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ABSTRACT

The applicability of the binary composite model has been
completely generatized for any combination and arrangement of mate-
rials. This refinement has eliminated the previous restriction
where only composite cylinders in which the core member would yield
before the case member could be treated analytically. It was found
that the residual stresses in the composite induced during cooling
from fabrication temperatures needed to be analyzed and incorporated
into subsequent axial loading predictions. The residual stresses,
which result from dissimilar thermal expansions of the components
of composites, were predicted analytically and compared to the ex~-
perimentally determined values for OFHC copper core with a 4340
steel case and OFHC copper core with a maraging steel case. The
effect of tensile prestraining on the residual stress states and
on subsequent stress=-strain behavior of binary composites and tung-
sten~copper filamentary composites was experimentally investigated
and analytically predicted. The fabrication-induced residual
stresses were sufficiently altered to cawse a substantial rise in
the tensile flow stress curves upon reloading. Prestrains into
the elastic=plastic behavioral region were emphasized. A double
concentric mode! was developed to assess the seriousness of the
presence of an unconstrained outer surface of the models. The
double concentric model can also be used to predict the behavior
under axial loading of composites which contain an interaction lay=
er or diffusion protection coating at the fiber-matrix interface.
This model has been developed for both elastic and strain-hardening
plastic deformation in the components of the composites. Presenta-
tion of experimental data {of double-concentric model composites)
completes the verification of this apprecach. The elastic response
of a two component composite c¢cylinder uniformly loaded along its
axis was compared analytically to a corresponding hexagomal fiber
composite element. The analytical comparison of the elastic be-
havior of the two composite elements provided justification and
identified limitations for the use of the ¢ylindrical approximation
to the hexagonal geometry for the yielding and subsequent plastic
deformation of the matrix component. The comparative elastic analy-
sis considered the micro~stress field and its effect on the compo~
site modulus and yielding behavior. Experimental data are given
for the study of end effects in prototype (50 mil tungsten wires in
copper matrix) fiber composites. Composites of both 7 and 19 wires
were assembled to represent loose and close packed conditions, with
precut discontinuous tungsten wires being included in different
numbers and geometric configurations.

This document is subject to special export controls and each trans-
mittal to foreign governments or foreign nationals may be made only
with prior approval of the Metals and Ceramics Division (MAMS) of the
Air Force Materials Laboratory, Wright-Patterson Air Force Base,

Ohio 45433
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LIST OF SYMBOLS

Strain tensor

Stress tensor

Strain increment tensor

Stress increment tensor

Deviatoric stress tensor

Deviatoric stress increment tensor

Elastic (Young's) modulus |

Poisson's ratio

First invariant of the stress tensor

First invariant of the deviatoric stress tensor
Second invariant of the deviatoric stress tensor
Effective stress

Effective strain

Effective strain increment

Tangent modulus

Poisson's ratio value In the plastic region

2
Area fraction of the core = E—E—
b
b2- a2

Area fraction of the case = 5
b

Thermal expansion coefficient
Temperature
Temperature increment

Radial displacement
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Axial displacement

Coefficients of least-square fit of uniaxial stress-

strain curves

Radius or subscript denoting radial direction
Subscript denoting axial direction

Subscript denoting tangential direction

E
Yy +v) (0 - 2v)

Material constant =

Number of rings in the case material
Radius of the core component

Outside radius of the rough machined composite or
radius of case-ring interface

Outside radius of the final machined composite
Superscript denoting elastic component
Superscript denoting plastic component

Normal stress component

Shear stress component

Normal strain component

Force

Moment
P

Material constant in the plastic region = TTom)

F[ber volume fraction
Matrix volume fraction
Core volume fraction
Ring volume fraction

Case volume fraction
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(1-2m)
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Subscript denoting tangential direction

Subscript denoting direction along the hexagon
boundary
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SECTION ¢

INTRADUCT 1 ON

The basic theme of this research study is that the actual
mechanical performance of oriented fiber composite materials can he
predicted accurately from entirely analytical relations once the
retations themselves are developed completely and comprehensively,
The important implications of the overall goal of this study become
apparent immediately when one considers the cost of the composite
materials, the reliability demands placed upon them, and the unfor-
giving inherent nature of the materials themselves.

initial work on the project demonstrated the feasibility
of the basic concept. It also revealed, however, that a number of
the assumptions made in the interest of analytical simplicity could
not be tolerated in development of the ultimate fundamental relations.
It showed further that several important parameters neglected in the
preliminary analysis played a major role in dictating actual mechani=-
cal behavior and therefore had to be taken into account.

Specifically, the initial work proved that simulation models
could in fact be employed reliably to characterize actual filamentary
composites, |t proved further that applied mechanics techniques,
suitably modified to account for combined elastic and plastic response
to applied stresses as well as materials parameters could be used to
rationalize rheological interactions in the composites and to identify
their specific nature quantitatively. The shortcomings of the initital
efforts lay primarily in the assumption of ideally plastic behaviors
after the onset of plastic flow, the presence of a free outer surface
in the simulation models, the neglect of the role of the ever-present
residual fabrication stresses, and the neglect of fiber end-effects
in the analytical developments.

On the basis of the success achieved in the initial work,
the project effort was extended in an attempt to develop the funda-
mental relations to take account of the above-cited shortcomings of
the preliminary analytical models, This work has been carried out
under contract AF 33(615)=3796. This contract has now been extended,
and the objectives of this extensions are outlined in Section V[l of
this report. The specific analytical objectives of the present effort
(reported upon herein) can be placed into the following categories:

1. Analytical determination of the intensity and distri=-
bution of residual stresses developed in fiber compo-
site materials and modification of the fundamental
relations describing the rheological interactions of
the composites on subsequent lcading to take account
of the residual stresses actually present,
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2. Refinement of the analytical models to take account of
the lack of ideally plastic behavior of the component
materials of real fiber composites on service loading.

3. Further development of the analytical models to assess
the seriousness of the presence of an unconstrained
(free) outer surface of the models, and the modifica-
tion of the basic relations as warranted.

L., inclusion of fiber end-effects (broken fibers, etc.)
into the analytical relations as warranted.

Significant progress has been made in attaining the above
objectives in the two-year period during which the work has been
under way. |In particular, it is felt that the first three goals
have been essentially accomplished and work on the fourth is in full=
swing. The results of the first year's work on the present contract

were fully reported in March of 1968 (Technical Report AFML-TR-68-71).

These results, together with those contained in this document, repre-
sent a complete summary of the progress to date.

As the work progressed, it became apparent that very close
interrelations existed among several of the goals of the present
study which are set out uniquely above. For example, mnsideration
of residual stress effects could not be treated comprehensively by
themselves without simultaneously treating the non-ideally plastic
behavior of the component materials {strain hardening). By the
same token, assessment of the role of the free outer surface could
not be made uniquely without considering the residual stress and
strain hardening parameters. As a consequence of these inter-
relations, it is not possible to present the results of the work
under the exact topical headings and in the order used above f{and
also employed in the contract work description). Rather, the results
are treated topically to constitute a coherent presentation,
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SECTION |1

REFINEMENT OF THE BINARY COMPOSITE CYLINDER MODEL

In the attempt to characterize the complete uniaxial stress-
strain behavior of composite materials, the authors have previously
developed a plasticity analysis for the response of a two=member
composite cylinder to axial loading conditions [1,271 This analysis,
however, was limited to certain arrangements of components to com=
prise the composite cylinder., |In particular, only composite cylin-
ders in which the core member would yield before the case member
could be treated analytically. |In addition, several simplifying
assumptions were necessary to allow the determination of the stress
state in the case member in the plastic behavioral region. To elimi=
nate these assumptions and completely generalize the applicability
of the analytical model to any combination and arrangement of mate-
rials, a modified method of analysis was developed.

Since the basic premise of the new method rests upon the
plasticity concepts introduced previously [1J] , a review of the most
important aspect of that development will be presented.

1. Concepts of the Plasticity Analysis

The method of plasticity analysis was tailored to the
particular problem under investigation, the axial loading of a com-
posite cylinder. The complexity of general plasticity solutions
makes it advisable to simplify the method of analysis to take com-
plete advantage of individual peculiarities of each problem such as
the geometric symmetry of the composite cylinder,

The stress-strain relations postulated in Reference C1_]
are presented by the following equations:

de, = '—P Cdol‘,-m (do, +doy )]

1
de2= —PLEdO‘Z—m(dO"l+ da'3)] M

dej = —IP Eda‘s—m(do'l + do-a):l

where de and dgr are the total (elastic plus plastic) strain and
stress increments, and P and m are the instantaneous values of the
tangent modulus and Poisson's ratio in either the elastic or plastic
behavioral region. The advantages of these relations over the clas-
sical Prandtl-Reuss stress-strain relations [[3-5]) will be discussed
subsequently.

To achieve a plasticity solution in a triaxial stress state

it is necessary to postulate a universal stress-strain relationship
and criteria for initial and continued plastic flow. The universal

-3
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stress-strain relation postulated in Reference (1] are the effective
stress{0) and the effective strain increment (dT ) as given by the
following equations:

2 _ /2
3)-1-(0' o) 3 (2)

E(a'l - o, )2+ (02

T

. 1
v 2

de = af(-lz:)cldt! d¢2)+(d¢2-d¢3)4(dc3—d¢|) :l

Physically, these functions of stress and strain are so
defined that results obtained from different loading programs can be
correlated by a single curve of effective stress vs. effective strain,
This curve is arbitrarily chosen as the uniaxial tension stress-strain
curve of .the material since it is by far the easiest to obtain experi-
mentally, The use of total strain increments in equation (1) dictates
the use of a universal stress=strain curve different from that used In
conjunction with the classical Prandtl-Reuss relations, |In the pre~
sent development, the uniaxial stress - total strain curve Is utiliz-
ed whereas the unfaxial stress - plastic strain curve in conjunction
with the following definition of the effective plastic strain is
utilized in the classical methods [[3-5]:

‘_p_J_a‘

2 2
d Clae - dedis (derded o (deB-ae’ 1" (1)

The von Mises yield criterion and the postulate of isotropic
hardening are employed in all plasticity considerations to describe
the  onset and continuation of piastic flow under triaxial stress con-
ditions. The reader is referred to References[ 3-7_]for a detailed
explanation of these and other commonly used yield and flow criteria.

The parameters P and m of equation (1) are determined from
the effective stress-effective strain curve of a material as explained
in Reference [[1J . In the elastic behavioral region these parameters
reduce to their elastic values, e and ¥ respectively.

The advantages of the use of the stress=strain relations of
equation (1) become apparent when the similarity between equation (1)
and Hooke's law [8_] is noted. The equations are the same with P re-
placing E and m replacingy . The equations of equilibrium, equations
of compatibility, and boundary conditions are independent of the
state of a material. Hence if the form of the stress-strain relations
are also the same for elastic and plastic problems, then the mathematics
of the solutions will be identical,

In principle, the known elasticity solution to any problem
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can be extended to include plastic behavior by changing the vatues
of E and ¥ in the solution to the parameters P and m, The problem
remaining is that of determining the values of P and m that corres-
pond to the proper plastic values. |In this respect, the problem
differs quite drastically from the elasticity problem since P and m
are not constant. The proper values of P and m are required to ob~
tain the correct solution for the stresses and strains in the body.
P and m, however, are functions of the effective strain (or the
effective stress-strain curve) which, in turn, is dependent upon
the strain determined from the solution of the problem.

The problem therefore becomes one which has to be solved
by an iterative technique in which values of P and m are approxima-
ted and then used to obtain a solution from which the effective
strain is determined. This then leads to new values of P and m.
The process is repeated until convergence is achieved, at which
point the last solution will be the correct solution to the plasti=-
city problem. Hence, a solution is achieved by the method of suc-
cessive approximations much in the same manner as that utilized by
Mendelson 3] who approximated and iterated the plastic strain com=
ponents, It is important to note that in the present approach, one
must continuously check for the onset of plastic flow with the aid
of the von Mises yield criterion in order to determine whether the
body is in an elastic or plastic state. A fiow chart of the itera-
tive scheme used in the present problem along with & discussion of
convergence problems will be presented in a later section on the
actual application of this method to experimental systems.

At this point in the description of the analytical develop~
ment, an attempt will be made to categorize the present set of stress-
strain equations as either total (deformation) or incremental (flow).
Hereafter, the two theories will be referred to only by the names of
"deformation' or '"flow' in order to aveid confusion with the meaning
of 'total' in reference to ''total strain', i.e., '"total' referring
to elastic plus plastic,

As shown in equation (1) the total strain increments, are
functions of the stress increments. In the case of general loading,
this behavior violates the postulate of flow theories which states
that the plastic strain increment be a function of the current state
of stress, not of the stress increment. In Appendix ! it is demon=
strated that the new stress-strain relations (1) do reduce to the
Prandtl-Reuss relations [3_] for the specific case of proportional
loading. In the general loading case, the requirements of a flow
theory necessitate the separate treatment of elastic and plastic
strain components as described in the previous section.

However, it has been proposed by Budiansky [9_] and
Klivshnikov [10,117] that the predictions of the deformation theories
might be correct for certain loading paths other than proportional ones.
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For a more detailed discussion of the differences between the de-
formation and flow theories and their limits of application the
reader is referred to several other publications which treat this
problem Tn more detail [3,12,13].

From a practical viewpoint, there are many problems of
engineering significance in which the loading path is close encugh
to proportional loading such that the small errors introduced are
overshadowed by the gain in mathematical simplicity. Actual numeri-

cal examples are given by Lubahn and Felgar C147 . The deformation theory

of plasticity can be used for general stress histories only if it is
explicitly stated that, where unloading occurs, the problem is sepa-
rated into loading and unloading parts with the unloading being
characterized by Hooke's law.

In essence, the present method relates finite although not
total (in this case referring to "total' as the opposite of "incre-
mental'') changes in strain to finite changes in stress. The approach
in this respect is similar to that of Swainger Ci5°]. Both methods
are basically of the deformation type however, since they lead to
the same basic contradictions as discussed for the Hencky deformation
theory in Reference [16].

One such contradication is the theory's inability tc account
for neutral changes of stress. This has to be kept in mind when
using the present method of anlaysis. It is therefore noted that
the present method cannot be applied to problems in which the mate=
rial exhibits no strain hardening, i.e., ideally plastic materials.
Any change of the stress state (other than unloading) in such a
material constitutes a neutral change of stress once the yield sur-~
face is reached since the state of stress cannot leave the yield
surface,.

Another consequence of using total strain increments in the
stress=-strain relations is their inability to predict the proper
response to completely hydrostatic loading. Since the hydrostatic
stress components are assumed not to influence plastic deformation,
all strains in response to hydrostatic loading should be elastic.
The plastic strain is zero and the effective plastic strain as given
by equation (4) for flow theories is unaffected. Equation (1), on
the other hand, depends on the values of P and m upon locading.

These vatues cannct be determined in their reqular manner 1

J since the effective strain increment is zero. This type of load-
ing.must therefore be treated in a manner similar to that of unload-
ing. Whenever a hydrostatic load increment is added to an existing
state of stress the values of P and m have to be equated to the
elastic values E and¥ . The strain increments of equation (1) would
therefore be completely elastic and will coincide with flow theory
predictions.
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2. Elasticity Solution of the Composite Cylinder

Knowledge of the complete elastic solution to a problem is
of added importance when use of the above developed plasticity
analysis is contemplated. The elasticity solution of a two-compo-
nent composite cylinder under axial loading was achieved in closed
form by Ebert and Gadd {170 . A took at the physical nature of the
response of the cylinder upon the incidence of plastic flow aids in
preparing the proper mathematical formalities for a complete solution.

The stress state in @ composite cylinder loaded into the
elastic region is presented graphically in Figure 1. Examination of
the stress state shows that plastic flow will occcur simultaneously
across the entire core diameter, whereas it will begin at the case-
core interface in the case, and then move progressively outward to
the outside surface. The solution will therefore have to be able to
account for the movement of a yield front through the case material.

The strain-hardening nature of the materials to be consid-
ered in this study will further complicate the situation. The pro-
blem is no longer one of the progression of a single yield front
through the case (as is the situation for ideally plastic composites
or thick-walled tubes), but rather it becomes one of the progression
of an infinite pumber of 'flow'' fronts through the case. Each one
of these flow fronts eminates from the interface when the effective
strain at that point reaches any point on the effective stress-
effective strain curve, Since the curve is composed of an infinite
number of flow fronts. The term ''flow' is used to denote the flow
stress of a material for a given strain rather than the initial
yield stress.

If this process is envisioned as occurring in finite incre-
ments rather than infinitesimally, an additional complication becomes
apparent. Each increment of radius in the case material will have
a different effective strain. Its incremental Poisson's ratio (or
in physical terms - its contractile tendency) and modulus will be
different, Hence, each of the increments will interact (to set up
transverse stresses) with one another as well as with the core,

This results from the fact that the Poisson's ratio values for each
will be different, and it is precisely this difference in Poisson's
ratio which causes the mechanical interaction,

it is quite apparent then, that the elastic solution of
the simple two-component composite cylinder could not be extended
to account for the additional complexities introduced by the advent
of plastic flow. An elastic solution was developed, therefore, for
a composite cylinder in which the case component can be divided into
N rings or increments of different elastic properties. The inter-
action developed as a result of axial extension of the composite
cylinder would be influenced by the separate properties of the core
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and each ring in the case, This solution can then be extended to
include plastic response of a two-component composite with the aid
of the plasticity analysis developed above.

The method of solution is one of classical elasticity theory,
simplified tremendously by the axial symmetry of the composite cylin-

der. 1in brief, the equilibrium of forces equation is expressed in
terms of the radial displacement with the aid of compatibility and
stress-strain relations, and the resulting second order ordinary
differential equation is solved utilizing boundary conditions.

It is in the application of the boundary conditions that
this solution differs from that presented by Ebert and Gadd [17].
Their two-component cylinder required four boundary conditions.
Hence, four equations had to be solved simultaneously for complete
solution. The solution was therefore achieved in closed form which
had the advantage of permitting physical rationalization of the re-
sulting stress states. In the present case, however, there are N+l
components (the core and N rings in the case) and hence 2N+2 boun-
dary conditions and 2N+2 simultaneous equations to be solved. For
a value of N greater than three this becomes an impossible task in
closed form. Since in general, N should be large, the solution of
the ZN+2 simultaneous equations was achieved numerically with the
aid of a Gaussian elimination method {187 . The details of this
solution are presented in Appendix || along with a sample matrix of
the Gaussian elimination method for N=i,

To complete the elasticity solution, the stresses and
strains in the entire composite were related to the constants which
were to be evaluated from the boundary conditions by the Guassian
elimination method. Solution of the problem was achieved with a
Univac 1108 digital computer.

3. Application of the Plasticity Selution

The extension of the elasticity solution developed above
to include plastic material response is now a matter of making the
proper substitutions of P and m for E andy in the elastic solution
(equation (A6)) and solving the problem by an iterative technique.

it is important to note that the uniaxial stress-strain
curves of the component materials were approximated by least-square
polynominal fits of the experimental data, The iterative scheme
utilized in the present method is presented in Figure 2. The load-
ing path was separated into increments by dividing the applied axiatl
strain (which in essence controls the loading path) into a number of
increments. The composite cylinder was divided into N+l stations,
These stations correspond to the radii of the core and the N rings
into which the case has been divided., For each load increment and
each station, steps | through 7 in Figure 2 were followed.
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The first approximation for P and m was obtained by guess-
ing a value of d€ for each station and then computing P and m from
knowledge of the uniaxial stress-strain curve of the individual com-
ponents (steps 2 and 3}. Note that despite the fact that there are
N+] stations, only two basic stress=strain curves are required since
only two distinct materials exist. Thus, even though each station
in the case might possess a different effective strain, and hence
different values of P and m in the plastic behavioral region, these
values are nevertheless determined from a single curve, the uniaxial
tension stress=-strain curve of the case material. An educated guess
was made for the first, namely the corresponding axial strain incre-
ment.

Step 4 consists of the elastic=like solution (Appendix 11}
of the composite cylinder probtem. The solution affords only the
increments of stresses and strains (doy; anddei-) at all stations.
Total stresses and strains have to be Jétermine by adding these
results to the existing stresses and strains at the beginning of
the present load increment (step 5).

With a solution of the problem in hand, a new d€ or € is
calculated with the aid of equation (3) from the strains of step 4
(deij ). The entire iteration process will now be repeated if the
newly determined d€ at each station is not sufficiently close to
the previous one computed at each station. The term S in step 7
of Figure 2 controls the degree of coincidence of the two d€ 's.
tf condition 7 is met, then the next load increment will be imposed.
Success of this method is naturally dependent upon convergence and
the rapidity of convergence. Convergence is controlled by the four
computational parameters discussed above, the load increment, the
initial guess, the number of stations in the case (N), and the value
of the iteration cutoff (8).

In the present problem, the size of the lvad increment was
found to have no effect on the entire process as long as the first
step was taken to the elastic strain limit of the core. This re=
sult can be explained by the fact that both components undergo
proportional or radial loading. This fact will be discussed in more
detail subsequently, The fact that the first guess for the effective
strain increment (i.e., the axial strain increment) was very close
to the finally observed value led to rapid convergence of the entire
scheme. The appropriate values for N and 8 were found by respectively
increasing N and decreasing © untii the answers differed by less than
0.01%. The values used for N and 8 for the composite systems investi-
gated in this study were N=5 for the small case area fraction samples,
N=7 for the large case area fraction samples, and 8 = .0005 for all
calculations.

Close examination of the iteration scheme of Figure 2
reveals that there are two different possibilities for the calculation
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of the effective stress, O . The one actually used in the program

is shown in step 2; it is calculated from the effective stress-
strain curve by knowing the value of € . The other can be calculated
fromoj; in step 5 by the use of equation (5). The two need not
necessdrily be the same, |In fact, the two are different until con-
vergence to the correct solution is achieved.

Reference was made above to the fact that both components
were loaded proportionally (or radially). A convenient way in
which to demonstrate this is that of showing the loading path for
each component in the v plane of the Haigh-Westergaard stress space,
(The reader is referred to textbooks on the theory of plasticity
[3-57 for the details of the construction of the loading path in
the o7 plane). In thisstudy it will suffice to explain that the
von Mises yield criterion is represented by a circle in this plane
and that proportional loading paths are represented by radial lines
(hence the auxiliary name of radial loading).

Two composite cylinder systems were actually fabricated
and tested. Details of the experimental procedures as well as actual
testing results were explained in a previous report C2] . The com-
posite systems consisted of an OFHC copper core and L340-steel case
in one system and an OFHC copper core and 18% maraging steel case
in the other. The above developed plasticity analysis was applied
to both systems and the resulting stress state for one of the OFHC
copper 4340 steel composite specimens was reduced to the w -plane
representation. Figure 3 and 4 show that the resulting stress path
in both components was indeed radial for the application of axial
loads. This is true for both elastic and plastic deformation.
Elastic loading is represented by loading entirely within the ini=-
tial von Mises yield locus, Plastic flow occurs as soon as this
boundary is transgressed, In Figure 4, this boundary is transgressed
by such a slight amount that it is not possible to detect it on the
scale used for the drawing. In actuality, however, all points for
axial strains greater than 0.0066 in/in are outside the initial
yield locus because in the analytical calculations it was assumed that
the linear curve which describes the uniaxial tension stress~strain
behavior of the 4340 steel in the plastic range did have a finite
slope.

In summary of the application of the analytical model to
composite cylinders. for axial loading, the entire stress and strain
distributions in the composite were determined. Presentation of
these results and their effect on the axial stress=strain behavior
of the composites will not be made at this point, since it was shown
previously [27] that the presence of residual stresses affect these
results. Discussion of the axial stressestrain behavior for all
composite systems investigated will therefore be postponed until the
next section. Discussion of the detailed plasticity analysis in
this section was necessitated by the fact that it serves as the basis
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for the residual stress study of the subsequent section.

L, Tensile Strengths of {omposite Cylinders

The analytical model described above is applicable only in
the small strain region and hence cannot be utilized to predict the
ultimate tensile strengths of composites in which both components
are ductile. The ultimate tensile strengths were measured on the
two composite cylinder systems investigated. The results will be
compared to the Rule of Mixtures predictions which can be represented
by the following equation:

LOMP _ o

g GEASE;- Ag o CORE (5)

S *

where O refers to the ultimate strength, AC and Ag to gggearea
fractiond of the core and case respectively,’and ° o to
the stress in the core at the strain which corresponds to the maxi-

mum load in the case.

The strain to achieve maximum load in uniaxial tension was
observed to be approximately 2.6% for the maraging steel and 4,2%
for the 4340 steel. These strains correspond to stresses of approxi-
mately 14,000 to 16,000 psi in the copper core. These values were
used to determine the Rule of Mixtures predictions of equation (5)
for both composite systems. The results of these predictions as
well as the experimental results are shown by the dashed lines in
Figure 5. It is apparent that all experimental values falt above
the Rute of Mixtures predictions.

If the experimental results of the composites and the case
component are extrapolated to the core, it then seems that the cop-
per core actually carries a load of 25,000 to 30,000 psi. The in=-
crease in composite tensile strength could possibly be a result of
the increased load-carrying capacity of the core resulting from the
interaction between the components. However, it could also be a
resuit of @ more complex interaction which delays the onset of in-
stability in the case component as a result of the presence of the
core. |In the OFHC copper maraging steel system, one composite sam=
ple (A =0.339) actually reached a strain of 4% before it reached its
maximu® load. (The full strains could not be measured because the
strain gages failed). As noted above, however, the maraging steel
component when tested by itself experienced strains of only 2.6% up
to maximum load. These results indicated quite clearly that necking
is indeed delayed in the composites.
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SECTION 111

RESIDUAL STRESS STUDY

The prediction of composite stress-strain behavior is de-
pendent upon knowledge of the complete uniaxial stress=strain char-
acteristics of the components. All factors which influence these
characteristics must be understood and evatuated., Previous work by
the authors [2_] has shown that residual stresses which result inher«
ently from composite fabrication procedures are among the most impor-
tant of these factors.

Residual stresses in composite materials arise from the
very nature of the materials, that is the combination of two mate-
rials with vastly different physical properties into one integral
unit. The fact that the component materials will most likely pos=
sess quite different thermal expansion coefficients, along with the
necessity of high processing temperatures for their mechanical and
metallurgical union, leads to the inevitable creation of residuatl
stresses., The accuracy of the analytical prediction of composite
behavior upon axial loading of as~fabricated composites therefore
depends critically upon the successful rationalization and evalua=-
tion of the induced residual stresses,

The approach to this problem was bequn with the study of
the origin of residual stresses and their effect on composite stress-
strain behavior in the two-component composite cylinder mode)l describ-
ed in the previous section. This model was chosen for study because
of the rational stress-strain behavior analyzed previously,

Initial attempts to study residual stresses were made by
experimentally measuring the stresses and Incorporating these results
into the analytical model for axial loading by an approximate tech-
nique, The experimental details of fabrication and testing of the
composite cylinders are described in Reference [27]. The residual
stresses in as=fabricated composite cylinders were determined by
measuring the axial and circumferential surface strains relieved
during the driiling-ocut of the center core component. The analysis
for the interpretation of the strain data into residual stresses was
developed in Reference (1. During the present period of study the
authors have developed a new analysis which yields the same results
but is based on fewer assumptions, The mathematical analysis
is presented in Appendix 11l. The method of analysis is essentially
an extension of the method proposed by Sachs [20] for homogeneous
materials.

