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ABSTRACT

This report is concerned with a continuation (see report for 19641)) of the
research on the nonlinear properties of solids, with special emphasis on the
role of dislocations in harmonic generation, the effects of plastic deformation
and dislocation interactions with point defects.

An expanded and improved theory of harmonic generation has been developed.
The main new features of this theory include: 1) A demonstration that, in the
string model, the nonlinear behavior of screw and edge dislocations is
qualitatively and quantitatively different. In particular, it is shown that
the nonlinear terms responsible for harmonic generation are of opposite sign
for the two cases; edge dislocations behave as "hardening" strings and screw
dislocations as "softening" strings. 2} The contributions of the lattice and
of dislocations to the amplitude of the second harmonic are difficult to
separate when the two are of comparable magnitude.

Dislocation breakaway from pinning points was considered as a possible
source of harmonic generation; this contribution is of the same sign as that
from screw dislocations.

Experiments were carried out on aluminum single crystals with several
different impurity aontents, as measured by electrical resistivity ratios
(RBOOOk/Ru 2ok) ranging from 270 to 3100, Amplitudes of the third harmonic,
as well as the attenuation of the fundamental wave, were measured as a function
of bias stress, amplitude of the fundamental wave and amount of plastic
deformation, The resuylts of these experiments are consistent with the
qualitative predictions of the theory presented.

A capacitive pick-up method was used to measure the magnitude of the
fundamental and higher harmonic amplitudes for the purpose of comparison with
the quantitative aspects of the theory.
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I. Introduction

This report is concerned with research on the physics of deformation and
its application to the study of defects in solids. The particular aspects of
this study covered in the past year are: 1) non-linear behavior of solids due
to the vibrational motion of dislocations; 2) the separation of dislocation
and lattice contributions to the non-linear behavior; 3) experimental studies
of the influence of controllable parameters, such as impurity content and
amount of plastic deformation, on the properties mentioned.

The general background of the research discussed in the folliging was
presented at some length in the "End of the Year" Report for 19647, and will
not be repeated here in detail. A few of the calculations that appeared in
that report have been extended and repeated here, for ease of reference and to
maintain continuity. The remainder of the material is new.

The study censists in calculating and measuring the distortion, or
harmonic generation, of waves propagating in metal single crystals.

When a sinuscidal ultrasonic wave of a given frequency and of suffigient
amplitude is introduced into a nonlinear or anharmonic solid, the fundamental
wave will distort as it propagates, so that the second, the third and higher
harmonics of the fundamental frequency will be generated. In many solids the
nonlinearity of the stress-strain relation (deviation from Hooke's law) may
arise from two causes. One is the anharmonicity of the lattice, which is a
characteristic of all solids, and the other is the contribution of the non-
linear part of the stress-strain relation for dislocation displacement; this
cause applies to solids in which glide motion of dislocations is produced by
small stresses, i.e., to most metals. The remainder of this discussion refers
to the cases for which both contributions are present.

The dislocation contribution to the generation of second harmonics 19
high purity aluminum single crystals was demonstrated by Hikata et a1.172)3)
It should be emphasized here, however, that for the generation of the second
harmonic the stress-strain relation must be nonlinear, as well as not
symmetric with respect to displacement gradients. In the case of disloca-
tions, therefore, the displacement from the equilibrjum position should be
different for equal positive and negative values of stress. This condition
may be achieved, for example, by applying a static bias stress in addition to
the ultrasonic wave, assuming that the dislocations are straight at the outset.
The static bias stresses usually required for this purpose are in the range
10% ~ 10° dynes/em“; these stresses have no measurable effect on the
coefficients of the anharmonic terms of the latticel)2)3

In the case of the third harmonic, however, the condition of nonsymmetry
is not required., A symmetric {(nonlinear) stress-strain relation is sufficient
to generate the third harmonic; in other words, the bias stress is no longer
necessary for dislocations to generate the third harmenic. In the case of the
second harmonic, the absolute value of the thermal expansion coefficient is a
measure of the lattice contributionu), and in the cases studied so far, the
lattice contribution and the dislocation contribution were found to be of



comparable magnitude. Thus, in order to study experimentally either lattice or
dislocation anharmonicity it is necessary to separate the two effects. On the
other hand, the lattice contribution to the third harmonic is found to be a
factor of ten or more smaller than the dislocation contribution to the third
harmonic (the dislocation contribution is comparable for the second and the
third harmonic). Therefore, by investigating the third harmonic, it should be
possible to obtain detailed information on dislocation motion under stress
without the complications of the lattice contribution.

In references (1) and (2), the generation of the second harmenic has been
analysed on the assumption that the increase of potential energy of a disloca-
tion is proportional to the increase of its length. Although the analysis was
successful in explaining most of the experimental results, the effect that the
dislocation oscillation ig damped was not taken into account. Under the same
assumption Suzuki et al.”) have treated the problem using the vibrating string
analogy for dislocations and have incorporated the effect of dislocation damping
on the amplitude of the second harmonic generated in the specimen. In the
following analysis, the latter treatment is extended to the case of the third
harmonic with some modifications and refinements.



II. Theory of Second and Third Harmonics in String Approximation.

Equation of Motion

When a stress wave is propagated along a solid containing dislocations, the
dislocations will oscillate causing additional local displacement and strain in
the solid. If one denotes the longitudinal displacement of an infinitesimal
element of a solid in the x-direction by u, then

u=u, +u

£ d

where uy is the displacement of the lattice, and uy is the displacement due to the
dislocation motion. The one-dimensional form of the equation of motion for the
displacement u in the x-direction is given by

3 u 9 3o
p—x=p—=(u, +u.,) == (1)
Bt2 at? A d ax

where p is the density of the undeformed material, ¢ is the applied stress and t
denotes time. It is convenient for us to use the differentiated form (with
respect to x) of Equation (1)

. a2 (Bul . aud) i} a20 (2)
at2 ax ax 3x2
du Bud
Thus, the problem is now reduced to expressing 7;r-and-3;— as a function of

stress o and to solve the Equation (2) with respect to o. In the present case,
however, & sinuscidal wave of frequency w is introduced at cne end of the
specimen (at x = 0). As the wave propagates, the wave form will be distorted
due to the nonlinearity of the solid. Therefcre, at a distance x, the stress ¢
should be expressed in terms of the harmonics of the fundamental wave, i.e.,

g =A + A, cos{wt - kx) + A, cos2{wt - kx - §_.)
o 1 2 2

(3)

+ A3 cos3(wt - kx - 63) + erene

where A 1s a static bias stress, A., A., A, ..... are the amplitudes of the
fundamental, the second and the third and higher harmonic waves respectively,
26, and 35_..... are the phase angles of the second and the third and higher
harmonics Pelative to the fundamental wave respectively, and k is the wave
vector. It is assumed here that dispersion is negligible. For purposes of
actual calculations, terms beyond the third harmonic in Equation (3) are not
used.



The boundary conditions are:

at x = 0,

Pl
n

Ao (the amplitude of the induced fundamental wave)

Since the nonlinearity considered here is not expected to be large, one can
assume that

A2, AB << Al

Thus, if one expresses both sides of Equation (2) in terms of the harmonies, a
comparison of the sine and cosine terms of the corresponding frequencies will
provide sets of equations which determine the amplitudes of the harmonics.

Buz

Expression for ETS

The one-dimensional relation between stress g and displacement-gradient
ou 6)
—— of a solid, correct to the square terms is given by

ax
Ju Ju
_ L £.2
o=k 3% a(ax) (4)

where El is the second order elastic constant and a is a combination of the
second and the third order elastic constants.

Thus,

(continued next page)



L1 5 a 02 +
ax ©E. T3 : '
1 El
2
= 53 -2y 5£)
El ES o} 2
1
lil a
g -3 (24 Al + AlA2c08262) cos{wt - kx)
1 E
L 1
--_a—AAsinza in(wt - kx)
T AlA, o| sin(wt - kx
E
_l
AQ a Ai
+ EI cosZG2 - Eg (2A0A2005262 + TT) cos?(wt - kx)
1
" (5)
E a
u 31n262 - =3 2A0A251n262 sin2(wt - kx)
1 E
1
'13 a |
g cos3d =3 (2A0A3008363 + AlA2c05262) cos3(wt - kx)
1 E
- l —
TA3 a |
+ T 51n363 - (2A0A351n363 + A1A281n262) sin3(wt - kx)
1 E
- l —
Ju
Expression for T

The linear case of small amplitude dislocation oscillations under the
influence of an externally ?pplled oscillatory stress was treated using the
string analogy, by Koshler’’ and later by Granato and Lucke 8). In these
treatments (7}, (8), the line energy is assumed to be 1ndependent of the
position and orientation of a dislocation. 1In fact, however, even in an
isotropic material, the line ener§{0?ll§12?dge dislocation differs significantly
from that of a screw dislocation® It follows that, in general, the
line energy of a bowed out dislocation (under an external stress) is not
constant along the dislocation line. In the case of an anisotropic solid, the
energy difference between edge and screw dlslocatlons could be quite large as
pointed out by Foremanl? ), and deWit and Koehlerll
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taken as the &n plane and the dislocation line is defined by & = f(n) Fig. 1).
Then, by using Equation (8) the following is obtained:

v =\JAane{E 14 £12 {1-m cosQ(G -8'} - (1-m 00520)

Here, f' = 3¢/9n, and @ - @' = 6 is the angle between the line segment and
Burgers vector, and the meaning of © and @' is explained in Fig. 1. Introducing
tand' = £' we obtain

v =jdnwe Vis 21 - —" _ (cos?0 + 2" sind cosd + £'° sin20)}

1+ f'2

(10)
- {1 -m coszeg}

The integrand of (10} can be expanded in powers of f'. If one keeps terms up to
the fourth power in f£', the result is given by

v =jdnwel:- om £' sind cos® + % (1 + m cos?0 - 2m sinZ0)f'2
{(11)

+ f'3 sin® cosf - % (1 + 3m 00829 - Y4m sinze)f'il

If the dislocation is pinned at n = 0 and n = L, the deviations from the straight
configuration should be the same for equal positive and negative stresses. In
other words, V should be symmetrical in terms of f'. Therefore, in Equation (11)
the terms containing f' and £'3 should vanish.

