ERRATA PAGE
0
AFFDL-TR-65~213, Part I

Statics and Stability of Thin-Walled Elastic Beams
Part I, Formulation of Fundamentael Equations

AF Flight Dynamics Laboratory
Research end Technology Division

Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Cover Pare and Title Page. Strike out the statement "Distribution
of this Document is Unlimited",

Notices Paze, Add the statement "This document Is subject to special

“export controls end each transmittal to foreign governmants or foreign

nationals may be made only with prior epproval of AFFDI(FDIR), WPAFB,
Ohio 45433,

Forewords This technical report has been reviewed and is approved.

Chief, Theoretical lMechanics Branch
Structures Division

DR

Ja e
t T

[



STATICS AND STABILITY OF THIN-WALLED ELASTIC BEAMS
PART I. FORMULATION OF FUNDAMENTAL EQUATIONS

PROF. E. GIANGRECO
ING. M. CAPURSO
ING. M. COMO

INSTITUTE OF STRUCTURAL ENGINEERING
UNIVERSITY OF NAPLES
NAPLES, ITALY



FOREVORD

This report was prepared by the University of Naples, under
USAF Contract No. AF 61(052)-813. The contract was initiated under
Project No. 1467, Tesk No. 146703; BPRSN L( 6899-61430014~0000-6C0-FD).
The work was administered under the direction of the Air Force Flight
Dynzmics Laboratory, Hesearch and Technology Division, Mr. Adel Abdessalam
and later Mr. Royce G. Forman acting as project engineers.

This report covers work conducted from February 1965 to June 1965.

The work was performed by the Institute of Sitructural Engineering,
University of Naples, haples, Italy.

This technical report has been reviewed and is approved.

il LT - TR It ztg,..,_.,1m\.w
’ " ii N (4



STATICS AND STABILITY OF THIN WALLED ELASTIC BEAMS

ABSTRACT

Formulation of fundamental equations of elastic equilibrium of thin
walled beams subject to general loads and dislocations starting only
from the hypothesis of non deformed transverse cross sections.
Formulation of the fundamental equations of dynamic stability of thin
walled beams subject to general conservative loads and dislocations

by use of a systematic geometrical approach.
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1) STATICS

1,1) Introduction

The theory of elastic equilibrium of a cylinder subject to
loads applied at the bases and represented by a general system of
balanced forces, has been accurately and completely developed by St.
Venant [1] [2] with the traditional hypotheses of omogeneity, isotropy
and linear elasticity,

This study represents the background of the 30 called "technical
theory of the beams’ which applies with approximation the results obtained
by St, Venant to all the real cases concerning the elastic equilibrium
of cylinders subject to any type of loads and constraints,

Such application i3 founded in a classic postulate carrying
St. Venant's name and is synthetically expressed by the following
principle: "If a system of balanced forces acts on a limited area S'
of the surface 8 of a body, 1ts effects damp out as they leave 5' and
actually disappear at distance ? depending upon the shape and the size
of S,

Such postulate permits to determine stresses and displacements
having knowledge only of six classic stress characteristics connected
with the constraints and loads applied to the body, the areas close to
constraints or concentrated loads excluded.

However, some conditions are indispensable; of which the most
important are:

1) the cross section dimensions must be comparable;
2) the body's length must be much greater than the above mentioned
cross dimensions.

It is the classic case of sclid section beams for which the
technical theory has a good correspondence with reality,

The same thing does not apply to thin walled beams, In fact,
such structures are characterized by three dimensions, anyone of which
is negligible if compared to the next one:

a) thickness of the wall
b) average dimension of the cross section
¢) length
For this type of structures, which are always more widely used

by technical practice, it has been necessary to generslize the results



obtained by St. Venant, specifically as far as torsional stresses are
concerned; s new theory has been expressed justifying, with approxi-
mation, the discrepancies between technical theory and test controls,

This new theory, known as "the theory of sectorial areas',
developed by Vlasov[p] El] and Timoshenko [5J [6] for beams of open
cross section, has been later generalized by Karman—-Christensen [7]
for beams of general cross section.

Vliasov [a] [4], Wagner [8], Kappus [9]. Goodier [10], etc.
applied this theory to the problem of elastic equilibrium stability
and their results have been confirmed by test controls,

Nevertheless, as it has heen noticed by Karman-Wei-Zang-
Chien Dl] , the sectorial area theory is only the first term of a
repetition procedure the validity of which is in certain cases doubtful,

Such theory, in fact, basically conaists in dividing the
shear flow produced by the twisting moment into two parts: the primary
shear flow typical of St. Venant's theory, and the secondary shear
flow associated with the normal stresses caused by the non-uniform
warping of cross sections due to the primary flow.

In fact, the sectorial areas theory relapses into the classic
solution of St, Venant when warping is constant in the length of the
beam. However, this theory neglects the warping caused by the secondary
shear flow which sometimes can be more conspicuous than the primary one,
and, consequently, fundamentally changes the static condition; further-
more, sald theory, even improving considerably the correctness of cal-
culation of stresses and deformations inside the body, cannot be applied
in the aress which are close to constraints or concentrated loads,

As a conclusion, we can say that the "sectorial areas theory"
is for the thin walled beams what the "technical theory” is for the
solid section beams; in other words, the limitations of both can be
considered identical,

Therefore, in this Note we want to re-examine from the origin
the problem of elastic equilibrium of thin walled beams subject to very
general loads and dislocations, making use of a very general method,

In fact, the correct solution of the problems permits to
eliminate the limitations related to St. Venant's postulate and to

determine exactly some problems of considerable interest for the theory
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as well as for the practice, as:

1) the calculation of stresses in the areas close to concentrated
loads and external constraints;

2) the calculation of stresses associated with general loads acting
on the surface of the beam;

3) the calculation of stresses associated with general dislocation,
of general interest for the study of thermic or plastic actions,

In the first part of this study the problem of elastic equi-
librium of thin walled beams will be considered from a general viewpoint
and basic equations and boundary conditions will be furnished; then,
above mentioned problems will be studied and solved,

1,2) The basic hypothesis

The basic hypothesis on which we found our study 1is the
hypothesis of a transversally indeformable cross section. Such hypo-
thesis which appears also in the theory of sectorial areas and in
Karman's study, is generally acceptable for the thin walled beams
bacpuse of shear diaphrams used for structures of this type with
the purpose of avoiding the buckling of the wall,

Such diaphrams are usually realized by means of thin plates
welded to the wall, in order to avold deformations of the cross section,

Nevertheless, being such plates very thin, we can imagine
them having no resistance to warping outside their plane, and, conse-
quently, leaving the beam cross section free to warp.

Therefore, in this study we will consider the profile as
uniformly stiffened along its whole length, that is, we will consider
every section as keeping unchanged its shape during the displacement

associated with general loads conditions.

