma, leithe matrix HAJH be de-
fined as an n x n matrix a;uch that Aij = Aij for 1sisn and
l1=<j=sn, Then, this ”Aij || is a member of D, and the above

proof shows that there exista a non-deficient {double-stochastic)

: % 3 e
matrix “Bij I belonging to D such that Bij =A  =A, for

o1
1sisn, 15 jsn, The Bij of the lemma can be defined by
%
Bij = Bij for 1Sisn, isj=<n and Bij = 0 otherwise, This

completes the proof of the lemma.,

Proof to Theorem 2, Let eij(i, j=1, 2, ..., n} be defined

by

B,.=A,,+ €, (36)

where Aij and Bij' (i, j=1, 2, ..., ) are related as in lemma

2. Since the matrices Aij and Bij are double-stochastic, we

have

e
1l
o

37
j (37)

25



A i 0 S AR N o RS it 43

S Ty s S b e

T ak

ke St

AR s Kol 00 o ek 1

We have then

et

=1 % A
14714 B;.

j j=1 ij

n
; A
= iglj’él ij )‘j +

nn
= X X A X +
i:lj:[ 1] ]

Therefore

151 M= h ey

This completes the proof.
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(smceiElBij = 1)

n n
A
i#1%1 €

1j ij n+l {due to eq 30 and eq 36}

n o0

z z A A,
i=1 j=n+1 1] )

{due to eq 30 and eq 37)

(due to eq 24) (38)
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