The equilibrium condition for the line segment L can be obtained from a
variational principle; i.e., the total energy W = V - V. should be an extremal,
where VT is the work done by the external force and given by

L.
V = Tbj f(n) dn N
T o

T3 resolved shear stress in the glide
plane and in the slip direction.

The equilibrium condition becomes

W =8V-V)=0,
or, according to the Euler-Lagrange equation,

d oW W

an 3 "3 0



The result is then

- f"We[El +m 00520 - 2m sin29) --% (1 + 3m cosze - Lm sinQO)f'?]= Th (12)

If one assumes that the line energies of edge dislocations and of screw
dislocations are equal, i.e., m = 0, then Equatien (12) beccmes

3 2)

- e A=Y =
Wef (1 5 t b

which is the case treated in references (1), (2), (3), (5). If one assumes
further that the higher order term is negligible, the equation reduces to

- W' = b,
(8)

which is the case of the linear approximation treated by Granato and Lucke .
Even in an isotropic material, m is not equal to zero, and is given by

m=v=1/3 (v: Poisson's ratio).

Thus, for an edge dislocation (© = n/2), Equation (12) reduces to

_!‘_ Tt _3_f2 -
3 Wef (1 + 5 f'°) = b
or, since Eﬂ z L b2
H 3 2” k]
SE v+ 267 oo (13)
2 2
For a screw dislocation (0 = 0) ,
_i N _?,_12_
3 Wef (1 iy £'°) = 1b
(1)
- b1 --% £2) = 1 .

Equations (13) and (14%) reveal two important features:

a) The linear term of Equation (13), - (1/2)ub2f'', is 1/4 of the linear term
of Equation (14%), - 2ubZ?f''. This means that for a small applied stress, the
displacement of an edge dislocation is approximately four times larger than that
of a screw dislocation. Therefore, for a small oscillatory stress, it is
expected that the contribution from edge dislocations is predominant for the
quantities such as attenuation and velocity change, provided that the density
and loop length of the two types of the dislocations are similar.

b) The nonlinear term in Equation (13), - (3/2)£'2 is negative, while that of

10



Equation (14), + (9/4) f'2 is positive. This means that the stress-displace-
ment relaticn for edge dislocations is hardening (as the applied stress
increases, a larger stress increment is necessary to produce a given amount of
displacement), while the stress-displacement relation for screw dislocations
is softening (see Fig. 3). Of course, the deviation from a linear stress-
displacement relationship, whether it is softening or hardening, is the source
of the harmonic generation.

The nonlinear relation between a static stress and the dislocation
displacement of a pinned dislocation leads to the following equation of motion
of a dislocation under the influence of combined static and oscillatory
stresses:

2 2
3°E 3E I°E ag
A—+B==-C[{—2) ~-C" (=)

Btz at an2 an

2
2 (3—5)] = bRo (15)
an
where

g is given by Equation (3)

A = wob2 (effective mass of dislocation per unit length),
B = damping coefficient,
2 . 2
C = We {1+ mcos @ - 2m sin"Q),
2 . 2
, o3 (1 + 3mcos’® - 4m sin”@)
¢t =3 .

(L +m 00329 - 2m sinze)

m and © are the quantities defined in the previous section,

b = Burgers vector,
R = resclving shear factor converting the axial stress to the shear
stress in the slip plane and in the slip directicn.
2% 3¢
The terms A——§ and Bg; represent the inertia force and frictional force of a
at

dislocation per unit length respectively. The nonlinear differential Eguation
(15) can be solved approximately by iteration. First, utilizing the Fourier
expansion of bRo, one obtains a sclution &, for the linear approximation of
Equation (15) (i.e., the equation without the nonlinear term},

12 1t E1a (16)

11
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where

2
_WBRAL e . (2n + 1)m
10— 3. ¢ 3 ST
nc ¢ (2n + 1) o)
£, = ubRAl ; = L sir(zn + 1) os( kx - & )
11 An an v I 172 3L GOSIUT = XX = O1n
n
with
2 2,2 2
Sn = (wn - w )"+ (wd)® ,
. m ,C.1/2
w = (2n + 1) - (KJ ,
o
_ wd
tané, = =3 7
w2 - w
n
B
de 2
4bRA,. &
_ 2 1 1 .. (20 + 1l)mwn
£l2 = = g TR Ml/2 gsin Lo cos2(uwt - kx 62 62n)
n
with;
2 2.2 2
Mn = {wn (20)°}° + (2ud)° ,
tan2é =L .
2n uJ2 _ (2m)2
n
4bRA
_ e 1 L1 . .« (2n ¢ 1)mn _
18 ThRn L amw I A cos3(wt - kx - §; - 8, ),
n
with

T = {wi - (30)%1% 4 (Bwd)? ,

13



In the following analysis, only the first terms (n = 0) of each infinite series
are taken into account{13)., Inserting £ = € + £, into Equation (15), where

Er is the iterated solution, and retaining those nonlinear terms containing
only E, one obtains the equation

32 Y 2%¢ g, 3%
2 2 2 1.2 1
Az YP T T G ()
At In n an
. CC!' w4 ,_31mn . T
= = (L ) (51nTr— + 51nE—) b
o] o ol
{AOP + AlQ cos(wt - kx - 610) + AQK cos2(wt - kx - 62 - 520)
(17)
3
+ ABJ cos3(wt - kx - 63 - 630)} .
where
1+bRL2
b= O g o 4R _ _ R
= s - T 175 s = T 18 e
WBC Panl/2 A'rrMJo'/2
and
4bR
J = ——
ATTTl/2
Swn(lq)
Neglecting the term sinir— and retaining the terms up to the third harmonic
o
in the right hand side of Equation (17), one obtains the solution 52,
By T 8yt By Tyt By s (18)
where
TN L2 3.3 3 2.2
520=hSln-L——-—2—-[AOP +§AOP AlQ] s
o C
_CC' L m b
h = - (E_) ’
Q
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_ .. Tn 1 3 .,3.3 2.2
521 = h sing 7% [{E-AlQ + 3AOP AlQ}cos(mt - kx - 2610)
o AS
0
+ SAOPAlQAQK cos{wt - kx - 262 - 2620)]
- ;TN 1 3 2.2
522 h sinr —173 [2 AOPAlQ cos2(wt - kx - 610 - 620)
o AM
o
+ 3A2P2A K cos2{wt - k 6, - 6.1
o 2 *T % 20
- ;TN 1 1l ,3.3 _
523 = h sing— —575 [4 AlQ cos3(uwt - kx - 610 - 630)
o AT
o
+ 3A2P2A J cos3{wt - kx - &, - 26_)
o) 3 3 30
§ + 28, + 28 + 36
+ 94 _PA QALK cos3(ut - kx - 10 2 - 20 304

Thus, after one iteration, one obtains for the solution of Equation (15),

E= 6+ &, (19)
where El and 52 are given by expression (16) and (18).
du
Once £ is obtained in terms of n, 3% can be calculated by the following
relation,
L
du o
d _ Nb@
% - I LJ‘ £dn (20)
o o

where N is the effective dislocation density and @ is a factor converting the
shear strain to the longitudinal strain.

Amplitude of the Second and Third Harmonic

Inserting the expressions (3), (5) and (20) into Equation (2) and
equating separately the sine and cosine terms of each harmonic, the following
relations are obtained:

15



d2A

; - k2A1 =
dx
+
e D
qx .~ Pv
+ SAOPAl
d2A
cos2d -
de 2
+
+
d2A2
sin28  +
2 2
dx

+

A

2 1 a
- pw [EI-- Eg (28 A, + A A, cos2§,) + gQA, cosé,,
1 (21)
1 3 3.3 2.2
h gASl/2 (G AJQ" + 3AP AlQ) cos28,, + 3A PA QA K cos2(52 +520)}]
o
a . . 3,33 2.2 .
[- = AlA2 s:l.n262 + Ang 51n610 + h T Q'E'Alg + SAOP AlQ)Sln25lO
E AS
1 o
(22)
QA K sin2(é, + 620)}]
da, 2
ukjﬁf 31n262_— 4k A2 c05262
2
A A
2 2 a 1
- Ypw [E_ cos262 - =3 (2A0A2 c03262 t 5=
1l E
1
(23)
A.Kg cos2(6_ + 6. ) + h—E— {2 4 Pa%Q? cos2(6. + 6.)
2 2 20 AMl/? 2 o1 10 20
o
3A%P%A K cos2(6, + 26, )}]
o 2 2 20
dA2 2
uk?ﬁr-c05262 - Uk A2 31n262
A
2 2 . a .
- bpw [f_ 31n262 - = (QAOA2 51n262)
1 El (24)
KA.g sin2(8, + 6, ) + h—8— {2 A PA%Q? sin2(s, + 6.)
2 2 20 AMl/? 2 01 10 20
Lo