The major assumption in the analysis is one of a stress-
free case upon the complete removal of the core by drilling. Since
the high hardness of the steel case material did not aliow drilling-
out of the component to justify this assumption, the stresses
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remaining in the steel shells were checked by deflection techniques
instead, The steel shells remaining after the removal of the copper
core were spiit longitudinally. n all tests, no change in diameter
was observed, therefore indicating that there were no remaining tan-
gential stresses., The iongitudinal stresses could not be checked
since the small diameter of the shells did not allow the utilization
of the standard deflection techniques. However, it is difficult to
rationalize the existence of axial stresses if no tangential stresses
exist.

Results of the residual stresses determined from drilling-
out measurements were given in a previous report [2_] for the com=-
posite systems consisting of OFHC copper-4340 steel and OFHC copper-
maraging steel. The residual stresses at several geometric points
in the composites are presented in Figures 6-8 for the two composite
systems. The experimental values are given by the error bars and
the analytical values will be discussed subsequently.

The residual stresses in both the core and case components
in the composite specimens were found to be large. The residual
stresses in the core were found to be tensile, while the case pos=-
sessed radial tensile residual stresses and axial and tangential
compressive residual stresses., These residual stresses can be ra-
tionalized from their physical origin. Upon cooling from fabrica-
tion temperatures, the core material (copper with @ =9.,2x10=6 in/in/OF)
will tend to contract more than the case material (either 4340 steel
with @ =6.5x10-6 in/in/OF or maraging steel with @ =5.6x10~® in/in/OF)
will permit, because the core has the higher thermal expansion coef-
ficient. The core material will therefore be under residual tensions
and the case under residual compressions. The magnitudes of the
stresses as shown in Figure 6 to 8 are high enough that they would
appreciably affect subsequent composite behavior upon axial loading.
Therefore, a method of incorporating the as-fabricated residual stress
distributions into subsequent axial loading predictions was needed.
Since none existed, a suitable method was developed.

Initial efforts during this contract period were reported
in Reference (27} . These efforts consisted of incorporating the
measured residual stress distribution as an initial condition, The
effective residual stress in each component was determined and further
deformation was continued from that point on the effective stress-
strain curve. This method breaks down, however, if anywhere during
the fabrication history the composite was unloaded. If this were
the case, then knowledge of the effective stress alone does not
uniquely determine the proper position on the stress-strain curve
since there are an infinity of such positions.

In the next section an attempt will be made to predict
analytically the residua) stress distribution and examine all other
fabrication procedures which might influence the residual stress
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1. Prediction of Residual Stresses by Thermal Stress

Analysis

Residual stresses in composites are the resuilt of different

thermal expansion coefficients between the two components., The incor=-
poration of thermally induced strains into a suitable mechanics devel-

opment should therefore lead to the prediction of residual stresses
during cooling of the composite,

a. Elasticity Analysis

Since thermally induced strains affect only the normal
strain components [_21_] they can be incorporated into Hooke's law in
the following manner:

i
E'] = -'E-y O'ij Bi](E 8 -a T) (6)

where@ is the thermal expansion coefficient and T the temperature
above some arbitrary reference temperature.

Using these stress-strain relations and the fact that T
(or actually the temperature difference) now becomes the foading
parameter, the elasticity problem of the creation of stresses and
strains upon cooling (or negative thermal loading) of the composite
cylinder can be solved.

The analysis is similar to that developed for the axial
loading of a composite cylinder with two exceptions. First, the
solution of the stresses and strains must be re-derived with the
new stress-strain relations. Second, an additional boundary condi-
tion is required, since in this case, the axial strain increment is
not known as it was for the axial loading case. This new boundary
condition can be derived from the fact that the composite cylinder
must meet the equilibrium of forces equation in the axial direction,
In mathematical terms this means

a b
USORE rdr + fagASErdr =0 (7)
a

With these two changes in the solution, it is possible to
determine the resuitant stress and strain distribution in the compo-
site upon cooling. The detailed elasticity solution, which as in
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the previous case of axial loading is again set up for a composite
with N rings in the case, is presented in Appendix IV,

The residual stresses induced in @ composite upon cooling
can be determined from the numerical solution of the 2N+3 boundary
condition equations and the general relations for the stresses (equa-
tion (AB3)) in terms of the unknown constants. Careful examination
of all these equations shows that the build-up of residual stresses
is a function of both the differences between the thermal expansion
coefficients and the Poisson's ratio values of the individual com=
ponents. Residual stresses can be avoided onty if the thermal ex-
pansion coefficients of the components are identical,

As discussed in Appendix |V, a general solution to the
thermal loading problem must include the elastic and physical proper-
ties of the components as functions of temperature. Only in the
case where the temperature change is very smal}l can the properties
be considered independent of temperature. {n this problem the tem-
perature range over which stresses build up is much too large to
permit this assumption. Inclusion of the temperature dependence
of the elastic and physical properties (E,v, and @) was handled
as described below.

The entire problem of the Gaussian elimination method and
the solution of the stresses and strains (equation (A63)) was pro-
grammed on the 1108 Univac Computer. The temperature of 850°F
(actually B75°F for computational convenience, the level of thermal
stresses generated by the extra 252 drop to 850°F being shown to be
negligible) was chosen as the stress-free temperature for the OFHC
copper-4340 steel compoiste system. This choice of temperature was
based upon the fact that composites were tempered at 850°F for one
hour. It was felt that the time at this temperature would permit
complete stress relief in both components while they were at tempera-
ture. From 875° the temperature was lowered to room temperature in
finite increments, At each temperature the Gaussian elimination
method was used to solve the boundary equations, and all stresses
and strains were determined., The elastic and physical properties
were determined at each temperature from a linear approximation of
available literature data on their variation with temperature. The
actual values used and the appropriate references are given in Table 1.

The correct solution to this problem could be obtained only
if the temperature increments were infinitesimal since the properties
vary continuously with temperature. To obtain this condition the
computer program was run with various temperature increments and the
results of the stresses were plotted against the appropriate temper-
ature increments. Figure 9 shows this graphical representation for
the stresses in the core of an OFHC copper 4340 steel composite
(Ag= 0.504), Extrapolation of the curves to zero temperature incre-
ment results in the correct elasticity solution to the problem.
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This approach is equivalent to including the actual tem-
perature variation of the properties by representing the properties
as functions of temperature in all the equations of Appendix IV and
then solving the problem in one step from the stress=free temperature
to room temperature, The latter is a much more cumbersome process
since the bookkeeping of the already involved equations of Appendix IV
becomes even more complex.

Comparison of the residual stresses in the core predicted
by the elasticity solution method (Figure 9) to experimental results
(Figure 6) shows that the predicted axial stress is much too high.
Also, from the computer scolution it was found that the effective
strain in the core was larger than the uniaxial elastic strain limit
of the core. These results indicate that the core undergoes plastic
deformation during cooling from the tempering temperature and hence
the elasticity solution to the problem is not sufficiently accurate.

b. Plasticity Analysis

The results of the elasticity solution necessitate an
elastic - plastic analysis of the problem. The first attempt at the
solution was by a rigorous method which included mechanical and
physical property variations with temperature,

(1) Incorporation of Property Variations with Temperature.

In the plastic behavior region of a material it is necessary
to determine the change in the entire effective stress=strain curve
with temperature aiong with the elastic and physical property varia-
tions, Data for all property variations with temperature were taken
from the available literature. These data are presented in Appendix V
along with the appropriate references. It is important to note that
for the thermal loading problem, the effective stress=strain curve of
the copper was approximated by three linear regions as shown in
Figure 10.

The plasticity solution of this problem was attempted with
the aid of the elasticity solution of Appendix 1V, the iterative
method for plasticity solutions graphically presented in Figure 2,
and the component property data presented in Appendix V. The method
of solution is very much like the one for the case of axial loading
presented above. However, in the case of thermal loading, the con-
cept of a universal stress-strain curve no longer suffices. Instead
of postulating a single curve which typifies all stress states
(effective stress~strain curve), it is necessary to postulate a uni~
versal surface in the three dimensional space of effective stress,
effective strain, and temperature, Any given stress and strain
state at any temperature can be reduced to this surface by equations
(2) and (3) and knowledge of the temperature. This universal sur-
face can be determined from experimentally measured uniaxial stress-
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strain curves at various temperatures, [t can be constructed from
the experimental data presented in Appendix V.

The numerical solution to the plasticity problem was
achieved in a manner similar to that of the elastic solution of the
previous section., The stress-free temperature was again chosen as
850°F (actually 875°F) and the analysis consisted of lowering the
temperature in finite increments to room temperature and computing
the stress and strain states at each temperature, For each temper-
ature (or loading) increment the properties of the temperature at
the end of the increment were used. To obtain the universal stress~
strain relationship, a cut was made through the effective stress=
effective strain-temperature surface at that temperature, Hence, in
the actual solution of the problem, the universal surface discussed
above was approximated by a finite number of effective stress-strain
curves at given temperatures. Figure )0 shows several of the curves
for the OFHC copper at their respective temperatures.

This approximation led to difficulties in the numerical
solution. As explained in Section |1, the plasticity method is de=
pendent upcon the proper determination of the plasticity parameters
P and m, To compute these, it is necessary to know the points on
the effective stress-strain curve which correspond to the stress
and strain state of the previous load increment and the stress and
strain state of the present load increment. Of course, both of
these have to be on the same curve because the derivations of the
tangent modulus and Poisson's ratio associated with that curve are
based on these points. In the case of thermal loading, however,
these points are not on the same curve. The previous stress state
was calculated at some temperature and is located on the stress-strain
curve peculiar to that temperature. The new stress state which can
only be different if the temperature has changed (because temperature
is the loading parameter) is located on the curve peculiar to that
temperature. This curve is necessarily different from the first
curve, Figure 11 illustrates this problem,

In Figure 11 point A refers to the stress and strain state
at the end of the first load (temperature) increment which was chosen
to be 509F. Calculation of the stress and strain state at the end
of the second temperature increment (T=775°F) depends upon the caicu=-
lation of P and m from the effective stress=strain curve at 775°F.
However, the stress and strain state of the previous load increment
cannot be correctly represented on the 775°F curve, because it is
on the 775°F curve which corresponds to the same effective stress
and strain as that of point A in Figure 1}l. P and m, however, can-
not be computed without the previous load increment point. An
approximation therefore has to be made to transfer the point A from
the 825°F curve to the 775°F curve.

Figure 1] shows two such possible approximations, Paths |
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and 2. Path | corresponds to keeping the effective strain constant,
and Path 2 to keeping the effective stress constant. Neither path
is correct since both correspond to changing the values of either
the effective stress or strain without changing the actual stress
and strain distributions. Hence, the effective stresses and strains
did not correlate at the end of the temperature loading path. Both
paths were utilized in separate approximations to the thermal load-
ing problem. The residual stresses predicted were virtually the
same for both approximations.

The residual stresses in the core of an OFHC copper-4340
steel composite (A =0,504) are shown in Figure 12 as a function of
the size of the teaperature increment used in the amalytical treat-
ment. Similar results of calculations on the other three case area
fraction composites of this composite system are presented in Table 2,
Comparison of these results to the experimentally measured residual
stresses (Figure 6) shows fair agreement. |In most cases, however,
the analytical values are higher than those experimentally measured.

A possible reason for the disagreement is the fact that at
the beginning of the study the assumption of time independence of
all materials was made. In the present study, the composite cylin=
ders were cooled at an extremely slow rate (furnace cool) to avoid
residual stresses which result from non-uniform cooling. It is en=-
tirely possible therefore, that as a result of this slow cooling
rate, residual stresses due to differences in thermal expansion co-
efficients do not build up during cooling until some temperature,
which could be substantially below 875°F, is reached. The siow
cooling process could account for a stress relieving action, by a
creep (time-dependent) mechanism, thus allowing no stress build-up.
This process could easily occur in the copper since B759F is approxi=-
mately 100°F above one-half the absolute melting point, the tempera-
ture at which creep effects are known to be pronounced in metals

[22,23].

The above developed thermal stress analysis would therefore
be most applicable to a composite undergoing moderate cooling. A
low cooling rate would introduce the creep effects discussed above
while a fast cooling rate would introduce residual stresses by non-
uniform cooling; neither of these effects can be treated by the above
analysis,

For the purpose of the present study it was most important
to determine the correct residual stress distribution in the compo-
site (be the method experimental or analytical) in order to determine
its effect on subsequent axial loading, To achieve this aim, a new
semi-empirical model was developed to predict the residual stresses
in composites upon cooling,
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(2) Approximate Approach

The method is based on the same principles as those for
the method described above., However, the mechanical properties of
the composite were assumed to be equal to the room temperature pro-
perties and the thermal expansion coefficient was taken as the aver-
age of that at room temperature and that at the initial (stress~-free)
temperature. The empirical input was made by determining the initial
temperature from the criterion of best fit of the resulting residual
stress distribution to that measured experimentally. For the OFHC
copper-4340 steel system and for a case area fraction of 0.329, it
was found that the use of a starting temperature of 675°F gave good
correlation with experimental data. This temperature was therefore
utilized for all calculations far the other experimentally investi-
gated composites of different case area fractions. For the OFHC
copper-maraging steel composites it was found that the starting
temperature of 575°F gave good agreement with experiment. The method
of solution is the same as the one discussed above. In this case,
however, the problems of contradicting effective stresses and strains
are absent because all calculations are made with reference to conly
one curve, the uniaxial stress-strain curve of the copper at room
temperature.

Before presenting actual results of this method, it is
important to consider one additional fabrication procedure which
influences the residual stress state in composite tensile specimens.
Examination of the fabrication procedures will show that the compo-
site specimens were not heat treated with fipal dimensions. They
were, instead, heat treated with a diameter of 0,020" over the final
test section diameter., Subsequent to the final heat treatment this
extra material was machined off by the final grinding operation.
For an exact solution of the residual stress state of the tensile
test specimen, it is therefore necessary to determine the residual
stress state in a composite cylinder of rough machining dimensions
and then determine the effect of machining to final dimensions upon
the existing residuval stress state. The experimentally measured
residual stresses are the result of both of these, since measurements
were made on samples which were machined to final dimensions.

¢. Residual Stress Changes Caused by Machining

Removal of the 0.020'' rough machining stock necessarily
changes the boundary conditions. The exact analysis of the amount
of residual stress change is very similar to the Sachs type of anal-
vsis. In this case, the change in residual stresses is related to
the residual stresses present prior to machining. The analysis is
an elastic analysis and is presented in detail in Appendix VI.

The results of this analysis and its effect on the residual
stress distribution and subsequent axial loading will be discussed
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in the next section.

2., Complete Composite Cylinder Characterization

In this section all the theoretical work of the previous
sections will be utilized to characterize completely the behavior
of a composite cylinder upon axial loading. The approximate thermal
stress analysis of Section |11-2-6=(1) and the machining analysis of
Section V=l=c and Appendix V1 will be used to predict the residual
stress state in a final machined composite tensile specimen. This
residual stress state will then be incorporated into the elastic-
plast ic analysis of composite cylinders in axial tension discussed
in Section II,

The general objective is that of combining all the above
analyses into one general computer-programmed mode) which can predict
composite response under thermal loads, machining, or axial loads,
or any combination of the three.

a. Residual Stresses Resulting from Cooling

The approximate thermal loading analysis developed in
Section |i=1-b-(1) will be applied to the experimental composite
systems of OFHC copper-4340 steel and OFHC copper-maraging steel.
The thermal load increments represent the first lcading step in the
general program.

The composite cylinder is divided into @8 number of stations
for bookkeeping purposes, The first station is at the case=core
interface, The case material is divided into N rings. These rings
are spaced at arbitrary intervals between the interface and the final
test section diameter of radius f. The last ring extends from this
radius to the cutside radius b,

The composite with rough machining dimensions is now cooled
analytically from a stress-free temperature to room temperature in
certain temperature increments. At each temperature increment, the
complete stress and strain distributions in the composite are calcu-
lated by the plasticity analysis developed above. The stresses and
strains calculated at each increment are added to those existing at
the previous increment. For the OFHC copper-4340 steel system, an
initia) temperature of 675°F was chosen and the temperature increment
of 50°F was found to be sufficiently small to avoid appreciable error.

The stress and strain distribution at the end of this thermal
loading program (room temperature) represents the residual stress and
strain distribution in the composite as a result of cooling, Figures
13 and 14 present the entire residual stress distributions in two OFHC
copper-4340 steel composites with case area fractions of 0.228 and
0.666 respectively. The dashed curves represent the residual stresses
as a result of cooling and before final machining. It is apparent
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that the stresses in the core are tensile while the radial stress in
the case is tensile and the axial and tangential stresses in the
case are compressive. This stress distribution is a result of the
higher thermal expansion coefficient of the copper core in compari-
son to the steel case,

b. Consideration of Machining Effects

The next step in the general program is that of submitting
the composite to an analytical removal of the outside ring in the
case, As discussed above, this step would simulate the physical
machining operation since the outermost ring of the composite cor-
responds to the amount of case material which is removed by the final
grinding operation.

At the end of thermal loading in the general program all
the stresses and strains are known at each station. At this point,
the next load increment becomes the machining analysis described
in Appendix VI. Since at the end of all loading increments the
stresses and strains are added to those of the prior interval, the
negative values of the machining results have to be computed in this
calculation. This procedure must be followed because the stresses
initially present (aq ) must be related to the stresses removed
durnng machining (aq] ) and the stresses remaining after machining

(O.U ) by

_ "

The present procedure is equivalent to

"
a'..

ij = oj*ioy) 9)

ate
1 w

The values for the two known parameters ¢, and o, of
Appendix VI are therefore taken as the negative of the values of O}y
and oy at the station r=f at the end of the thermal loading. The
stress and strain distribution at the end of this load increment
(machining) represent the actual residual stress and strain distri-
butions in the final machined composite tensile specimen of outside
radius f.

The solid lines in Figures 13 and 14 represent the residual
stress distributions calculated for the OFHC copper-4340 steel com-
posites with A  equal to 0.228 and 0.666 respectively. The magni-
tudes of the stresses in the core have been decreased from those pre-
sent after thermal loading. In the case, the radial stresses were
decreased (becoming zero at r=f) whereas the axial and tangential
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stresses were increased in magnitude. The effect is seen to be very
large for the A =0.228 sample where the material removed constituted

a large part of>the composite cross~sectional area, whereas the effect
is very small for the large case area fraction specimen (As=0.666).

The stresses present at this point of the general loading
program, as mentioned above, are the final residual stresses present
in composite tensile specimens. The values of these stresses at
various points throughout the composite (in the core and 0.D. of the
case) are presented in Figures 6 to 8 as circles for all the different
case area fractions of both the OFHC copper-maraging steel composite
systems. The good agreement with experimentally measured stresses
is not accidental, of course, since the initial temperature of thermal
ioading was chosen so that these values do indeed fit the experimental
values for each composite system.

c. Axial Loading

The next step in the general program is the application of
axial loads (or in effect application of axial strain increments) to
the composite cylinders with the existing residual stress state. It
should be remembered that this stress state is fully known,since the
stresses are those of the last load increment which are known at every
station throughout the composite,

The problem of axial loading of composites has been sclved
in Section |1, However, it was assumed that both the case and the
core components were initially in an unloaded condition. This assump=
tion no longer holds in the present case, since it was shown that
both components are pre-loaded by the presence of residual stresses.
it now becomes necessary to examine the effect that the presence of
residual stresses has on the use of several of the plasticity con-
cepts discussed previously.

(1) Use of the Effective Stress=Strain Curve

It is apparent that the thermal loading and machining have
influenced the use of the effective stress-strain curves for subse-
quent axial loading. During thermal loading, the effective stresses
and strains increase progressively in both components. To calculate
these terms, use is made of the following expressions:

2 172
o= “,-_'—2_.-|:(crl--cr2)+(cr2--cr3+(o-I -03? 1 (2)
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€ =2(%},C(e'l-¢2?+(€a“‘s’z‘"(‘n -63)23 (10)

where m is the total Poisson's ratio defined by equation

= 1/2-1/2-v) (1)

o

m
T Ee«
Use of these equations is made possible by the fact that the loading

path for the core is necessarily radial and the entire loading of
the case is elastic.

During the thermal loading process, the effective stresses
and strains of the components increase continuously along the respec=
tive effective stress-strain curves of the components up to some final
vatue., Figqure 15 shows this path for the core component of an
A =0.228 OFHC copper-4340 steel composite, The behavior of the
steel component is similar except that it remains elastic., [t is
important to note that as a result of the non-uniform stress distri=
bution in the case (Figure 13) during cooling, the effective stress
varies continuously throughout the case, being the greatest at the
inside and decreasing towards the outside surface,

The effect of the machining operation is that of producing
an actual decrease in the effective stress in the core computed by
equation {2). This action constitutes unloading of the core compo-
nent. Hence the actual solution of the changes of the stress states
must be elastic and the change in the effective strain must be com-
puted from elastic considerations rather than equation (i10). The
new effective strain was calculated as follows:

Let €7 and O denote the effective strain and stress after
thermal loading and Ty, the effective stress after machining, then €M
, the effective strain after machining, is given by

€y f— 7 = (12)

where £ is the elastic modulus. Again, Figure 15 demonstrates what
happens in the copper core after the machining operation. The steel
case, on the other hand, did not experience unloading during machin~

ing. lInstead, it experienced a slight increase in effective stress
and strain,
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Consideration of subsequent axial loading must include all
of these observations. The effective stress-strain curve used for
the copper core (for the A =0.228 specimen) must follow the path BAC
of Figure 5. Hence, desp?te the fact that the copper core was loaded
into the plastic region during thermal loading, it will exhibit an
initial elastic response upon axial loading because of the unload-
ing caused by the machining operation. The effective stress-strain
curves of all the other specimens must be modified in a similar man-
ner, The representative curve for the steel case also changes.
Since the case is loaded only elastically during thermal loading and
machining, the shape of the curve does not change. Only the start-
ing point on the curve is different. 1t will correspond tc what-
ever the values of the effective stresses and strains are at that
instant., The only effect this will have upon subsequent axial load~-
ing is that of shortening the elastic behavioral region of the case,
that is, yielding will occur at a strain lower than that with no
residual stresses present.

{2) The Question of Proportional tLoading

In the axial loading analysis of Section Il it was found
that both components of the composite experienced proportional load-
ing during the entire application of axial loads as shown in Figures
3 and 4. The nature of the loading path for combined thermal load-
ing, machining, and axial loading needs to be examined. As discussed
previously, the core is necessarily loaded proportionally. The case,
however, presents a different problem. Reduction of the thermal lcad-
ing analysis to the geometrical representation in the 7 -plane indi-
cates that the case also experiences proportional loading during
cooling. The actuai physical situation must now be considered to
understand what happens during subsequent axial loading.

After thermal loading (and machining) the stresses in the
case are given in Figure 13, It is apparent that the radial stress
is the largest principal stress {0y ), the axial stress is 0p and the
tangential stress O3 . On subsequent axial loading the axial stress
will eventually change from compression to tension. The radial stres-
ses will increase slightly (however,O¢ at r=f must remain zero)}, and
the tangential stresses will become more negative, Hence, there will
be some applied strain at which the axial stress becomes o (this
strain will vary for different stations in the case), and the radial
stressop , while the tangential stress remains 03. With this type
of variation the stress path can obviously not be“proportional. It
is important to note, therefore, that upon yielding of the case mate-
rial, the present plasticity analysis is only an approximation to
the actual behavior since the flow theory discussed in Section ||
would have to be used. As pointed out in references (5} and (14),
however, the deformation and flow theories are sufficiently close
for engineering predictions if the stress path is not drastically
different from proportional loading. It will be shown subsequently
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that the actual stress path for the composite case is not drastically
different from a proportional loading path.

In general loading situations, the effective stresses and
strains must be determined from equations (2) and (10) at each load-
ing increment. Determination of d& and d€ at each increment and
addition to the previous values of & and € does not necessarily lead
to the correct values,

(3) Computational Procedures

With the consideration of the concepts described above it
is now possible to study the axial loading of composite cylinders
containing residual stresses,

The axial strain was applied analytically to the composite
in certain increments, The first increment was taken to be equal to
the effective strain which was relieved during machining (Line BA in
Figure 15). From this point to the onset of yielding in the case,
the increment was taken as 0.0002 in/in. The small increment used
during the yieiding of the case was necessary because the present
analysis is only an approximation to the flow theory in this region.
All other computational parameters and mechanical properties used
were the same as those used for the axial loading analysis of Sec~
tion {1, As in the case of thermal loading and machining, the stres-
ses and strains were computed at each increment and added to the
existing stress and strain states. The corresponding effective
stresses and strains were computed with the aid of equations (2)
and {10).

Inclusion of axial loading concludes the general program
designed to predict composite behavior. The general computer pro-
gram is presented in Appendix VIl. Jt is presented (without the
actual print-out of results) for the sake of completeness. It is
important to mention that the program is set up to solve any of the
three problems of thermal loadi ng, machining, or axial loading of
composites separately or in any combination by the substitution of
appropriate data cards. It is also generalized to include variation
of properties with temperature.

This computer program, therefore, achieves the main objec-
tive of the cylindrical composite study = the prediction of composite
response to an applied load from knowledge of the uniaxial stress-
strain properties of the basic components and knowledge of the
fabrication history.

3. Application of General Model to Present Composite Systems

The computer programmed model was used to predict the re-
sidual stresses as a result of fabrication (cooling and machining)
and to predict the composite response to subsequent axial loading



for all the composite systems experimentally investigated and report-
ed previously[[27]. For each composite cyclinder the entire stress
and strain distributions were calculated at a number of stations
throughout the cross section of the composite. These calculations
were made at all loading increments, each of which included the in-
puts from thermal loading from the initial temperature to room tem-
perature, the machining operation, and all the increases in applied
axial strain.

Representation of all these data is impossible because of
their voluminous nature. Only a few typical representations of the
theoretical results for some of the composite cylinders are presented,
These representations are shown in Figures 16 to 26 and they will be
used subsequently to explain the composite behavior., The rest of the
data will mot be presented. Only the results of the final composite
axial stress-strain behavior and transverse strain behavior will be
presented for each composite specimen experimentally tested. These
two representations of the composite behavior are those which are
experimentally measurable and, in fact, have been presented for all
the composite sytems in Reference [[2]],

a. Discussion of Apalytical Results

Figures 16 to 18 represent the stress paths in the w-plane.
Figure 16 represents the copper core of an OFHC copper=4340 composite
(A =0.228). The itlustration shows that the loading is radial (pro-
po?tional) in the core during thermal loading, machining, and subse-
quent axial loading. It also shows the precise effect of the machin-
ing on the stress state after temperature loading. The subsequent
axial loading is represented by a series of points which correspond
to different applied axial strain.

Figure 17 represents the loading path in the 4340 case mate-
rial for the same composite system. |t can be seen that the loading
path during the thermal loading is indeed radial. The effect of the
machining operation is too small to be detected on this particular
representation. Application of axial loads is seen to change the
direction of the stress path so that the loading is no longer radial.
This result is caused by the relative change in magnitudes and sign
of the principal stresses upon axial loading. This change also
necessitated the labeling of the axes as S_, S, and S_ rather than
S., S,, and S,. Again the axial loading pgth ¥s repregented by a
numbef of poiats corresponding to particular applied axial strains.