1,3) Kinematic relations

With reference to the profile shown in fig. 1, having a constant
thickness t and a general cross section, we denote G the centroid and

0 the shear center of the cross section,



Fig. 1

We refer the points of the surface to the orthogonal right-hand
tern Gxyz, of which axes x and y coincide with the principal inertia
axes of the cross section and axis z 1s perpendicular and passes through
the centroid G. Furthermore, we refer the beam surface to the two groups
of orthogonal lines formed by directrices and generatrices of the cylin~
drical surfsce, choosing n normal to the surface in a point P(s,z), and
s and T such that the directions tern (ﬁ, ;, z) is right and can be super-
imposed on fixed tern Gxyz with a rigid motion,

Being !? the displacement of point P, we denote:

u=u(xy 2z,
vav (xyz), (,1)

v=wi(xyz),

the components of such displacement on the axes of fixed tern xyz, and
we denote:



- t(n. 8, %),
=1 (n, s 2, 1,2
5=195 ,s, 2),

the components of such displacement on ns E. From well known relations

we know that:

;-ua'ru'f'rﬂ’,n'f'rdnn

= U ANes + rd" 4+ WXas a,3)

C s, + Vd,l‘f'"ra’-t

being ﬂﬂj the direction cosine of the straight line i with the axts

J, and since in our case:

d,.-“f’.-d_‘%‘ y “’ﬂ-—%--—f 2 a’..- .{

{1,4)
A.’l’d‘dcsld’;;ad.’;- [,
being:
x =x (s) and y =y (s8) (Q1,5)
the cartesian coordinates of the points of the surface, the equation
(1,3) will become:
‘-uﬂ—r__t
o w dX rﬂ
ds (1,6)
Suw
The basic hypothesis permits to determine the displacement
in the plane x y of every point of the cross section with only three
parameters only depending upon abacissa z. In fact, denoting:
Uy = u, (2)
Vo = Vg (z) a,7)

‘f. . 'f. (2)

the displacement components on x and y of the shear center 0 and the
section rotation around the shear center, the first two equations (1,1)

can be written as follows:



&(ry.5)= k.(;’)— 9([&"/({— 7/

1,8)

Y9, 2= 1 () A e — 1)

where (x., ¥o) are the coordinates of the shear center 0 (tig. 2).

Therefore, using equations (1,6), we have:

g-u. ._r;dx cf[?_y_ .;(x-)’.)o(x’]

(1,9),

1= u.dx+r; +Cﬁ[(x_x. _ (4 der]

Fig. 2

We observe that the quantities:
dx
yo) E'; 1

¥o) gg

r=(x—x°)g‘!-(y
(1,10)

v
H
%
M
A
|
+
e
1

are the components on the axes s and n of vector R = 55, therefore

equations (1,2) can be finally expressed as follows:

f-u.ﬁ'#._r.dl_cf.r_,
| A g,dl+n -J-"- (1,11)
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Consequently, the motion of every point of the beam is expressed

by the following four functions:

v, =u, (z2) ,

Vo = Vo (2)

Lo =Auz) , a.12)
w =w (n,s,z) ,

and the latter can be considered, with a good approximation, independent
of n, in consideration of the smallness of thickness t, and can be
written:
vaw(s,z) . (1,13)

1,4) Elasticity relations

If we neglect the normal stress 3, , we can express as follows
the relations between the stresses components and the unit strains in

the thin wall surface:
") ¢
qu-;ff;;(ﬁlb wvas)

N . (1,14)
G- L. (alsr8l)

a:..f(%;/.i

In a more general case the strain components will be expressed

by the following relations:
L4 »
‘l’.'.-'f &

“ -r “‘-/- E.:’

e = Jon .,/.f

where &' is the elastic strain and Er the strain due to a general

(1,15)

dislocation system, as a thermic, plastic system etc,

So equations (1,14) can be written:

’
G‘}.—-Z:..f.: (f.-} J";/—L.{—; /"’* V&g /

Cs m 7r€;;4(2}1‘"JEVL-?Jéﬁ'(Gﬁf;*"éﬂgzj
(1,18)

z;s-’_L—. _.._{—-— Y
J?“feffr" .J?Z»eV‘rG’



Furthermore, the basic hypothesis permits to reduce the
unknowns; in fact, since we must have:
_ 8,=0 (1,17
for the cross indeformability of the section, the normal stress ¢5;.can
be expressed:

Gom>yOu_ sl (1,18)

while the shearing strain /.’. can be expressed as follows:

AP Y W N W (1,19)
Joom ot Gt %
where &} . % , and 2% are general functions of z.

The basic unknowns, expressed as special stress components,

can be reduced to the following two functions:

-t P
Oz s (€, - &%) 200
R s B e
where:
-
Er &+ vas" Q,21)
Taking into account the classic relations:
o RS it - a,m
equations (1,20) can be written ag follows for (1,6):
-#
e a‘?"' "/
1,23)

T e # (- A (G- (P-4 )

and they express the general elasticity relations of thin walled beams.

Equations (1,23) represent the values of normal stresses Og
and shear stresses 27,4 corresponding to the middle fiber of the wall
forming the profile,

In reality such stresses vary along thickness t of the wall,
but actually they can be considered constant because of the thickness
smallness, However, if the profile has open cross section, it is neces-
sary to consider, together with the stresses (1,23), the shearing stres-
ses linearly variable along the thickness and vanishing in correspondence
with the middle fiber associated with the twist of the wall caused by

external torgue.



Such stresses, classic of St. Venant's study, can be expressed,

with good approximation, as follows:
?...-Qeﬁ(d.di-_ &%) (1,24)
F 4

being n the distance between the fiber and the middle surface; in fact,
sald stresses are the only ones which develop for a constant twist of
the beam and, consequently, allow the beam to balance the external
torgue.

| In fact, as a result of (1,24) we obtain a twisting moment

iz’ having the well known expression:
Meam T@/ag//_%_ z)",r,/ (1,25)
z

being ~7’ the torsional rigidity which, in case of open sections of

constant thickness t , is written:

k
I’ ”‘_f- (1,26)
3

where m is the length of the middle line, and in the case of cross section

congisting of several portions of different thickness ty, is:
5

~
J- '_.z'm,-é:'_ (1,27

If the profile has a close section (box or multicell beam}),
stresses (1,24) are no more necessary to give torsional rigidity to the
beam, In fact, also in case of constant twist, the external moment is
almost completely absorbed by a flow of shear stresses constant along
the thickness; and, compared with such stresses, the contribution given
by equations (1,24) is quite unimportant.

Therefore, in these cases, stresses (1,23) aré sufficlent to
balance any external action and, consequently, are the only stresses

which are considered acting on the wall,

1,5) Equilibrium equations

With reference to the wall element ds dz inside point P(s,z)
of the middle surface, the equilibrium equations to be imposed coincide
with the three equilibrium conditions relative to the displacement along
axes E, ;, z. The first two, concerning the equilibrium along normal n

and tangent 5, become unessential because of the hypothesis on the inde-

9



formability of cross section of the beam. 1In fact, in such directions
the equilibrium is guaranteed by the mutual actions of the stiffeners
on the wall which can be s0 calculated,

Theretfore, 1f we denote p,, Ex' By' Ez {(fig. 3) ,respectively,
the load acting in the direction of axis z on the wall element ds dz;
the loads acting in the direction of axes x and y and the twisting
moment on an element of the beam having length dz,; the equilibrium

equations are written:

OTa , e O
;’;E‘ v oS 1~";?5' =

o7y | =
—r oy = O (1,28)
o'z arard

e am L O

o=

Fig. 3

being Tx' Ty’ N, the resultants of internal stresses 2'gxg in the

direction of axes x and y and the resultant moment in regards of shear
centers 0,
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These latters can, therefore, be expressed as follows:

7 - /:—,. xolh
/ os

7y - . o/,
7 ‘/?"7' ;f“/” (1,29

//r-/aiuz’a//,‘ /Z

being iz the internal moment expressed by equation (1,25) and associated
to stresses Zxa which will bhe taken into account only in the case of
open sections,

The last equation (1,29) can have the same form for open
sections as well as for box or multicell sections, by introducing a
warping function associated with constant twist,

Such function, which we denote C&lgy , represents the axial
warping function w(s) of the points of the wall middle line when subject
to a constant torgque having unitary negative gradient # .