2.2 .
3ATPTA K Sln2(62 + 2520)}]
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d”A dA3 2
5 cosaé3 - 6k:5?-51n363 - 9k A3 c05363
dx
2 A3 a
= - Spuw [E-005353 -3 (QAOA3 003363 + AlA2 003262)
1 E
1
g 1,33
+ JA.g cos3(8, + 6,0) + h(ATl/Q){” A1Q7 cos3(8, + 8,.) (25)
o
+ 3A%P%A_J cosa(s. + 25, )
o 3 3 20
+ BAgAlQAQK cos(GlO + 262 + 2520 + 3630)}]
d2A3 aa, ,
5in36_ + Bl—= cos36_. -~ Sk A, sin3s
4 2 3 dx 3 3 3
b
2 AB a
= - 9puw [E—-51n363 - =3 (2A0A3 81n363 + A1A2 51n262)
1 E
1
. 1l .,3.3 .
+ JAag 31n3(63 + 530) + h;;%?i'{ﬂlAlQ 51n3(610 + 630) (28)
o
+ 3A°P%A.0 sin3(5, + 26.)
o 3 3 20
+ BAOPAlQA2K 51n(610 + 262 + 2620 + 3630)}]
where

2NbhQ

In Equations (21) and (22), the terms containing A, are much smaller than the terms
containing A.; furthermore, in the present study tge term containing Ai is
negligible compared with the term containing A;. These terms are, therefore,
neglected. After these approximations one obtains as the scluticns of Equatiomns
{21) and (22},

AL = A e (27)
with

3h
ASl/2
o

2
. pw . 2.2 .
o _EEE [Q 31n6lo + AOP Q sin 2610] (28)

1

17



2 2. 2.1 _3h_ ,2.2
k® - al = pu [El - 3 At 8 {Q cos§ o+ 1/2 APQ cos26, }] (29)
l o

where Alo is the amplitude of the induced oscillatory stress at x = 0.

The expression (28) represents the attenuation of the fundamental wave.
Since k = w/v and v = vE/p (v is the velocity of sound in the material), the
first term of the expression (28) can be written

HNElbzﬂRNQd

vAwQS

which agrees with Granato and Lucke a( ) results. The second term of the
expression (28) represents the effect of bias stress on the attenuation.
Although it increases with the square of the bias stress, its contribution to
the attenuation turns out to be negligible in the atress range of interest here.

@9 © ' (30)

From Equation (28), one can derive the velocity change of Av/v of the
fundamental wave,

Av . a 3h
i ?- Ao - l/?Elﬂ{Q 008510 + ;—;m A P Q cou?d } {31)
1

From Equations (23) and (24), the amplitude A, of the second harmonic can
be obtained;

2
= ——-—- - — EL“__
A, { sin26, -—-{}- A PQ ainZ(s, - 8,5
1 -2a.% -0, X (32)
1 2
c A2 . 8 -e
10 qz - 2ul
with;
= E..Ji 252
a, {K l1n25 ;;7— A P K sin“ﬁzo} s (33)

where the following relation should also be satisfied,
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2

Y
5 = [Hk2 - uawz {fL-- 2% AO + Kg 0052620
dx 1 E
1
3hg ,2.2
+ 1/2 A P K cosHG }] 2 (3u)
o
+ upm {-—-— cos26 3 -tl-g—A PQ2 cos2(8, - & -6, )} A
3 22 1/2 "o 2 10 20 1
231 AMO

If one compares the expression for a; (Equation (33)) and that of the fundamental
wave a) (Equation (28)), it is easily seen that &, is equivalent to the attenua-
tion of an independent wave propagating with a frequency 2w. This means that
since dispersion is assumed to be negligible, the following relation between k
and oy should also hold,

2 2 _, 2.1 2a 3h 2
uk“ - a, = Lpw [El Ea Ao + g {K cos?620 —-I75-A PK cosué2 }) (35)
1

Substituting the expressions (32) and (35) into (34), one obtains the following
relation for the phase angle §, between the fundamental and the second harmonic

2
=2 . APQ cos?(d +68,..)
231 1/2 20
tan2é (36)
a ~3h_ (6, +8,.)
a PQ g5in2 6
AMl/? 20

If one neglects the dislocation contribution to the second harmonic, the phase
angle becomes,

m
?52-3.
On the other hand, if one neglects the lattice contribution, 2(62 - 610 - 520)
is very close to L Thus, one can express the amplitude of the second harmonic
with reascnable accuracy as follows,

2 -2ulx ~a,X

_ pw 2 2 /2,2 e - @
A, = 5= [X7 + Y7 - 2XY cos2(8,, + §,4)] Alg &, = %, (37)
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where

x = =
2E>
48Nb R aC'A
Y = 2
]
n2a%s mt/2L?
0O 0 o

furthermore, in the case where w, >> 4w, the factor

cos?(él0 + 8.0

20

can be replaced by

2
W
o Yy 2 .2
—— (-~ 5w 4%)
g Ml/? o
oo

From Equations (25} and (26), the following expressions for the amplitude

AB and the attenuation Gy of the third harmonic can be obtained:

3.3 . -30. % -a,.X
3 pm2g h QA 31n3(63 - 610 - 630) e L _ o 3
A3 7 7% 1/2 ) 0. - 30 (38)
AT 3 1
o
3 pu’g 3h 2.2
0.3 = CR {J Sln3630 + F/—Q— AOP J Sln6630} Py (39)
o

where the following relation should also be satisfied,

2
d A
3 2 2 .1 2a 3h 2.2
—7 = [9k“ - 9pw {E - A+ g(J cosadao t =17 AP 0056630)}] Ay
1 E AT
1 o]
(40)
S 2 geh 3 ) ) 3
[H pw AT1/2 Q 0053(63 610 630)3 A7

As in the case of the second harmonic, expression (39) indicates that the third
harmonic generated in the solid attenuates in the same manner as an independent
wave of frequency 3w introduced into the solid. This leads to the following
condition determining the phase angle 363 between the fundamental and the third
harmonic wave,
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Bk

o, + 3o

tanS(Ga -8 -8, )=
3 1

10 30

Since the right hand side of the above equation is a very large quantity,
3(6, - 6, - 6,.) is positive and very close to gu Thus, one carn express the

amplitude of the third harmonic with reasonable accuracy as follows:

12pwNb " aR3cC 1A% “dayx -ogx
A = 10 , & - e (31)
- i _
3 kAHSSIQTl,QLu as Sul
(o] (8] [»)

It should be emphasized that expression (41) represents the contribution of
dislocations only to the third harmonic and that the lattice contribution is
neglected.

Discussion

In the following, several significant consequences of the above expressions
are presented.

a) There are two contributions to the second harmonic, one arising from the
lattice anharmonicity which is represented by the first term of the expression
(37); the other arising from the nonlinear dislocation motion which is
represented by the second term of the expression. In addition, the existence
of the phase angle 2(6lO + 620) between the two components leads to the cross

term in expression (37). The factor Y is a function of dislocation density, of
bias stress (internal or external) and of loop length (which in turn depends on
bias stress), while X is independent of the bias stresses in the range considered
here and is a constant for a given solid and mode of wave propagation. In
general, a separation of the two contributions is quite difficult because of the
cross term in expression (37). Under certain circumstances, either X or Y is
dominant and the cross term is unimportant. A“separation of the two terms is
iii;tﬁ??Slble, of course, when 2(610 + 620) 5.(610 and 620 depend on loop

In the case of the third harmonic, the lattice contribution does not appear
in the expression (41). This is simply because the terms in powers higher than
the square of the displacement-gradient are not taken intc account in the
expression (4). Although for the lattice part the magnitude of the cubic term
relative to the linear and the square terms i1s not known at present, it is
reasonable to assume that in most solids the lattice contribution teo the third
harmonic is negligible, at least near room temperature, where the temperature
dependence of the thermal expansion coefficient is small. Thus, the third
harmonic observable near room temperature can be considered to be predominantly
due to the nonlinear motion of dislocations.

b) The amplitudes of the second and third harmonic are proporticnal respectively

to the square and cube of the amplitude of the fundamental wave as long as the
dislocation loop lengths remain constant.
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c) At x = 0, the amplitude of the harmonics is zerc. As the fundamental wave
propagates along the x-axis, it starts generating the harmonics. However, both
fundamental and harmonic waves suffer attenuation. The resulting initial
build-up followed by a decay of the amplitude of the second and third harmonics
as a function of propagation distance x are represented respectively by

e-Qalx e—azx
- (42)
o, - 2&1
and
e-3alx i e-aax
o, - 3o (43)
3 1
Each factor has a maximum at a distance (x ) ax and (xa) given by the
following relations max
2al
log @
_ e 2
(xQ)max T 2a, - a (cm) (44)
1 2
Sal
log a
- e 3
(xs)max - 3al - g (em) (45)

d) Since C appears in the factors So’ MO and To’ the magnitude and the sign

of the harmonics depend on the values of C and C', which are, of course, a
function of the crientation angle ©. In Figure 4, the factors

B = %L =1+ m- 3m sin26
e

and

(1 + 3m - m singe)

(L +m - 3m sin29)

3
t = 2
¢ 2

are plotted as a function of @, taking m = v = l-(u is Poisson's ratio). As
can be seen, C' changes its sign at approximately © = 67.5 degrees. This means
that the harmonics generated by the dislocations whose orientation angles (see
Figure 4} are in the range 0 < © < 67.5 degrees are opposite in sign to the
harmonics generated by the dislocations whose orientation angles are in the
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range 67.5° < 0 < 90°. 1In the case of the second harmonic, the applied static
stress A, is, in fact, a parameter to indicate the degree of deviation of a
bowed out dislocation from its straight line configuration. Therefore, whether
the static stress is tensicn or compression, the absclute value !Aol should be
used in evaluating the expression (37). Thus, except for the factor C', the
quantities that appear in the dislocation contribution are all positive. The
contribution of the dislocations may be of the same or opposite sign as the
lattice term, depending on the relative signs of X and Y, as well as on the

sign of (mg - 5w2 dQ) - see Equation (37).