Figure 18 represents the same type of diagram for the case
component of an OFHC copper-maraging steel composite (A_=0.502). Its
interpretation is the same as the one for the 4340 case’

Figure 19 shows the theoretical predictiors of the axial
and transverse stresses in the copper core of an OFHC copper=~4340
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steel composite (A =0,228) for the entire loading program. Thermal
loading is represented on the horizontal axis as AT (where A T
refers to the difference from the reference temperature-taken as
zero for room temperature). During thermal loading the transverse
stresses and the axial stress increases as shown. The drop in the
curves at the zero point on the axis represents the effects of the
machining operation. The right hand side of the graph demonstrates
what happens to those stresses upon subsequent axial loading. Both
stresses increase up to a strain of approximately 0.0065 in/in at
which point the transverse stresses remain essentially constant,
This effect is caused by the yielding of the case material which,
upon attaining the plastic behavioral region, increases its instan-
taneous Poisson's ratio toward that of the copper, thus eliminating
further interaction.

The dashed curve in Figure 19 represents the uniaxial
stress-strain curve of the copper core. For the Rule of Mixtures
prediction, it is this curve which represents the behavior of the
copper core., it is assumed for those predictions that there are no
transverse stresses present. The accompanying curves representing
the analytical predictions show how erroneous this assumption is.

It is apparent that the axial stress in the core is much larger than
that predicted by the uniaxial curve. The copper core will thereg=
fore contribute a greater stress to the composite behavior than
would be predicted by the Rule of Mixtures assumption.

Figure 20 shows the same type of representati on for the
4340 steel case of the same composite cylinder, The axial stress
is negative during thermal loading and constant across the case
cross section. The tangential stress is also negative, but it varies
from the interface to the outside diameter, being greatest at the
interface. The radial stress, not shown on the diagram, is zero on
the ocutside surface and positive throughout the remainder of the case.
The effect of machining is again illustrated. Both the axial and
tangential stresses decrease during machining. During subsequent
axial loading the axial stress changes from compression to tension
after a certain amount of axial strain. At the incidence of plastic
flow in the case, the axial stress actually splits into an infinite
number of curves. This is caused by the non-uniform elastic stress
distribution (Ot and Oy ) in the case. The inside radius of the
case experiences the highest effective stress and hence yielding will
occur first at that point. As soon as yielding occurs, of course,
the representative axial stress=strain curve behaves plastically.
At this point the outside of the case is still elastic, and hence
its stress=strain curve will still rise in an elastic manner until
the yield front reaches the outside. The resulting split in the
axial stress is shown for the inside and outside diameters in
Figure 20,

The tangential stress in the case, Figure 20, is necessarily
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non-uniform for all loading regions. The values at the |.D. and 0.D.
are shown for all three stages of loading. The magnitude of the
stresses is seen to increase during all stages except at the yield
point of the case, the stresses staying relatively constant since
there is very little additional interaction, Again, as for the core
component, the dashed line represents the uniaxial tension curve in
the component.

The axial stress curve, for the case material of the compo-
site is seen to be drastically different from the uniaxial curve of
that material, Unlike that in the core material, the axial stress
in the case in the composite is lower than the stress taken from the
uniaxial curve of the case material. The interactions during thermal
loading act to lower the contribution of the case to the overall com-
posite stress-strain curve., Hence, as in the situation of axial load-
ing atong, the effect on the composite behavior will be a balance be-
tween & large ameliorating effect in the core and a large weakening
effect in the case. Numerical results will be discussed in the next
section.

The transverse stresses are found to be essentially equal
to one half the magnitude of the axial stresses.

Figures 21 and 22 show the similar results of an OFHC Copper-
4340 steel composite with a large case area fraction (A =0.666). The
magnitude of the stresses in the core is higher than thdt of Figure 19.
The effect of machining is seen to be small because of the large dia-
meter of the specimens. The transverse stresses in the case are lower
than those of Figure 20. However, the values of the stresses at the
I.D. and 0.0, are split to a much larger extent since the case is much
larger in diameter. Hence there is a greater strain range over which
vielding takes place in the case material.

The behavior of the composite cylinders with maraging steel
cases is similar to that of composites with 4340 steel cases. However,
it is important to note that while the interaction virtually ceases
upon yielding of the 4340 case, the interaction decreases only slight-
ly for the OFHC copper-maraging steel composites because of the high
strain-hardening rate in the maraging steel in the small strain range
under investigation.

The previous representation of the analytical data demon-
strated that the transverse stresses in composite cylinders were
indeed very large, and that the axial stress was very different from
that derived from the uniaxial stress-strain curves in the components.
The next series of graphs (Figures 23 to 26) will present the effec=
tive stress in both components during all stages of loading and com-
pare it to uniaxial stress=-strain curves of the components.

The effective stress of a material under a general stress
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state gives an indication of the yielding behavior of the material.
Once the effective stress in a material reaches the value of the uni-
axial yield stress in tension, plastic flow will occur. Figure 23
presents the effective stress in the copper core for an OFHC copper-
4340 steel composite. From the uniaxial stress-strain curve of the
copper, it can be determined that the yield stress (actually the
proportional or elastic limit) is 3200 psi. Upon thermal loading
(cooling) this stress is not reached until T is the egual of 400°F,
The response of the copper is elastic to this point, and plastic
thereafter. During machining the effective stress decreases since
the core is, in effect, unlocaded, From the postulate of isotropic
hardening, the effective stress at the end of the thermal loading
becomes the new elastic limit of the copper; that is, upon subsequent
tocading the copper will behave elastically until this value of effec-
tive stress is reached, Therefore, upon axial loading, the initial
response is elastic up to this stress and plastic thereafter. For
any given axial strain, the effective stress is greater than the
stress in uniaxial tension. This behavior indicates that the effec-
tive strain is always greater than the applied axial strain and there-
fore yielding or flow would always occur prematurely. Note that for
axial loading, the curve labeled & is the curve of T vs.€z , not
T vs. € . |If O were plotted against € the resulting curve would
necessarily be identical to the uniaxial stress-strain curve.

Figure 2h shows the similar curves for the 4340 steel case
material of the same composite, The effective stress again increases
during thermal loading. |In the case material, the effective stress
varies continuously across the case cross section. This behavior is
a result of the non-uniform transverse stress distribution in the
case. Figure 24 shows the effective stresses at the |.D. and the 0.D.
of the case, The stress at the |1.D. is higher because of the nature
of the transverse stresses. It is also apparent that the entire re-
sponse during thermal loading is elastic since the elastic limit in
uniaxial tension (183,000 psi) has not been reached. The stress
change during machining is slightly positive.

Upon the application of axial strain the peculiar behavior
shown in Figure 24 occurs. The effective stress increases very slow-
ly at first and then rapidly as further axial straining occurs. In
fact, there is a slight decrease in the effective stress upon initial
application of axial strain. This peculiar behavior is a result
of the rapidly changing relative magnitudes of the three principal
stresses which corresponds to the abrupt change in the loading direc-
tion as shown in the 7 -plane representation of Figure 17. The rela-
tive change in the magnitudes becomes stabilized once the axial stress
in the case becomes positive at a strain of 0.14% (see Figure 20).

At this point the effective stress starts increasing at a rate close
to that of the uniaxial stress. It is important to note that the

entire behavior during this region is elastic since the elastic limit
in uniaxial tension has not been reached. Figure 24 shows that this
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stress is reached at a lower strain than that predicted for uniaxial
tension since the effective stress of the case is larger than that
predicted for uniaxial tension. It is alsc apparent that yielding
will occur at a lower strain at the |,D. of the case than at the 0.D.
since the effective stress is higher at the 1.D. Note, however,
that during the elastic axial loading the effective stresses at the
1.0, and 0.D. have approached closer together than their original
split after machining. Because of this effect it is impossible to
apply the difference in the effective stresses as calculated from
the experimental residual stress measurements to predict the onset
of yielding in the case without going through the entire loading
analysis.

Figure 23 and 24 also contain curves labeled $ D, These
curves represent the deviatoric component of the axial sfress. They
are therefore similar to the axial stress curves in Figure 19 and 20,
They are, however, much closer to the uniaxial curves since in the
formulation of the deviatoric stress the hydrostatic component of the
stress tenscor is subtracted from the stress tensor, i.e.,

Sij = O"'j - /3 8” O'KK (]])

These curves show that the hydrostatic component of stress
developed during thermal loading was large since the deviatoric curves
upon subsequent axial loading are close to those of the uniaxial de-
viatoric curves.

Figure 25 and 26 represent the same analytical predictions
as Figures 23 and 24 except they were calculated for the large case
area fraction of 0.666. The behavior of the copper core is very much
like the one of Figure 23, The case material (in this composite re-~
presenting the bulk of the composite cross section) shows the large
split in the effective stress between the |.D. and the 0.D. of the
composite after thermal loading. It again shows the peculiar be-
havior upon axial loading described previous)y, and the subsequent
narrowing of the split between the |.D. and the 0.D. Yielding in
the case at the |.D. is seen to occur at an appreciably lower strain
than at the 0.0. or the uniaxial prediction,

b. Comparison to Experimental Results

All the theoretical predictions of the previous section
will now be incorporated into predicting the average axial composite
stress=strain behavior and the composite transverse strain behavior
for all the composite systems investigated. The experimental results
were reported earlier in the overall program [[2_]. The mechanical
property data for the constituent composite materials are repeated
In Table 3. The experimental data represented in terms of composite
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axial stress-strair curves for both composite systems and all com-
ponents are also reprated in Table 3, The experimental data repre-
sented in terms of composite axial stress-strain curves for both
composite syste'is and all components are also repeated from Reference
C2Jin Figures 7 ta 41,

in the previous work C2_] the experimental results were com-
pared to Rule of Mixtures predictions and analytical predictions which
inctuded only ¢ approximate residual stress correction. Both-the
Rule of Mixtur:s and analytical predictions were found to be inade-
quate in predicting axial stress-strain behavior, The initial totally
elastic composite response region observed experimentally could not
be predicted by the analytical model. Predictions for the composite
behavior upon the yielding of the case material were also in error
(see Reference 2}.

Examination of the transverse strain behavior, however,
showed excellent agreement between experiment and the analytical
model and aiso demonstrated the inadequacies of the Rule of Mixtures
prediction for this type of representation,

In this section, the experimental results will be re-examined
in light of the newly developed analytical model which incorporates
the entire fabrication effects into axial loading predictions.

(1) OFHC Copper-Maraging Steel Composites

The OFHC copper-maraging steel composite cylinders which
were processed to case area fractions of 0,339 and 0,502 will be
considered first. The predictions of the general analytical model
are presented along with the experimental data in Figure 28. The
present analytical model incorporates residual stresses and hence
predicts the premature yielding in the case which is observed experi=
mentally. The composites also experienced an entirely elastic initial
region. This region is indicated in Figure 28 by the change of slope
of the stress-strain curves, Analytical agreement in this region
will be discussed in the section on OFHC copper-4340 steel composites
since the behavior in that system was identical tc the presently
investigated system and more data are available,

The general analytical model predicted transverse strain
behavior which is siightly in excess of that predicted by the pre-
vious analytical model®*, The new predictions, however, were so
close to the previous ones {<I%) that the curves represented in
Fiqures 30 and 31 were not redrawn. The agreement between experiment
and analytical predictions for this representation is therefore still
excellent.

“The analytical predictions of the transverse strain behavior
in Figures 30, 31, and 38 to 41 were taken from Reference [2].
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(2) OFHC Copper-4340 Steel omposites

The general analytical predictions along with experimental
stress-strain curves are presented in Figures 33 to 36 for the four
different case area fractions studied. The agreement up to the
yielding of the case is again excellent. There is a slight discre-
pancy in the initial response, |t was observed that the experimental
curves displayed a larger elastic~elastic interaction region than
was analytically predicted, Recalling previous discussions, the
only reason for any elastic response in the copper is the unloading
of the copper core during final machining.

Consideration should be given to this discrepancy. Fig-
ure 42{(a) shows the analytical predictions of the extent of the
totally elastic strain region. The experimentaily observed values
are shown by the error bars. The dashed line in the illustration
represents the extent of the elastic strain region which should be
observed if no residual stresses were present at all (the Rule of
Mixtures prediction). It naturally is not a function of the case
area fraction since the copper would yield at its uniaxial strain
limit., It is interesting to note that the analytical model pre-
dicts only a very minute elastic region for the case area fraction
of 0.666 because of the insignificant effect of the machining
operation for this composite. Although it cannot be detected in
Figure 36 because of the large scale of the drawing, the initial
portion of the recorded load-strain curve did indeed show a very
small region of high slope befere changing to the slope shown in
Figure 28.

Comparison of the analytical model! and experiment in the
region of plastic behavior in the core and elastic behavior in the
case can also be made by computing the secondary modulus of the
stress=strain curves of the composite. Anpalytical predictions are
compared to experimental results for this type of representation
in Figure 42(b) and the agreement is favorable.

The agreement of the analytical predictions of the region
in which the case yields is not favorable, as can be seen from
Figures 33 to 36. Analytical calculations in general predict a
somewhat larger yield strain and a much flatter slope of subsequent
composite behavior.

Immediately, the question of the applicability of the pre-
sent plasticity analysis on the basis of its deformation type nature
arises. It was stated previously that the stress path is not radial
for axial loading of the case subsequent to thermal loading and
machining. |t was also noted, however, that the error introduced
is not expected to be of engineering significance, The fact that
the same plasticity analysis led to excellent results for the marag-
ing steel composite systems Jends credence to the assumption that
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a deformation theory is sufficiently accurate for its present appli-
cation to composite cylinders.

Other reasans for the lack of agreement must be sought.
It was explained previously that the flat portion of the uniaxial
stress-strain curve of the 4340 steel was approximated by a line
with a small, but non-zero siope., Again, this assumption could
only lead to insignificant errors,

The underlying problem is much more complex. It is, in
fact, the basic assumptions of continuum mechanics which must be
questioned in order to explain the observed discrepancy. In con-
tinuum theories of plasticity, it is assumed that all deformation
is homogeneous and hence the actual! fundamental nature of the pro-
cess of ptastic flow is ignored.

As will be explained subsequently, the assumption of homo-
geneous deformation cannot be made for the initial plastic flow
behavior of the 4340 steel in the condition in which it existed in
the composites. Continuum mechanics predicts the circular yield
fronts propagate through the case material. Axial symmetry is
maintained, and the case is composed of a number of homogeneous
regions behaving either plastically or elastically. In contrast
to this, experiments on steel which undergo the same type of yield
point elongation behavior as the presently investigated 4340 steel
have shown that yielding actually occurs by a completely non-
homogeneous propagation of slip bands, the so-called 'uders bands'"
C140. In tensile tests on flat specimens these bands appear at
approximately 45° to 55% to the tensile axes. They have been ob-
served to initiate at several points along the test length and pro=-
pagate over the rest of the specimen length at constant load.
Farnell [247] has shown by hardness measurements of partially~yielded
tensile test specimens that irrespective of the amount of total
yield observed in the specimen, the strain in each Luders band
was equal to the strain at the end of the yield plateau. The rest
of the material remained in an elastic state. When the Luders
bands had propagated through the entire specimen length the load
would rise again.

in the present system, however, even if the over-simplified

notions of circular yield fronts is retained, the situation is quite
different. Yielding occurs over only part of the load carrying cross
section as the case remains elastic and the core material strain
hardens plasticaily. The load will therefore not remain constant

as in the uniaxial tensile test, since the elastic case and the

core are able to sustain further loads. Extending the above experi-
mental observations that the strain in the yielded case region is

at the end of the yield point plateau, then further loading will
force the strain in the region on to the strain hardening portion

of the curve (see Figure 32). This behavior could account for the
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fact that the experimentally observed composite behavior has an
appreciable stope in the yielding region of the case as seen in
Figures 33 to 36.

The behavior explained above cannot be incorporated into
the analytical model, since the strain in the yeilded case does not
increase according to the effective stress=strain curve but rather
immediately becomes equal to the strain at the end of the yield
point plateau, by non-homogeneous deformation.

In actuality, the ylelding in the case does not propagate
in circutar fronts. Steele and Eichenberger [25_] have shown that
for an internally pressurized thick-wall tube, the Liders bands
propagate in the form of spikes asymmetrically located around the
cylinder, and moreover, these Luders bands penetrate to various
depths into the cylinder wall. The mode of yielding in the compo-
sites under study is probably very similar to, but even more com-
plex than, that in the tube.

It is interesting to note that Steele and Eichenberger
observed that yielding in the cylinder occurred earlier than theore-
tical predictions {based on continuum plasticity theory) indicated
and that the circumferential strains measured at the 0.D. of the
cylinders were actually ciose to theoretical predictions.

These results appear to be (at least) a partial explanation
for the fact that in all]l cases the theoretical yield strain was
larger than the experimentally observed strain, and that the experi-
mentat transverse strain behavior was predicted quite accurately by
the model despite the discrepancy noted in the axial stress=-strain
behavior.

L, variation of Composite Residual Stresses by Tensile Prestraining

It does not suffice only to understand and evaluate the
residual stresses and their effects on subsequent axial loading of
"as fabricated'" composites. Once the controlling parameters are
known, efforts must be made to change the residual stresses so as to
utilize their existence in the optimization of composite materials
behavior.

During the first year of the present contract, efforts were
expended to achieve this aim by subjecting ''as fabricated'' materials
to various amounts of tensile prestraining, followed by unloading
and subsequent reloading. Subsequent loading curves were ohserved to
be much higher than the initial ones. Changes in the actual residual
stress distribution in composite cylinders were measured experimen-
tally by dritling-out composite specimens which had been prestrained
and unloaded. The analytical model for axial loading was then cor-
rected for this residual stress state. However, as shown earlier in




this report, it is not possible to account unambiguously for the pres=
ence of residual stresses by this method if unloading has occurred
anywhere during the history of the specimens, Since, in this case,
unloading has occurred, the inability to predict subsequent stress-
strain behavior, as was shown in Reference[2.] is not suprising. The
experimental work has shown, however, that mechanical prestraining

has the potential to provide a material with properties above that
originally envisioned.

It is the objective of this section of the study to develop
an analytical procedure to account for the tensile behavior of a pre=-
strained composite and to show that mechanical prestraining can be
utilized practically to provide an ameliorating influence. In pur~
suit of this objective, this section will be divided into two parts.
In part (a) an attempt will be made to predict the stress-strain
behavior of prestrained binary composites by extending the analytical
mode! described previously in this report. In part (b) prestraining
of copper~tungsten filamentary composites will be investigated experi-
mentally and analytically. While it has already been established in
Reference[1Jthat prestrains into the plastic-plastic region of the
tensile stress-~strain behavior are beneficial for filamentary compo-
sites, the lack of ductility of the more practical fibers precludes
this degree of prestrain., As a result, prestrains into the elastic~
plastic behavioral region will be investigated fully to indicate
whether this technique has any real practical significance. |In
addition an attempt will be made to apply the anaiytical model, devel-
oped for the two member cylindrical composites, to rationalize the
behavior of filamentary composites.

a. Cylindrical Composite Behavior

In order to predict the behavior of prestrained composites,
the entire loading history of the composite must be followed. This
means that the stress-strain distribution must be followed analyticat-
ly from cool-down from fabrication temperature, through the axial pre=-
strain and unloading from the prestrained state, and finally through
subsequent axial loading. The previously described model can be used
to predict the behavior up to the end of the axial prestrain. How-
ever, a complexity arises during unloading from the prestrained state
which requires the development of an extended analytical model.

McDanels, et al [19] sppear to be the first to observe that
upon removal of an applied axial load that the composite acts first

in a fully elastic manner and then continues to unload with the matrix
deforming in compression. This behavior js illustrated in Figure 43
for the copper-tungsten system. Baker Ezé] and Baker and Cratchley [27]
qualitatively discussed this peculiar unloading behavior in analyzing
the low cycle fatigue and damping properties of aluminum-silica (fiber-
glass) composites. Their interpretation of this cyclic loading behav-
ior is schematically represented in Figure 44. |t was assumed that
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aluminum and silicon possess the same elastic modulus and that alumi-
num flows in an ideally plastic manner.

Upon loading, as seen in Figure 44, the silica deforms
elastically along OA; the matrix elastically along 0B and then plas-
tically along BC. The composite loading curve can be approximated by
two straight lines 0'B' and B'C'. On unloading from A, the silica
will return aleng AQ; the matrix initially deforms elastically along
C to D, at which point the load on the matrix is zero while that on
the fibers is given by DP. On further unloading beyond D, the matrix
continues to deform elastically along DE until at E it yields in com=
pression. From E the matrix deforms plastically again along EF,

The composite unloading curve consists first of the line
C'D'E', which is parallel to the initial all elastic slope 0'B', and
then the line E'F' (parailel to 8'C') which represents the elastic-
plastic region. When the load is completely removed at F', there is a
permanent set O'F’ on the system. Considering the two components
separately at this state there exists a tensile stress on the fibers
given by QB balanced out by a compressive stress QF on the matrix which
makes the overall stress on the system zero.

The above analysis is not sufficient to account for the un-
loading behavior of practical metal-matrix composites. An accurate
analytical model must consider the very pronounced Bauschinger effect
and subsequent strain hardening behavior exhibited by typical metal
matrices when exposed to reversed plastic stress, For example,

Lubahn [28] has shown that the Bauschinger effect is very pronounced for
pure copper, and such behavior would have a marked influence in com-
posites in which the matrix has these characteristics, The model
developed earlier in this report considers strain hardening only from
the standpoint of monotonic locading. More particularly, the isotropic
hardening loading function used in this anal ysis cannot be used when
the Bauschinger effect is present. Thus, before the stress-strain
behavior of prestrained composites can be predicted accurately, a re-
finement of this model is necessary. To find the stress state after
unloading, a loading function which considers the Bauschinger effect
and subsequent strain hardening must be used, Once the unloaded stress
state is known, the model can be further extended in a similar fashion
to compute the subsequent loading behavior,

(1) Loading Functions

The onset of plastic flow for each component during actual
loading {or unloading) is determined in this study by the von Mises
yield criterion, Once the material has exceeded the yield stress a
loading function or work hardening law is required to describe con=-
tinued plastic flow,

One of the major problems in the theory of plasticity is
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that of describing the behavior of work hardening materials for com-
plex loading histories. This is generally achieved by formulating
constitutive laws related to uniaxial tensile behavior of the indi-
vidual components.

The two loading functions which are most commonly used are
those of isotropic and kinematic work hardening, According to Prager
and HodgeQQJ Isotropic work hardening occurs when the initial yield
surface (representing the yield criterion in stress space) expands
uniformly during plastic flow. Figure 45 describes the behavior of
a material which obeys the isotropic hardening loading function under
cyctic uniaxial loading (along §,). While the onset of yielding, which
occurs at point A, is dictated by the von Mises criterion, subsequent
plastic flow is governed by the expansion of this circle up to point
B which represents the limit of prestrain., Upon removal of the tensile
force and application of a uniaxial compressive force, the material
will behave elastically to point C. This means if the flow stress at
the end of the tensile prestrain is Sy, then upon reversing the stress,
plastic flow will begin at a stress value of =-Sy. According to the
isotropic hardening law, subsequent compressive plastic flow beyond
point C is identical (except for sign) to that in uniaxial tension
beyond point B, The stress-strain behavior predicted by this rule is
illustrated in Figure 46 for the OFHC copper matrix material used in
this study. It is obvious that the Bauschinger effect is neglected
by this theory.

According to the rule of kinematic work hardening the yield
surface does not change its initial form and orientation, but merely
translates in stress space. This concept has been introduced by
Prager [36] in order to account for the Bauschinger effect and anisotropy
due to plastic deformation. Figure 47 depicts the translation in stress
space of the yield locus from the onset of plastic flow in axial ten=
sion at point A to the end of prestraining at point B, Upon reversal
of the load, the kinematic theory predicts that yielding in compres-
sion will occur at point C. This dictates that the extent of elastic
behavior will be twice the elastic limit in uniaxial tension, Accord-
ing to the kinematic theory subsequent plastic behavior will be identi=-
cal to that beyond point A in uniaxial tension. As can be seen in
Figure 46, the kinematic rule predicts a very pronounced Bauschinger
effect and a workhardening rate equivalent to that observed in uni=
axial tension,

The difference in cyclic behavior predicted by the isotro-
pic and kinematic laws is quite large. Actual behavior lies somewhere
between both theories. A recent attempt to provide a general theory
(i.e. a theory based solely on uniaxial tensile behavior) to better
describe complex loading histories has been developed by Mroz [31] This
same concept has also been recently discussed by Iwan BZ] but for pur-
poses of this study it will be called the Mroz modei since Mroz dis-
cussed it in much more detail.
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The Mroz model considers the simultaneous expansion and
translation of the original yield surface. For the initially isotro-
pic material, all surfaces fy, f}, ....fn are similar and concentric,
enclosing the origin 0. The model assumes that all surfaces are al-
lowed to translate in the stress space without changing form and
orientation. In Figure 48, when the stress point moves from 0 along
the vertical axis (uniaxial tension), it reaches the elastic limit
at A and the circle fg moves along this axis until it contacts the
circle f; at B, All other circles remain fixed during this period,
Between A and B the plastic strain is defined by the tangent modulus
E{. When the stress point moves from B to C, the circles f, and f,
translate together until the point C is reached where f, and f touch
the circle fo which up to now remained at rest; between B and L the
tangent modulus is equal to Ey. From C the three circles f,, fy, f3
translate with the stress point towards D. Figure 48 represents the
situation upon reaching point E the end of the axial prestraining,

Upon unloading and subsequent reloading in the reverse
direction, the stress point reaches G where compressive plastic flow
occurs and the circle f, translates downwards until it reaches the cir=-
cle fy at H. This is the same result for the onset of yielding as was
predicted by the kinematic work hardening rule, However, the stress
difference between H and G equals twice the difference between stress-
es at B and A because the tangent modulus E now acts over twice the
strain range. Thus, the Mroz model predicts a higher degree of work
hardening than the kinematic theory., Further loading along Hl cor=-
responds in an analogous manner to the previous step BC. Thus it can
be seen that the curve of inverse loading EGHI is uniquely defined by
the curve of primary loading OABCDE.

The three loading functions already described can be defined
compltetely by the behavior of a material in uniaxial tension, This
is a highly desirable situation because if one of the theories is
proven valid, only a Jimited amount of experimental data is required
to predict the behavior under complex loading schemes. Of importance
is the fact that all three theories predict the onset of plastic flow
upon reversal of load to be independent of the amount of prestrain,
The work of Lubahn&&], however, has shown that the Bauschinger effect
is a function of the amount of prestrain. Thus, none of the three
current theories can be expected to predict the behavior under reverse
ed loading conditions exactly,.