In the case of open section heams, such functigg 1s obtained
by observing that, since, in accordance with St. Venant's solution,

Zme equals O in correspondence with the middle line, the second
equation (1,23), having:

WX 5w Cy (S/
/e
;g-—-{_, lomte =B 2 m e O (1,30

glves:

ey _ yr O
o (1,31)

On the contrary, in the case of close or multicell sections
(fig. 4), such function can be obtained by considering that, since %5, -
colncides with the flow of stresses resulting from known solution of

Bredt-St, Venant:
Zuam T2 Q,32)
11



being £ the flow constant (*), the second equation (1,23), in conside-
ration of (1,30) and (1,32), gives:

alctty (1,33)
FE-erF=0

Flg. 4

(*) Wo must remember that flow constants f, for every element of multicell
section, can be obtalned with the partial flow fi and fk relative to

meshes i and k having such elements in common. The partial flow constants
2, can finally be obtained from monodromic condition of X" and, con-
sequently, of cf’y which imposes for every circuit the following relation:

fra’s -/;f /s = O (,33"

from which, denoting J:a'the area enclosed by circuit i, we obtain:
PRie footy p =
;- .'a’.'-,d-‘_,Jf.a’,-,sO Qa,34)

where CX? represents the geometric circuitation:

o m A
relative to the whole cir;u:: 1 and tﬂ?ﬂ- represents the partial geome-
trical circuitation of the element in common to meshes i and k. Eqs, (1,34)
represent a system which 1s linear for unknowns fi and of simple solu-

tion. In view of the abhove 1t 1is easy to obtain constants £,

12



Therefore, from equations {1,31) and (1,33), with a simple
quadrature procedure, we can obtain, neglecting an arbitrary constant,
the expression of function €ty . In general the constant is elimi-

nated with the auxiliary condition:
/:d, oA - O (1,35)
A

Thus, equations (1,29) can be written as follows:

/243’ las dﬂh? /l' @E{]"ay@z:
a_/.;_fa/ —+ é_;___.’ﬂ,/ (1,36)

)

for open sections, and:

1,37

//;= oy a/ce'); a//-,t ,..__. a//

4 %
for close or multicell sections,

Denoting /¢ the number of close meshes of cross section, from

equations (1,23) we have:

Je it [ £ - ) e

- W/- zy/lz,s-f-— s
(gl )

taking into account the relations:

j vols = SR

[j{a/s’ a/xd/s -/—z"/s- J (1,39
equation (1,38) gives:
jz.;fd/- EEAL, /-/c/ . Y



and, imtroducing the notation:
»
J = P =S S (1,41

eguation (1,37) can be written as follows:

y A z;.;_ﬁﬁra//.; ffé;_;_%_. &Q./

4
and it appears identical to the equation already obtained for open

sections and expressed by (1,36).
Therefore, without considering the type of beam cross section,

equations (1,29) can be written as follows:

zrﬁ;/4;3..£féfdv9/
A ‘ves

3;;= 81u;j§?k%’44'

/4 (1,42)

/z: s Stk o pf(/_-f_l_ 22 /

resulting connected to the cross section geometry by the three basic
functions:
x =x (8) y=y (s Ly = CLIy(8)
For these functions, we must remember that, since we chose
axes X and y as main inertia axes and the center or rotation 0 as shear

center of the section, we will always have the basic relations:

XfJ/: ,ra)‘a//{- /c(J‘a///s o (1,43)

In fact, we can obtain the coordinates x_and Yo of center of

o
rotation O by imposing the last two equations (1,43), or by using

Jouravsky's procedure for close or cellular sections [13] .

14



1,8) Basic equations of elastic equilibrium of thin walled beam having

continuous directrix and constant thickness

We can now obtain the basic equations of elastic equilibrium of
thin walled beamsa, by changing the indefinite equilibrium equations (1,28)
into terms of displacement. For the moment, since we consider the body
free in the space and subject to a system of balanced forces, we know
the three transversal characteristics Tx (z), Ty (z), Hz (z), and we
can simplify equations (1,28) as follows:

e, Jy.
IF T o =0

Ja-..:f.tcll. 7

.{c‘" .//- 7.)" (1,44)
et STt )

The first of these equations expresses the equilibrium in the
direction z, and the three other ones express the ldentity between the
resultants of internal shear stresses and the corresponding stress
characteristics,; such equations can be expressed for the displacement
parameters (1,12), taking into account the elasticity relations (1,23);
in fact, we have:

a e P

7S e St e S S s Sl - W
Z aos Z Ve

+—Lf.!.;+;§n/}+”.‘/’ o
os * /‘7?'.'-%4‘.‘;.

-9 O

o s, ol V5 4 ofly & I s 2/
Tt NS g e ol 2T

A

R ik, alysh,

o Ny, oy o, offs o
wr T ":?*ﬁ‘*"ff’””"‘éﬁ”%

* a"&g"‘a/";}v‘ ‘/cnﬂ.
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after introducing the notations:

ow ffols JoIA | ods w0lrm [

'/‘/é,f/‘//.- ol = ot 42;4"%{.//J

Loy oo [/alY o .
(i), lune [Sr M s T

s = ol -/d%!f“;t/{fi/? a///_, (**) (1,46)
oo ex/%, yodo /g sha o/d .

Therefore, equations (1,45) are the requested elastic equilibrium
equations of thin walled beams subject to loads and dislocations., Such

system can be simplified by drawing from last three equations the functions

5./!.' ,%’.’r . # in function of the stress characteristics Tg, Ty,
F 3 | 4 =~

lz and axial displacement )0’: For this purpose, denoting D the determi-

nant of symmetrical matrix coefficient:

Jn Ju Ju
‘61 ﬂ’;c ‘l;‘
.Ll ‘IOI "l‘

and denoting D1k the complementary matrix of element dik' we obtain from

(1,47)

last three equations of system (1,45) the following relations:

o/l
i sl e e e
+ s 7.}'- - % //x/
.
gf-—bi,[’{/p"‘%,* p"'i/“# ’ Du‘%/sﬁ’lje//.,e ?f(/ ptr)/zy;(},qs)
+ H 5"" 'Dc- /ch

{*#) The last two equations (1,4) are directly verified for open sections

with equation (1,32) and for close or cellular sections with egquation (1,33)
and with the following relations:

[iafah- ‘/}.fﬁ;.//, o Loy

which ensue from the equilibrium condition in the x and y direction,
16



4 ""z{ﬁ-;’f/ 2agl v Do 8Y s Tu hots JalA 7 _ét-/-:__; 220 T 4

+ Zis 2;:1L JZ;, /9;//

If we operate in the second part of equations (1,48) the following

linear changes:

Xe)art /p,, ¥(5)+ Zag(s/)r Dacouls Jj/

(**%) (1,49)

vy?GEZ=}£F JZL,JQﬁi/Q#-ZZ. (55/1‘ 25‘;‘29563L5f,

Rule)= £ /2. 15/t Dia g5/ Duacon (s)f
(***) Equations (1,49) require the following inversed relations to be true:
X My A5y ooy Y alin la(s)
“’zﬁg/=rlvgllr?ngﬁJ‘4iJr2sB}1‘"‘lﬁ&i{ﬁs}

carle) o slhs Y/s) s ol Y5 ) 8us 2ol

furthermore, it is easy to verify that the six functions:

(1,49)°'

oY oy olecra Y o/
ST SE . S

have the following properties:

f;;g.u-i, st lYold. O, ] 2ol old. O
f g o¥alho0 ‘[#g;v.m j oy dfrald=0

wyeldolf - 2 3, devnallold. 2o T Ja/w.JJ?.aM, I
Jis Jas S o T o
which can be controlled tnking into account the determinants properties

and the relation:

GJE” ¢D//’ -/}:“hﬂlsq{‘alff ‘a{.‘ _ :S‘

17



e:::ijgfl-zg x o~ Ze .f-‘zzu /;/4)(

%5;.-42;5 -23; 7# 72 2;:1* JZ%. /9’:)z’

ZZZ:}=jE§;(/f?2, 7;.1‘ Jzag'jg:,& EQL,t%?afF

we can simplify as follows:

%_.,_/ qu//a/j_} 4 22,
oS /s @
e// /x/‘ e Lx, 22
?‘* J (1,51)
S 2
oz ‘Js /s @

(1,50)

Therefore, the basic equation of thin walled beams 1s obtained

by substituting (1,51) in first egquation (1,45) and observing that for

equations (1,31) or (1,33) we always have:

Ao _ oy
Fet ofs

(1,52)

In consideration of the above and taking into account equations

(1,49) and (1,50), we obtain the following integral differential linear

£ Ok, Sh ofF /éafa//.// /6"";/&//*

- OF* " I3 S/s/Ps als

ek | e ol Ss 7
ds/s o’s oA /’g' ‘,‘ j# ”;_‘/aﬁf/-/- (1:3)

____F
/..-y o

which is of basic importance for the study of thin walled beams of

transversally indeformable section subject to general forces and dislo-

cations, In view of future applications, it is therefore advisable to

express the elasticity relations (1,23) by the displacement axial compo-

nent jlzﬁ;!5L This can be done simpliy by taking into account equations
18



(1,51); therefore we have:

Coem £ [0 ¥ [, w s/
Ttev) /O 9/‘94"‘ J”’/I 40’5‘-/__—;//

(1,54)

~r /.
Jé{-{{a//,‘ i Sy 2y V2 ofer

which are the final expressions of elasticity relations for thin walled
beams. Equation (1,53) must furnish solutions satisfying the boundary
conditions on the bases (z = 0 and z = 1) and the transversal conditions
depending upon the shape of the beam section described in following
paragraph.

1,7) Boundary conditjons connected with basic equation

We divide the boundary conditions into longitudinal conditions,
regarding the external bases z = 0 and z = 1, and transversal conditions.
In case of longitudinal conditions we notice that, if we con-
sider a body free and subject to a system of balanced forces, said con-
ditions will necessarily impose the equality, in every point, between
external actions f:,. and Srm acting respectively on bases
2z =0 and z = 1, and corresponding normal stresses 5;(0,‘) and 6;([, 9);

therefore, they are as follows:

E;;‘ﬁQ,Ei)::-—-/c”-l'

{1,55)

6;(‘!15)'-"' P(.I’

Equations (1,55) expressed with equations (1,54) for displacement give:

AT =*s)
/d: tro f— /a'-". '/

(1,56)
(32)e Lo s w2t

which represent the two necessary longitudinal conditions to be assoclated

with basic equation (1,53). We notice that on bases z = 0 and z =1

the ldentity in every point between external actions and internal stresses
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concerns only normal stresses and not shear stresses for which equations
(1,44) guarantee global identity referred to resulting actions {(forces

and moment) .

As far as the end bases are concerned, the difference in
every polnt between external actions P.. and internal stresses
Z ws 1s entirely absorbed by two existing stiffeners and, consequently,
does not cause any additional deformations or stresses not even in the
areas very close to the two bases,

Equations (1,56) are therefore the only longitudinal conditions
concerning the extreme bases.

A different procedure is required for transversal conditions,
since they depend upon the type of the cross section, Therefore, we
will consider them case by case in regards to the shape of the cross
section directrix.

a) Open sections having continuous directrix

We consider as continuous directrix a curve having functions
x(s), y{s) and co,(s) continuous up to the second derivatives; such
sections (fig. 5) cannot have more than two generatrices and we denote

S, and s, respectively their curvilinear abscissa.

{
| B

"’.

Fig. 5

I1f we denote Pl(z) and Pz(z) the tangential loads eventually

acting on such generatrices, and t the constant thickness of the wall,
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we can write the transversal conditions as follows:

Zee(5,,2)= - __75.:_/5./

(1,57)
224(5,,2)= /5(=/ )
zu
Taking into account equations (1,54) and denoting L{w} the
term:
Ll)m Ou_ X [Iur el bt _ o J/_'/,l oA,
Js e/S/ds os &% /s s
(1,58)

_ ¥ [l o/l
Aa’-s ofs

equations (1,57) can finally be written as follows:

Lo - B T ) - G () e o)

& X,

Sw S

- =) o
Ltz 25 Cafor) - Z%?‘Z: P o

b) Close sections having continuous directrix

In addition to what stated in paragraph a) above, concerning
the definition of continuous directrix, for these sections (fig. 6)
the transversal conditions will be expressed as continuity conditions
for functions x/‘(z; S/ and 2% 4 (Z; S) (being t constant) in the
limited field of curvilinear abscissa s, Such conditions, reflecting
the double aspect of geometrical compatibility and equilibrium, will

be expressed as follows:

‘fgfé?f}~45== o

e
.;¥;;:E_-CHGSJS'C7

which, because of equations (1,54) and the hypothesis of continuous

(1,57)b

coordinate functions, become:

I e On
Is_a/s__o 7(9‘_‘_;4/5.#0 (1,59)b
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Fig. 6

From equations (1,59) in the form a or b, in accordance with
the type of cross section associated with the longitudinal conditions

(1,56), we can obtain univocally the solution of basic equation (1,53).

1,8) Basic equation extended to thin walled beams having discontinuous

directrix and discontinuous constant thickness

In reality the thin walled beams are nearly always formed by
more than one element (fig. 7), everyone of which can be considered

as an elementary beam having continuous directrix and constant thickness,

9| [T

%

Fig. 7
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Denoting n the number of elements forming the beam and i
a goeneral element, the displacement parameters indicating the motion of

every point of the beam cross section will be the n + 3 functions:
“o(z/

Ve (z/

7=/

viEs) (=)

being v, (si, z) the axial displacement of point Py (31' z) of the

(1,12)°

element middle surface,
Then, denoting xy (Si)' ¥i (si),ag1 (s4), ry (si) the functions
typical of element i, and x, (s}, ¥4 (si),.jzzi (51) the varied expres-

sions:

X(s;)= LS Putee)p Pn ilsid v DixcveiCiry
h}{%fﬁ;;l=jzgf D X (54 JZ%ﬁ;7¢zﬁﬁa>¢* ;zzis¢9&4=icigfi}2’

(1,49)"