In the case of the third harmonic, the absclute value should be used in
evaluating the expression (41).

The factor B (as well as C) also depends on the angle ©. The larger the
value of C, the smaller is the corresponding dislocation displacement for a
given stress, as discussed in the previous section. Since the amplitude of
the harmonics depends strongly on the dislocation displacement, it is expected
that the dislocations with smaller C values will generate larger harmonics, if
other factors are identical.

In all cases the dislocation contribution depends not only on loop length
but also on orientation, i.e., the angle ©. Therefore, the expression (4l)
should be calculated using appropriate distributions of both dislocation
orientation and locp length. Since the information on the distribution of
orientation and loop length is very scarce, in the following, the © and loop
length dependent part of the amplitude A3 (disregarding the attenuation factor)

cC'’
S3/2Tl/2 L

L
o o o]

{uB)

is calculated numerically for edge, screw and n/3 dislocations as a function of
loop length L, assuming a delta function distribution at each walue of loop
length, and using the following values,

15 -1

A=7.6 x10 gcem 4, B=5x lo_udynes sec cm-z, w = 2m X 107sec_l

3
We = l.2ub2, p=23x lOlldynes cm_z, b=3x lO_scm.

The results are given in Figure 5. As can be seen, the maximum amplitude of the
third harmonic arising from edge dislocations is considerably larger than that
arising from screw or n/3 dislocations., In this figure, the attenuation of the
fundamental wave o] is also plotted for the three types of dislocations. 1In
each case, the loop length for the maximum amplitude of the third harmonic
coincides approximately with the lcop length corresponding to the inflection
peint in the attenuation curve. The maximum of the third harmonic, therefore,
corresponds approximately to the transition between underdamped and overdamped
behavior. The condition determining the loop length for the maximum amplitude

24
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AS is given by
w

2 . q.12($1/2
W 4]

(u7)

In plotting Figure 5, the absolute values are taken for the third harmonic
amplitude A;. As mentioned earlier, the amplitude A5 for dislocations whose
orientation angles © are in the range 0 < 0 < 67.5° is opposite in sign to
those whose orientation angles are in the range 67.59 < 0 < 90°. Therefore,
cancellations of amplitude Ay will take place when the dislocations in the two
ranges operate simultanecusly. To see this effect, a simple average of the
expression (46) over the range 0 £ 8 < 90° was caleculated as a function of loop
length using the same numerical values as given above. The results are shown
in Figure 6. The cancellation occurs approximately at the loop length of
1.9 x 10" *em. Whether this effect becomes significant or not depends, of course,
on the orientation distribution of dislocations.

In view of the difficulties in separating the lattice and dislocation
contributions in the case of the second harmonic, dislocation dynamics are
studied more easily through the generation of third harmoniecs. It should also
be emphasized that in order to study lattice anharmonicity by means of second
harmenic generation, it is necessary to eliminate the dislocation contribution.
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Third Harmonic Amplitude A,, Attenudtion @ (arbitrary units)

o | | L i i

0 2 4 6 8 10 x 1074

Dislocation Loop Length (cm)

Figure 6. Amplitude of the Third Harmonic and Attenuation of the
Fundaomenial Wave, average over the angie 8, as a
Function of Dislocation Loop Length.
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III. Generation of Harmonics due to Breakaway Processes

In the preceding treatment (vibrating string model), it is assumed that the
loop length does not change during the course of a cycle of the oscillatory
stress; i.e., the loop length is affected cnly by the static bias stress applied
in addition to the ultrasonic stress. This assumption is valid when the ampli-
tude of the ultrasonic wave is small so that the dislocation dees not break
away from the pinning peoints. When the amplitude of the ultrasonic wave becomes
large, the dislocation will break away from weak pinning points and a change in
loop length during the course of a cycle will take place, causing additional
strain. This breakaway process could be nonlinear, and, therefore, be a source
of harmonic gemeration. An analytical basis for this consideration is given in
the following, though it is not complete.

The basic equations for this problem are the same as the ones that appear
in the case of the nonlinear vibrating string model, i1.e., the wave Equation
(2) and the equation of motion of a pinned dislocation (15). Tg simplify the
problem, we neglect the lattice anharmonicity so that the term % can he
expressed by XS

au
__‘Q‘ (48)
X

mja

where E 1s the second order elastic constant.

We neglect further the nonlinear term in the equation of motion, i.e.,
the term containing C'. This is equivalent to considering the nonlinearity
associated with the breakaway process to be independent of the string non-
linearity. Therefore, for the purposes of this approximation one may consider
that if there is no change in the loop length distribution during the stress
cycle of the wave imposed on the system, the amplitude of the wave simply
decreases exponentially as 1t propagates along the crystal, and no harmonics
are generated. In such a case, the displacement gradient for the dislocatien
can be expressed by

oo

Bud L
5% ° b N(R) E(n)dn dg (49)
o] O

where £ is the sclution of the equation of motion (15); and N(L&) is the
digstribution function of dislocation loop length, which is independent of the
applied oscillatory stress .

If, however, a breakaway of dislocations from weak pinning points takes
place during the course of a cycle, the distribution function is no longer
independent of the stress. In other words, the distribution function becomes

a function of time, and the time derivative (32/8t2) in Equation (2) may not
be taken out of the integral sign. Moreover, N(R) has a different form for

28



the increasing quarter cycle of stress from that which it has for the
decreasing quarter cycle. Thus, the stress-dislocation strain law becomes non-
linear, and the basic Equations (2) and (15) are seen to be a system of two
gimultaneous nonlinear partial differential integral equations for ¢ and £ in
the variables x, n and t.

According to Granate and Luckes), the distribution function for the case
when a breakaway process occurs during the cycle is given by

T 2
ArnonEine e Toar, o< <L
L2 g
c
Nl(E)d£=
8¢ - L) -—}
A————n(=+1)e dt, L< i <w
L g
N
N(2,0) = (50)
X _
i[l-n(i+1)e Al]e Lcaz,o<z<¢t
2 A
L 1
C
Ng(ﬂ,)d2=
8(2 - L) . ~-A3—
A—-——-—L;-—-—-—'n(-A—l'i'l)e ldﬂ:, Ll <o

where N_(R)dR is the distribution function for the quarter cycle of increasing
stress,

Ng(ﬁ)dl is the distribution function for the quarter cycle of decreasing stress.
Lc: dislocation loop length between pinning points.

LN: dislocation network loop length.

g = Al(x) + cos(uwt - kx) ,
TE
_m
TS 9L e
c
£ 33 A1nt
m 8 2
y
_81 v o,
Aint T 31-v ub e o ®
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P osryd radius of the solvent and solute atoms respectively ,

v: Poisson's ratio

n: number of loop lengths in the network. The average value of n is

Ly

L—
o

- 1.

For low stress amplitudes, where N{R,0) is independent of time, it is
possible to obtain a solution to the Equations (2) and (15) in the form of an
exponentially damped sinuscidal wave for o.

g = Al cos{wt - kx) ,
UbA, =
_ 1 1 1 . . (2n+ l)un
5 TA z {(2n + 1) . 1/2 sin L cos(wt - kx 6ln)
o S o
n
where
{51)
2 2.2 2
Sn = (wn - w )+ (wd) ,
_ m ,C.L/2
w = (2n + 1) T (A s
o
_ wd _B
tmwh]-—?——j s d-—A.
W o- oW

If breakaway is included and such a trial solution for o is used, it is
found that the system (2), (15) cannot strictly be satisfied, and therefore
exponentially damped sinusoidal waves of the form (51) do not constitute a
complete solution. However, for low stress amplitudes, we know this to be the
form of the solution and we may try to find a more complete solution, assuming
the contribution of breakaway to be a perturbation. Thus, in Egquation {15), we
use the following expression for ¢

g = Al(x) cos{wt - kx)} + A, cos3{wt - kx - 53) (52)

3

to obtain an expression for £, (Al > > Aa). Neglecting the terms n > 1 in the
expansion one obtains
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qul 1 . TN

£ = —~5— —175 sing ¢ cos(wt - kx - 610)
S e}
o
L4bA
3 1 AL
+ y 175 * sing— cos3(wt - kx - 63 - 530)
T 0
o
2
with T ={m2 - (3m)%’+ (3wd)2
o o
- Jwd
tan3530 R —
W, - w

du

Then, for the expression B

s one obtains

aud 8 Al(x) b2 \J. N(ﬂ.)ﬂ.3 cos(wt - kx - &)
o

10
X “Hc 2]1/2

n

di

[ - a5? + 2%/

g8 A (x) b‘2 mN(R.)R.3 cosd(ut - kx - &, - 6_)
+ 3 3 30 ds
1 1
rte o [(1L-a2%H%4q /2
D?
where
w mo 3w
- L —— t T —
= m and D I Q m
o] e}

For the underdamped case, we can assume that 1,2' << 1, and the denominator
of the integral may be replaced by unity. The cosine terms may be written as

cos(wt - kx) + 510 sin(wt - kx) , and cos3(wt - kx - 63)

+ 3630 sind3(wt - kx - 63)
where
Cowd 2 2_2¢c_ 2,2 . Swd 2
610 = 32 '3 s B = 3 S Y '3 , 3530 -;5— )
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The dynamic phase angles are used here even though we are interested in phase
variations over the course of a quarter cycle, since the transients have a
relaxation time constant which is several powers of 10 smaller than a period.
Therefore, the transients are damped out in a negligible fraction of the quarter
period and the dynamic phase angle obtains.