The most accurate loading function would be an experimentally
determined effective stress-effective strain curve, This approach
would require a separate investigation for each particular amount of
prestrain and hence could not be considered a general behavioral model,
The subsequent four parts of this section, 2=5 will compare the four
described loading functions in their ability to predict total compo-
site behavior during unloading from the prestrained state.

s
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(2) )sotropic Work hardening Rule

Use of the isotropic work hardening rule to predict the un=
loading behavior of a composite is a direct extension of the model
previously described. A new computer program was written, however,
for this unloading prediction, Besides geometric data and uniaxial
tension stress-strain data for each component, the input data included
the stress and strain distributions, and effective stresses and effec-
tive strains for each ring computed at the end of the prestraining.
The program treated the case material as behaving elastically for the
entire unloading sequence,

The anaiytical stress-strain results are compared to the
experimental results in Figures 49, 50, and 51, In these figures
and in subsequent figures only the analytical loading curve wilil be
given since it has been already shown that this portion of the curve
can be accurately described by the model. 1in all cases, it can be
seen that the isotropic hardening assumption greatly overestimates the
region of totally elastic behavior during unloading. In effect, the
occurrence of a very pronounced Bauschinger effect has been established
for these model composites under a triaxial stress state. 1In general,
the error between theory and experiment is maximum at the prediction
of yielding and becomes smaller because of the combined effect of a
predicted low work hardening rate and an experimentally measured rela-
tively high work hardening rate. The difference at the end of unload-
ing can be seen by comparing the predicted and measured amount of re-
sidual strain, This is identified as ERES in the figures and it can
be seen that the isotropic loading function predicts a higher residual
strain than observed in all cases,

(3) Kinematic Work Hardening Rule

The computer program written for the isotropic hardening
theory was revised to allow the evaluation of the kinematic work hard-
ening theory, The onset of yielding was established, according to the
theory, at twice the uniaxial tension elastic limit of copper (0,0004'),
The shape of the effective stress-~effective strain curve in the plastic
region is identical to that of uniaxial tension curve of the OFHC cope-
per. A least-square fifth order polynomial fit of this curve was used
to permit the analytical calculation.

Figures 52, 53, and 54 compare the experimental results with
the predictions of the kinematic work hardening theory. In Figure 52
it can be seen that the prediction of the onset of yielding for the
4340 steel=-0FHC coper system is in good agreement with the experimental
results. At smaller strains, however, the error becomes excessive as
the degree of compressive work hardening predicted by the kinematic
theory is significantly less than what is actually observed, The
error increases with higher volume percentage of copper since it is
the behavior of only the copper core which is not being properly
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characterized,

In Figures 53 and 54 it can be seen that after prestraining
the maraging steel=0FHC coper composites 0,0065in/ininto the elastic-
plastic region, the kinematic theory slightly underestimates the ex-
tent of fully elastic behavior, For the specimens which were pre-
strained 0.012inin into the plastic-plastic region, the prediction of
the onset of yielding is even in greater error. These results indi~-
cate the magnitude of the error which is inherent in the assumption
used in the kinematic theory that the Bauschinger effect is indepen~
dent of the degree of prestrain. As in the 4340 steel = OFHC copper
composites, the maraging steel = OFHC copper composites deviated
from the kinematic predictions significantly as the unloading process
proceeded, Thus, the degree of work hardening predicted by the kine=-
matic theory is seen to be considerably in error.

{4) Mroz Model Loading Function

The kinematic theory unloading program was modified to per-
mit the Mroz model prediction of unloading behavior. The prediction
of the onset of yielding is identical to that of the kinematic model,
but the strain hardening portion of the copper effective stress-
effective strain curve was analytically determined according to the
theory of Mroz, This was done by dividing the uniaxial tensile curve
of OFHC copper into 0.0002invin increments, and then determining the
secant modulus of each increment, For the unloading curve, each incre-
mental modulus was plotted to extend over increments of 0,0004 n/in. A
fifth order polynominal fit was used to characterize each unloading
curve mathematically.

Figures 55, 56, and 57 compare the Mroz model predictions
with the experimental results on the two composite systems. Figure 55
shows that, for the 0,504 volume fraction of 4340 steel, the predicted
and experimental behavior are in good agreement, The prediction of the
behavior of the 0,225 volume fraction, however, is still significantly
in error. The maraging steel - OFHC copper system behaves in a simi-
lar manner, with error increasing with copper content. In addition,
the error also increases with degree of prestrain as a consequence of
the underestimated prediction of the onset of yielding.

(5) Experimental Effective Stress-Effective Strain Approach

The required effective stress-effective strain curve for the
OFHC copper had to be determined experimentally. In order to generate
this curve, tensile-compression specimens had to be fabricated and
tested, The machined configuration is shown in Figure 58. The top
surfaces had to be flat to act as a compression surface while the
lateral surface had to be concentric to insure proper tensile loading.

The OFHC copper rods used for the tensile-compression specimens
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were heat treated for four hours at 1750°F and then oil quenched,

L340 stee! buttonheads were then brazed onto the ends of the copper
pins. The specimens were then machined to the dimensions shown in
Figure 58. A stress relief for two hours at 850°F in dry hydrogen
followed the machining. This heat treatment schedule was used to
yield a grain size equal approximately to the grain size obtained in
the core of the binary composites. Two longitudinal strain gages were
pltaced 180° apart and connected in series to minimize the measurement
of bending effects.

Specimens were fabricated with length to diameter ratios
of 3tol,5to}l, and 8 to 1 in order to find an optimum size, How=
ever, in each size, considerable scatter was observed from specimen
to specimen, This problem was circumvented by only using those curves
which exhibited the expected initial uniaxial tensile results., The
observed scatter is believed to be due largely to the effects of bend-
ing, While the strain gage system, tensile fixtures, and specimen
configuration were all devised to minimize the bending effects, con-
siderable error in measuring the plastic behavior of the very soft
copper was still possible.

The appropriate effective stress-effective strain curve
was obtained in the following manner:

1. Prestrain in tension to the effective strain analyti-
cally computed to account for both thermal loading and
tensile prestraining.

2. Unload from tension,
3, Reload in compression

The curve required for the analysis is obtained from steps
2 and 3 above. The onset of yielding was taken as the first deviation
from linearity during unloading. This in effect is the onset of the
hysteresis loop normally seen in a single component unloading curve,.
The balance of the unloading curve and the compression curve were
assumed to be continuous. These curves were characterized at low
strain by a fifth order polynomial fit and at high strain by a linear
approximation.

Using these experimentally determined effective stress-
effective strain curves for the copper core, the composite unloading
curves were computed. Fiqure 59 shows that good agreement exists
between experimental and analytical results for the 4340 steel-OFHC
copper composites which were prestrained into the elastic-plastic
region, The ability to predict the measured residual strain closely
is additional evidence of the suitability of the technique. Similar
good agreemnt as seen in Figure 60 and 61 was seen in the maraging
steel~0FHC copper composites prestrained into the elastic-plastic



e i

oo e L e £ 5

I s i e it R L

e A B e e,

i sl o el e N e

6 e e o i S TR s

o A ST N e

42

region. linitially the maraging steel-0FHC copper samples which were
prestrained into the plasticeplastic region did not show good agree-
ment with experimental resuits., The source of the disagreement was
the neglect to account for the hysteresis behavior of the maraging
steel, In order to rectify the error, single component maraging
steel tensile specimens were fabricated. They were prestrained an
amount equal to the analytically computed effective strain which
existed in the case at the end of the prestrain, Upon unloading from
the prestrained state the hysteresis behavior was measured experimen=-
tally. In effect, for prestraining into the plastic-plastic region
both the core and case had to be characterized by an experimentally
determined effective stress~effective strain curve, Figures 60 and
61 show that good agreement between analytical and experimental results
existed once the hysteresis behavior of the case was included in the
analytical prediction.

As stated previously, all composites were instrumented with
both axial and circumferential strain gages. This allowed an addition-
al test of the model i.e,, a comparison of the analytically predicted
and the actually measured surface tangential strain as a function of
axial strain. Figures 62, 63, and 64 show these comparisons for the
prestrain cycle. Relatively good agreement is seen for the composites
prestrained into the elastic-plastic region; however, only fair agree-
ment can be seen on those composites prestrained into the plastic=
plastic region, This error does not appear tc be related to the un=~
loading analysis but to the experimental measurement of tangential
strain,

Since the experimentally determined effective stress-effec=
tive strain curve can be used to represent the unloading behavior of
composites adequately, a close look at the calculated residual stress
state at the end of the untoading analysis is warranted. Figures 65,
66, 67, and 68 compare the residual stress state in each component
computed in the 'as fabricated'' condition and after the prestraining
into the elastic=plastic region, It can be seen that there is little
difference inthe radial and tangential stresses before and after pre-
straining, However, the alteration of the axial stress of each compo-
nent is of importance, The mechanical prestraining causes the copper
core material to have a significantly reduced axial stress, Corres~
pondingly the axial stress in the case is increased by the prestrain=
ing step.

The real significance of the alteration in the axial stress
in the core is seen if the axial deviatoric stress is considered. This
stress i5s the difference between the axial stress and the hydrostatic
stress component for the system, In the 'as fabricated' condition,
the axial deviatoric stress is positive, representing the tensile
stress state induced by thermal loading, After prestraining, however,
the axial deviatoric stress is negative. This is seen in Figures 65,
66, 67, and 68 where the tangential and radial stresses after pre-
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straining are larger in magnitude than the axial stress, In effect,
the negative deviatoric stress represents the compressive state of the
core after prestraining.

Figures 69 and 70 illustrate the residual stress distribu=-
tions before and after prestraining into the plastic-plastic region,
In general, they are similar to the results noted for the smaller
degree of prestrain, except that the case axjal stress varies with
distance from the interface and the changes in the axial stresses
are larger in magnitude,

() Reloading Analysis

Since the experimental effective stress-effective strain
curves used for the unloading analysis yielded an adequate represen-
tation of the unloading behavior, the same approach was used to deter-
mine the response to subsequent axial loading. The appropriate effec=
tive stress=effective strain curve for the copper core was obtained using
tensile-compression specimens identical to those used in the unload=-
ing analysis. The loading procedure ysed on these specimens was as
follows:

1. Prestrain in tension to the effective strain analyti-
cally computed to account for both thermal loading and
tensile prestraining,

2. Unload from tension.

3. Reload in compression an amount equal to the axial pre-
strain, minus the amount of strain in step 2, minus the
residual strain observed after the prestrain cycle.

L4, Unload from compression,
5. Reload in tension,

The curve obtained in steps 4 and 5 is the required effec=
tive stress=effective strain curve for copper in the reloading analysis.
A typical loading function determined in this manner is shown in Fig=
ure 71. The numbers in the fiqure refer to the five steps given above,
it is obvious that the totally elastic behavioral region of the reload-
ed copper is significantly larger than that in the initial uniaxial
tensile loading. The unloading computer program was modified for the
reloading prediction. Input data included the complete stress and
strain distribution of each component after unioading.

Figures 72, 73, and 74 show the composite stress=strain
curves predicted by the reloading analysis. Good agreement is seen
in all cases between the analytical and experimental results, Com=
pared to the 'as~-fabricated' tensile curves shown in Figures 28, 33,
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and 35, the reloaded curves exhibit a significant increase in load
carrying capacity. This is directly related to the increase in fully
elastic behavior which resulted from loading the copper core from a
state of compression, 1t should be noted that the reloading curves
were translated to a new origin so that the effect of the residual
strain after prestraining is not observed,

Figures 75, 76, and 77 show the experimental and analytical
predictions for the ratio of tangential to axial strain. Good agree=
ment is seen in all cases, It is not known why the experimental diffi-
culties regarding this measurement that were observed in the prestrain-
ing cycle did not appear upon relocading,

The good agreement in predicting both the axial stress-axial
strain curve and the tangential strain-axial strain curve indicates
that the experimentally determined effective stress-effective strain
approach used in this study represents the behavior of prestrained
cylindrical composites adequately. In addition, it has been clearly
shown by this approach that the increase in load carrying capacity
which results from prestraining occurs from a rational alteration of
the residual stress state of the model composites,

b. Filamentary Composite Behavior

The previous analytical description and experimental study
of the effect of mechanical prestraining on two-member cylindrical
composites has demonstrated the importance of the residual stress
state in optimizing the tensile behavior of the composite. While the
cylindrical model has provided a complete physical rationalization of
the behavior of each component, the consequence of the geometry approxi=
mation to real fiber composites must be considered,.

There are three areas of prime concern in extrapolating ana-
fytical results obtained for the simple two-component cylindrical model
to typical filamentary composites, First, the matrix regions in either
close or loose packed arrays are not circular. Second, a characteristic
repeating unit of the real composite does not have a free surface as
the cylindrical mode) does, but has a boundary subject to stresses
and strains necessary to maintain the material continuity. Third,
fiber cross=over and catenary is to be expected in real composites,.

For these reasons, it is necessary to evaluate the effect of mechanical
prestraining on actual filamentary composites experimentally, Once
this has been done, the analytical model can be applied to predict the
real composite behavior. The success of this effort will signify the
engineering value of the analytical model in the design of improved
performance filamentary composites,

The fiber composite system chosen for this study was the
tungsten=-copper system, In selecting this system the following factors
were considered essential;:
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1. The elastic and plastic behavior of each component must
be representative of actual fiber composite materials,

2, The stress=-strain behavior of component materials must
be obtainable in the same metallurgical condition in
which they exist in the composite,

3. A strong metallurgical bond between the components must
be attained.

i, Limited diffusion and an absence of third phase formation
at the component interface is required,

5. A proven fabrication technique must be available,

Tungsten=-copper composites, fabricated by the vacuum infiltration
technique, have been us?f as a model composite system in several major
investigations 9,33, In fact the generally accepted current theory
of the tensile behavior of metal matrix composites is based mainly on
the observed behavicor of this system,

(1) rFabrication

High purity OFHC copper identical to that used in the model
composites was used as the matrix material, Its chemical composition
is given in Table 5, General Electric Type 218 CS (cleaned and
straightened) tungsten wire of 0,005" diameter was used as the rein=
forcement,

The tungsten wires were cut into 4.5'" lengths and cleaned
by pickling in an aqueous solution of 40% nitric acid-20% hydrofluoric
acid, The copper was cleaned with a 50% nitric acid solution. The
number of wires required to achieve about 20, 40, or 60 volume fraction
were packed into a graphite mold of 0,188' inside diameter, Sufficient
copper was placed above the wires to insure complete filling of the
mold, The graphite mold was placed into a quartz tube and vacuum de~
gassed overnight (about 16 hours) prior to casting. The long degassing
period appears to be necessary to vent the graphite mold of entrapped
gas properly.

o The quartz tube was placed into a tube furnace preheated to
2200°F. After about five minutes, sufficient time for the copper to
become molten, a low frequency air vibrator, which was clamped to the
quartz tube, was activated for five minutes, This technique prevented
the occurrance of any ''as cast'' porosity. The specimen was held at
2200°F + 25%F for one hour, then the furnace was turned off. After
five minutes the specimen was lowered through the heat zone so that
solidification could occur from the bottom, This procedure did not
completely eliminate a center shrinkage cavity, but was successful in
moving the cavity to the top of the specimen where the excess copper
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solidified. Thus, it did not affect the integrity of the composites,

The quartz tube was furpace cocled to about 1200°F, removed
from the furnace, and air cooled to room temperature while still under
the vacuum. |f the mold cooled completely to room temperature, the
specimen was readily removed from the mold without damaging the mold.
The filament spacings achieved by this process are shown in Figures 78,

79, and 80,

These composites were converted into tensile test coupons
by silver brazing 4340 steel buttonheads to the composite ends. All
of the samples were ground to the final configuration shown in Fig-
ure Bl to ensure concentricity and alignment in the tensile tests,

(2) Testing

The tensile stresse-strain behavior of the 0,005'" diameter
tungsten filament by itself was determined after the wire was exposed
to 2200°F for 1 hour in vacuum, to duplicate the treatment given to
the filaments in the composite, For testing purposes, the wire was
attached to small aluminum tabs with seaiing wax. The tensile test
was then conducted on an Instron tensile machine, using the aluminum
tabs for gripping. The strain recorded during the test was based up-
on the cross-head motion; consequently any elastic strain in the fix-
ture, grips, and tabs was included in the recorded strain, To elimi-
nate the gripping and fixture error, i.e., to establish the accurate
elastic modulus the system of extrapolated infinite gage length was
employed, Tests were conducted in wires of various gage lengths, and
a plot of modulus as a function of the reciprocal gage length was pre-
pared. Since the strain in the fixtures is independent of gage length,
an extrapolation to infinite gage length could be expected to indicate
the true elastic modulus. The modulus was therefore established by
extrapolatjon of the reciprocal gage length to zero. A modulus value
of 58 x 10é psi was determined by this manner.

Tensile testing of the filamentary composites was conducted
in a manner similar to that used for the cylindrical two-component com=-
posites described previously, Both longitudinal and tangential strains
were measured by strain gages as a function of applied load.

Since most potential fiber materials (including tungsten) are
essentially brittle, prestrains into the elastic-plastic region were
emphasized, For each volume fraction specimens were prestrained
0.001 infinand 0.003 iin, unloaded, and reloaded to failure,

The elastic-~plastic regions occurred roughly over the strain
range from 0,0001 iin to 0.0035#/in for these composites. In addition,
several composites of each volume fraction were cycled at the above
prestrains until stabilization occurred (i.e, the hysteresis loop
became closed) and then loaded to ultimate failure,
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(3) Test Results

Results on 20.75 volume per cent tungsten specimens are
shown in Figures 82 and 83. Substantial increase in load carrying
capacity is achieved with both 0.001 in/in and 0.003 in/in prestrain
cycles. The 0,003 in/in cycle yields a greater improvement than the
0.001 in/in cycle, but not in proportion to the amount of strain.
Further cycling cycling raised the stress=strain curve further but
the effect damped out in only three cycles for the 0.001 in/in strain
cycle and in six cyclies for the 0.003 in/in strain.

The end of fully elastic behavior (the elastic limit of the
copper) in the 'as fabricated' state is about 0.00007 in/in. One
0.001 in/in prestrain cycle increased the elastic-elastic behavior
to about 0.00022 in/in. A similar increase was seen with the 0.003 infin
prestrain. Further cycling at either 0.001 in/in or 0.003 in/in in-
creased the elastic limit to about 0.00040 in/in. Since both amounts
of prestrain yielded about the same increase in elastic behavior, the
higher elastic~plastic behavior for the 0.003 in/in prestrained samples
must be attributed to a higher strain hardening rate in the copper.
Of most importance, however, is the fact that very significant im=-
provement in behavior can be attained with relatively small amounts
of prestrain. With a prestrain cycle around 0.001 in/in there is
little likelihood that even the most brittle fibers would be fractured
in the prestrain operation.

Figure 84 illustrates the results obtained by prestraining
43 volume per cent tungsten composites. Again an increase in load
carrying ability is seen for the composites prestrained both 0.001 inin
and 0.003 infin. The 0.001 in/in prestrain cycle formed a closed hys-
teresis loop after three cycles as it did in the 20.75 volume per cent
samples. However, the relative increase in composite stress-strain
behavior is less than for the lower volume fraction specimens. After
one 0.003 in/in cycle very little increase in composite stress-strain
behavior was observed. It can be seen that one 0.003 in/in cycle yields
slightly better results than three 0.001 in/in cycles. The increase
in elastic limits for the 43 volume per cent tungsten specimens is
similar to that seen in the lower volume per cent specimens.

The effect of tensile prestraining 64 volume per cent tung-
sten specimens is seen in Figure 85. Data are presented for onty one
cycle at both 0.001 in/in and 0.003 in/in prestrains because further
increase upon recycling was negligible. At this high fiber volume
fraction, the prestraining is not as effective at improving the total
composite behavior as it was with the lower volume fraction composites.
Changes in the extent of fully elastic behavior are virtually impos-
sible to measure becawse of the overwhelming influence of the very
high strength tungsten, i.e., the onset of plastic flow in the rela-
tively weak copper has a small effect on total composite behavior.
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(4) Application of Analytical Model

The analytical model which predicted the behavior of pre-
strained two-member cylindrical composites adequately will be applied
to the fiber composite systems described in the previous section,

For the 64 volume percent tungsten specimens the modei will
be used as it was for the previous two-component model in which the
copper was the core material and the fiber material was the case or
outer sleeve, This application represents a ''close-packed'' configura-
tion where the matrix is under high constraint because of its proxi=
mity to the fibers. As can be seen in Figure 80, the average fiber
separation is not greater than the fiber diameter, thus the 'close-
packed' assumption appears valid.

For the 20,75 and 43 volume percent tungsten fiber composites,

the simulation model is reversed. The copper is now on the outside
and the tungsten is the core material. This represents the condition
of '"loose packing'' where the fibers are assumed to be separated suf=
ficiently, so that at some point or region between the fibers, the
matrix does not ''feel' the presence of the fibers, The analytical
work of Hamilton Dﬂpredicted that this conditon is true up to about
55 volume percent of fiber., It can be seen in Figures 78 and 79 that
the average interfiber separation is relatively large. Thus the
assumption of '"loose packing'' appears to be valid,

The computations for the ''close~packed'' model are similar
to those performed for the model composite. In order to characterize
the behavior of the copper core material during the complex loading
scheme, only one effective stress-effective strain curve was required
for each loading sequence, This is a result of the fact that, for the
core, the stress and strain distributions are not a function of radius,
However, for the '"loose packed'' model, the stresses and strains vary
with the radius, Thus a different effective stress-effective strain
curve is required for each ring of the case., Since this curve must
be determined experimentally, it would require & vast number of experi=-
ments to characterize the case behavior completely. However, a more
expedient method was utilized in this analysis. The description of
this method follows.

One effective stress-effective strain curve was determined
at an average value of the computed effective strain in the case at
the end of the prestrain, This curve was then translated along the
strain axis by an amount equal to the difference between the average
case effective strain and the actual effective strain at each ring at
the end of the prestrain, The largest error involved in this approxi=
mation is that it is assumed that the Bauschinger effect determined
for the average effective strain is constant over the strain range
to which it is applied, This error is quite small, however, since the
largest range of effective strain over the case which was computed
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was only 0,00025'/" and the change in the Bauschinger effect over
this strain range is almost negligible, Using this technique, the
computational process could be carried out in a rather straightfor-
ward manner once the new computer program was written,

a, '"As Fabricated'' Residual Stresses

The thermal loading problem was solved for the three dif=
ferent volume fractions by assuming a stress free temperature of
8509F, This is identical to the stress free temperature used in the
thermal loading of the model composites. For the fiber composites,
the thermal loading was achieved during cool down from the brazing
temperature of about 13009F, This cooling took place at about an
average rate of 20°F per minute,

The variation in the mechanical properties of the copper
with temperature were utilized in the thermal loading analysis. The
elastic properties of the tungsten, however, were assumed not to
vary over the 800°F range. The stress and strain distributions were
computed in 50°F increments from 850°F to room temperature,

The ''as fabricated'' residual stresses are shown for the
20.75, 43, and 64 volume percent tungsten composites in Figures 86,
87, and 88, It can be seen that the copper is in tension and the
tungsten is in compression in all cases, The non-uniform axial stress
distribution in the copper of the loosed packed composite results
from the origination of plastic flow at the case=core interface, The
relatively low magnitude of all the stresses in the 20.75 and 43 volume
percent tungsten composites is in sharp contrast to the results on the
64 volume percent tungsten composites. The '‘close-packed'' model, which
imposes great restraint on the core material, induces a very high hydro-
static stress into the core, However, when this is subtracted out,
i.e,, on a deviatoric stress basis, both models predict that after
cool down from the fabrication temperature the effective stress on the
copper is approximately the room temperature yield stress of the copper.

It must be noted that all the fiber composites were cleaned-
up machined after brazing. The amount of machining was not constant
but is known, However, both tungsten and copper were removed by the
machining, This, unfortunately, makes the machining effect not appli~-
cable to an analytical computation.

The ''as fabricated'' residual stress state is thus assumed
to be that calculated by the thermal loading analysis, This means
that any unloading of the copper which would occur as a result of the
machining operation (analogous to the effect of machining on the model
composites) is neglected.
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b. Axial Prestraining

To compute the intensification of the stresses which occurs
during axial prestraining, the 'as fabricated'' residual stresses had
to be recomputed using only the room temperature effective stress-
effective strain curve of the copper. This is in accordance with the
procedure described in Section 1. For the ''lcose-packed'' composites,
only a single 5PF temperature increment was required while for the
'close-packed'' composites a 750°F effective stress free temperature
was used. While these seem to be in sharp contrast, the only basic
difference lies in the amount of hydrostatic stress component deve-
loped and it is known that the hydrostatic stress component does not
affect the the flow properties.

Using the above procedure, the effective stresses and effec-
tive strains correlate with each other at the end of the thermal load-
ing analysis so that the effect of subsequent axial loading can then
be measured. The stresses were computed in 0.0002 in/in increments.

The loading curves for the 20.75 volume percent tungsten
specimens are seen in Figures 89 and S0. The analytical curves can
be seen to be lower than the experimental results. The analytical
model does not predict any elastic-elastic behavior, however, about
0.00007 in/in of totally elastic behavior is experimentally observed.
Better agreement would probably have been possible if the machining
operation could be taken into account.

Figures 91 and 92 compare the predicted and observed lcad-
ing curves for the 42 volume percent tungsten composites. Again the
computed curves do not show any fully elastic behavior and as a result
are somewhat lower than the experimental curves throughout the strain
range. Figures 93 and 94 illustrate the loading curves for the 6L
volume percent tungsten composites. Because of the overwhelming
influence of the tungsten, the effect of neglecting the fully elastic
behavior of the copper does not lead to much error. The relative
drop in the experimental curve of Figure 93 at high strains can prob-
ably be attributed to some fiber breakage which has been observed on
other specimens above 0.002 in/in of strain.

¢. Unloading Prediction

In order to make a prediction of the unloading behavior of

the composites, an experimentally determined effective stress-effective

strain curve had to be measured for each amount of prestrain. Pure
copper tensile-compresssion samples identical to those discussed in
part (4a) of this section were first strained in tension to amount
equal to the average effective strain computed at the end of the pre-
strain. After unloading, these specimens were then reloaded in com-
pression. Using the unloading and compression curves as the effec-
tive strain-effective strain curves for the matrix, the composite un-
loading behavior was computed.
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The predicted unloading curves are compared to the experi=-
mental curves in Figures 89-94, In each case the shape of the unload-
ing curves are in agreement, however, the error which originated in
the loading curves is carried over to offset all the computed curves
from the experimental curves. It should be noted that within the
accuracy of the technique the prediction of the onset of plastic flow
in the matrix during unloading was in good agreement with the observed
results,

Since the residual stress state is now known after the pre-
strain, it is worthwhile to note the effect of the mechanical pre-
strain on the ''as fabricated' residual stresses, This is shown in
Figure 86 for the 20,75 volume percent tungsten composites, |t can
be seen that prestraining decreases the axial stress in the copper
significantly and correspondingly increases the axial stress in the
tungsten, On a deviatoric stress bases, the axial stress in the
copper actually changes sign, This result is similar to that seen
in the model composites and certainly accounts for the beneficial
effect of the prestrain, It is quite clear from Figure 86 that only
0,001'/" of prestrain is sufficient to aiter the residual stress state
dramatically. |In Figues 87 and 88 very similar results are seen for
the 43 and 64 volume percent tungsten composites,

d. Reloading Prediction

Since the residual stress state has been calculated for each
volume fraction after the prestrain cycle, the effect of subsequent
reloading can now be determined, The results will be shown on a new
set of axes, i.,e., a coordinate shift equal to the residual strain
is made, As was the case of the model composites, an experimentally
determined effective stress-effective strain curve had to be deter-
mined. The curves used for the unloading analysis were extended by
unloading from compression and reloading into tension, These final
unloading and reloading curves were used to determine the response
to reloading after the prestrain cycle.