Lo 51 Bt (515 P il Pracres (sl

where Dy, are always the complementary matrices of elements dy, of

determinant (1,47) which, this time, we express as follows:

o m%/égéi A,

e '//;gﬁ///
4.:,:-%;//07‘%/5//,-,‘ J
s %{&gfa ¥,

a/,.-_-Z" “/"’ft‘,-a//~ (1,46)

“,
s
GP{}-rngf ‘quft$4ﬂ/;’;
X ds,'
2.
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the equations determining displacements Z&s , yﬁ ’ i?i , with expres--

sions (1,50) of forces Z; ’ Cj; ’ Z’Z; , become:

ol Z [ Mol p C% , 28
'z - 7= &

i = "’V_.[a///.,;g./. 2

7z o’s, s,

(1,51)"

_ el b, K 22
f st L= v/ A = Ler o

Therefore, n equations determining displacements w;will be

written as follows:

2 Juf, Qi Sk [ ol 5{
l-» Oz* 7"():-:-' st ";_o’s Vs, A~ a/s -, af.s. s

- ‘/éll'z al/‘d/.zfa//{ = __- L= C‘\: G/A‘:r‘
O/st:' ‘-; J.S( el ? z. dsl.' -/_
(1,53)'

~ t?yj ,2%?’ ¢b4564= & GJKEJ‘;
/075,{ o/s,* Ty Jz

s

where ti represents the constant thickness of element i; pzi (si) repregents
the axial load acting on said element for unit of surface; and ._‘_"f,'
represents the anelastic strain component acting on the same element.
Therefore n + 3 equations formed by (1,51)' and (1,53)' generally
solve the problem of elastic equilibrium of thin walled beams, provided
that its section has constant discontinuous thickness,
In order to solve said equations we must find the longitudinal

and transversal boundary conditions,
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The first ones express, as usual, the equilibrium condition:

6::'[540/:"— /"o‘l'
(1,55)°
gf(s‘;l/sﬁ“‘ Py

and, reduced in terms of displacement, give:

p’ﬁ = — 2= /7.:: + 6‘.,/

=0 (1,56)"'
/d‘f Ay j__‘_” ‘.-,;-,1-5",/5,, *//

while the transversal conditions will concern geometrical compatibility
gnd equilibrium conditions corresponding to every junction point of
several consecutive elements.

Denoting k the number of elements present in the junction

(fig. B), these latters will be written as follows:
a‘f{@ﬂa.¢34=‘lf;,[ciﬂar,.lr/}

Z I+ 2 ./s,, // ) .5

where ;1 is the curvilinear abscissa of the junction in relation with

alement i, and Pi {z) 1s'the eventual external tangential action acting

on the junction point itself,

Fig. 8

In the summation, the positive signs concern the elements

having curvilinear abscissa converging in the junction point, and the
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negative ones concern the remaining elements, Therefore, equations

(1,57)', written in terms ef displacement, give:

‘:‘(_;:-I/-' “E’( (‘;y(, ‘/

o z 2
S At S Cx A o
rwd [ 7 4/5' -+ /75"4

and is obvious the change, if the end of element 1 is free rather than

connected to other elements,

1,9) Conclusions

From the study performed it appears clear that the problem of
elastic equilibrium of thin walled beams, considered as cylinders having
transversally indeformable profile, is more complicated than what could
be expected following the beams technical theory or the more recent Vlasov's
theory of sectorial area.

In fact, the problem can strictly be expressed by an integro-dif-
ferential equation linear to the partial derivatives in unknown function
w (z, 8), which physically coincides with the axial component of points
displacement of middle fiber of the wall,

Such equation is not of difficult solution; a general solution
will be furnished in the fellowing part of this report, showing how our
solutions are similar to those obtained by above mentioned approximate

theories and pointing out the unavoidable approximation of same theories,

—— ————— T — ———
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2) STABILITY

2,1) Introduction

The different static behaviour of a thin walled heam in regards
of St. Venant's cylinder appears conspicuous when we study its equilibrium
stability; unlike the classic behaviour of the beam subject to combined
bending and compressive stress, which bends in a main inertia plane of
the sgsection, in case of unstability due to axial stress, the thin walled
beam of open section bends and twists at the same time under loads much
smaller than loads corresponding to Eulero's formula,

The possibility of having a flexio-torsional buckling under
axilal stress was discovered when thin walled members of open section
wore used for the first time in designing aeronautic structures: many
Authors as Wagner [8], Ogtenfeld [13] , F, and H, Bleich [14] , and
Kappus [Q] investigated the laws governing the phenomenon. Only with
F_, and H, Bleich, up to the more recent studies of Timoshenko[ﬁ] and
Goodier [lQ] , together with the works of Vlasov[}q] and Goldenweiser
[18] s the following principles have been established: in order to
determine the presence of bending in the beam, the center of gravity
had to be substituted with the center of torsion; only when the axis
of the center of torsion was rectilinear no flexural energy was present
in the thin walled members; and, furthermore, the warping rigidity C;
was exactly formulated.

Of great importance are the studies pertormed by Vlasov [1@]
for the formulation of a theory concerning the unstability of the thin
walled beam of open section subject to normal, bending and shearing
stresses, and the studies performed by Krall [17], who obtains the stabi-
lity equations by using the variational approach with the introduction
of the twisting moment and considering various cases of combined unsta-
bility.

The constant progress of technics led to an always wider
application of the thin walled beams; this structural element is now
present in most civil and industrial, naval, aeronautic and space
constructions.

Therefore, the study of equilibrium stability of a thin walled
beam of open section is always of great interest and new problems arise:
as, for instance, the basic one concerning the influence of the dislocation

on the stability, its effect and the effect of external conservative and
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nonconservative forces on the dynamics, etc.

Thus, we want to examine agaln the whole system of elastic
equilibrium stabllity of the thin walled beam subject to general
loading and dislocation and we try to set up a new general theory,

The study of such beams, as conducted in the first part of
this report and connected with researches underway, the results of which
will be furnished in a later report, confirm the validity of sectorial
areas theory without consideration of local effects connected to the
presence of concentrated forces, holes, etc.

Thus, making use of Vlasov's static theory, simple and suffi-
ciently correct for an investigation on such phenomena, we obtain, in
accordance with dynamic method, and using a geometric systematic pro-
coedure, the basic differential equations governing the stability problem
of the beam motion under generally distributed conservative forcesand
dislocations. Such equations are expressed by the loads directly applied
and the stress components corresponding to the basic configuration and
includes four functions characterizing the flexural, torsional and
extensional oscillations respectively. The extensional oscillation is
often neglected, but is interesting becsause of its stabilizing effects,

The system of forces F° (x y z) acting on the thin walled beam
is formed by distributed forces Qox(z, 8); Qoy (z, 8); Qoz (z, 8), which
have the same direction of axes x, y, z, and are functions of curvilinear
abscissa s formed by the center line of the cross section. Such forces
are conservative and keep their direction during the displacement of
the points at which they are applied and generally originate a distri-
bution of transversal forces p°x (z) and p°y (z), axial forces p°z (z),
bending couples m°, (z) and moy (z), twisting couples m®, (z), and
biwoments B® (z).

The dislocations system zlr(x ¥ z) causes a stress condition
which can be annulled, generally, only by dividing the body into its
elementary particles or, more simply, by cutting it into a finite number
of planes. The introduction of the dislocations system Ao (x y z) will
be useful later for the study of the unstabilizing effects caused by

residual stresses, non uniform thermic field or prestressing systems.
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2,2) General remarks on approach method

Fig. 9 shows the axes system where C is the centroid; x and y
are the main inertia axes of cross section; z is the centroid axis.