With the above substitutions, Equation (49) becomes

2 [
au 8 A (x) b
d . 1 ‘{- N(a)ia fcos{wt - kx) + wd 12 sin{wt - kx)] d»
0

X ﬂHC B2

2

BA(x)b2 ud 2
PR N N(z)z [cosd(ut - kx - §5) + S0 ¢ sind(wt - kx - 8401 as
B

For the first quarter cycle of increasing stress,

) 3 2 73 T %
= 1 —— —
N(g)YL~™ dg ALC 31 [1 + AT 5 e ]
o]
T
5 4 S 7%
N(2)L” a¢ = L 5! [1 +L; 1,

For the second quarter cycle, one needs only replace
o = Al(x) cos{wt - kx)

by Al(x) in the above expression.

Here = El
E] Y L .
c
du
Thus, ~— is the sum of a cosine and a sine term in (wt - kx) for each gquarter
du
cycle. The variation of TS for the cosine term over the course of a cycle is

shown in Figure 7a. For the decreasing quarter cycle, the function is purely
sinuscidal, whereas for the next quarter cycle, it is sinusoidal at first, but
then increases swiftly to a maximum value.

au

5x May be written in the form
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T
X

9

where g =

o < < %
Fl cosb + G1 sinf + F3 cos38 + G3 8in306 6 -
1T< & l—
2
T
- <
2
F.(8) cos® + G .(8) sind® + T (8) cos38 + G, (8) sin3e
2 2 4 y
3w
= <
2

wt - kx,

8 A.(x)b° ALZ 3t
1 c

Ay (x)
F, = (1 + Y1 - € :
1 nqc 3 Al(x)
2y
8 A (x)b° AL 5! 5
o) =t S L Lty e RO
nC B Tl
2 2 .. ~
8 A (x)b” AL_ 3 Y T " Ajcos6]
F.(8) = (1 + © :
9 m 3! A |cosb
mC 1
2 =
8 A (x)b” AL 5! > T Ay
G (0) = — c -5’-5‘-[1+—-—|—1-T e flcostly
5 m 2 5! A, |coséb
mC B 1
2,2 I
8 A_(x)b° AL® 3! 3 -
_ %A c L I A
Fy - ; s ommoe b Do
T C 1
2 -
|8 A 0pT AL 5L 1+ .1 SR ]sin3s
m > 51 A ij 3
™ C B 1
2 2 -
8 A,(x)b° AL® 3! 3 B
3 - ¥ A_(x)
. . [l + = - v @ 1 ]SlHBG
3 T 3 Al( ) 3
2 b, z
8 AS(X)b ALC 51 3pd 75 T Al(x)
; ; rES R Tl wey f1cos34
T C B 1
2, 2 T Teoss]
8 A (x)b” AL’ 3! 3 B
] 5 . ¥ T . Al cosf
FH(B) = atc £l + 37 A, [cos8 © . c083%
2 4 =
8 A_(x)b° AL 5! 5 T A !
) 3 c L3wd ey Y T . A leos®l 15in3s
ﬂuc 32 51 Al|cose|

(53)

2m

(54)

(55)

(56)

{57)

(58)

(59)

(60)
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- (wt-kx)

U
Figure 7a. The Variation of {-x—d for the Cosine Term over

the Course of a Cycle {schematic).
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8 A (x)b2 ALi 3!

3
G, (B) =

N ﬂuC

8 Aa(x)bQ ALt st
N c

3 - L
Y. T . Ay [cos8] .
[1+ o Al o5t e 151n363

(61)

n”c

du

T
5 -
. Swd A T . Allcosal
82 [1+ 51 Allcose € ]cos363

Now, (7§§) given in Equation (53) can be expanded into Fourier series where the

fundamental and third harmonic terms are retained.

The second harmonic terms

vanish because of symmetry.

au

a _ . .
5x - 3 cosé + b, siné + a,cos36 + by sin36 , (62)
where
x "
1 2
a = % L (Fl cosi + Gl sinA)cosi dx + T (P2(A) cosh + Gg(l) sind) cosi di
o 2
%ﬂ 2
+-[- (Fl coshi + Gl sinl}) cosi dix + 3 (FQ(A) cosi + GQ(A) sind) cosi dil
T =
2
a T
b, = i-[ 2(F cosh + G, sin)) sin) 4dXx + (F.(A) cosh + G () sink) sinx dX
1 T o 1 1 T2 2

+

—
MAw

2

2w
(Fl cosi + Gl sini) sini 4A +‘I; (Fz(l) cosi + GQ(A) sinA) sini dA] ,

7"
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m

1 2 . .
a, = ;-EJ; (Fl cosh + Gl sink + FS cos3i + G3 sin3A) cos3x di

T

+‘[; (FQ(A) cosA + Gg(l) sini + FH(A) cos3A + Gu(k) sin3A) cos3x dx
2
3
7"
1-~( (Fl cosi + Gl sini + F3 cosSA+-G3 sin3A) cos3A dx
m
2%
+ g (FQ(A) cosi + GQ(A) sink + Fq(k) cos3A + Gu(h) sin3A} cos3i dal ,
_.-’]T
2

a
3 2
b, = ;-[ . (Fl cosi + Gl sink + F3 cos3i + G3 sin3A) sin3x dA

T
+h[; (Fz(l) cosi + GQ(A) sini + Fu(x) cos3i + Gq(A) 8in3i) sin3x dx

2

30
2
+ (Fl cosSA + Gl sin) + F3 cos3dx + G3 sin3i) sin3) di
- ‘

27
+\J; (FQ(A) cOSA + Gztl) sini + Fq(l) cos3A + GH(K) sin3d) sin3x 4da] .
—JIT

2

Since it appears to be impossible to carry out the above integrals analytically,
one has to evaluate the coefficients a,, b., a,, and b3 either by making
suitable approximations or by computigg numerically.

— = A
= jL e Al is plotted against f% in Figure 7b. The
AL
factor D has a maximum when-:% = 1, or A. = t. Since the stress amplitude 4,
in the case of interest to us can be assimed to be much smaller than 1, it is

A

sufficient to consider only the Kegion where 0 ﬁf?% << 1. If the factor D is

The neonlinear factor D

approximated by a pelynomial in —l, the polynomial should contain only the terms
in even powers, because of the symmetry requirement, and there should be no
constant term because
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Thus, the lowest term of the polynomial is p(—idg, where p is a constant.
one replaces the nonlinear factor D with the first term of the polynomial,

A

p(ﬁ%Jz as a first approximation, the following results:

8b2AL° 31 7b2AL %y p 4Ly 2
a, = ——S oA ——C L1 - —C . wdy
1 WuC 1 '!TI+C TQ T B?
2, 4., 2
b :w-ﬂnA -i.bALCan(SLQQ-ui-d-'-__—)
1 1TI+C 32 1 “'-FC 12 c 32
2,..2 3
. BALLY"p QL2022 wd 3
3 4 2 3n 2 1
mCrT <)
8b2AL231 s sud
+ ———E————-(COSBGS - 20LC == 51n363) . A3
mC B
2.2
b - oo’ P (2 + Loy2 8y L 8
3° T u_ 2 Vap TR 7 1
TCT B
BbQALQB!
c . 2 3wd
+ —————— {(sin38. + 20L° + — + cos36..) * A
ﬂ%c 3 fal BQ 3 3

If

{63)

(64)

(65)

(66)

Inserting Equations (u8), (52) and 62) along with relations (63), (64), (65)
and (66) into Equation (2), one obtains the following relations, from which

one can determine the amplitudes Al an

2

i Al - sz = - pwg(a + f‘-11—)
Bx2 1 1 El
A
1 2
2k —a;' = - pw bl

37

d AS

to this approximation:
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From Equations (67) and (68), one obtains

where
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and Alo is the amplitude of the fundamental wave at x = 0;
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IV. Experimental Results and Discussion

The expression for the amplitude of the third harmonic (expression (41))
may be rewritten in the following way:

- - L ] 3 [ ] -
Aa = KeN Alo fl(L) f2(a,x) (77)
where
« - 120u’b*ar’cc
x a*

. ) 1
£,{L) : loop length factor = G372 (172 &
o ts] o

—Salx -ua
e - e

“3 - Sal

b4

f2(a,x): attenuation factor

The experimental scheme to test the validity of the expression (77) is, then,
to vary each factor appearing in the expression and cbserve the corresponding
change in Aa.

The factor N (dislocation density) may be varied by deforming the sample
plastically.

The factor A;, (amplitude of the fundamental wave) can be varied by
simply inserting an attenuator in the driving circuit.

The factor fy(L) may be varied in two ways: 1) by investigating specimens
of different impurity content, because the effective loop length of an annealed
crystal is primarily determined by the impurity content. 2) by applying a
small static bias stress to the specimen. The bias stress should be small
enough so that no multiplication of dislocations takes place. With this
procedure, some of the dislocations in the crystal will break away from the
pinning peints, resulting in an increase in the average loop length, without
changing the dislocation density.

The factor f,(a,x) may be tested by observing the echo pattern of the third
harmonic resulting from the multiple reflections.

In the following, the experimental results obtained alcng the scheme
outlined above are presented.
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Experimental Technique

The general technique for the detection and measurement of ultrasocnic
harmonics was discussed in Ref. 1 and 3, and will not be repeated here.

Aluminum single crystals have been prepared with resistivity ratios
varying over a wide range. Zone refined aluminum of several degrees of purity
was used in a modified Bridgman technique to grow specimens whose long axes lie
along several directions of high symmetry. The resistivitylgétio was measured
using the eddy current technique described by Bean, et. al. . The size of
all the specimens was 0.96 x 0.96 x 12,7 em, Detailslgg deforming the specimens
in an Instron testing machine are described elsewhere ; the application of the
static bias stress is achieved by hanging small weights on a grip attached to
the lower end of the specimen, as shown in Figure 8.