Figure 95 compares the predicted and observed composite
retoading curves for the 20,75 tungsten volume fraction specimens,
Good agreement is seen in predicting the amount of totally elastic
behavior, however, deviations are seen at large strain for both the
0.001'Y/" and 0.003''/" prestrained specimens, The error appears to
be systematic, and is related to underestimating the strain hardening
behavior of the copper. |In turn, this is probably a result of under-
estimating the effective strain at the end of the axial prestrain, as
would be the case if the stresses generated during cool down were
underestimated, The effect of non-uniform cooling could account for
this disparity. This observed difference could also be related to
the non-uniform packing of the fibers. This non~uniformity would
result in a portion of the matrix being stressed higher than the
average and a portion being stresses lower than the average. |t has



been shown in Reference 13 that the higher loaded portion of the matrix
would be loaded to a larger degree than expected on a weight average
while the remaining portion of the matrix would be loaded on about a
weight average. Thus the total effect of the non-uniform packing

would be to stress the matrix to a greater extent than predicted,

The reloading behavior of the 43 volume percent tungsten
composites is shown in Figure 96. Once again the fully elastic be=
havior is well predicted, The elastic-plastic behavior is underesti-
mated for the sample prestrained 0,001'/" in a manner similar to that
shown in Figure 95 for the 20,75 volume percent tungsten composite,
However, the observed behavior of the 0.003'/" prestrain specimen
actual falls below the predicted curve at high strains, In this case,
there is evidence that some fiber fracture occurred above ,002'Y/"
strain, This seems to indicate that the prestrain step, while signi=
ficantly improving the low strain range behavior, can also cause
brittle fiber fracture to occur earlier than what would normally be
expected. This would be a consequence of changing the sign of the
"as fabricated' residual stress in the tungsten from compression to
tension by prestraining,

The observed behavior of the 64 volume percent tungsten com=-
posites is compared to the analytical predictions in Figure 97. Good
agreement over the full strain range is observed., |t appears that
the error in predicting the copper behavior is not of sufficient magni-
tude to alter the predicted curves significantly for this high volume
fraction of tungsten,
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SECTION 1V

COMPARATIVE ANALYSIS OF CYLINDRICAL AND HEXAGONAL ELEMENTS

The cylindrical composite models have been widely used to
describe elastic behavior, and are virtually the only geometric model
to which plastic behavior has been ascribed. The reason for the wide-
spread usage of this model stems directly from the relative simplicity
of the analysis for circular symmetry as compared to formidable anal-
yses required for even the simplest of actual fiber composite configu=
rations. Plasticity analysis of an exact array of fibers would be an
exceedingly difficult undertaking, even for the simplest case of per=
fect plastic behavior. The cylindrical element has generally been
considered reasonable in its accuracy for low fiber volume fraction
composites where the effects of adjacent fibers on a given fiber are
negligible, However, the limitations of the maximum fiber volume
fraction for which this model may reasonably accurately permit com-
putation of the transverse interaction stresses have not been examined
in detail., It is anticipated that at some minimum fiber volume frac-
tion the adjacent fibers will begin to cause aberrations in the simple
cylindrical model stress field, and this cylindrically symmetric
solution will give erroneous results. This will, of course, be true
for plastic as well as elastic deformation.

The two-component cylindrical model was developed analyti=-
cally by Ebert and Gadd {17 Jfor elastic deformation, yielding, and
subsequent perfect plastic deformation. This mode! was developed to
represent close-packed fibers in a matrix material and as such con-
sidered the core component as representing the matrix and the case
component as representing the fiber component. |In this type of re-
presentation, the constraint which the surrounding fibers impose on
the matrix component is considered to be reasonably accurately repre-
sented,

The use of this two-component cylindrical model in approxi=-
mating loosely=-packed composites was suggested by Ebert, Hamilton,
and Hecker[[17]. For this type of representation, the core and case
were employed as the fiber component and matrix component respectively.

Although these models were developed to represent both close-
and loose-packed fiber composites, the range of fiber volume fraction
within which these models provide an accurate representation of actual
fiber composites has not heretofore been evaluated. Consequently, it
was believed that a detailed examination of the micromechanical effects
in the cylindrical composite as compared to the hexagonait element would
provide the urgently needed determination of the range of applicability
of the cylindrical model.

In this section, therefore, the analytical comparison s made
between the elastic responses of the cylindrical and hexagonal composite



=5k

elements loaded in axial tension, and the comparative behavior under
plastic deformation is discussed.

In the case of aligned fibers in a metal matrix loaded In
axial tension, the initial yielding and plastic deformation of the
matrix create a decided effect on the observed behavior of the com-
posite[C 17,2,39]. Not only is the strain hardening rate reflected
in the load carrying ability of the matrix component during its
plastic deformation, but the properties of the matrix which determine
the extent of the mechanical interaction during this straining are
critically dependent on the strain hardening properties of the matrix.
Specifically, it has been discussed in the Introduction that the
transverse stresses arise from a difference in Poisson's ratio between
the two components; that is, a difference in the fateral contractile
tendencies of these components. Other things being equal, the greater
the difference in Poisson's ratio the greater the transverse stresses
being developed at a given axial strain. For a given Poisson's ratio
difference, the larger the magnitudes of either or both components'’
elastic moduli, the larger will be the transverse stresses resulting
from this interaction. The contractile tendency and 'modulus' during
plastic deformation have been described in the form of instantaneous
values[1 Jand shown to be functions of the strain=-hardening rate as
well as elastic constants. Thus, the extent of the mechanical inter-
action and consequent transverse stresses developed between the com-
ponents will be strongly dependent on the plastic properties of the
matrix.

Consequently, the analysis utilized to rationalize the stress

field developed during plastic-elastic interactions should ideally
account for the exact plastic strain-hardening behavior of the plastic
component. This observation, coupled with the inherent difficulties
associated with plasticity analysis of complex problems, has supported
the development of the cylindrical composite element as a representa-
tion of more complex fiber composite elements such as the hexagonal
element considered herein, The plasticity analysis of the cylindrical
element, complex though it may be, is considerably more amenable to
the incorporation of exact plastic deformation behavior than its exact
geometrical counterpart.

The fiber composite element referred to herein is that
basic element of a fiber composite which is repeated throughout the
composite to create the continuum, Each element behaves identically
so that the total composite behavier is the sum total of each element;
each element will represent therefore the total composite behavior.

The composite element for the hexagonally-packed fiher com-
posite is shown schematically in Figure 98 with its corresponding re=
presentation by a cylindrical mode! element. Figure 99 shows the
hexagonal element with its descriptive nomenclature. It is apparent
from this representation that the geometrical approximation of the
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actual hexagonal element by the cylindrical element is limited to the
element surface configuration where the linear segments of the hexa-
gon have been distorted into circular arcs to form the cylindrical
surface,

It is inherent from the definition of the hexagonal element
that it will contain the same constituent volume fractions as the
entire composite. For the cylindrical element representation, this
restriction will also be used. Aside from the geometrical approxi=-
mation, the cylindrical element should provide a good representation
of the hexagonal element if it is exposed to similar net surface
loading conditions. In fact, if the average surface toads on the
two elements are identical, the only difference in the actual stress
field, and consequent effects thereof, will arise from the pericdic
nautre of element surface forces around the circumference and their
results on the internal stress field.

For a very small fiber volume fraction, the surface is well
removed from the fiber-matrix interface which is the source of the
internal interaction. These oscillating effects would therefore be
expected to be small. On the other hand, for a densely-packed com-
posite the element surface is close to this interface and these
effects may be expected to be large, Consequently, limits of the
cylindrical approximation are expected to exist for some minimum
fiber volume fraction of a given composite system.

For the extremely close-packed array, the cylindrical re-
presentation of Figure 98 appears to be an extremely crude repre-
sentation of the hexagonal element, and the corresponding stress
fields will most certainly be quite different from the true values
of such a composite, In this case, the matrix is essentially en-
compassed by three adjacent fibers and therefore subject to severe
restrictions to lateral deformations. This particular observation
was noted by Ebert and Gadd[ ! Jwho then proposed to reverse the
cylindrical model so that the matrix component is in the interior.
For this model, the matrix is restricted to lateral flow much the
same as is the matrix in the close=-packed array of fibers.

The normal boundary force which must be imposed on the
cylindrical element surface to provide the desired approximation to
the hexagonal element will now be considered.

If a cut is made along the boundaries of hexagonal symmetry
and paralle) to the fibers, as shown in Figure 100, a balance of forces
and moments must be imposed on the surface to replace those of the
section removed;
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{f the composite is large with respect to the fiber and composite
element size, any surface effects will be balanced over the large
interior, and such an effect will be so small as to be masked by

the localized effects, Therefore, these surface effects are neg-
lected.

Since each element in the interior is identical to any other,
and must remain so during axial loading, this summation must be true
on a local scale for each repeating hexagonal section. in addition,
it is noted that each hexagonal boundary within the composite must
experience the identical stress and strain distribution as any other,
that is, any symmetry boundary is unidentifiable from any other.
Additionally, the planes of hexagonal symmetry require that the
stresses normal and parallel to these planes are principal stresses.
Considering these factors, the force distribution on each boundary
is identical, and no shear stresses may be present on these boundaries.
Consequently, each boundary must be in equilibrium,

The force distribution expressed mathematically is:

oAz oB: oC: oD (13)
n n n n

where O'n is the normal stress distribution and will be a function
of distance ''t' along the boundary of the hexagonal face. The super-
scripts refer to the hexagonal face under consideration.

Summing the forces in the x direction for a unit length of
the composite

_fcrn sin d1+fo-n fan sin —g= dt+£;rn =0 ()

c

From (12) and (13) above
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and therefore
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A (16)

Consequently, it is shown that the normal force distribution must be
such that it is balanced to zero net force over the surface of the
hexagon.

A consideration of the symmetry about the center of a given
hexagonal face reveals that the normal force distribution on each
half-face must be identical, and therefore must be a net zero normal
force., Thus, it is proven that the net normal force over each hexa-
gonal halif-face must be in equilibrium, and there is no net compres=
sion or tension acting normal to the hexagonal element faces,

In approximating the behavior of a hexagonal element by a
cylindrical element, it is suggested that the element surface boundary
conditions should be the same as for the hexagonal element, that is,
the cylinder surface should be a free surface and experience no
radial surface forces. This requirement is imposed analytically as
the boundary condition requiring the surface radial stress to be
zero. This is precisely the boundary condition imposed on the
cylinder by Ebert et al[C17,1,2Jand the resulting analytical model
should provide the desired approximating composite element.

Therefore, analytical calculations of internal stress
states were made for given composite systems utilizing this cylin=
drical model and compared to results of the hexagonal model proposed
by Piehler[36]. 1t must be noted, however, that the stresses in
Piehler's model are given by an infinite series solut ion which must
be truncated to permit calculations of the stresses. Consequently,
these computed stresses will not necessarily be correct, but effect
of the hexagonal geometry will be indicated.

As plastic deformation occurs in the matrix, its properties
change. This will affect the resulting stress distribution within
the components of the composite. However, it has been shown in
Section 1) that for this type of composite under axial lecading only,
the plastic properties may be represented by instantaneous material
properties analogous to the elastic properties of the material. |In
other words, plastic properties as expressed may be utilized in incre=
mental plastic relations to permit the plasticity analysis. There-
fore, the comparison of the elastic analysis should provide good insight
into the corresponding relative results for elastic-plastic and plastic~
plastic calculations. This analysis will be of definite value in indi-
cating the validity and limitations of the cylindrical model as applied
to fiber composite behavior after plastic deformation commences.
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Comparative computations were made for three fiber compo-
site systems of engineering interest, which constitute a wide range
of elastic properties: beryllium fibers in aluminum matrix, boron
fibers in aluminum matrix, and tungsten fibers in aluminum matrix,
The elastic properties of these materials are presented in Table 4.
The results of the analytical computations revealed similar compa-
rative behavior for all these systems, albeit the magnitudes changed,
and therefore only a complete and detailed discussion of the bery!ljum=
aluminum system will be presented. Such a presentation of the results
of the other systems would be repetitive and add fittle to the dis~
cussion., Reference to the comparative behavior of the other systems
will be made occasionally and as necessary for completeness. The
beryllium-aluminum system was chosen for discussion because of the
large difference in Poisson's ratio which gives rise to sizeable
internal interactions.

In examining the micromechanics of a fiber composite, the
important effects must first be determined. A knowledge of the exact
nature of the actual stress field within the composite components is
certainly necessary since these stress values which constitute the
field can indicate critical locations with respect to yielding,
fracture, and debonding. 1In addition, the stress field is necessary
to determine the magnitude of the axial stress which @ given point
is actually experiencing under a given axial strain. This latter
point gives rise to the actually observed composite stress at a
given axial strain, and therefore the observed elastic modulus and
subsequent elastic=plastic and plastic«plastic stress-strain behavior.

On the basis of the above, this evaluation will be directed
to give an insight into the approximating value of the cylindrical
model in determining actual internal stresses, and corresponding
yielding and flow behavior of hexagonally-packed fiber composites.

To facilitate the comparision of yielding behavior, the effective
stress was determined for each calcultation (at an axial strain of
0.00% in/in) from the Von Mises relation[37Jgiven in cylindrical
coordinates:
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The difference between the effective stress and the
axial stress expected in the absence of transverse stresses
then provides a measure of early or delayed yielding for the stress
state under consideration. In other words, yielding initiates when
O = Oy for the given component under consideration. At this point
the stress state may be such that @ is not equal toE€z , but may
be greater or lesser in value. Consequently, the yielding behavior
of the various regions of the composite may be compared to the Rule
of Mixtures predictions by simply comparing this effective stress to
the uniaxial stress at a given elastic axial strain, To facilitate
this analysis, the difference (0 ~E€z ) was evaluated ate; = 0,001
infin for both the hexagonal and cylindrical models as an indication
of yield behavior, This difference as determined is such that posi-
tive values of this difference indicate earler yielding than expected
from uniaxial comparisons, and negative values indicate delayed yield-
ing. Correspondingly, the measure of the deviation of the axial stress
from the Rule of Mixtures prediction is presented as the difference
{o}-Eez). Positive values indicate an increased stress and correspon-
dingly higher observed etastic modulus relative to the Rule of Mixtures.

Computations were made over the range of fiber volume frac-
tions of V_=0.01 to V_=0.90. The targer value of VF is very close to
the theoretical limit of close-packed fibers (0.91); higher values
than that have no meaning. The very low fiber volume fraction may
be expected to reveal little, if any, interaction effects between
fibers. The stress field for V_=0.01 for the hexagonal model and
cylindrical modetl should therefgre be virtually identical.

The distribution of the radial and tangential stresses
through the hexagonal and cylindrical composite models of the Be=Al
system are shown in Fiqure 10l. It is apparent from these graphs
that the stress distributions of the two medels are identical, but
their magnitudes are not in agreement. The stresses computed by the
hexagonat model are of the same sign as, but of greater magnitude
than, those of the cylindrical model. The effects of the difference
in transverse stress magnitudes is reflected in the distributions of
(o, Ee€,) and (0 —E€,) which are shown in Figure 102,

Since the stresses drop to negligible values at the external
interface, it can be concluded that the difference in stress magnitudes
ocbserved here in the two models is a consequence of the truncation of
the series solution of the hexagonal model which was necessary to
facilitate the calculations. The solution of the cylindrical model
is of closed form and therefore should be exact within the limitations
of the assumptions made.

The comparison of the cylindrical model to the hexagonal
model is 1limited to comparing relative effects rather than specific
vatues. This limitation does not seriocusly impair the value of this
comparison, however, since only the corresponding magnitudes are
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amplified for the hexagonal calculations, and the relative distribu-
tion of the stresses are otherwise identical.

Before comparing the effect of increased fiber volume frac-
tion on the internal stresses, it is timely to examine the type of
stress distribution which is actually present in the hexagonal ele-
ment at high fiber volume fractions. The radial and tangential
stress distribution are preented for § = 0° (see Figure 99 for iden-
tification of @ ) and & = 30° in Figure 103, and the interface stress
is shown as a function of § in Figures 104 and 105, It is interest-
ing to note that the radial stress, which is shown in Figure 104 to
possess maximum absolute values at 0° and 30°, becomes tensile at 30°
while becoming increasingly compressive at 0°, This reflects the
oscillation of normal stress on the hexagonal surface. These normal
stresses must also pass from tension to compression in order to allow
equilibrium, as was discussed previously in this section. The in-
plane shear stress, which is zero at the 0° and 30° lines of symmetry,
passes through a maximum at about 15° as shown in Figure 104, The
radial and shear stresses at the interface are identical for both
components as required from equilibrium considerations (hence, Fig-
ure 104 applies to either component), but the interface tangential
stresses are different in the matrix and fiber as shown in Figure 105.

The variation of stress with 8 for the composite of high
fiber volume fractions, then, is the cause of differences in behavior
which may be predicted between the hexagonal element and the cylin-
drical element. 1t has been shown schematically that no substantial
difference exists between the two models for V¢= 0.01, and that for
Vg= 0.70 significant aberrations in the stress fields are caused by
the close proximity of adjacent fibers.

The effect of varying the fiber volume fraction is shown
in Figures 106 = 111, To facilitate this evaluation, the interface
radial and tangential stresses are shown for 0° and 30°, and for
extreme values of (& — Eep) and (o3 ~Ee€;) for the matrix and fiber
as computed by both hexagonal and cylindrical models. These compara-
tive plots are presented for the Be-Al composite system (Figures 106 -
108) and the W-Cu composite system (Figures 109 - 111) to demonstrate
that the relative effects are independent of material properties.
The magnitudes of these effects, however, may be seen to depend on
the properties of the components of the composite system,

Examination of the radial stresses of Figures 106 and 109
reveals an effect of the adjacent fibers at fiber volume fractions
as low as 0.2. However, this effect does not appear to be substantial
until the fiber volume fraction reaches 0.5 or 0.6. The tangential
stress, on the other hand, does not reflect the effect of fiber prox-
imity until the fiber volume fraction reaches 0.6 or 0.7.

The values of (E-Eez ), which will predict yielding behavior,

gt
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indicate essentially no hexagonal aberrations until the fiber volume
fraction approaches 0.6 or 0.7. Corresponding values:f‘(o~E¢z) in
Figures 108 and 11} become affected by the hexagonal symmetry at fiber
volume fracticn: of apnroximately 0.3, but not substantially until
0.6 or 0.7.

Sinze :ne values of (0E€3z) and (o-E€y) are strong indi=
cations of yield and stress-strain behavior, respectively, of the com-
ponents of the composite, and consequently of the composite itself, it
is of interest to examine the actual distribution of these values
throughout the composite. To permit this evaluation on a comparative
basis, corresponding 30° sections of hexagonal and cylindrical elements,
as shown in figure 12,were selected for the presentation of results.
The values of (O-E€z) and (0-E€3z) are shown on these sections as
lines of equal value, or isograms, in Figures 113-120. Since these
values within the fiber are frequently constant, the fiber area is
crosshatched to indicate the region over which the value is constant.

The vielding behavior of the matrix is indicated in Figuresii3-
116 where the isograms of (0-E€z) are presented. In comparing these
values of the cylindrical model to those of the hexaqonal, it is sig=
nificant to note the location of the zero isogram, which separates
those regions of the matrix which will yield early and those which
will yield late as compared to uniaxial considerations. On this basis,
it appears that similar yielding behavior may be expected for the two
models for fiber volume fractions up to at least 0.3,

Further examination of the hexagonal element in Fiqures }13-
116 reveals that, even at high fiber volume fractions, simitar volumes
of the matrix are above and below the zero. This effect is shown for
the entire hexagonal element in Figure 121, This indicates that the
average yielding strain for the matrix is close to the uniaxial value,
The corresponding effect in the cylindrical model disagrees increas-
ingly with the hexagonal model as the V¢ increases above 0.5. This
model predicts that an increasing percentage of the matrix will under-
go delayed yielding.

wWhile the yielding predictions of the cylindrical model are
obviously in error at large Vf, the effect of this discrepancy on the
composite behavior is not as great as first considerations might indi-
cate, In the first place, the volume fraction of the matrix becomes
smaller as the discrepancy increases, thereby reducing the contribu-
tion of this error to the overall composite behavior. Secondly, the
actual magnitudes of this effective stress change are so small as to
be of virtually negligible effect in altering the predicted net yield
stress, Thus, with the cylindrical element as with the hexagonal
element, the observed average yield strain of the matrix will be very
close to the uniaxial value,

The most significant difference between the matrix yielding
behaviors of the two models is in the actual form of the yielding
region of the matrix. The cylindrical model, for Vg = 0.9 for example,
predicts a delay of yielding by about 0.84% above the uniaxial yield
strain and subsequently the moving of a yield front through the matrix
with yielding of the matrix complete at about 1.6% above the uniaxial
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yield strain. In contrast to this, the matrix of the hexagonal ele~
ment will begin yielding at 8 = 0 at about 23% less than uniaxial
yield strain, and the y{eld front will move through the matrix to

8 = 30°. Yielding will be complete at a strain of about 15% above
the uniaxial yield strainl,

The net effect of this yielding phenomenon is shown schema-
tically in Figure 122. For this schematic presentati on, the effects
of the transverse stresses on elastic modulus and plastic stress-
strain slope are neglected. The net effect of the yield front mov-
ing through the matrix is similar in all respects to the progressive
yielding previously reported for the two component cylindrical com-
posites[C 1,27]. For the ideal material exhibiting Yinear strain
hardening as shown in Figure 122, the progressive yielding results in
a region of the stress~strain curve which will show a continuously
decreasing slope until yielding is complete and this slope becomes
that of the plastic region.

The isograms of (o-Ee€,) presented in Figures 117-120 indi-
cate the magnitude of the deviation from the elastic modulus, The
significant observation to be made from these graphs is the opposing
effects of the fiber and matrix. All areas of the matrix show an
increase in modulus while the fiber generally shows a decrease. The
exception to this is for V. = 0.85 (see Figure 108) where the fiber
begins to show a siight pogitive variation in modulus.

The cylindrical etement shows close agreement in behavioral
trends of the modulus, though magnitudes remain lower. As with the
effective stress deviations, the cylindrical model appears to follow
rather closely the behavior of the hexagonal model with respect to
the modulus variations. The net effect of the increase in the matrix
component and the decrease in the fiber component is one of produc~
ing elastic moduli which are close to, though necessarily higher than
those predicted by the Rule of Mixtures. This net deviation of modu-
lus for the overall composite from the Rule of Mixtures is shown in
Figure 123 as a function of fiber volume fraction as predicted by
both analytical models. The trend of composite modulus based on the
cylindrical model is surprisingly similar to that computed by the
hexagonal model. Again, the magnitudes of the moduli are not in close
agreement, but as mentioned several times previously, much of this
deviation is due to the computational approximations of the hexagonal
model.

The results of this study of the cylindrical model behavior
as it compares to that of the hexagonal element indicates that the

‘Recal! that the actual values of hexagonal element calcu-
lations may be erroneously high due to the truncation of the series
solution. Although the magnitudes may be in error, the argument is
nonetheless valid in respect to the effect.
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overall stress-strain behavior of a hexagonally-packed composite
will be reasonably predicted by the cylindrical model for most fiber
volume fractions. The composite elastic moduli appear to be closely
determined as does the average matrix yield strain. The cylindrical
mode! will not, however, predict the large strain range over which
the matrix components undergo progressive yielding for high fiber
volume fractions. However, this contribution of the very iow volume
fraction of matrix for which this phenomenon occurs will constitute
a small fraction of the total composite stress=strain curve, and may
even be a difficult characteristic to observe experimentally. The
surrounding fibers appear to increasingly disturb the cylindrically
symmetric stress fietd at fiber volume fractions of about 0.5 and
above, However, up to this fiber loading, the cylindrical model
appears to provide a reasonably accurate prediction of the actual
internal stresses,

The value of this study is augmented by its extrapolation
into the study of plastic deformation of the matrix, yielding of the
fiber, and continued plastic deformation of the fiber. Those con-
clusions reached on the basis of elastic deformations are expected
to hold approximately for plastic deformation. Consequently, it
appears that the cylindrical model should provide a suitable analy-
tical means of determining complete stress-strain behavior of hexa-
gonal ly-packed fiber composites for most fiber volume fractions., The
simplicity associated with the circular symmetry of the cylindrical
model as compared to the hexagonal model makes this model especially
attractive, This factor coupled with the errors arising from analy-
tical simplifications necessary to apply the more complex models
(even for totally elastic deformations) certainly justifies its use
for most composite systems.

At the inception of this contract, the geometrical short-
comings of the cylindrical model in representing close-packed fiber
composites were recognized[C1]. it was proposed at that time to
develop analytically an advanced cylindrical composite, the double-
concentric composite, which would provide added flexibility in the
application of the more simple cylindrical composites to such as the
hexagonal composites. This analytical model has been developed to
provide the complete transverse stress and strain fields for elastic
and plastic deformation under axial loading, and is presented in a
previous report [2]. However, the results of this detailed compara-
tive analysis shed new light on the value of the two-component cylin=-
drical composite in representing hexagonally-packed fiber composites.

While the value of the double-concentric model appears to
be diminished, as & supplementary tool for predicting stress-strain
behavior of densely-packed composites, it now takes on new dimensions
as a method of analysis for fiber composites in which @ third material
is present at the interface., Such a third interfacial component may
result from diffusion reactions resulting from thermal processing
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[38-467], or from the application of diffusion reaction coating
applied to the fibers prior to fabrication[#6]].




SECTION v

DOUBLE-CONCENTRIC MODEL

The value and limitations of the cylindrically symmetric
two-component model in predicting internal stresses and thus effects
on stress-strain behavior of a hexagonally~packed fiber composite,
were discussed in detail in the previous section. The cylindrical
model was shown to provide reasonably accurate calculations for the
stress field at moderate fiber volume fractions, and strong indica-
tions that the stress-strain behavior was indeed indicative of actual
fiber composites up to fairly high fiber loadings. However, the
actual stresses at high fiber loadings were somewhat in error, and
did not reflect the periodic stress variations around the actual hexa=
gonally-packed fiber composite. Further they did not approximate the
corresponding peak tensile and compressive stresses. In general, the
cylindrical element approximated average stresses,

In summary, the simple two-component composite is seen to
fall short of predicting the actual local stress values for densely=
packed composites which would give rise to such factors as debonding
between the fiber and matrix. Since bonding between the fiber and
matrix is critical to the load transfer from the matrix to the fiber,
such effects are of major interest in the use of fiber composites.
Consequently, the need for supplementary methods of determining speci-
fied internal stresses is indicated, particularly for plastic defor-
mation.

In addition to the above consideration, metal-matrix compo=
sites are frequently fabricated by high temperature processing, which
may result in interaction or diffusion between the two components.
Such a reaction characteristically leads to the formation of a multi-
component composite: a fiber, an interfacial diffusion layer or inter=
metallic compound, and the matrix., In the simplest case, such a re-
acted composite would consist of the three basic components. While
the interface reaction layer may not constitute sufficient fraction
of the composite to significantly alter its stress~-strain behavior,
it may be a brittle, weak layer and therefore could be the source
of premature failure. Such a layer, being very thin, would be expected
to offer little resistance to deformation at the interface, although
it may be experiencing excessively high stresses. Consequently a
need for an analytical technique with which to provide insight into
the micromechanics of a more complex composite is again indicated.

These considerations led to the development of the double-
concentric model. The analytical development and experimental eval-
uvation of Berylco 25-0FHC copper composites has been previously re-
ported [2_]. The recent progress supporting this study has been made
by experimental evaluation of double-concentric composites consisting
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of maraging steel case and core components with an OFHC copper ring
component (see Figure 124 for designation of components).