The coordinates of shear center 0 in the section plane are x, and Yo-

Fig. 9

The external forces are generally represented by components
Q°x (z, 8), Q°y (z, 3), and Qoz (z, s8) having the same direction of
axes x, y, z of fixed coordinates system Cxyz; and are general functions
of curvilinear abscissa s formed by the center line of thin cross section
and by abscissa z, Such forces will be considered as conservative forces
and, specifically, as keeping unchanged their directions determined by
fixed axes x, y, z respectively. The loads at the end sections are
formed by a distribution of general forces but still conservative cor-
responding to normal, shearing, bending, twisting and warping actions.
The coaction state due to dislocations is represented by normal and
shearing stresses in every cross section self-balanced if the external
constraints do not resact,

Therefore, with reference to a general cross section of the
body, the stress state will be represented by seven stress characteristics;
bending moments H& {z) and ly (z); twisting moment M, (z); shearing stresses
Tx (z) and Ty (z); bimoment B (z), as shown in fig. 10,
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Fig. 10

The thin beam motion will be formed by:

a) a system of displacements, typical of a flexural oscillation,
by which the axis of shear centers 0 bends in the planes xz and yz,
and the cross sectlions of the beam transfer along their planes and
rotate around axes x and y;

b) a system of displacements, typical of a torsional oscillation,
by which the cross sections transfer along their planes, fotating around
the shear centers axis (which remains rectilinear) and warp because of
the sectorial areas;

c) a system of displacements, typical of an extensional oscillation,
by which the cross sections transfer in parallel with themselves along
the direction z of fixed system Cxyz.

The new actions developing along the direction z on the element
dA dz will be calculated by determining:

1) the transversal and axial elementary forces due to the change of
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direction of stresses t;di , E’] dA , B"QIA , following the
fibers buckling;

2) the elementary couples, which we call "turnover"' couples, causing
the rotation of element dA dz around fixed axes x and y and z and due

to the components along axes x, y, z of tixed system of elementary forces

i o H
t;x dA ‘t,;, dA , G; dA , acting on the buckled body

3) the elementary couples, which we call "displacement” couples, due
to the fact that forces ?: d4 a’A 6"://4 , acting on the

two sides dA of element dA dz and the surtace forces Q (zo)d{j Q (24_) dé,
CQZ E?é)'fd , during the buckling, assume a different position in regards
of fixed referenced system,

Further, we calculate the actions which, because of the degree
of freedom of cross section, are consequent on the previous ones; in this
manner torques distributed on z will be associated to a transversal elemen-
tary load, and bending couples and bimoments will be associated to axial
actlions, The determination of inertia forces will complete the calculation
of the actions caused by imposed displacements,

Such procedure is sistematically used for the flexural, torsional
and extensional oscillations and permits to formulate the general equations
expressing the motion of the thin walled beam in general as well as taking
into account the unstabilizing effects of stresses (corresponding to the

basic position of the beam) and of the surface loads,

2,3) Effects due to flexural motion

Let us consider the flexural deformation. It is characterized
(fig. 11) by displacement components:

u(z, t) ; v (z, t) 2,1)
of the line of shear centers 0; and, for the rotation of sections around
axes x and y, by the displacement component along axis g:

W(a,y,z'.‘;):.-(%y'i-x-&——- ) ,2)
We consider, above all, the unstabilizing effects due to stresses
and we calculate, along axis x of fixed system Cxyz, the components
dfx of the elementary forces acting.on the elementary buckled stripe dA dz
of the beam pertaining to two cross sections at the distance dz., With

reference to fig. 12, representing the projection of dA dz on the plane
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Yo O

X %, we have:

- o ° 37, o4 ’
JJ;& o; df 5" (o + fdz)dﬁa?(“+ o dz) (2,3)

since the load Qoz {z, s) ds dz applied on the element does not give any

component along x and keeps the direction of axis x.

‘ -
w W 24z

o
6; 94 R,(%3) dé dz

o6
(6;" ;—z-vdZ) Jg

Y

Fig. 12

Developing equations (2,3) we obtain, neglecting quantities of

higher order than the first:
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K
do&. = ;;( 5_" dh) 2,0

In this manner, for unit of length, we have the cross elementary load:

dp = e Q-‘f'-dﬂj (2,5)
xT g2 % B2

Correspondingly, we have the elementary moment dMy, due to the
components of ';,db! along x which tends to turn over the element dA dz
around axis y,; it is:

M, =- G dA Tedz 2,6
dz

in this manner, for unit of length, we have the elementary distributed

moment :
. _ 6 dA %% (2,6")
dw, : o
and, for the whole section:

i
Wy = “[fz i &7

Projecting the buckled element on plane yz, we have (fig. 13):
—6dA (6.4 9%24z)dN I (-, AT, (2,8)
dé' 297 52 & oz z) 92 (v 5%

because, also in this case, the loads Qoz (z,8) have no effect along v.

Fig. 13
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Developing equation (2,6) we obtain, for unit of length:

dF az(ﬁ; dﬁ) (2,9

In the same manner as for equation (2,6), we have the moment:
dM =~ -~ 6.dA Q_Q'dz (2,10)

tending to turn over the element dA dz around axis x; for unit of length,

we have the elementary distribution moment:
dw. =-6df 9 (2,10")
x < 82

and, for the whole section:

o
4"12“/"5; 37.-‘4 (2,11)

Integrating equations (2,5) and (2,9) on the transversal area,
we have the new distributed actions due to the fact that, in buckled
condition, normal stresses G} lean forward forming variable angles in
regards to the original direction of z axis,

Thus we have:

i w 4 ov
JEESW g fRGRY

Equations (2,5) and (2,9) give the transversal load due to the
flexural buckling of the elementary stripe dA dz; consequently, we have

the following twisting elementary moment distributed along z:

dm, =[5, S50y, )¢ 1) 26, %% LoxdA] e

using the symbols of fig. 13 which shows as positive the twisting moment
{or the anglajﬁ) if its direction of rotation is the same bringing axis
X on axis y.

Integrating on the whole cross section A we obtain:

Equations (2,8) and (2,10) are always valid if the loads Qoz (z,8)
keep the same direction of axis 2z of fixed system Cxyz. Let us consider
now the effects of shearing stresses ‘t;x and T acting on the transversal

Iy

With reference to fig. 14, showing the projection of element dA dz

sides dA of the elementary buckled stripe.

on plane x, z, we calculate the components along z of elementary forces
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Fig. 14

acting on the buckled stripe,

Therefore we have:
= .2 I dn)dz (2,15)

where the effect of surface loads Qox (z, s) is not present, since such
loads remain parallel to the axls x of fixed system Cxyz.