Also indicated in Figure 8 are the details of the experimental arrangement,
in which a 10 mc longitudinal pulsed signal is introduced inte one end of the
specimen by means of an appropriate quartz transducer. The 30 mc output is
obtained at the opposite end of the specimen with another transducer. With this
arrangement it is possible to measure simultaneously the amplitude of the third
harmonic and the attenuation of the fundamental wave.

Effect of Loop Length: Impurity Content and Bias_Stréss

As shown in section II, it 1s expected that the dislocations with smaller C
values (edge dislocations) will generate larger harmonics, if other factors are
identical. With this expectation, the amplitude of the third harmonic due to
edge dislocations and the corresponding attenuation shown in Figure 5 are
replotted in logarithmic scale as a function of loop length in Figure 9. It is
seen that the third harmonic amplitude has a maximum at a loop length of

~ 2 x 10~%em, if one uses the numerical values quoted in section II for the
factors A, B, C and w. As mentioned above, the effective loop length of an
annealed specimen is determined primarily by impurity content, and a small bias
stress makes the loop length increase. Thus, if the loop length in the sample
before the application of a bias stress (initial loop length) lies somewhat
below Ly, for example having a value given by the point A indicated in Figure 9
(which may correspond to the loop length in a relatively impure specimen), then
the amplitude of the third harmonic will increase initially with the bias stress.
If the initial loop length in the sample is less than but close to L, (point B
for example in Figure 9), which may correspond to the loop length in a specimen
of intermediate purity, the amplitude of the third harmonic will go through a
maximum as the bilas stress increases. Finally, if the initial loop length is
larger than Ly, point C for example (which may correspond to the loop length in
a specimen of highest purity used in these experiments), the amplitude of the
third harmonic will simply decrease with the bias stress.

The experimental results are shown in Figure 10. Here, three samples of
resistivity ratios 3100, 750 and 300 ({100) axial orientation) are subjected to
a bias stress ranging from zero to 1.25 x 106 dynes/cm2. The resulting change
in the amplitude of the third harmonic is plotted in db scale, and the values at
zero bias stress are normalized for each sample to the initial amplitude. It is
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readlily seen that the behavior of the third harmonic amplitude follows the above
prediction; i.e., in the impure specimen (R = 300) the amplitude of the third
harmonic simply increases with bias stress, in the intermediate specimen (R = 750)
the amplitude goes through a maximum, and in the zone refined specimen (R = 3100)
the amplitude simply decreases with increasing bias stress.

In each of the above mentioned tests, the attenuation of the fundamental
wave as a function of bias stress was also measured, and the results are shown
in Figure 10. It appears that for samples in the annealed state, the amplitude
of the third harmonic is a much more sensitive guide to the changes in disloca-
tion loop length that occur under the influence of applied bias stress than is
the attenuation.

Effect of Plastic Deformation

For the purpose of studying the influence of changes in dislocation density
and distribution, it is of interest to observe the effect of plastic deformation
on the amplitude of the third harmonic in samples of different purity. In Figure
11 the results of experiments on the sample with a {100) axial orientation and a
resistivity ratio of 300 are shown. The amplitude of the third harmonic and the
attenuation of the fundamental wave are shown as a function of an applied tensile
bias stress that rangeés from O to 4.0 x 106 dynes/cm“. In the annealed state,

A3 increases with increasing tensile bias stress, while ¢, changes by less than
0.0l db/usec. After deforming the specimen in tension to 6.7 x 107 dynes/cm2 the
same amount of bias stress as used in the annealed state was applied again.

(After deformation, however, a certain amount of time was allowed to elapse before
the experiment was performed again. Usually we waited until A3 and aj did not
change measurably in a time equal to the time it takes to perform the experiment.
In most cases this was about 2 hours). The amplitude of the third harmonic now
goes through a maximum and the attenuation change has increased to 0.06 db/usec.

Again it is possible to make a compariscn with the theoretical curve.
Following the analysis applied previously, it appears that in the annealed state
the average loop length may correspond to a point close to A in Figure 9. On the
other hand, in the deformed state the iverage loop length appears to be longer,
corresponding perhaps to a point close *o B, since the amplitude of the third
harmonic goes through a maximum as a function of bias stress.

Changes in the effect of bias stress on A3 and a) due to plastic deforma-
tion were also observed in a {111) sample of resistivity ratio 1200, and in the
(100) samples of resistivity ratio 3100. In the case of the former, tests were
performed with the specimen in the annealed state as well as after the applica-
tion of a tensile stress of 3.2 x 107 dynes/cm2 and a tensile stress of
6.4 x 107 dynes/cmg. Figure 12 indicates the results when the bias stress was
varied from 0 to 1.0 x 109 dynes/cmg. Ay in the annealed state initially
increases and subsequentlz goes through a maximum when the bias stress reaches
about 0.75 x 108 dynes/cm?. After one deformation A5 goes through a maximum at
0o = 0.25 x 106 dynes/cm?, and after the second deformation A3 decreases with
increasing bias stress. The change in attenuation a; increases from the annealed
state as the amount of plastic deformation increases. Similar changes were also
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observed in the sample with the {100 axis and resistivity ratio of 3100.

After measurements were performed on this annealed specimen, it was deformed in
tension to 0.9 x 107 dynes/cmg. (see Figure 13). Once again, the effect of
straining the sample beyond the yield point was to increase the sensitivity of
the attenuation to the small bias stress. The third harmonic undergoes a
decrease in amplitude both before and after plastic deformation.

It appears that in these specimens the process of plastic deformation
increases the average loop length. In other words, as we proceed from the
annealed state to the state of increased deformation, the average loop length
appears to increase from points A to B to C as shown on the theoretical curve
in Figure 9. This effect and the increased semsitivity of a; to bias stress
will now be discussed separately.

Cne must first consider the configuration of the dislocation network in
the annealed state and after plastic deformation has occurred. In a typ%cal
annealed sample there is probably a dislocation density of about 10® em™“. The
dislocations may be expected to lie in the various slip systems and possibly
in very low angle boundaries which make up mosaic or polygonal structure that
may exist in the as-grown crystal. Dislocaticns in such grain boundaries are
probably immobile and do not contribute to the ultrasonic properties at the
frequencies used in these experiments. In the absence of detailed experimental
knowledge on the dislocation structure, we assume that dislocations form an
intersecting network whose average loop length is L. Because of migration of
impurities to dislocation lines, the effective average loop length %, is
shorter than L and is determined by the density of impurities in the crystal
and the thermal history of the specimen.

Now, under the influence of a small amplitude oscillatory stress, the
dislocation segments between impurity pinning points oscillate with a nonlinear
behavior dependent on the average distance between pinning points. The applica-
tion of a bilas stress in the range used in our experiments causes an increase
of the average loop length by breakaway, but not to the point of exceeding the
network loop length L.

However, when a sample is plastically deformed, the network loop length is
decreased on the average, especially in samples whose axes lie along directions
of high symmetry and hence have several active slip systems in which moving
dislocations can intersect. In addition, of course, there is dislocation
multiplication which further tangles the network.

There are two possibilities, however, that may aid in explaining why
changes in A with bias stress correspond to an apparent increase in effective
dislocation loop length after plastic deformation. In the first place, while
the network loop length probably becomes shorter, the deformation process upsets
the distribution of impurities which pin dislocation lines. Such a change in
the distribution may for a time lead to a longer average distance between
impurities. For example, in the deformation process the primary dislocation in
a Frank-Read source, pinned heavily at network or intersection points may, for
a time, be torn away from some of the intermediate impurity pinning points.
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Probably more important is the fact that the emitted loops from this source
should at first be relatively free of impurity pinning and thus constitute a
source of long dislocation lines. Therefore, if the third harmonic is measured
as a function of bias stress about 2 hours after plastic deformation takes
place, the combined effect of removal of impurity atoms from existing disloca-
tions and the production of new unpinned dislocations create a situation in
which the average effective loop length appears to be longer than in the
annealed state.

The experimental fact that the amplitude of the third harmonic as a
function of bias stress (when interpreted in terms of the nonlinear string
model) behaves as though deformation increases the dislocation loop length
suggests a further mechanism that may be operative. This relates to the idea
that the application of stress greater than the macroscopic yield point of a
metal can lead to regions of internal stress such as dislocation pile-ups within
the specimen. This notion can best be discussed by first considering the
conditions for equilibrium for a dislocation that has moved inte the vicinity
of an obstacle. Such conditions exist when the sum of the applied stress d,,
and the stress due to the obstacle o; are equal to zero:

g -0, =0
e i

This condition holds when the dislocation is a straight, or practically straight
line impinging on a long continuous cbstacle such as a grain boundary or similar
immobile array. Now 1f a sequence of similar dislocations emanate from a source
and move toward the obstacle, a pile-up is created with the important feature
that the stress on the leading dislocation is amplified by the stress of the
interacting dislocations such that the new equilibrium condition,is given by
no, = 0., where n is the number of dislocations in the pile—upl .

It is now obvious that the formation of such pile-ups during deformation
can have the result of making an applied bias stress more effective in causing
dislocations in the pile-up to break away from impurities. Therefore, after
deformation, the apparent change in dislocation locp length with bias stress
may appear to be larger than in the annealed state, in which the applied stress
does not have the benefit of the stresses from the piled-up dislocations to aid
in the breakaway process,

The same two processes that may be operating in small plastic deformation
to lengthen dislocation lines, may also be responsible for the fact that the
attenuation change with bias stress is greater after the specimen has been
deformed than when it is annealed. 1) If, indeed, the average effective
dislocation loop length i1s increased by plastic deformation, then one would
expect a greater change in oy with applied bias stress following the deformation.
2) Also, the action of internal stress discussed above would make the
effectiveness of blas stress in unpinning dislocations very apparent through
changes in the attenuation. In addition, the greater change of the attenuation
after deformation may be due in part to the fact that the dislocation density is
also increased in the deformation process.
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Amplitude Dependence of the Third Harmonic and of the Attenuation

It has long been thought that ultrasonic experiments in the megacycle
region would not yield any dependence of the attenuation on the amplitude of
the fundamental wave. However, the combination of ocur high power pulse
generator and extremely sensitive readout units for detecting changes in the
amplitude of the third harmonic and the attenuation a; have made it possible
to observe a striking amplitude dependence in both these quantities.