1. Analytical Evaluation

o b A A 6 el e

The analytical devetopment of the double-concentric model
has been previously reported["2_Jand will not be reviewed here.

2. Experimental Evaluation

The experimental study was designed to provide data which i
could be compared directly to the analytical model. Consequently, é
test coupons were fabricated to match the exact double-concentric ]
model geometry, and the component material properties chosen so that :
mechanical interactions could be evaluated. For this experiment, ;
the two principal surface strains were measured as functions of i
applied load to provide the necessary data for the comparison to
the analytical model. These experimenta! results, then, provide a :
measure of the composite axial stress-strain and transverse strain- £
ing characteristics., The selection of component materials for this
evaluation is otherwise unimportant since the anaiytical model is
completely general, and its validity should be demonstrable for
virtually any combination of materials.

a. Fabrication

The maraging steel case component used for these composites
was the high strength alloy (designated maraging 300 alloy) posses-
sing a yield strength of about 300,000 psi, whereas the maraging
steel core component was the somewhat weaker alloy (designated mara-
ging 250 alloy) which exhibits a yield strength of about 250,000 psi.
The ring component was fabricated of OFHC copper tubing. Chemical
analyses of all three components are presented in Table 5.

The fabrication of these composites involved the cold draw-
ing of the OFHC copper tubing onto the 250 alloy maraging steel wires,
and then shrink fitting these core-ring composites into precision
ground 300 alloy maraging steel cylinders. The 250 alloy maraging
steel wires were cleaned by deqreasing with trichloroethylene before
the drawing operation, The copper tubing was cleaned with a 50%
nitric acid solution, and subsequently rinsed with water and then ;
methanol, Four different wire diameters were used to fabricate the ;
core-ring components containing four core area fractions. i

All core-ring components were cut to 4=1/2'" lengths, and v
centerless ground to 0.2395 + 0.0001'. One end of each rod was
given a 5% taper over 1/2' length to assist its insertion into the
steel case cylinder. The maraging 300 alloy case components were
cut to 3-3/4'" length by 1=1/4'" diameter; driiled along their axes,
and the inside diameter honed to 0.2395 + 0.0001'. These components
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were degreased by cleaning in trichloroethylene before assembly.

The core-ring rods were shrink-fitted into the steel
cylinder case components by cooling them in liquid nitrogen and
then rapidly Inserting them into the maraging steel cylinders, The ex-
cess core=ring rods (protruding from the ends of the cylinder) were
cut off, and the ends of the assembly were inert-gas welded to pro-
tect the internal interfaces during subsequent processing,

The components were diffusion bonded by heating the com-
posite at 1750°F for four hours, and cooled by oil quenching from
temperature. The oil quench was found to be necessary to prevent
intergranular cracking in the copper which otherwise resulted from
tensile stresses developing from the differential thermal expansion
on air cooling. The rapid cooling (oil quench) caused the case
cylinder to cool faster than the internal copper, and thereby main-
taining a compressive constraint on the copper, and preventing it
from cracking. These composites were subsequently aged at 900°F
for three hours, and air cooled, This thermal treatment age hardened
the maraging steel components to their rated properties,

Sixteen composites were fabricated by this technique to
permit fabrication of duplicate coupons for 8 different combinations
of component volume fractions. The dimensions of the components in
these composites and the composite identifications are shown in
Table 6. In addition to these 16 composites of the double-concentric
model, two composites containing only the copper core and maraging
steel case are included in the study. The data for these composites
(M44 and M50) was obtained from the previous Section Ill. These
two=component composites represent & special situation for the double-
concentric model in which one component has vanished.

Samples of maraging steel alloys were processed with the
composite coupons to provide the required component data for the
analytical computations. The maraging steel 300 alioy case compo-
nent was tested as previously reported[jij. The maraging steel 250
alloy wires were not of sufficient diameter to allow the machining
of test coupons, and consequently, these components were tested in
the wire form directly.

b. Testing

All testing was conducted in a manner and with equipment
as discussed in detail in a previous report [27]

c. Results
The results of this experimental evaluation are presented

in three different graphical forms. The axial stress is presented
as a function of axial strain, and compared to corresponding
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analytical and Rule of Mixtures calculations. The surface strain
measurements on these composites have been used to compute the tan-
gential stresses as a function of axial strain., These strains are
principal strains and therefore provide sufficient information for
this computation. Since the case component will behave plastically

as well as elastically, the computational process is somewhat involved
and therefore presented in Appendix VIII. The surface strains are
also presented as the ratio L—qbfsz) as a function of axial strain,

Both representations of the transverse straining behavior
of the composite will provide a good measure of the internal inter-
actions. If no interactions occurred, there would be no tangential
surface stress. Therefore, the surface tangential stress indicates
the existence of such an interaction, and its magnitude will provide
& quantitative comparison between the analytical and experimentatl
results, The surface strain ratio is effectively a measure of the
composite Poisson's ratio, though this ratio cannot be expected to
be constant once plastic deformation begins in any component. Again,
this same parameter (—€q/€; ) is obtained from the analytical model
for comparison to experimental results. If no interaction occurred,
the surface strain ratio would simply be that of the case component.
Deviation from this case component behavior will again indicate the
presence and magnitude of the mechanical interactions.

The cross section of a typical maraging steel-copper double~-
concentric composite is shown in Figure 125. Good bonding was achieved
with this composite system as is shown by the fracture cross section
in Figure 126 and corresponding micrographs of the interfaces presented
in Figure 127, A thin diffusion zone may be seen in the copper at the
interfacial areas, and results from the dissolution of the maraging
steel constituents during the diffusion bonding treatment. This dif-
fusion zone undoubtedly possesses different mechanical properties
than the three basic component materials, but constitutes such a
minor volume fraction of the total composite that it is not expected
to affect the measured stress=strain or transverse strain properties.
Such a thin interfacial layer would be expected to affect the compo-
site behavior by causing debonding or cracking prematurely. Neither
of these phenomenon were observed, and its effect on the composite
properties is therefore discounted.

The component mechanical properties are listed in Table 7,
and the stress-strain curves for all components are shown in Figure128.

The results of tensile tests on the composites are presen-
ted in Figqures 129through 48 The results of duplicate coupons are
presented in each figure. The analytical computations based on the
double~concentric model are presented with the experimental results
in each graph, and the Rule of Mixtures calculations are also presented
with the axial stress-strain presentations for comparison. The Rule
of Mixtures is not defined for the transverse strain measurements
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and hence does not appear on these graphs.

Scatter in the measured and computed results is encountered
periodically between duplicate test coupons containing the same com-
ponent volume fractions., This scatter is believed to be caused by
undetected errors in the measuring and/or recording instrumentation.

A slight variation in diameters between duplicate samples (see

Table 6) would contribute to the scatter, but this source of error

is considered to be a minor contribution, The fabrication and proces-
sing are not believed to contribute significantly to the scatter since
these procedures were identical for all samples., Bonding between
components in this composite system is excellent, and debonding was
observed only in the immediate fracture area. Consequently, debond-
ing is not considered to have contributed to the scatter. Since all
test samples were weided at the ends, load transfer to the inner
components should be enhanced, thereby reducing or eliminating end
effects. The St. Vepant's effect which may arise from the effects

of the change in geometry at the button-heads of the coupons would

not vary between duplicate samples since the geometries of these
coupons are identical.

The axial stress=strain behavior of these composites appears
to agree well with both the analytical and Rule of Mixtures predic-
tions for the many components area fractions tested. With these
composites, as with the two-component composites[ |7, the analytical
predictions are higher than the Rule of Mixtures predictions, but
this difference is so slight as to be bearly perceptible,

It is noted that the experimental results for the axial
stress-strain behavior of the two-component composites, shown in
Figures 137 and 47, fall somewhat below the analytical prediction.
This behavior has been examined in detail, both analytically and
experimentally in Section Ill, and was traced to the presence of
residual stresses arising from differential thermal contractions dur-
ing cooling of the composite from processing temperatures. This
behavior is constrasted by the stress-strain characteristics of the
double=concentric composites which show curves consistently closer
to and in some cases higher than, the analytical predictions. It
therefore appears that the presence of the core component altered the
residual stress state (as compared to that of the two~-component com-
posite) sufficiently that it imposed no larger effect on the subse=-
quent stress=strain behavior,.

Although some of the stress=strain curves are above the
analytical predictions, this effect is not consistent and is gener-
ally accompanied by some variation in duplicate results. These
ocbservations indicate that the high curves are the result of measure-
ment or recording instrumentation error.

The surface tangential stresses and surface strain ratios
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also show agreement with the analytical predictions. A characteristic
of the surface tangential stress curves, Figures 130 through 148 (odd
numbered figures only), is the small initial axial strain region dur-
ing which noc measurable tangential stresses are reported. This is
the small strain region during which the components all deform elas-
tically, and the small difference in Poisson's ratio precludes the
formation of measurable mechanical interactions. A second interes-
ting characteristic of this graphical representation is the decrease
in slope at an axial strain of about 0,009 inf/in. This corresponds
to the yielding of the maraging steel case. The surface tangential
stress levels out at this strain because the Poisson's ratio of the
case changes from the elastic value and approaches 0.5, the approxi-
mate Poisson's ratio for the copper ring component. The difference
in Poisson’s ratios of the components again becomes smali and the
resulting interaction between components becomes negligible.

The surface strain ratio {—€g/€; }, shows a rapid increase
corresponding to the beginning of plastic deformation in the ring
component. After this rapid rise, the curve forms a plateau and
this surface strain ratio becomes nearly constant for increasing
strain., The nearly constant surface strain ratio is a consequence
of the fact that the copper ring component, as well as the steel
core and case component, is deforming with a linear strain harden-
ing behavior as may be observed from its component curve, Figure 128,
Corresponding to these linear stress-strain regions of the components
are constant values of the incremental Poisson's ratio and incremental
modulus,

This surface strain ratio increases rapidly at an axial
strain of about 0.008 in/in or 0,009 in/in, which corresponds to the
incidence of plastic flow in the steel case and core components,

The increase in the composite surface strain ratio reflects the ra-
pid increase of the steel components' Poisson's ratios as they rise
toward the plastic vatue of 0.5. The two representations of the
transverse strain measurements presented adjacent as they are, pro-
vide a rather clear representation of the micromechanical interac~
tions as the composite components undergo the various states of elas-
tic and plastic deformation.

The magnitudes of tangential stresses and the surface strain
ratios are functions of the volume fractions of the compoenents, as
well as their mechanical properties. For example, samples MCT 1-1,
MCT 2=1, MCT 3-1, MCT 4=} and M 50 were fabricated to have identical
case component dimensions. The corresponding size of the core compo-
nent was decreased, and the matrix inside diameter decreased to accom-
modate the decreasing core size., The resulting surface tangential
stresses and surface strain ratios, shown in Figures 130, 132, 134, 136,
and 138 increase accordingly as the core size decreases {and the ring
size increases).
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Exactly the same relative behavior is shown for the samples
MCT 1-3, MCT 2-3, MCT 3-3, MCT 4-3, and M 44 for which the core com-
ponent alsc decreases correspondingly in size. The transverse strain
effects for these samples are shown in Figures 140, 142, 144 146 and
148 respectively.

It is apparent from all of these graphs in which the trans-
verse strain effects are presented that the analytical model calcu-
lations show good agreement with not only the curves shapes, but also
the actual magnitudes of the effects.



SECTION VI

DISCONTINUITY AND END=-EFFECT STUDIES

The analytical and experimental studies pursued in the
initial effort of the subject contract have limited the considerations
to a highly specialized case wherein the composites were assumed to
consist of infinitely long fiber components. End effects, discon-
tinuous fibers, and fractured fiber components were not considered,
Such assumptions were vital for the analysis undertaken, and have pro-
vided the basis for thorough studies within the timits of those assump-

tions.

However, fiber composites as engineering materials will not
be of infinite length, and thus the end effects of the composite struc-
tural materials must be understood. |In addition, discontinuous fibers
can be used to advantage to permit fabrication of imaginative compo-
site materials which are more difficult or impossible to fabricate of
continuous filaments, Finally, broken filaments within composites
may be present as a result of processing, fabrication, loading in
service, or other factors,

The high probability of encountering discontinuous filaments
in structural composite materials underlines the need for a thorough
understanding of their effects on the composite material properties
and their corresponding response to structural service. Consequently,
this phase of study of the micro-mechanics of composite materials,
which is concerned with the end-effects and discontinuities, repre=-
sents a logical continuation of previous analytical and experimental

studies,

Studies in this area were initiated during an earlier re-
porting period {Reference[[2]] ), in which the investigators fabricated
and tested several prototype tungsten fiber-copper matrix composites
with single discontinuous fibers, as well as several continuous ''con-
trol" composites. The results indicated that the effects of the fiber
discontinuity, as reflected in composite stress-strain behavior and
transverse strain ratio, could be seen as reduced stress and trans-
verse surface strain at any axial strain level, although internal de-
bonding of the composites may have affected transverse strain values.
It was also noticed that discontinuity effects diminished rapidly
away from the discontinuity location.

The approach utilized in continuing this investigation was
basically the same as that of the previous work, that is, an experi=-
mental determination of the effect of the introduction of discontin-
uous fibers in various numbers and locations in the composite on the
axial stress=strain and transverse strain behavior, |t was hoped that
a sample of a broad variety of situations could lead to a definition
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of some of the more important variables, so that subsequent testing
could be concentrated in specific areas.

It was felt that the prototype system of large diameter
fibers was most amenable to such a study, combining fibrous character-
istics of filamentary composites with sufficient size so as to be able
to control accurately dimensions and geometry of the end configurations,.
Thus, use of the 0.050 inch diameter tungsten fiber-copper matrix pro=
totype system was continued,

t. FEABRICATION

The immediate goal was that of obtaining data indicating
the effects of the following parameters under conditions of discontin=
uous fibers: 1) proximity of neighboring fibers to a discontinuity,
i.e., closeness of fiber packing; 2) number of discontinuities present;
3) relative location of the discontinuities by variation in lateral
and longitudinal distances to neighboring discontinuities; 4) fiber
end gecmetry, specifically fiber end shape and proximity of ends of
the halves of each discontinuous fiber. Not all of these configurations
could be evaluated completely because of the very large number of com-
posites needed to represent every combination, |In addition, some con-
figurations posed complex fabrication probiems, Table B indicates
the configurations which contribute to the present discussion,

Composites were fabricated by assembling 19 cleaned tungsten
fibers into close packed hexagonal cross sections, as shown in Fig=-
ure 149, Loose packed arrays were made by utilizing two of these short
fiber bundles at each end to hold seven long fibers in the configura~
tion shown in Figure 150, Discontinuities were introduced by substi-
tuting end wise fiber segments precut to known lengths in place of an
original continuous fiber, By careful fabrication and tabulation,
the location of the discontinuities could be followed through all
stages in fabrication. Composites were then liquid infiltrated with
copper in graphite molds according to the procedure described in Ref-
erence [27], and steel buttonheads were brazed onto each end. The
excess copper was machined of f to give a final diameter of 0,260 inches,
yielding fiber volume fractions of 70,2% and 25.9% for close and loose
packing, respectively.

2. TESTING

Strain gages were placed at two separate axial locations on
each composite in an effort to obtain more data from each configuration,
This gaging was the same at each location as used in previous work,
permitting measurement of both axial and tangential surface strains
at a cross section. The axial location of the gages varied from speci=-
men to specimen, but generally one set of gages was located over a
discontinuity plane and another set some distance away to observe the
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longitudinal extent of crack effect. The composites were tensile-
tested in precision aligned fixtures, and tlte surface strains were
recorded as functions of applied load on x-y recorders,

Stress=strain data for component material is taken from
Ref.C2Jand is shown in Figure 151, Other mechanical properties are
shown in Table 3. All materials used were of the same lots and treat-
ment as in that investigation, so that material properties were iden=
tical to those reported previously, Data for contro] samples of con-
tinuous fiber composites are also from Reference [27]. The results
presented below include those previously unreported as well as some
pertinent data from Reference [27].

3. RESULTS AND DI1SCUSSIGN

Results discussed in this section pertain only to the close
packed 19 fiber configuration, since the results from 7 fiber compo-
sites fabricated in this period are not vet complete,

Figures 152 through 154 show composite stress strain behav=
ior for composites with one, three, or four discontinuities, All
fiber separations were in the same cross sectional plane and the ex-
perimental curves portrayed were derived from data generated by strain
gages in this plane, Aside from the tendency to decrease secant
modulus and fracture strain with the increasing number of cracks, it
is seen that the relative lowering of the strain curves (with the
exception of the single crack specimen) is less than one might expect
assuming that all the decrease in stress-strain behavior is associated
with the effect of the decreased fiber fraction at the crack plane.
The exception of the single crack specimen could be the result of
either nontypical data for the specimen, or differences in fabrica=
tion techniques between the discontinuous and continuous composites
(the latter of which were fabricated by other investigators), This
surmise is being evaluated by the febrication of a new set of con~
tinuous composites,

A word is in order ahout computation of the 'expected'’
stress-strain curves, S5ince the prototype tungsten-copper system
shows a large ''synergystic'' effect over the straight Rule of Mixtures
predictions, it is not strictly correct to make comparisons between
different volume fraction behaviors using Rule of Mixtures values,
This was circumvented in part by using the contirucus fiber composite
curve as a basis, reducing it to propcrtions of fiber fractions of
18, 16, and 15 fibers apiece {corresponding to one, three, and four
cracks in a plane), and assuming that the fiber is replaced by well
bonded copper. In some cases, the copper was not well bonded to the
fibers, as seen by debonding of copper from the fiber ends at the
fracture. However, considering the effective increase in fiber
fraction resulting from this factor does not significantly raise the
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expected stress strain curve toward the observed, Such an increase,
then, in the observed, over the expected, stress level at any axial
strain wuld imply that the copper was carrying more stress than
expected, or that a stress concentration effect was present., How~
ever, this conciusion may be nullified by the observation that the
reduced fiber fraction does not extend over the entire axial gage
length, and so the gage ''sees' some fiber fraction intermediate
between the continuous and the ''expected'' value as calculated. This
alone could raise the stress=strain curve recorded by the gage, obh~
scuring the effect of any stress concentration,

Typical surface transverse strain ratios for two locations
on a discontinuous fiber composite are shown in Figure 155, The
composite shows a higher transverse strain ratio at the crack plane
than in the main body of the composite, This would indicate more eionga~
tion at the discontinuity than for the continuous fibers at the same
level of axial strain, This trend is substantiated by data from other
composites, plotted in Figure 156, For convenience in comparison, the
transverse strain is normalized by plotting the ratio of the trans-
verse strain value of interest to the transverse strain shown by con-
tinuous composites at the same axial strain as the y-axis, Normalized
transverse strains less than 1.0 indicate the possibility of debond-
ing or voids inside the composite.

Here again, the observed trend is predicted by consideration
of the lowered volume fraction of fibers, (or increased fraction of
copper) in the crack plane, since the copper, being in a plastic flow
state, has a greater contractile tendency than do the fibers, However,
the magnitude of the effect seen is within the values of transverse
strain predicted by the analytical model for the lowered fiber fraction,
and thus any effect other than that of decreasing effective fiber frac-
tion is not readily identifiable. Possible reasons for this are that
fiber=matrix bonding is poor, (as is probable in some of the composites
since they show abnormally low transverse strains), and the realization
that the transverse gages, like the axial gages, are seeing some aver=
age of the reduced and non-reduced fiber fractions. Both of these
factors will tend to iower observed strains below expected values,
thus obscuring a possible effect of stress concentration,

Effects of a discontinuity in close-packed composites dimin-
ish rapidly with distance from the discontinuity, as is seen in the
transverse strain data for locati ons not on a crack plane (Figure 156)
and also stress~strain behavior (Figures 152 through 154), Gages 0.2'"
or more from a discontinuity all showed substantially the same re-
sponse, although decreased slightly, as the continuous composites
(evidence for non-representativeness of the continuous composi tes ).

The one gage set at 0,1 inch from a crack showed an axial
strain behavior similar to continuous composites, but an increased
transverse strain reading. These observations are compatible, since
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it is known that transverse strain ratios are a more sensitive mea-
sure of composite interaction than stress~strain behavior.

The rapidity of decay of discontinuity effects with distance
from the defect is a measure of the stress transfer ability at the
discontinuity since the smaller the distance in which stress in the
fibers is built up to its nominal value, the smaller is the area in
which non=continuous behavior is seen. Thus, for these composites,
the transfer distance, as seen from the surface of the composi tes,
seems to be 0,2 inch or less, Since the fibers are .050 inches in
diameter, this vields a critical aspect ratio of 8. This compares
well with the value of 7.2 calculated by the analysis of Kelly and
Tyson (reference [337), using the material values determined in this
investigation,

There is some evidence that the transfer length may be even
smaller based on the fracture of one of the specimens. This specimen
was fabricated with three discontinuities in one plane, and a fourth
in another fiber in another plane 0.1' distant axially. The composite
fractured at the plane of the three cracks., The fourth fiber also
fractured in that plane, rather than pulling out the remaining 0.1"
length. Thus, the stress in this fourth fiber must have built up
sufficiently in the 0.1" length from its end to reach the fiber ten=
sile strength, i.e, the 0.1'' length was greater than the critical half
length. This implies a critical aspect ratio as low as 4, Such a low
critical aspect ratio means that contrary to the assumptions of Kelly
and Tyson's analysis, stress transfer by the copper through the ends
of the fibers is important, at least with the well bonded copper-
tungsten interfaces and very short fiber end to fiber end distances
used in this composite.

It is also of note in discussing stress transfer ability
around discontinuities that not one of the close packed composites
fabricated with only a single discontinuity fractured at the discon-
tinuity. This attests to the ability of the matrix to transfer load
successfully under such a condition, so that the fiber break is no
weaker than a natural fiber defect.
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SECTION VI

FUTURE WORK

With the complete development of both the elasticity and
the plasticity elements of the analytical model, and capability of
handling thermal loading and machining effects in the model on a
theoretical basis, it is now possible to employ the basic model as
an analytical tool to evaluate the parametric effects that are
intrinsic in oriented fiber composite materials, Such evaluation
will permit the inclusion of these parametric effects into the
mode! to achieve the ultimate goal - a workable analytical model
based on first principles with which to be able to predict and thus
optimize fiber composite performance,

To achieve this end, the work of the study has been extend-
ed for a two year period. The specific topics to be considered are
the following:

1. The effect of fiber-matrix inter~diffusion at the
fiber=-matrix interface on total performance, both
predicted and measured, will be determined by use
of the double-concentric analytical model.

2. The effect of the external geometry of the composite
on the total performance will be evaluated in terms
of both predictions from the analytical model and
also actual measurement. Modifications of the analy-
tical model will be made to take account of geometries
in which surface effects alter the basic continuum
concepts.

3. The residual stress distribution introduced into
metal matrix composites as a result of fabrication
will be predicted and measured, and the effect of
changing the residual stress intensity and distri-
bution on composite performance will be determined
in terms of both the integrated analytical model as
well as actual measurement.

L. The effect of biaxial loading on the stress-strain
behavior of fiber composite sheet will be determined
by means of a hydraulic bulge test. The anisotropy
due to the unidirectional orientation of the fibers
will be measured directly.

5. The effect of fiber discontinuities will be evaluated
both analytically and experimentally, and the analy-
tical model will be modified as necessary to take
account of this parametric effect,
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TABLE 2

RESIDUAL STRESSES IN OFHC COPPER-4340 STEEL COMPOSITES
PREDICTED BY THE PLASTICITY ANALYSIS WHICH CONSIDERS

PROPERTY VARIATIONS WITH TEMPERATURE

Case Area Transverse Axial Axial Tangential
Fraction Stresses Stress Stress Stress
AS Core Core Case Case(at 0,D.)
0.228 9,300 psi 13,200 psi -4L3, 800 -62,000 psi
psi
0.329 13,300 17,300 -34,300 -53,000
0.504 19,700 23,800 -23,750 -39,000
0.666 25,500 29,800 -14,900 -26,000




TABLE 3

MECHANICAL PROPERTY DATA OF CONSTITUENT MATERIALS
FOR THE CYLINDRICAL COMPOSITES AND F!BER COMPOSITES

Material Ute. 0.05% Prop. Elastic Poisson's
Strength Offset Limit Modultus Ratio
(psi) Yield (psi) (106 psi)
{psi)

OFHC 35,000 6,000 3,200 16.0 0.34

Copper

4340 bl so0 | 191,300 | 183,100 28.5 0.286

Steel
Maraging 1,03 000 | 260,000 | 210,L00 26.3 0.29k
Steel
50 mii- (b) (b)
diam.tung 232,000 | 212,000 180, 000 4y 0,285
sten wire

(a)
Smi]"' (

. b) (b)
diam. tung-
cten filal|273,000 | 247,000 180,000 58 0.285
ments (a)

(a) Processed at 2200°F for 1 hour under vacuum.

(b) Taken from the literature, not determined in this project.
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TABLE 4

ELASTIC PROPERTY DATA OF FIBER COMPOSITE COMPONENETS

Component
Beryllium Fiber

Aluminum Matrix
Tungsten Fiber

Copper Matrix

USED IN THE COMPARATIVE ANALYSIS

Elastic Modulus

Lg x IO6 psi
10 x IO6 psi
58 x 106 psi

16 x }06 psi

Poisson's Ratio

0.04

0.33

0.285

0.34
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TABLE 6

DIMENSIONS AND VOLUME FRACTIONS OF
DOUBLE-CONCENTRIC COMPOSITES' COMPONENTS

Core Ring Case
Dia. Dia. Dia. Vc VR Us

Sample No. (in.) (in.) (in.)