In conclusion, for unit of length, along z we have the following

elementary axial load:
o (v, 2% dA
. (2,16)
dp, = 82( 2x 9'2- J ’
In the same manner, considering the projection of buckled stripe

dA dz on the plane zy to calculate the effect of f.}y oblique in regards

of fixed axis y, we have (fig. 15):

- X arty g-+
sz.. tzyaz A- (c- + J)dﬂ ( Jz) (2,17)
where is not present the effect of conservative loads Q°y (z, s) which

keep their direction along ¥y.
Developing equation (2,17), we have:

9 é
dfg:. "é';.(t "'dn)a/z

‘)’ 92 (2.18)
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Fig. 15

representing the new action along z due to the different slopes of stresses
in the buckled state of element dA dz; for unit of length, from
equation (2,18) we have:
JP:—-‘?—(C 5’0"4) (2,19)
. dz " Y oz '
Equations (2,16} and (2,19) refer to the elementary area dA;

for the whole area A of the beam cross section, we have the following

Je
= jé‘z( x 0z " 2y -92)44 (2,20)
)

To equations (2,16) and (2,19) are associated some distributed

new axial action:

bending moments, since they act at distence x and y from the axis of the

centroid; therefore, we have for t’t‘ the elementary distributed

moments dn& and dmy

- (e 2«
( x o?a. ) d"r 92 r“az'xd'q) (2,21

and for T

2y

9
dwm, = - rr ‘Y&zjda-) dw)": t‘)’&z dﬂ) (2,22)

Integrating on area A we finally have:

C e“y-rt a—v:y)dﬂ

m =~ az( 22X g2 (2,23)

a
4
) Sy v x) df :
”’,='f 2 ('t:‘x‘”x-‘ fyaz.x) (2,24)
a



Furthermore, equation (2,16) gives the bimoment wvariation:
98 Ju
( W+ C‘ “’)dﬁ (2,25)
oz 4 Iz Ix 3z y 82
Equations (2{7), (2,11), (2,12), (2,14), (2,20), (2,23),
{2,24), and (2,25) represent the new actions due to the variable slopes

of normal and shearing stresses in the buckled state, but it is essential

to notice that in such condition the forces acting on the element have

a different position if compared to the fixed axis Cxyz. Obviously, this

changes the stresses field in the body; in order to calculate this effect
it will be sufficient to refer to the elementary stripe dA dz and consider
the moments, relative to the forces acting on two sides dA as well as
those acting on lateral surface of dA dz, due to the displecement of
such forces from hasic position to the displaced one.

We begin by considering the effects of the displacement of
elementary shearing forces b't.x. odf and 1;) a4 , distributed on A,

and of surface forces QY, (z, s) and Qoy (z, s).

U
T urge
v

U‘+5-2~ z

i

e e R

&

T-—.—._ 4 S s sk v e mene

, W
W 6>

S

Fig. 16

With reference to fig, 16 we have for the elementary stripe
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dA dz the following change of twisting moment:

It '8
dMZ-_-_ t;x-f 32Xdz)((j‘+ é—z':dk)alg +
(2,26)

«(x, ﬂtzyd,)(q., L J2)dA+ tgural] T u dA 1

-Q° (FY) d4d2 v+ Q °(z4)dsdzu = -i(?: U‘c{ﬁ)-f-
_2,( Tpy 4dA)- ax(z,a)didzu- + y(z,a)ds dz «

Integrating on area A and on center line s of the cross section,

we obtain for unit of length:

e[ A 0 By et <o
A (] S S

Also because of the rotation of croas sections around axes
x and y, the elementary internal forces t;. ‘ﬂq ’ ;;7 699 and the
external surface loads Qox (z, 8) and QOY (z, 8) move thelr points ot

application of guantity:

!f
W s g—i x ¢ 3y Y) (2,28)

With the same procedure previously used, we obtain the following

distributed elementary bending couples:

ﬂ =2 [‘?( 4 —-y)dﬂ] QC”)(""-JC“ 92 7) ds

(2,28)
o, O ) (Fex s O
"")’-az ¢, (527 325)“}* Q‘(r,ﬁ)(azau ,929)6’5 (2,30
integrating on A and s we Iinally have:
V‘
d e x ¢ ds
jﬁ:[ (f’?- x 'j) 9] jQ ("’)( ) ZY) (2,31)

A

A

J
”7 /9 [u 2<7 ézg)d” /Q (2’) Lx+ z’)‘{j (2,32)
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The calculation of effects due to the displacement of forces
directed alcng axes x and y is now complete; now we want to consider the
effects of displacements of normal forces G’ qu distributed on A,
and of surface forces Q z (z, s).

With reference to fig. 16, we have the following elementary

displacement couples:

JM ng ardz ‘%_&u-dﬂt{zd?tré)u'dadz

(2,33)
f2. Sz

(2,34)

) 8« 4 Ny dAdz+Q (22)uds dz
a//{),‘é;dﬂ zd é_‘;“ Z*Qa(t’)“

integrating on area A and on line s, we obtain for unit of length:

o °
i ko AR S S
S

”‘1 j 3“- dA+ J% u df « JQ:(Z.Q)“ d3 (2,36)

Now we calculate the corresponding inertia reactions.
Being f{ the mass for unit of volume of the thin beamn,
for the elementary mass dA dz the following forces correspond to the

displacements (2,1) and (2,2):

1.
df = - fulﬂa(z 6”
dfy = - f‘d‘? dz ;;; (2,37

}
s
df, =~ p o dz P aadt‘y)

obviously, to {2,37) correspond the distributed couples:

P
dw, =~ pdh (Lo ‘326-%)9 ;) A <o (szl"’x:vi;:"v)x
dw, K Jﬂ[a (Yo - J&; (x,-—x;]
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Integrating on the whole section we obtalin the following actions

for unit of length:

ou - =
Pz -pB ot /‘ o"t" la o (2,39)

Y 'S
I O Qe S\ o
- - :- - = — ] }
"=tk i /‘);Jzé’f" A V)
On the contrary, the bimoment which seems to develop from (2,37)

equals zero; in fact, we have:
3
(Q& ar Y)U’ if =
f‘ Se ok 62 o) (2,41)
A

because the sectorial coordinate 3 is orthogonal to the coordinates

x and y,.

2,4) Effects due to torsional oscillation

Let us consider the torsiocnal buckling shown in fig. 17,
Since the crass sections rotate around the shear center axis,

every element of the area dA moves along x and y as follows:
u (z, t) = (y, - Y)f ; vz, t) =- (x5 - x) P (2,42

and moves along z, because of the warping

w(z, t)y = - W o—z" (2,43)

as it results from the sectorial areas theory.




The angle db » together with the twisting moment M,, is
therefore considered positive if it brings x on y, being z downward,

Considering above all the effect of stresses q: we calcu~
late the components along x of elementary forces acting on the buckled

form of the elementary stripe dA dz (fig. 18),

VA
009 (9455 )
N

‘*-.__‘h-.b

%z 4) d34 Q..(?_'
R ok (6+ % %)df

<7

Fig, 18

As in the case of flexural motion, we obtain the transversal

action relative to the buckled element dA dz:
df =-6, dfly;y) 2L . (o, » S dz)dA(y,y) ($+ < da) (2,40

since, also in this case, the load Q°z (z, s) keeps its direction, From
equation (2,44) we obtain, with reference to the unit of length, the fol-

lowing elementary transversal forces:

dP ‘9 e, (Y,-Y) 99‘40] (2,45)

In the same manner, considering the projection of dA dz on

plane y z we obtain (fig. 19):

__.9 .x) ©
dp, = 52 [G‘z(:r. x) Efdﬂ}

(2,46)
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Integrating on A, we obtain:

fx ={%[6;(70'7) g{')dﬁ (2,47
[;.-./4;?;[0‘ (_a(‘-x) 3% ]dﬂ (2,48)

which represent the transversal loads developing on the thin beam slightly
twisted due to the different slope of stresses ‘;; acting along the
tibers. The loads Q°z {z, 8) also in this case remain parallel to axis
z of fixed system Cxyz.