Again, the experiments involve specimens in three purity ranges: R = 300,
R = 1200, and R = 3100. Figures 14-19 show the artenuation a; and the
amplitude of the third harmonic as a function of the amplitude of the fundamental
wave Al. The latter is varied usually over a range of 20db (in the case of the
attenuation measurements), the maximum point in every case being the maximum
power than can be introduced into the specimen without electrical discharge in
the vicinity of the driving 10 mc transducer. The results of the experiments on
AB Vs Al are plotted in db.

For the low purity sample (R = 300), whose axial orientation is <100> , the
attenuation change in the annealed state, shown in Figure 14, was about
0.002 db/usec when A; was changed by 20 db. After deformation to
6.75 x 107 dynes/cmg, a change of 20 db in A; was accompanied by a change in a3
of 0.014 db/usec, or about 7 times that cbserved when the sample was annealed.
Figure 15 shows the variation of Ay with A; both in the annealed state and after
deformation. The behavior of the annealed specimen 1s such that the points fall
practically on the slope 3 line, while there was slight deviation from the slope
3 condition when the measurements were made after deformation.

Similar experiments were performed on the R = 1200 sample whose long axis
coincides with the ¢111) direction. On this specimen data were recorded after
it was slightly handled while being put in the grips, and after deformation to
1.5 x 107 dynes/cm2 and to 2.2 x 107 dynes/cmz. The change in attenuation (shown
in Figure 16) as a function of Ay becomes successively larger after each of these
stages, finally changing by 0.1 db/usec after the last deformation. The
amplitude of the third harmonic (see Figure 17) deviates slightly from slope 3
after annealing, and continues to deviate more with handling and with deformation.

The same general behavior (see FPigures 18 and 19) is alsc observed in the
{100 pure sample with R = 3100: a striking change in o, after the sample is
deformed to 0.9 x 107 dynes/cm? is observed when Ay is increased by 20 db.
Likewise, with the amplitude of the third harmonic there is some deviation from
slope 3 in the annealed state, and drastic deviation after deformation. To
understand the nature of these amplitude dependent effects we must investigate
possible mechanisms of damping and try to determine in what way they are related
to the amplitude of the fundamental wave.

The situation will be first considered in which the dislocation line length
is assumed not to change (except for bowing out) with changes in the amplitude
Aj. In this case we are concerned with any loss that may arise due to the non-
linear response of the dislocation to applied oscillatory stress. Expressions
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for such attenuation are given in Equation (22} in which it is shown that aj
is a function of A;. In this expression for the attenuation 01, derived on
the basis of the nonlinear string model for dislocations, there are higher
order terms, one of which has a dependence on A, through the amplitude of the
second harmonic A,, while another depends directly on A2, Both quantities
have a numerical value several orders of magnitude below the measured minimum
detectable change in a; when reasonable values of L, B, and N are substituted.
Thus, our results cannot be accounted for by the nonlinear string model
behavior,

Next we consider the case in which the amplitude A; is sufficient to
change the dislocation line length by an unpinning process. One type of
unpinning process is a redistribution of pinners along the dislocation line
that can be effected by an applied stress. This mechanism is treated by
Alefeldl8} and Bauerl®’. Following Alefeld, the explanation for this
phenomenon can be seen as follows: the driving force that results from an
increase of the entropy of dislocations (which arises when the lengths of
unpinned dislocation segments increase) tends to make pinning points group
together. However, an equilibrium will be reached between the entropy increase
due to long dislocation segments and the entropy decrease due to the grouping
of pinning points. The application of a stress can upset this equilibrium and
can change the distribution of pinners. The force component parallel to the
dislocation line due to oscillatory stress is independent of the direction of
the external stress and shifts the pinner towards the shorter line segment for
positive as well as for negative stresses. Thus, the oscillatory stress field
can create dislocation segments which are nearly free of pinning points. The
conditions for the magnitude of dislocation line lengths and applied stress
that are required for redistribution to take place are probably met in our
experiment, but other aspects of the situation may make any redistribution
negligible. In particular, if equilibrium thermodynamics are to prevail, we
must assume that the frequency of oscillation is small compared with the
reciprocal of the relaxation time, 1, for either the establishment of the new
egquilibrium distribution under stress or for the diffusion time of the pinners
on the line. In our case this means that Tt < %.= 10-7 sec, and it is unlikely

that any significant redistribution occurs in such a period.

A second type of unpinning involves the breakaway of dislocations from
impurities. We consider first whether such a process is energetically possible
under the conditions of the experiment. The binding energy of an impurity to an
edge dislocation due to the hydrostatic pressure of the stress field is given by
the following relation

sinb
r

u=a

where & and r are the polar coordinates of the impurity atom measured from the
dislocation. It is expected that the solute atom is most strongly bound for the
position 8 = 3 /2 and for » = 2 x 10~ 8cm. Taking 0.1 ev for the strongest
binding energy, A' is equal to 3.2 x 10=21cm, ergs. The force binding the atom
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is

To determine the combination of applied stress and line length required
to exert a force of this magnitude on the impurity, we use the term in the
solution of the linear dislocation equation of motion that is due to a static
stress o

Lbo 2
E = 9 _2— Sin—“—n
o Cnm 1T2 L

The angle ¢ that the bowed out dislocation makes with the straight line

equilibrium position (at the pinner, n = 0, see Figure 20) is determined by7)

BEO ubuo
(=) _ = * 4 = tand
an ‘n=o Cn2 .

But the force on the impurity due to the bowed out dislocation segment on
either side of it is giwven by

F=¢ (sin¢l + sin¢2)

where C is the line tension of the dislocation. For small angles,

Lba
[8]

2
m

Las |
H

(il + 22)

and

2 3
g = Fn _ 10

o B(E + %) - A

where Jf is the critical breakaway length. Then a breakaway line length between
107% and 1073em (a range likely to be found in our specimens) will require a
stress of 100 to 107 dynes/cm? in the slip plane. The actual longitudinal stress
required of course will be somewhat higher. Now according to our measurements
the amplitude of the driving oscillatory wave 1s probably somewhat greater than
108 dynes/cm? at the driving transducer, indicating the possibility that there
may be breakaway due to the stress of the ultrasonic wave.

Granato and Lﬂckea) have discussed this type of mechanism extensively. In
their treatment, the original exponential line length distribution derived by
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Koehler ° is modified to take into account the fact that the breakaway process
is a catastrophic one within the network length. The distributicn function is
assumed to change from the initial exponential distribution at zero strain to a
delta function distribution (all lengths having the same network length} when
the strain i1s very large and all the loops have broken away. The distribution
function is given by expression (51) in section III, which eventually leads to
the expression for attenuation given by (72).

The existence of a distribution of loop lengths and an applied stress
sufficient to cause breakaway can lead to two modes of vibration for disloca-
tions: a string mode for lengths shorter than L and a hysteresis mode for
lengths longer than L. TFor a very small applied stress no breakaway will take
place, and there will be an exponential distribution of locop lengths, all the
dislocations vibrating as strings that do not become unpinned during a stress
cycle; for a larger stress all of the dislocations with £ < éfwill vibrate in
the string mode while those with & > will vibrate in the hysteresis mode;
finally, for a large enough stress, all the dislocations will break away and
vibrate in the hysteresis mode.

Now we must examine the consequences of such behavior on the attenuation
and on the third harmonic amplitude A3. First, one must determine if the
hysteresis loss is appreciable under the conditions of the experiment. Assuming
that L, = 10-3cm, L, = lO'”cm, N = loscm'Q, oy (Eguation 72} becomes equal to
0.05 nepers/cm for a strain amplitude of e, = 107°. This result is of the order
of magnitude of the maximum measured attenuation change that occurred as a
result of changing A; bg a factor of 10, that is, from a strain amplitude of
about 10~7 to about 107°.

Now as pointed out previously, the process of plastic deformation leads to
increased sensitivity in the attenuation changes observed when increasing Aj.
See Figures 1k, 16 and 18. When discussing the change of A5 as a function of
applied bias stress after plastic deformation, we concluded that the development
of internal stress during work hardening could later make unpinning easier for
the applied static bias stress. The same argument holds true for the oscillatory
stress; after deformation, dislocation pile-ups increase the effectivehess of
the stress wave in unpinning. However, since plastic deformation also increases
the dislocation density, an increase in the change in attenuation due toc an
increase in strain amplitude may also be expected from this cause.

The interpretation of the data involving the measurement of Az as a
function of Ay is somewhat more difficult. First of all, Equation (77) predicts
(on the basis of string model nonlinearity) that in the absence of any disloca-
tion line length change and in the absence of any change in a; and og, the
third harmonic amplitude should be proporticnal to the cube of the fundamental
stress wave amplitude. (When A, and Az are plotted in db, the result should be
a straight line of slope 3.) This is indeed the case for an annealed specimen
of low resistivity ratio (R = 300), measurements on which are shown in Figure 15.
For this experiment, we can assume that a relatively high density of impurities
combined with the annealing process led to dislocation loop lengths so short
that little or no unpinning occurred even when A; had the maximum value. The
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extremely low change in a; as a function of A; for these conditions, shown in
Figure 14, bears out this assumption.