TMcT 1-1 0.1555  0.2392  0.2955  0.277  0.378  0.345
MCT 1-2 0.1555 0.2392 0.2954 0.277 0.378 0.345
MCT i-3 0.1555 0.2392 0.3404 0,209 0.295 0.506
MCT 1=k 0.1555 0.2392 0.3405 0.209 0,295 0.506
MCT 2-1 0.1034 0.2396 0.2953 0.122 0.535 0.344
MCT 2-2 0.1034 0.2396 0.2958 0.122 0.535 0.344
MCT 2-3 0.1034 0.2396 0.3404 0.0919 0.402 0,506
MCT 2-4 0.1034 0.2396 0.3404 0.0919 0.402 0.506
MCT 3=1 0.100 0.2392 0.2957 0.077 0.578 0.345
MCT 3-2 0.100 0.2392 0.2457 0.077 0.578 0.345
MCT 3=3 0.100 0.2392 0.340Q7 0.058 0.436 0.506
MCT 3-4 0.100 6.2392 0.3403 0.058 0.436 0.506
MCT L=1 0.0625 0.2392 0.2956 0.04s 0.611 0.345
MCT 4-2 0.0625 0.2392 0.2953 0.045 0.611 0.345
MCT 4-3 0.0625 0.2392 0.3403 0.034 0.4h460 0.506
MCT 4-4 0.0625 0.2392 0.3404 0.034 0.460 0.506
M 50 0 0.2395 0.3397 0 0.663 0.337
M Li 0 0.2395 0.2942 0 0.497 0.503
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TABLE 8

OF

SCHEDULE OF CONF IGURAT|ONS

DESCONTINUOUS FIBER COMPOSITES

COMPLETED TO DATE

i
1
.Packing

ade

Loose

Close

No. of Cracks

One

One

1
ithree, four

Location of central fiber { central a) all in one
Cracks fiber plane
b) out of plane
1/8" between|3 in one
planes plane,
one 0,1"
away
End Type Squared, a)notched !squared, zero gap
Zero 9ap, b)squared, copper filled
copper filled
zero gap
copper
filled

% Data from Reference 2
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Stress Distribution of a Two-Component Cylindrical Composite
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TT PLANE~ STRESS PATH FOR AXIAL LOADING
COPPER CORE IN OFHC Cu— 4340 COMPOSITES

Ag=0.666 § 54 =5} (PSI)
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Figure 3

Axial Lou. ling Path of the OFKC Copper Core of an
OFHC Copr2r = 4340 Steel Composite (As- 0.666),
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TU PLANE- STRESS PATH FOR AXIAL LOADING
4340 CASE (0.D) IN OFHC Cu-— 4340 COMPOSITE
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Figure L

Axial Loading of the 4340 Steel Case of an OFHC
Copper - L340 Steel Composite (As= 0.666),
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Figure 6

1.0

Residual Stresses in the Core Components of OFHC
Copper = 4340 Steel Composites,
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Figure 7

Residual Stresses in the Case Components of OFHC
Copper = 4340 Steel Composites,

S i e

——

R T PR 2T




RESIDUAL STRESSES IN CORE -1000 PSI

~ RESIDUAL STRESSES IN CASE—10Q0 PSI
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Figure 8

Residual Stresses in the Core and Case Components
of OFHC Copper - Maraging Steel Composites,
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AXIAL STRESS—I000 PSI
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Figure 10

Experimental Stress-Strain Curve of OFHC Copper
and Approximations of the Curves for Various
Temperatures,
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Effective Stress-Strain Curves of OFHC Copper at
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RESIDUAL STRESSES IN CORE-1000 PSI
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Figure 12

Residul Stresses in the Core of an OFHC Copper=
4340 Stee) Composite Predicted by the Plastic
Thermal Loading Analysis (As- 0.504),
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Residual Stress Distribution in an OFHC Copper
4340 Steel Composite Predicted by the Approximate
Thermal Loading Model (Asﬂ 0.228).
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TT PLANE~ STRESS PATH FOR TEMPERATURE AND
AXIAL LOADING COPPER CORE IN
SFHC Cu—-4340 COMPOSITE
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Loading Path for the Copper Core of an OFHC
Copper - L340 Steel Composite (As= 0,228),
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Loading Path for the L4340 Steel Case of an OFHC
Copper = 4340 Steel Composite (As= 0.228),
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TT PLANE- STRESS PATH FOR TEMPERATURE AND AXIAL
LOADING MARAGING STEEL CASE{Q.D.) IN OFHC Cu—
MARAGING STEEL COMPQSITE
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Figure 18

Loading Path for the Maraging Stee)l Case of an
OFHC Copper = Maraging Steel Composite (Asw 0.502).
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Figure 20

Stresses in the Case of an OFHC Copper - 4340 Steel
Composite during All Three Stages of Loading

(As= 0.228),



i 8 g i o

=110~

Ol

5 s e, A Al el e o e L iy

5
"(999°0 =v) buipeo]
311sodwo) {8315 QyEw - 48ddo) IHAQ

Jo sabeig @auyl iy buyanp
ue jO 3J07 IYl Ul $3553J41§

iz @anbi4
|e——— NINI 100 -NIVELS WIXY ol 4o — LYY —
8 9 14 r4 0 00! 002 00t 00k O0s Q09
T i _ T — T T T 1 0
/l
(NOISNIL IVIXVINN) 0D OH4O0 e
g S— - - A.l\U-
_ - — _ —o1
m
w
w
o
- ONINIHOVW o2 2
=
O
ip = 4 2
(o = '0) ssauus )
— ISYIASNVHL —0¢ i
‘O
| -0t @
999:0= Sy
( ¥0) sS3NULS IWVIXY 31ISOJWOD T3ALS  ObEH-ND DJHA0
1 1 1 _ L1 14 1 g




STRESS IN CASE —I0Q0 PSI

~-111=-

200 s B ] | i I
OFHC Cu- 4340 STEEL COMPOSITES ﬂxml. STRES
Ags =0.666 4340 STEEL 0.D.
_ (UNIAXIAL _
160 TENSION) I.D.
120~ -
80— —
a0 ~
0
MACHINING TANGENTIAL
STRESS
0.0.
—-40 - -
1. D.
-80 | | | 1 | |
600400 200 O 2 q 6 8 10
o— AT °F AXIAL STRAIN—.00I INAIN —

Figure 22

Stresses in the Case of an OFHC Copper = 4340 Steel
Composite during A1l Three Stages of Loading (As= 0.666).
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. Figure 24

Effective and Axial Deviatoric Stresses in the Case of an
OFHC Copper = 4340 Steel Composite During All Three Stages
of Loading (Asﬂ 0,228).
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Figure 26

Loading Path for the 4340 Stee} Case of an OFHC Copper =
4340 Steel Composite (AS- 0,666).
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Figure 27

Experimental Stress-Strain Curves for OFHC Copper
and Maraging Steel Tensile Specimens,
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Figure 28

Experimental and Residual Stress Modified Analy-
tical Stress=Strain Curves for OFHC Copper -

Maraging Steel Composites.
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Figure 29

Tangential Surface Strain as a Function of Axial
Strain for OFHC Copper and Maraging Steel Tensile
Specimens.,
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Figure 30

Tangential Surface Strain as a Function of Axial
Strain for OFHC Copper -~ Maraging Steel Composite
Tensile Specimens (As- 0.339).
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Figure 31

Tangential Surface Strain as a Function of Axial
Strain for OFHC Copper = Maraging Steel Composite
Tensile Specimens (As= 0.502).
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Figure 32

Experimental Stress=Strain Curves for OFHC Copper
and 4340 Steel Tensile Specimens.
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Figure 33

Experimental and Residual Stress Modified Analy-
tical Stress=Strain Curves for an OFHC Copper -
L3L0 Steel Composite (As- 0,228).
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Figure 34

Experimental and Residual Stress Modified Analy-
tical Stress=-Strain Curves for an OFHC Copper =
L340 Steel Composite (As= 0.329).
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Figure 35

Experimental and Residual Stress Modified Analye
tical Stress-Strain Curves for an OFHC Copper =
L4340 Steel Composite (As- 0.504),
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Figure 36

Experimental and Residual Stress Modified Analytical
Stress-Strain Curves for an OFHC Copper - L340 Steel
Composi te (A5= 0.666),
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Figure 37

Tangential Surface Strain as a Function of Axia)
Strain for OFHC Copper and 4340 Steel Tensile
Specimens.
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Figure 35

Tangential Surface Strain as a Function of Axial
Strain for OFHC Copper - 4340 Stee) Composite
Tensile Specimens (As= 0.228),
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Figure 39

Tangential Surface Strain as a Function of Axial
Strain for OFHC Copper - 4340 Steel Composite
Tensile Specimens (As= 0.329).
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Figure 41

Tangential Surface Strain as a Function of Axial
Strain for OFHC Copper - 4340 Steel Composite
Tensile Specimens (As= 0.666).
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Initial Elastic Limit and Secondary Modulus of
OFHC Copper = 4340 Steel Composites,
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Behavior of Copper-Tungsten Composite During One
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e S A SR S A ot T



COMPOSITE STRESS

-133-

LOAD ON 1/2 UNIT AREA
SILICA AND ALUMINUM =
TOTAL STRESS ON COMPOSITE

c
DI
B’ ,
E
F' COMPOSITE  STRAIN
A
/

Q
D sTRAIN
F E
Figure L4

Component Behavior During Tensile Loading Cycle
For 50% Aluminum = 50% Siltica Composite,



-134-

7 PLANE REPRESENTATION

l5|

YIELD LOCUS BY
Von MISES
CRITERION

Figure 45

!1lustrations of Isotropic Hardening Loading
Function for Reversed Uniaxial Loading.
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Figure L4

Stress=-Strain Behavior of OFHC Copper Predicted
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Representation of Mroz Model Loading Function
For Reversed Uniaxial Loading.
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Figure 49

Isotropic Hardening Unloading Predictions of
4340 Steel~OFHC Copper Composites.
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Figure 52

Kinematic Workhardening Unloading Predictions of 4340

Steel=0FHC Copper Composites,
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Figure 53

Kinematic Workhardening Unloading Predictions of
.504 Volume Fraction Maraging Steel=OFHC Copper
Composites. '
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Figure 54

Kinematic Workhardening Unloading Predictions of
.335 Volume Fraction Maraging Steel=-OFHC Copper
Composites.
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Figure 55

Mroz Model Unloading Predictions of 4340 Steel-
OFHC Copper Composites,
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Mroz Model Unloading Predictions of .504 Volume
Fraction Maraging Steel-OFHC Copper Composites,

O-EXPERIMENTAL
X~-ANALYTICAL

L .0l2 PRESTRAIN ERES X
ANALYTICAL 00224 '/" /x /
EXPERIMENTAL .00218"/ "

L .0065 PRESTRAIN X
ANALYTICAL .00040"/" /
EXPERIMENTAL .00046 '/ " x¢

/
. X x40
/ /
X ,b{o
/o
UNL.OAD UNLOAD
| LOAD FROM x/ FROM .012'/"
ooes /
Jﬁf:/// Ey/
%’” 5
— / 78
Jﬁﬁ'é /45/
¥/

- /x'ts f/
W7
@

G .

{,e np L | ] ] ]

0 2 4 6 8 10

12



i e R

L i it

e i et R G e s L e i s i W B et F D 5 e e

AXIAL STRESS-I000 PSI

140

120—

100

80

AR AT T AR

-146-

0- EXPERIMENTAL
| X—ANALYTICAL
-012 PRESTRAIN ERES
EXPERIMENTAL 00310

ANALYTICAL 00262

0065 PRESTRAIN

EXPERIMENTAL .0080
T_' ANALYTICAL 0074

LoD 7,
- LLoAD (x’ UNLOAD
/ooss;/ FROM 012

a | ! | A
6 8 B [ I i2
AXIAL STRAIN— 00! IN./IN.

Figure 57

Mroz Model Unloading Predictions of .335 Volume
Fraction Maraging Steel-0FHC Copper Composites.
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Figure 59
Effective Stress-Effective Strain Unloading Pre-

dictions of 4340 Steel-OFHC Copper Composites.,
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of .504 Volume Fraction Maraging Steel=-QOFHC Copper
Composites.
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Residual Stress Distribution Before and After Axial
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Copper Composite,
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Experimentaliy Observed and Analytically Predicted
Reloading Curves for Maraging Steel-OFHC Copper Com-
posites Prestrained Into Stage (11,
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Surface Tangential Strain-Axial Strain Curves for Reloading
Maraging Steel=OFHC Copper Composites Which were Prestrained

Into Stage |1,
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Figure 78

Typical Fiber Spacing in 20,75 Volume Percent Tung-
sten-Copper Composites,
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43 volume Percent Tungsten-Copper Composites.



AXIAL STRESS -1000 PSI

ul?l{.-

PRESTRAINED 003

120 |- PRE-
degréﬂTUUNED
7/

/fm;:

80

6o |- /
Ay

N4 . .

o | 2 3
AXIAL STRAIN - .00l IN./IN.

.

Figure 85

Effect of Prestraining on the Tensile Behavior of
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Effect of "Prestraining on the Residual Stress State
of 20.75 Volume Percent Tungsten-Copper Filamentary

Composites.,
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Analytical Prediction of ,003 Prestrain Cycle for 20,75
Volume Percent Tungsten-Copper Filamentary Composites.
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Analytical Prediction of ,003 Prestrain Cycle for 6L
Volume Percent Tungsten=Copper Filamentary Composites.
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Volume Percent Tungsten=-Copper Filamentary Composi tes,
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Analytical Predictions of Reloading Stress-Strain Behavior
for 43 Volume Percent Tungsten=-Copper Filamentary Composi tes,
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‘Analytical Predictions of Reloading Stress=Strain Behavior
for 64 Volume Percent Tungsten-Copper Filamentary Composites.
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Figure 99

Hexagonal Composite Element with Descriptive Nomen-
clature,
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Transverse Stress Distribution in the Hexagonal Element,vF = 0,70,
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Figure 105

Variation of Tangential Stress in the Fiber and Matrix
at the Fiber=Matrix Interface, '
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Figure 106

Variation of Interfacial Radial and Tangential Stresses
with Fiber Volume Fraction for Hexagonal and Cylindrical
Elements, Be-=Al Composites System,
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Figure 107

Variation of ( &~ E€ _) in the Fiber and Matrix with
Fiber Volume Fraction ¥or Hexaqonal and Cylindrical
Elements, Be-Al Composite System,
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Figure 108

Variation of ( 0 - E€_) in the Fiber and Matrix with
Fiber Volume Frattion f&r Hexagonal and Cylindrical
Elements, Be-Al Composite System,
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Figure 109

variation of Interfacial Radial and Tangential Stresses
with Fiber Volume Fraction for Hexagonal and Cylindrical
Elements, W=-Cu Composites System.
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Figure 110

Variation of (o~ E€_) in the Fiber and Matrix with

Fiber Yolume Fraction”for Hexagonal and Cylindrical

Elements, W=Cu Composite System,
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Figure 111

variation of (O - E€_) in the Fiber and Matrix with
Fiber Volume Fraktion ffr Hexagonal and Cytindricat
Elements, W-Cu Compoiste System.
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Figure 113

Isograms of (O = E€ _) for Hexagonal and Cylindrical
Elements, Be=Al Compogite System, Vf = 0.3.
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Isograms of (O = Eez) for Hexagonal and Cylindrical
Elements, Be-Al CompoSite System, w1= = 0.5,
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Figure 115

isograms of (O - E€ _) for Hexagonal and Cylindrical
: Elements, Be=Al Co¢npo§ite System, VF = 0,7.
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Figure 116

Isograms of (o - Eez) for Hexagonal and Cylindrical
Elements, Be-Al CompoSite System, Vf = 0.9,
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Figure 117

isograms of (o = Eez) for Hexagonal and Cylindrical
Elements, Be-Al"Composite System, Vf = 0.3,
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Isograms of ( o, - E€ ) for Hexagonal and Cylindrical
Elements, Be=-Al Composfte System, Vf = 0,5.
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Isograms of (o = Eez) for Hexagonal and Cylindrical
Elements, Be-Alzcompoiste System, Vf = 0.7,
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Isograms of (o = Eez) for Hexagonal and Cylindrical
Elements, Be-Al Composite System, Vf = 0.9,
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Hexagonal Element with Regions of Premature and Delayed
Yielding Indicated, Ve = 0.7.
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Diagram of the Effect of the Yielding Behavior oi tn=
Matrix on the Stress=Strain Characteristics of a Hexa-
gonal ly-Packed Fiber Composite.
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Variation in the Difference Between the Composite Modulus
and Rule of Mixtures Modulus with Fiber Volume Fraction,
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Figure 125

Cross Section of the Maraging Steel = OFHC Copper
Double-Concentric Composite,
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Figure 126

Longitudinal Section Through a Typical Fracture of a
Maraging Steel-0FHC Copper Double=Concentric Composite,
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Figure 127

Photomicrographs of the Interfaces of the Maraging
Steel-0FHC Copper Double~Concentric Composites,
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Figure 128

Stress=Strain Curves fér the Maraging Steel and OFHC

Copper Component Materials,
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Figure 129

Experimental and Analytical Stress-Strain Curves for
the Maraging Steel OFHC Copper Double-Concentric
Composites (Samples (MCT 1-1,2).
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Figure 130

Experimental and Analytical Curves of Surface Tangential
Stress and Strain Ratio for Maraging Steel-OFHC Copper
Double=Concentric Composites (Samples MCT 1-1,2).
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Figqure 131

Experimental and Analytical Stress=Strain Curves for
the Maraging Steel OFHC Copper Double=Concentric
Composites (Samples MCT 2-1,2),
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Figure 132

Experimental and Analytical Curves of Surface Tangentiél
Stress and Strain Ratio for Maraging Steel-OFHC Copper
Double-Concentric Composites (Samples MCT 2-1,2).
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Figure 133

Experimental and Analytical Stress=Strain Curves
for the Maraging Steel OFHC Copper Double=Concentric
Composites (Samples MCT 3=1,2).
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Figure 134

Experimental and Analytical Curves of Surface Tan~
gential Stress and Strain Ratio for Maraging Steel-
OFHC Copper Double-Concentric Composites (Samples
MCT 3-1 ,2) .
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Figure 135

Experimental and Analytical Stress=Strain Curves for
the Maraging Steel OFHC Copper Double-Concentric Compo=-
sites (Samples MCT L=1,2),
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Figure 136

Experimental and Analytical Curves of Surface Tangential
Stress and Strain Ratio for Maraging Steel=-0FHC Copper
Double-Concentric Composites (Samples MCT L-1-,2},
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Figure 137

Experimental and Analytical Stress=Strain Curves for
the Maraging Steel OFHC Copper Double-Concentric
Composites (Sample M 50),
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Experimental and Analytical Curves of Surface Tangential
Stress and Strain Ratio for Maraging Steel=-0OFHC Copper.
Double=-Concentric Composites (Sample M 50).
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Figure 139

Experimental and Analytical Stress=Strain Curyes for the
Maraging Steel OFHC Copper Double=Concentric Composites
(Samples MCT 1=3,4),
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Fiqure 140
Experimental and Analytical Curves of Surface Tangential Stress

and Strain Ratio for Maraging Steel=0OFHC Copper Double-Conce::«:
Composites (Samples MCT 1-3,4).
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Figure 141

Experimental and Analytical Stress=Strain Curves for the
Maraging Steel OFHC Copper Double=-Concentric Composites
(Samples MCT 2-3,4).
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Experimental and Analytical Curves of Surface Tangential
Stress and Strain Ratio for Maraging Steel-OFHC Copper
Double=-Concentric Composites (Samples MCT 2-3,4).
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Experimental and Analytical Stress=-Strain Curves for the
Maraging Steel OFHC Copper Double-Concentric Composi tes
(Samples MCT 3-3,h4).
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Experimental and Analytical Curves of Surface Tangential
Stress and Strain Ratio for Maraging Steel=OFHC Copper
Doubie=-Concentric Composites (Samples MCT 3-3,4).
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Experimental and Analytical Curves of Surface Tangential Stress and
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posites (Samples MCT 1}-3,1}).
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Figure 149

Cross Section of a Typical 50 mil Diameter Tungsten Wire
Prototype Composite, This Cross Section Was Taken Immedi-
ately Adjacent to the Fracture Surface of a Tested Compo-
site and Some Damage to the Tungsten and Copper Is Evident.

Vf = 70.2%.
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Figure 150

Cross Section of a Typical 50 mil Diameter Tungsten Wire
Prototype Composite with the 7-wire Geometry, Vf = 25.9.
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Figure 151

Experimental Stress-Strain Curves for 50 mil Diameter

Tungsten Wire and OFHC Copper Used in the Discontinuous

Fiber Study.
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Composites and the Expected Behavior Based on the
Crack Plane Volume Fraction are Shown for Comparison,
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Experimental Stress-Strain Curves for a 19 Wire 50 mijl
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Experimental Stress~Strain Curves for a 19 wire 50 mil
Diameter Tungsten~Copper Composites with Four Discon=
tinuous Fibers Located in the Same Cross Sectional Flane,
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Copper Composite with one Discontinuous Fiber, and
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APPENDIX |

COMPAR | SON OF NEW STRESS-STRAIN RELATIONS T0
THE PRANDTL-REUSS RELATIONS

In this appendix a comparison is made between the stress-
strain relations postulated in this investigation (equation(l) ) and
Prandti-«Reuss relations of the flow theory.

The Prandtl=Reuss relations in their entirety, in the ex-
panded engineering notation, will be presented first., The plastic
strain increment is given by equation (Al) in tensor notation

_P
p__3 de
deij = =~ Sij

a J (A1)

and the elastic strain increment by Hooke's law

£ _ I+ . v

from the postulate of the separation of total strain into elastic
and plastic components the total increment is determined as,

p
. _3 _dej; t+v N
dejj = 5 —z+—Sj; + —gdoy; — 8ij ¢ d8 43)

To gain physical insight to these relations, they will be written in
the expanded form in principal coordinates

14

Q.

de, = l:a'l — {72 (0'2+a'3 11+ -l-l:dcrl-v(d‘a +d 8 )J

E

\

(Ak)

Q.
My
©

. g€ — 1 der -
dey = — lZo-2 Va(a'l+a'3):l+ 3 Edo'z v (do+ da'31:|
P
_ de ]
deg = == Log-w2ig+ gld+ & Ldoy-vido; +day) ]

=246~
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The first term on the right hand side of equation (Al) denotes the
plastic strain increment. It is a function of the current state of
stress, not of the stress increment. The second term represents the
elastic strain increments, The terms d€' and & are defined in the
text by equations (2) and (4) respectively. Figurel%}(a) represents
the graphical interpretation of the quantity (o /d€& ) from the
effective stress-plastic strain curve., It is seen to be equal to the
term P''. Equation {Ah4) can therefore be written as

de, —prr- L g~1/2ta,+ o I+ =~ Cdoj-v (do,+ doy) T (45)

with dg, and d¢ given by the suitable permutation of the sub-
scripts 1,2, and

The stress-strain relations postulated in this study (equa-
tion (1} ) give the following relation for the total strain increments:

dc‘ = —!’5— |._.da'|--ﬂ1(cla'2 +da'3 1]

dczt

—mtde, +doy) ] (h6)

dey - Cdog—m doy+doy) 3

P is represented in Figure157 (b) and is seen to be equal to (dT /d€ ).
In the present stress-strain relations, the split of the elastic and
plastic strain increment is contained in the definition of m (Reference
C1J ). 1f this equation is substituted into the above stress=strain
relations, the total strain increments can be split into their elastic
and plastic parts by the following mathematical development:

de, = 54— Cdo, —m(do, +doy) ] (A7)
Y
p ' (A8)
_e _p
mey S 42 45 (A9)
de
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Substituting P and m into dcl , results in

_ e P
_ de de de
del v Ido‘l —(d0‘2+d0'3)v TG:— "(dc'2+ dc'3) 172 a5 I(AIO)

But
de = dé +de’
and equation (Al10)
becomes
de’ de
_ dE €
de = 15 L__doi -—l/2(d0'2+do'3):| + a5 Edai -vido, +da'3):| (A11)
From Figure 97(b)
do oo do __ E
G de’
[}
. 4T
n "'

Hence equation {All) becomes

de, =-'f:— C do-»(do, +day) ] + —";.r Cde,-v2tdo, +doy) ] (a12)

alol

where the first term on the right hand side corresponds to the elastic
strain increment and the second term to the plastic strain increment,

It is apparent that these stress-strain relations predict
that both the elastic and the plastic strain increments are functions
of the stress increment, This prediction is unlike that of the Prandti-
Reuss relations (equation {AS) ).

In examining the differences between the Prandtl-Reuss re~
Jations and the presently developed relations, it is necessary to
compare only the plastic strain increments since it is apparent from
equations (A5) and (A11) that the elastic strain increments are iden-
tical. At this point, it is once again convenient to resort to the
short=hand tensor notation. The plastic strain increment of the
Prandtl-Reuss relations can be written as

T, PR,

o A TR T T T T
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p 3 1
deij = "2 1Ol
PR p
_ or (A13)
de;. = 3 gg:s..
1 o 1
g 2 j

The subscript P=-R refers to Prandtl-Reuss. The presently predicted
plastic strain increment (denoted by the subscript ¥*) can be written
as

3 1
d = = ds;,
or p {AlL)
P 3 4 o

It is immediately apparent that equation (Al3) and {Al4) can predict
the same plastic strain increment oniy when the tensors S,, and d§,.
are coaxial. This condition, in terms of the gemmetrit:al'J ™ -pla*e
representation[3, 5, restricts the possibility for coincidence to
radial or porportional loading only.

In the specia! case of proportional loading, the develop-
ment below will show that the predictions of the two equations are

indeed identical, For proportional loading all the stresses increase
in constant ratio, and therefore

i i) (A15)
-]
whereTj; is the initial stress state and K' is a monotonically in-

creasing function of time.

KK (A16)

|
Siy =oi-3 Sijoges K'ofj ~ ¥ 8 Kloge =K' 8
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72 ° 2
& = (3858 =K'(3s] s)) =k'F (a17)
d Si] = SI] _Slol
dS; = K'Sjj ~S;; = S (K'-I) (A18)

47 = (3 d 2e @k’ st st VRl kgt
o = 'E S'] dSU '(‘é"(K"” Si] Si]) "'(K"')O‘ (Alg)

Substituting eugations (A16-19) into equations (A13) and Alk4) leads to

ta®
dey =3 gd XS
P-R K&
(A20)
g%
de? = 3 4 S
Ha_p 2 o
and
K'—1) Sij
4 = 3 gep KZUSH
ij 2 (K-1)&*
*
s> (A21)
cjea = —5-41§° '-:éhr-—“
i g 2 o

Therefore, in the case of proportional loading, equations
(A13) and (Al4) become equivalent and the stress=strain relations of
equations (Al) and (1), referring to the Prandtl-Reuss relations and
the newly postulated relations, become indentical. In the case of
general loading where the tensors sij and dsij are not coincident,
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the plastic strain increment of equation (All4) will not be normal to
the yield surface as in the case for equation (A13) [[3J and equa-
tion (Al12) will predict somewhat larger total strains than equation

(A9).
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APPENDIX 1

ELASTICITY SOLUTION OF AN ‘N''-RING COMPOSITE CYLINDER

UNDER AXJAL LOAD

A general elasticity solution to a problem is a necessary
prerequisite for the plasticity analysis developed in the text, In
this appendix, a rigorous elasticity solution to a composite cylinder
subjected to axial loads is developed. Figure 158 graphically repre-
sents the '"N'' ring composite cylinder under investigation.

The solution will be achieved subject to the following
assumptions:

1. The cylinder is infinitely long = no end-effects

2. The axial strain is uniform across the composite
cross=section - plane sections remain plane

3. The individual components are perfectly bonded at
the interface

4, There are no body forces acting on this system

Solution of the problem will be achieved in cyiindrical
(polar) coordinates because of the axial symmetry of the problem.
The most direct method of solution for this type of problem is that
of expressing the equilibrium of forces equations in terms of the
displacements and then solving the resulting differential equation
with regard to the boundary conditions of the problem.

The equilibrium of forces equations for this problem reduce
from their general form of

% =9
to (A22)
d o, o, -
r % %

—_— =0

dr r

Compatibility can be satisfied by expressing the strains in
terms of the displacements rather than vice versa. In the present
situation, the tangential displacement and all the shear strains are
equal to zero because of the axial symmetry. The three normal (and
in this case, principal) strains can be expressed in terms of the
radial and axial displacements, u and w, as follows:

=253«
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dw -
2 4z ° CONSTANT

.
]

4
e = du_
r dur (A23)
“t° T

Expressing Hooke's law in terms of stresses

. _E (A24)
Tt e T8 YK«
where
K = E
(1+v) (I-2v) (A25)

and substituting into the equilibrium equation (A22) results in the
following differential equation

d-u | du u
+ — - =0
dr r dr r (A26)

which can be solved for the radial displacement to give

Ca

Note that the three dimensional problem of elasticity has

been reduced to a one dimensional (one variable) differential equation,

This simplification is a direct result of the axial symmetry of the
problem and the fact that the axial strain, €5 , is assumed to be
constant both across the composite cross section and along the compo-
site length.