However, in all the other experiments, involving samples of varying purity
in annealed and deformed states, (Figures 15, 17 and 19) there is deviation
from the line of slope 3. One must first determine if the measured change in
@) with A} leads to a significant departure from the cubic power behavior. We
substitute in the exponential factor of Eguation (77), using for x the length
of the specimen, the measured value of the third harmonic attenuation ag, which
is assumed not to be dependent on A;, and the measured a1 as a function of A;.
The result is that the magnitude of the deviation from the cubic power behavior
is less than 10 percent of the cbserved value.

Next, one must examine the situation in which an increase in amplitude A3
causes an increase in dislocation line length vibrating in the string mode,
disregarding for a moment the effects of the associated hysteresis mode of
vibration. In this view one may interpret the line length change entirely on the
basis of the string model (Equation 77). Consider again the curve representing
data on the deformed crystal shown in Figure 15. To discuss the deviation from
the line of slope 3 we need to refer to the behavior of Ay with applied bias
stress as shown in Figure 11. These data were taken with A; at its maximum
amplitude, that is, the same amplitude corresponding to +8 db on the abscissa of
Figure 15. Since, for the deformed state, Ay increases for low values of tensile
bias stress, we concluded in the previous discussion that the average loop length
is below &, as shown in the theoretical curve in Figure 9. According to the loop
length dependence shown in Equation (77) then, a reduction in effective loop
length, obtained for example by decreasing the amplitude of the fundamental wave,
will further lower the amplitude of the third harmonic Ag. Thus, as A; is
decreased from its maximum value, Aj should decrease in proportion to the cube
of A) as well as by some amount determined by the loop length function in
Equation (77). This results in a slope greater than three and is contrary to the
experimental evidence. The same contradiction is apparent in the data on the
sample of intermediate purity (Figure 17) in the annealed state and after moderate
deformation. Again, the third harmonic, when measured as a function of A;, has a
slope less than three, while the third harmonic measurements as a function of bias
stress (Figure 12) indicate a loop length region such that the amplitude dependence
should give a slope greater than three.

Qualitatively, however, the amplitude dependence of A on Aj may be explained
in the case of the heavily deformed {111) sample (Figure 17) and the pure ¢100)
sample (Figure 19). These specimens exhibit "overdamped" behavior in the bias
stress experiments (Figures 12 and 13) indicating that the loop length change due
to change in A; decreases the amplitude of the third harmonic so that a slope of
less than 3 results in the experimental data.

It appears that the consequences of the string model vibration considered so
far are insufficient to explain all of the amplitude dependent data. The
hysteresis type dislocation behavior, shown to be a plausible mechanism in account-
ing for the amplitude dependent attenuation data, may well be a source of harmonic
generation through the nonlinear stress strain relation associated with the break-
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away process. Should the hysteresis mode be responsible for generating a third
harmonic whose dependence on the amplitude of the fundamental involves a power
less than three, the combination of a string mode mechanism and a hysteresis
mode mechanism might lead to harmonic generation qualitatively consistent with
the observations.

Absolute Measurements of Amplitude

In the studies carried out so far, good qualitative agreement was obtained
between theoretical predictions and experimental results. One of the require-
ments for a quantitative check of the theory is an absolute measurement of the
amplitudes. TFor this purpose a capacitive pick-up method described below was
used.

Absolute amplitude measurements of 10 mc ultrascnic stress waves have been
accomplished using a set-up indicated schematically in Figure 21. The method
consists of measuring changes in the capacity of the condenser formed by the end
of the specimen and a stationary plate, due to the displacement of the specimen
end associated with the propagating wave (pulse).

For the conditiens of the present experiment (see below for numerical
values) the time constant of the circuit is approximately 10~% sec. It is
assumed, therefore, that for a wave with a frequency of 10 mc the stored charge
remains constant during a cycle and thus any change in capacity, due to sample
end displacenent, manifests itself as a change in voltage across the gap. This
voltage is amplified and measured with appropriate electronic circuitry. When
the assumption of constant charge is valid, the relation between displacement
d', gap width d, applied D.C. voltage V, and generated voltage V' is

]
q° :Yv_.d (78)

The electrical circuit for the capacitive pick-up is shown in Figure 22.
The pick-up capacitor Cy formed by the end of the sample and the parallel pick-
up electrode has various stray inductances and capacities associated with it.
At 10 mc the inductances Ly and Ly may be neglected if the ground lead and
input lead are kept reasonably short. Also Xyp << Rg and Xgeo << Xoxs Rg 3
therefore the circuit reduces to that shown in Figure 23.

The value of C, may be measured by means of a bridge or "grid-dip" meter,
where, for the components used in this circuit

cstray < 5 pf, for socket and wiring

Cg k+h - 3.1 pf, for 6922 vacuum tube
3

C. = Dynamic input capacitance due to space charge which is
normaltly 1/2 Cg,k+h

= 1.5 pf

CMiller = Cgp(l + A) where A is the gain of the first triode
HR,

and is equal to =———

RL % rp

o4
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approximately 1.8 x 10—7cm. The round trip insertion loss in the sample was
measured as 28 to 36 db (depending on the quality of the bond) so that the
insertion loss from the input end to the capacitor pick-up end would be 14 to

18 db. Using a value for one way insertion loss of 16 db (or 6.3 to 1 ratio)
would then indicate a displacement of * 1,8 x 10-7/6.3 2 * 2,9 x 10~ 8cm at the
pick-up end where the measured displacement with the capacitor was * 3.5 x 10-8cm,
In view of the uncertainties in the insertion loss, the agreement between the
calculated and measured displacement is considered reasonable and a test of the

method for measuring the amplitude of the second and third harmonics was attempted.

The pick-up circuit used for this purpose is the same as that shown in
Figure 22, except that the output of the cascode amplifier is tuned to the
appropriate harmonic, and the input circuit reduces to that shown in Figure 23
if the inductances Lg and Ly can still be neglected. To verify whether these
inductances are negligible, the resonant frequency of the entire input circuit
was determined using a "grid-dip" meter. The value obtained was 150 me. Since
the pick-up capacitor Cp (63 pf) and the stray capacity C, (12 pf) appear in
series for this measurement, the total circuit capacity is calculated to be 10 pf.
Then from the formula

1

un?£2e

the total inductance is 0.011 microhenrys. The reactance of this value of
inductance at 30 mc is 2.1 ohms and the reactance of C, at 30 mc is 440 ohms,
hence the inductance may be neglected in these measurements.

Before attempting to measure harmonic amplitude at 30 mc, the technique was
verified by introducing a 30 mc stress wave into the sample and calculating the
amplitude that should appear at the capacitor pick-up end. The peak-to-peak
voltage applied to the 30 mc input transformer was 470 volts which preduces a
calculated unlecaded displacement of the quartz transducer

_ -8
U(O) = 6.18 x 10 “cm.

The round trip insertion loss was measured as 32.6 db (11 volts peak to peak

from first round trip echo). The one way insertion loss is then 16.3 db which
corresponds to a factor of 6.53. Then the calculated displacement at the pick-up
end is

—_ _8 - _9
Yg)eale, - 0-18 X 10 7/6.53 = 8.4 x 10 “cm.

The measured value obtained with the pick-up capacitor was

u(n) = 7,2 % lOagcm.

The error between the two measurements is then

7.2 x 107°

—5 = 0.765 = 2u%
9.4 x 10
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Measurement of the third harmonic amplitude was then carried out by means
of the pick-up capacitor and a value of

-y . -11
Us(2)meas. - L.35 x 10 ""em ,

which corresponds to a stress amplitude of
2.3 x lO3 dynes/cm2 .

was obtained when an input signal of 2800 volts (peak to peak) at 10 mc was
applied to the input 10 mc quartz transducer. Since this applied voltage
produces an unloaded displacement of

Yoy * 3.31 x 10" 'cm

and for this particular measurement the round trip insertion loss was measured
as 28.5 db or a one-way loss of 14.25 db corresponding to a factor of 5.6, the
calculated pick-up end displacement at 10 mc is

_ -8
u(ﬂ)calc. = 6.42 x 10 “cm

The ratio between the fundamental wave amplitude and the third harmonic
amplitude at the pick-up end of the sample is simply

11
8

4.35 x 10
6.42 x 10

= 0.678 x 10”2

or more than three orders of magnitude.

The amplitude of the third harmonic due to dislocations Az can be calcula-
ted from expression (77). If the following values are used

- -1

o = 3g/am’, w = 21f = 6.28 x 107 sec T, k=ge 10 2em

b =3 x 10“8cm, A = npb2 2z 8 x 10”15, B=uy x 10" (estimated)
2 -

C = MbZ & 10 4, A, = u x 106 dynes/cmg,

2 10

QRY = 10-2 (estimated), C' = 1

5 x 10%m™? (estimated),

1t

N(effective dislocation density)

cne obtains for the value of the third harmonic amplitude
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~ 3 2
Aa(calc) = 3.2 x 10" dynes/cm

as compared to the measured value of

_ 3 2
AS(meas.) = 2.3 x 10 dypes/cm .
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Experiments were carried out on aluminum single crystals with several
different impurity contents, as measured by electrical resistivity ratios
( 3000 /RL+ 5 ) ranging from 270 to 3100. Amplitudes of the third harmonic,
as welE as the attenuation of the fundamental wave, were measured as a function
of bias stress, amplitude of the fundamental wave and amount of plastic
deformation. The results of these experiments are consistent with the
qualitative predictions of the theory presented.

A capacitive pick-up method was used to measure the magnitude of the
fundamental and higher harmonic amplitudes for the purpose of comparison with
the quantitative aspects of the theory.
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