Equation (A27) for the radial displacement applies to all
individual components of the composite cylinder. |t can be expressed
in general as

R il

aryey e T
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r (A28)

where '"i' refers to the particular components as graphically illustra-
ted in Figure 158,

Solution of the problem now rests upon the determination
of the constants C)' and Cz' by the application of the available
boundary conditions, It is apparent that two boundary conditions
are required for each component. The necessary boundary conditions
can be derived from the following requirements:

1. Compatibility requires that the displacements at all
the component interfaces be continuous.

2. Equilibrium of forces requires that the radial stresses
across all the component interfaces be continuous

3. Physical reasoning requires that all displacements be
finite,

The first requirement results in the following sets of
equations:

Ui =V AT
i+l

i CE i+ Cz FOR
. —— 0 . e ——— Az
i+ Z Qrn+ Ti i =0,l,..N~I 29)

where N is the number of rings in the composite case and the r;'s are
defined in Figure 158, Hence requirement number one results in N equa-
tions.

The second requirement results in the following sets of
equations:

i oo il
Oy T Oy
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+ s . . . .
where © N+1 at ry is the radial stress outside the composite cylin-

der, which must be zero since the composite lateral surface is free
of any constraints. These equations are meaningless unless O‘r' are
expressed in terms of the constants C]' and Cz'.

In the initial solution, it was necessary to express the
stresses in terms of the radial displacement. These relations were
not given at the time but they will be stated now without derivation,
Substitution of equation (A23) into (A24) leads to the following
relations:

_ du u
o, T K|:mr137-}:(l-v) 'F"+ v1§]
= —y ) G4 '
o = k C(I vldr+v r* v&] a3
d
o, =KEth:—+vl:—+(l-v)ez ]

Substitution of equation (A27) and {A23) results in the following
expressions for the entire stress and strain distribution in each
component :

KECI - fg (1-2v) +vez:|

o, =
oy = KECl +—(r:§—(l-2v)+v¢z ]
o, =K EZvCI t-v) e, 3
Co (A32)
& =C- =
. Ca
61, = Cl + r2

Substitution of o, of equation {A32) into the boundary condition
equation (A30), taking into consideration the stresses in each indi-
vidual element, results in

i R

T R e
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RPN L IR _ i i+l
Ki Cj - K €, -r-IEEK,(I—Zv;)Ca— Kigg (1-2v%4) C, =
( Ki*l Vig| — Ki vi) €, for i=0,1,....N (A33)

Equation (A33) represents a set of N+l equations.

Consideration of the third requirement for boundary condi~
tions results in one additional equation

C3=0 (A34)

A look at equation (A28) will show that this is a necessary condition
to avoid a singularity at the origin of the cylinder. From a physical
viewpoint it is necessary to avoid an infinite displacement at the
origin.,

It is interesting to note that condition (A34) forces all
stresses and strains in the inner member (core) to be constant with
radius (and in particular o ° = ¢,°} for any loading conditions.

A result of this fact which utilizeé in the text is that the core will
always experience proportional loading, no matter what the loading
conditions are.

The combination of equations (A29), and (A33), and (A34)
can be seen to constitute a set of 2N+2 equations with 2N+2 unknowns.
Solution of the complete elasticity problem can hence be achieved by
solving this set of equations simultaneously and substituting the
resulting answers for the constants into equation (A32) for each
individual component of the composite.

. For computational convenience the unknown constants Cl' and
Cs' will be replaced by the following notation:

¢

Coivl

and

i
Ca =Csoiy2
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if this substitution is made in equations (A29,33,34) they can be
arranged in the following manner:

a Q*“mca+~~~~~“~~~“' C b

(l 2N+2 0

. ”""""GI,ZN+2

G G raxCat . 920n2 Cone2 P2
) (A35)

°2N+2,IC|"' """"""""""""°2N+2,2N+2C2N+2=b2N+2

where the ajj are the appropriate coefficients of the unknown constants
and the b; are the collection of all terms which do not include any
constants.

This system of equations can be written in matrix form as
follows;

Ccd CAd = (OB

where C b,

Cca= | Cs1 =

Canez) bons2)

and
-

u” olz I R e T T R S I ol‘ZN*z

oal 022.... L I L I A ) 40 . lt.-"ll".l!az’2N+2
CAd= |. :

°2N*2’[ °2N+2’2 R R L I T ..02N+z.2N+2--J

R R

gy S

ke T R A

s T Y I T 1Y

F—

A R S
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Matrices [A] and [B] are known from equations (A29, 33, 34) in terms
of property constants and geometrical terms., Matrix[CC_]is the matrix
of unknown coefficients. The method of Gaussian elimination (18] is
now employed to solve for the matrix [C_]. This is accomplished by
the use of a computer programmed Gaussian elimination method. The
answers, of course, are numerical. They have to be substituted into
equation (A32) to define the entire stress and strain distribution

in the composite upon axial loading.

To provide some physical insight to the character of the
solution, a sample of the matrices CAT] and [[B_] for a composite of
4 rings in the case material is presented in Table 9,
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APPENDIX |1}

DETERMINATION OF RESIDUAL STRESSES FROM

MEASURED STRAINS

in this appendix, a method for determining the residual
stress distributions in as=-fabricated composite cylinders from the
measured strain data of the drilling-out operation is developed.

R T TR

In @ manner analagous to that used by Sachs (20), the
initially present residual stresses ( o, +) will be determined from
the, calculation of the stresses removed during the drilling operat:on
(0' ) and the stresses remaining after the drilling operation ( O

). ;
1 {
The'Jstresses initially present can then be designated as J

U‘ij = O‘ij' + O‘ij“ (A4O)

In the section on composite fabrication in the text, it
was shown that the residual stresses originate only as a result of
the difference in thermal expansion coefficients between the compo=-
nents. The drilling~out of composite discs and the sptitting of
the steel shell remaining after the removal of the copper core demon=-
strated that there are no stresses remaining in the case after the
removal of the core, hence,

G P T A T TS

ajj =0 (A41)

The initial stress distribution is determined by the cal=- 3
culation of the stresses removed during the drilling-out of the cop- -
per core. Only the strains measured after the entire removal of the 1
core will be utilized in this development, :

Consider first the axial stress removed during drilling.
The effect of the removal of the axial stress in the core material
can be calculated by determining its effect on the stress at the out- {
side surface (radius b). |If the previous assumption of infinite com-
posite length is made, the stress change due to the removal of the
core will be uniformly distributed over the remaining cross section
(the case). Hence, the removed stress can be related to the stress
at the outside surface by

(A42)

The negative sign is required because cﬁ? is a stress change causing
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. . ! .
the measured strain changes, while o, s an amount of stress removed
by the drilling-out operation.

The stress changes at the outside surface can be related
to the measured surface strains €, and € by applying Hooke's law
with

o¥ - (Tf_ﬁi (e, + vey) (A43)
* __E
oy = (1 - 22) (et +v€z ) (Alh)

Substituting (A43) into (A42) gives the axial stress at any point in
the case relieved by the drilling as

R - (ez+v¢t) (A45)

LTI

The same kind of preocedure can be used to find oJ , 1.€.,
the effect at radius b due to drilling-out the core {radius a) is
noted. Before drilling, the case has a radial tension (tension is
chosen by convention) at the interface. After drilling, the inter-
face becomes a free surface and the radial stress becomes equal to
zero. Removing this tensile stress by drilling has the same effect
as imposing an internal pressure on the case at radius a. The tan-
gential stress anywhere in the case material is given by the standard
Lame-solution for pressurized thick-walled cylinders (21):

: Pa2 b2
t b2-a2 ( r2 )

where p is the effective internal pressure.

The tangential stress at the outside surface (r=b) is then
given by

% Pag 2

g™ = 2 (A47)
t b2 - a2
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and hence

o, = 12 {1+ ) af‘

b
r2 (AL8)

Substituting equation (Alk) Forcrr and changing sign for the same
reason as in equation (A42) results in the follwing expression:

T 2
o1 V2 (1+ 25 ) () (gt vey) (Ab9)

The radial stress 64 is determined in the same way as oy .
Applying the radial stress equation of the Lame-solution results in

a_l = POZ
F (b2-a2)

b2
(-—%) (A50)

The radial stress can be related to the tangential stress at the sur-
face by substituting equation (Al7) into (A50)

% (A51)

1
%4

o = rZ_bZ
r 2re

Substitution of equation (Ab4) into (A51) and changing sign results
in

ol = — rz-be ( E
r 2r8 -y

> ) (€, +ve,) (A52)

Equation (AlS5), (A49), and (A52) completely determine the
residual stresses relieved in the case material by the drilling out
of the core. From equations (A40O) and (A4l) it is apparent that the
above equations also represent the residual stresses initially pre~
sent in the case. To determine the residual stresses initially pre-
sent in the core, use must be made of the boundary conditions which
govern atl composite cylinder behavior.

First, consideration of the continuity of the radial stress
across the case=core interface results in the determination of the
transverse stresses in the core., |In Appendix 11 the radial and
tangential stresses in the core were shown to be equal in the core
for any type of loading. Both of the stresses therefore are equa!l
to the radial stress in the case at radius a. From equation (A52)
substitution of a for r results in
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CORE CASE , @2-b2 E
o, o} —(—2-——20 ) { - )(et+vez) (453)

The axial stress in the core can be determined from the
condition of equilibrium of forces in the axial direction. After
fabrication there is no resultant force in the axial direction, hence

Ag o5 +Asa_czASE = 0

where A and A, are the area fractions of the core and case respective-
ly. Substituting equation (A45) for O, “@5€and the appropriate rela-
tions for A and A, results in the following expression for the axial
stress in the core:

CORE - CASE
% =— buaa ) o
” (A54)
CORE _¢_b"-o E
o, '( 02 )( l_va_)(‘z +V€1)

Equation (A53-54)) along with equations (A45), (A49), and
(A52) determine the entire residual stress distribution existing in
the as=fabricated and machined composite tensile specimen. A numeri-
cal evaluation of these stresses is dependent only upon the pertinent
geometric and elastic properties of the composite, the dimensions of
the composite, and the measured surface strains from the drilling-out
operation,
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APPENDIX IV

ELASTICITY SOLUTION OF AN ''N'-RING COMPOSITE

CYLINDER UNDER THERMAL LOADING

The solution to this problem will be achieved in a manner
similar to that of Appendix || which treated the same problem for
axial loading. Much of the formalism is the same with the following
exceptions .

1. The stress-strain relations must include a
thermal strain term

2. The axial strain is no longer a known quantity
but instead becomes an additional unknown

The same assumptions as those stated in Appendix 1| apply
for this problem.

Hooke's 1aw upon the inclusion of thermal strains becomes

€ = v +E” i Sij(-JELB —aT) (A55)

or expressing stresses in terms of strains

E

TN % Ter (gﬁ-%jaT)+§j vK (e; -3aT) (A56)
where E
K= . = .
(v ti-2y) ND Gi® € tete,

In the expanded engineering notation equation (A56) becomes

o, = KEtr(l-v)-rvet + ve, - (1+4y) aT ]

a't KEct(I—vH ver-!- vcz—(l+v)cT:|

(A57)
o, = Kl:ez(l-vhvcr-t- w,-—(l-w)aT:l
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where @ is the thermal expansion coefficient and T is the temper=
ature above or below some arbitrary reference temperature.

Replacing €, and €4 by their definition in terms of the
radial displacment u (equation (A23) )} results in

o = KE(I-v)d—u-i-v-"-'— +ve. —(l+v)aT]
r dr r 4

oy =KCv $& + (1-3 )4 +ve, —(14v) aT] (A58)

o, =KC» g—:’+ v % + (I-v)e, —(l1+¥}aT |

substitution of equation (A58) into the equilibrium equation of the
composite cylinder (equation {(A22) ) yields the following differential
equation;
a2
¢ re

| du u
-+ — _—30 A
r dr re (A59)

which is identical to the controlling equilibrium equation (A26) for
the axial loading case., This result indicates that the difference

in the thermal and axial loading problems arises only after the appti-
cation of the boundary conditions. The solution to equation (A59) is

C»
U=C r+ —2— (A60)

Equation (A60) applies to all individual components of the
composite cylinder and in general it can be expressed as

C2

Ui=Cr+ — (R61)

where "' refers to the particular components graphically illustrated
in Figure 158, Solution of the problem agajn, as in the axjal case,
rests upon the determination of €)' and C,' which constitute 2N+2
unknowns for a composite with N rings in the case,

In this problem, however, one additional unknown, namely
the axial strain€_,, is present. Consequently, one boundary condi-

tion requirement must be added to the three presented in Appendix il
(all of which are still applicable). The additional requirement is



S R B R S

-268-

a result of the necessity for the equilibrium of forces in the axial
direction., Since upon thermal loading, the composite is not re=-
strained in the axialt direction, the resultant forces in the compo-
site acting on the cylinder ends must equal to zero. Mathematically
this can be expressed as follows:

{A62)

where ri_l is defined as zero.

The subsequent development will express al] the boundary
conditions in terms of the unknown constants Cy ' and €, . It

is apparent that 2N+3 equations must be found to so?ve these constants,

First, it is necessary to express equation (A58) and (A23)
in terms of these constants

or =KLC - Cz (1-2v)+ve-(1+¥v)aT ]
oy =KEC|+T.—,_Z—(|—ZV)+VGZ—(I+V}GT3 (A63)

o, =KEC|-2v+(I-v) e —{l1+v)aT]

Cz Cz
s + = - —_—
C '-15- 'r Cl oy

From equation (A6+) it can be seen that o, is not a function
of composite radius within each particular component, Hence, the
intergration of equation (A62) can be replaced as follows:

2_ 2
(——7——)¢q 0 (Aét)
=0 N

Substntutnu;ab of equation (A63) into {(Ab4) for each component re-
sults in

T TR B TR
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2_.2
i =ri-|

N
i=0

KiEZv C'I + (1~ )ez—llﬂ'i)ﬂiTj =0 (A65)

This equation represents one of the 2N+3 equations necessary for the
solution of the problem. It is the only one which is different from
the development of Appendix |1 for axial loading.

Applying boundary requirement number one of Appendix |I
(which states that the radial displacements have to be continuous
at the interfaces) results in a set of N equations identical to
equation (A29),

[ i+l

C[i.ri + Cra =z C:*l n +—Cg-— for i=0,l,.......... N=| (466)
( "i

Application of the second requirement that the radial
stresses bhe continuous at the components interfaces specifies

o.li_ = a.:_"'l at r. for i=0,1,....N
. . N+l . . .
where (as in Appendix 1) Oy is equal to zero. Substitution of

Or of equation (A63) into this relation for each component results
in the following set of N+l equations:

. .| . i I
K; Cl| -Ki.|.|Cl|+ - Jrz-l:Ki(l—Zvi )CIZ-KM (I+2vi+|)Cl; 3
i

(A67)
~ & CKiyvpep =K 93 = TOKj @) lryy) —

Kit] @i+ (I+vi+|)j for i=0,1,.....N
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Application of requirement three of finite displacements
results in the same equation as (A34),

-2
C =0 (A68)

Equations (A65-68) represent ZN+3 simultaneous equations
in the 2N+3 unknown constants Cy', ¢,' and € (for i=0,1,.....N).
Their simultaneous solution and back“substitution into equation (A63)
gives the entire stress and strain distribution in the composite
cylinder upon changing the temperature from some arbitrary reference
temperature to temperature T.

It is important to note that in general all the elastic and
physical constants of equations (A63) can be functions of temperature.
in such @ case, the appropriate function would simply reptace the
elastic or physical constant in equation (A63) and in all the boun-
dary condition equations.

To obtain a numerical solution to the above problem for
the case of constant elastic and physical properties, the method
of Gaussian elimination is applied to the 2N+3 simultaneous equations.
Again for computational convenience, as in Appendix ||, the following
bookkeeping changes are made:

|
Ci =Cois

i
C2 = Coi42 (69)
%, = Coi43

Substitution of equation (A69) into the boundary condition
equations of (A65-68) results in a system of equations similar to
that presented in equation (A35) of Appendix Il. Solution is achieved
in a manner identical to that of Appendix Il. Table 10 represent the
matrices CAJ and [B_} for the temperature loading problem for a compo=-
site of 4 rings in the case material. MNote that matrix (AT now has
dimensions of 2N+3 by 2N+3 and matrixCB_]is a column matrix with
2N+3 entries,

Close examination of Tables § and 10 shows that if T=0 and
€ is a known constant, the column a,, 2N+3 becomes the matrix [B]]
and Tables 9 and 10 coincide, !
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APPENDIX V

THE TEMPERATURE VARIATION OF MECHANICAL AND PHYSICAL

PROPERTIES USED IN THE PLASTICITY ANALYSIS

OF THERMAL LOADING

in the temperature range of the thermal loading analysis,
there is an appreciable variation of mechanical and physical proper-
ties. These variations were included in the analytical predictions
of the induced residual stress state during the cooling of composite
cylinders.

During the thermal lcading process the strains induced were
high enough to cause plastic flow in the copper core, but not high
enough to cause yielding in either of the case components used in
the present study. The property changes necessary to describe the
behavior of the 4340 and maraging steels were therefore limited to
specifying the temperature variations in E,y, and @ . The copper,
on the other hand, needed specification of these properties as well
as the change of the entire stress=strain curve with temperature,.

All property data as a function of temperature were obtained
from the available literature. Examination of the available data
revealed that it was possible, without introducing appreciable error,
to approximate all properties to be linear functions of temperature.
Hence the elastic modulus, for instance, can be represented by the
following relation:

E =ERT +CE (T—TRTI

where E represents the modulus at a given temperature T, Epy represents
the room temperature modulus, Cp the rate of change of the modulus with
temperature, and Tpr the room temperature., Similar relations were
assumed to hold for v and @

All room temperature properties were experimentally deter-
mined in this study, The rate of change of these properties were
taken from the available literature and they are presented in Table |
for the base components utilized in this study.

Characterization of the plastically behaving copper core
properties with temperature is more difficult, For all thermal load=-
ing problems the room temperature stress-strain curve is approximated
by three linear regions as shown in Figure 10,
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Characterization of the temperature variation of this curve
was based on experimental data presented in References [55_] and (561
It is accomplished by approximating the strain limits of each region
and the slopes of each region as linear functions of temperature,
The slope of the first region is the elastic modulus and its varia-
tion has already been specified in Table 1. The strain limit of the
first relation represents the elastic strain limit. |ts variation
with temperature along with those of the slopes of the other regions
is presented in Table 11. The resulting stress-strain curve for
various temperatures is presented in Figure 10.
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TABLE 11

PROPERTY CHANGES WITH TEMPERATIRE
FOR OFHC COPPER

Material

Linear Rate Of Linear Rate Linear Rate of
Change of Elastic of Change of Change of
Strain Limit Stope By with Slope B8, with
with Temperature Temperature
Temperature

OFHC
Copper

-2.0x10~7 . -3.125x$03 -3.51x10°_
infin/ F psi/°F psi/ F
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APPENDIX VI

RESIDUAL STRESS CHANGES DURING MACHINING

During the fabrication of a composite cylinder residual
stresses are induced during cooling as result of the difference in
thermal expansion coefficients between the case and the core compo-
nents, These residual stresses can be calculated by the approximate
analytical method described in Section Il1. The calculation of the
stresses [s based on the radius r=b of Figure |59 which is 0.010"
greater than the final test section diameter f., Removal of the mate-
rial from radius b to f results in a change of the original stress
distribution. The objective of this section is development of re-
lations with which to determine the stresses removed during the
machining operation, The calculation of these stresses will be based
on knowledge of the residual stress distribution existing in the
composite prior to machining.

Removal of the external layer by machining relieves the
axial stress in the case. The stress change must be redistributed
over the remaining composite. The residual stresses relieved by the
machining action are therefore equivalent to the stresses induced
kf thg remaining compoijte would be subjected to an axial force of

:f Oz tdr , where o, is the axial stress initially present in the
case at r=f. o, is known from the temperature loading analysis.

Machining also relieves the radial tension at r=f, designa=
ted as Oy . The residual stresses removed by this machining action
are equivalent to the stresses induced in the remaining composite
under an external pressure of a‘f .

All the stresses relieved in the composite during machining
can therefore be found by solving the composite cylinder problem (with
the outside radius equal to f) for the case of an imposed axial force
of F Tb O’; rdr and external pressure of Of at r=f.

f

Solution to this problem is similar to that developed for
axial loading of a composite with N+] components in Appendix Ii. In
this situation, there are only two components, the core with r=a
and case with r=f (see Figure153). All initial assumptions are iden-
tical. The governing differential equation (A26) is the same and
hence the solution in terms of the radial displacement is the same,
1I.e.,

Uj = € r + —2— (A70)
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The boundary conditions are not identical. For the pre-
sent problem they are given by

a. U <oo
b. U° = Ul at r=a
C.O’ro.a'ri at r=3
(A1)
d.o, = cr: at ra=f

a f b
e. foag rdr +_£°]lz rdr=—£o'; rdr

The first three of these are the same as those in Appendix (!, The
last two, however, are governed by the new conditions of an effec-
tive external pressure and axial force.

) The equations relating the stresses to the constants Cl'
and Cy' are given by equation (A32). Substitution of these equa-
tions into the above conditions permits the expression of the bound-
ary conditions in terms of the unknown constants. Boundary condi-
tion (a) requires

0

€= 0 (A72)

Boundary condition (b) results in the following equation:

|
% = clo+ ~2— (A73)
application of condition (c) requires
|
0 I Cs
KoL Cl+vge, A=K L C -(l-zu,)?u+yl e, ]
or (A74)

| K
KoCl—K) Ci 4 (1-2%) == C) +e5(Ko %= K, ¥} =0
a
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Condition (d) requires that

O"I. = a': at r=f
Hence Cl
I 2 _ &
K'Ecl—(l-av”—fz—-i-vl ‘z]-a'r
and *

| 1-2¥ | _ o,
CI - (-—f—E—I—)Cz-rvl € = —Rtl——

(A75)

Condition (e) can be simplified by the fact that the axial stresses
in the core and case upon thermal loading are not a function of
radius. Hence condtion (e) becomes

o-‘z’ a2 + o-z' (f2-c|2) =—cr; (b2- £2)

and substitution of o, from equation (A32) results in the following
expression:

Ko 02 E2Vo Cf+ (|"‘Vo)€z] + KI ( f2- 02) E2v| Cl| +(|-V| )Gz 3

s — cr:(bz- f2)

or

2Ky a2 voC?-r 2K|(f2— 02.) Y| C'|+ e, |:Kc'u2 (1=y,) —

K, (2= -y T = = at(bo= %)
(A76)
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Equations (A72-76) represent five equationswith five
unknowns (', C;',€, for i=0,1). Solution of these equations
can now be obtained by the Gaussian elimination method described
in Appendix |l. Making the following notation changes

1% Coisl
C

O
"

2i+2

2" Cais+3
allows the matricesCA_Jand [B_], defined in Appendix Il, to be
determined. Note that, as in the case of thermal loading in
Appendix 1V, the matrix [AZ] includes the coefficients of the axial

strain terme&y because jt is also an unknown. The matrices [AZ]
and [B] are presented in Table 2.

Upon solution of all constants, the stresses and strains
relieved in the case and core during machining can be calculated
by substituting the calculated constants into equation (A32)} of
Appendix I1I.

i
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APPENDIX Vi1

COMPUTATION OF SURFACE TANGENTIAL STRESSES

The computation of the surface tangential stresses from the
measured values of €, and €y for the double-concentric model composites
requires the consideration of plastic deformations as well as elastic
since the composites were strained until all components deformed plas=-
tically. Since the strains were measured on the case component, this
analysis applied oniy to that component.

The analytical procedure reviewed here utilizes the method
of successive elastic solutions as described in detail by Mendelson[ 3_.
The form of the stress~strain equations includes plastic strain contri=
butions:

e, =+ Lo

2 F L —v (o, + aé):]i-ez +Aef

€ = —é— Ecrr- v o, + 0'8 )] +e':+ Aef

(A77)

€= —é—-[cre-— v(az+ o, ):l+eap'+ A‘g

where sp ,ep , and ep e total plastig strains up to a current

> €z, - €r on TEACD . :
loading increment, and Zlez .Z}er , and Ae" are the plastic strain
increments due to the current increment ofBIoading.

These plastic strain increments are related to the stresses
through the Prandtl~-Reuss relations

Ae

Aezp= — (203~ oy - o
2T 9) (A78)
De

Aeg=-5€_.9- (2(:!'8 -o, - o,)
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where
Vs 1’2
Bep= B LAE-ALRAP- AR - AEPT (479)
and
_ | C 2 2 2 _I2
C (a'z—ar)-t(a'r-a'e)-l' (cre—crz) J (A80)
Rewriting equations (A77) in terms of stresses,
=\ —eP-Ae?
o = (cr+¢e+¢z)+ 2uleg—¢; €;) (A81)
- _P_A_P
o= X\ ((r-u'a-l» €, )+2u (¢, — ey -Aey) (A82)
9 =Ale +¢9+¢ +2n(e ee—Acp) (A83)
where
vE
A= (I+v) (1-2v )
= E
B T 20w

The surface radial stress must be zero, which allows the evaluation
of the unmeasured surface radial strain in terms of the two measured
strains and its plastic contribution,

M_fa+ c,)

€ =2p(e?+ Acf)ﬂ Y 120 (A8L)

Now, provided that the values of the plastic strains are
known, the surface stresses 0, and 0y may be computed from equations
(A81) and (A83), If the surface stresSes are below the yield point,
the values of the plastic strains are zero and the stresses are com=
puted directly. If, however, the effective stress & is above the
yield stress then the iteration method of successive elastic solutions
is used. this meﬁgod values of the incremental plastic strains
(l}e Z}e and A¢! ) are assumed for the first iteration. The
stresses aﬁL computed from equations (A81) - (A83), andAe, Is
determined from equation (A79). A vatue of & is determined from
the stress-strain curve; a new set of incremental plastic strains

T
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may be determined from equations A78, © These new values of |ncremental
strains allow the above computational procedure to be foliowed once

again, with the resulting stresses and strains closer to the correct
value,

This process is continued until convergence is obtained;
i.e., until two successive sets of strain increments are less than
some prescribed value.

A computer program was prepared to conduct the reguired
calculations described above. Values of surface strains, €z and
€4 were determined experimentally at various axjial loads, and the
cgrresponding surface stresses computed for each increment. The
plastic strain-hardening curves were evaluated as fifth order poly~
nominals which permitted the accurate determination of the effective
stress from the effective strains. Tie iteration process was termi=-
nated when successive strain increments were within a value 10~9 in/in.
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13. ABSTRACT _ ‘
loaded along its axis was compared analytically to a corresponding hexagonal fiber

composite element. The analytical comparison of the elastic behavior of the com-
posite elements provided justiffcation and identified limitations for the use of
the cylindrical approximation to the hexagonal geometry for the yielding and subse-
quent plastic deformation of the matrix component. The comparative elastic analysis
considered the micro~stress field and its effect on the composite modulus and yield-
ing behavior. Experimental data are given for the study of effects in pro-

totype (50 mil tungsten wires in copper matrix) fiber composites. Composites of
both 7 and 19 wires were assembled to represent loose and close packed conditions,
ith precut discontinuous tungsten wires being included in different numbers and

geometric configurations.
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