Furthermore, as in section 2,2), for equations (2,45) and (2,46)
we have elementary turnover moments d M and d My due to the components

along y and x of elementary forces & aﬁﬂ ; they are:

d N, = (2,49)
-- af
d M, ’(Y‘_Y) o A dz (2,50)
integrating equations (2,49)‘rnd (2,50) on A we obtain, for unit of length:
0P JA
m, = 4 8;(".'1);; o (2,51)
- -y (2,52)
my j‘ o (Y Y) .;;dﬂ ,

As a result of equations (2,45) and (2,46) we obtain the

elementary twisting moment distributed as follows:
d”’: :392_ [oi()f, Y) a,dﬂ](x’—y) 45 [ z(‘x 'x) dﬂ](xo-'x) (2,53)

due to the fact that dpx and dpy act at distances (y, - ¥) and (xo - X)
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from the axis of shear center; integrating we obtain:

n = j;i"{ z 5z [(-( ‘1)4()/ Y)J‘ﬂj (2,54),
a8

Les us consider now the unstabilizing effects due to shearing
stresses t"( and t;’vhlch. because of torsional buckling, produce
components along the directions of axes x, y and z of fixed system Cxyz.
Since the fibers of the thin beam bend because of f(z), as we did for
the flexural motion, we calculate the components along z of elementary
forces 'fadﬂ and griﬂ, distributed on A and variable along the
buckled fiber.

From the projection of element dA dz on planes zx and zy, we

obtaln, in accordance with figs. 14 and 15:

df = G A [#riv)]- (5,0 57 ).mz"_ﬁ; 2]
- t.,«'ﬂ;%[? 2] (5, Lorae) M2 [194 SE s (1)

%{ L o) 5y - ]j

Integrating on A, for unit of length, we obtain the axlal

(2,55)

N

distributed load

e R R B

Equntion {2,56) furnishes the distributed bending moments:

MWy 2 ‘[ %’-{ :_f [tn(y.-y)- t“y ("(."-")] y dﬂ} .57
3 =..£ ;?; i ogzt [T:“ (n-r)-?,,(x,-::}]x Jﬂ} (2,58)

and the bimoment varistion:
8B . . ¢ _ )
gg - ﬂ% { oz [t“‘ e v)- Ev(xox).]w d”i (2,59)

Les us calculate now the unstabilizing actions corresponding
to components of t;ldﬂ and t:'?d” , distributed on A, 6n axes x and y.
We consider the elementary stripe dA dz of fig. 20; it will
be stressed on two sides dA, of abscissa z + dz and z respectively, by
43



el > %
(t; { -;';‘!4 (T, ;4. = -'d:) dA
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elmntaar{: forces at;' dﬂ . t- (4
(t;r 5.0 da)dfl ; (Tot 57 92)dA; Ty U7 ) Gy
bent in regards of fixed axes x and y of angles (’4 #Jg ) and
} , being } and the directions of movable axes x and y,
The loads Qox {z, ») dsdz and Qoy {z, s) dsdz will act on the side
surfgce ds dz of the stripe and will keep the directions of fixed

axes x and y.

By calculating the components on x and y of all forces acting

on dA dz, we obtain the transversal loads. Thus we have:

ot
d,ﬁ=(l;,}+ ;:'J:)Jﬂ m(f‘gda)-(t;i %?’Jy(ﬂﬁ(}-‘ géj .

40:(;4)4442- 'g}dﬁcufJ t—,z At § =

(2,60)

-« 70 LA o o
——— - o— d - d —
Idzdﬁ " [j Ao Z;z A a2 +Q (x3)d3d2>

For the equilibrium in the basic position, we have:
o
G dxd ¢ QL (x3)dsdz= o
and equation (2,680) is simplified as follows:

dx‘c = - % (tzz ?dﬂ) 43 (2,61)
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representing the new transversal forces, distributed on dz and directed
along x, due to the new slope of shearing stresses after huckling; for

unit of length, we have:

dp, = J;Q(t' $da) 2,62)

veing Tg, ='1;r!.

In the same manner, performing a projection along y, we obtain
the elementary transversal forces directed along y and relative to the
length dz of element dA dz:

df (t + -—-"J)Jﬂm(f+ dz)* C" + —"J}ﬂfﬁh[f-ly*)

+ 0’ (23)dsdx - Jﬂcoaf dﬂ +ie § =

Gey
‘, 0‘7d~!jJﬂ (l‘ . sz)a@(f Q_Zde) (2,63)

+Q, “(x3)dsdz- & 6’}5
=5 (C uﬂfﬂ) dx K

besing, for the oquillbriun slong the direction y in the basic condition

c- 9
i—:"dﬂf &, (24)d3 = © @.60)

For unit of length, we have:

> x ¢ dﬁ) (3,69)

Integrating squations (2,62) and (2,65) on the area A of cross

section, we obtain the transversal loads:

P =- ,,( $dA)

(2,66)

j ( j d,g) (2,67)

Furthermore, the components along x and y of 1ﬁl and

produce the following turnover couples around axes x and y:
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o Mx 2 - 'C"’ fdﬂd?- o
J"g, = tiz édﬂda (2,69)

Integrating on A, we obtain, for unit of length:

™ "":/‘t-cxfd A (2,70)
m « Jy Ty $ 98

From equations (2,82) and (2,65) we obtain the distributed

eclomeniary twisting moments:
J‘ﬂz.-.-dg, ()/.")'/)—-df; (-X) =

(2,72)

=- 2 (5, $dA)(5;7) - £ (5, $eh) (x0)

from which, by integration on area A, we have:
o &
"2 :-_/ o2 [t:r; SO,y 4A]- 433' f$x)]  amw
(]

In this manner we have calculated the new actions developing
along abscissa z of the thin walled beam in & slightly buckled form due
to the variable slopes of the stresses. For the calculation of such
actions we did not consider the warping of the cross section, because
it causes only a variation of generatrices length and not their bending;
4n the contrary, as shown later, it will affect the calculation of
displacement moments.

For the calculation of such displacement moments, we consider
that, because of displacements

“‘(10'1)9 ; v--(xo-x)}
the shearing stresses t’u and t:" and the surface loads Qox and
Qoy moved along y and x respectively; thus we have, as in equation
(2,27)m the elementary distributed twisting moments:

iy 2 [ s a2 [y )9 44

(2,74)
+ Q:(w(x.-x)f a4+ 0:(:0 (v,-¥)$ds o
from t'hic;, integrating on A, we obtain:
S[2 (x,2)+7T,, (v,~)]9A
'Mz laz{}&x % ey( )] } + (2,75
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+ .L [Q°(z3)x,-x)+ Q(z3)(Y,~v) ] $93.

Let us consider now the warping of cross section of pésitive
sectorial coordinate; because of this warping ,which varies along z
with ? , the shearing stresses t“ and 7-"’ and the surface loads
Q°x (z, 8) and Qoy (z, s) move in parallel with themselves; in the same
manner as for equations (2,31) and (2,32), we have the distributed

bending couples

o
o =[5 . (%, 2¢ w)dn_/a (x92F wdo

(2,76)

f (&% aﬁw)dﬂ jQ (z3) Qﬁwdg

(2,77)

Now we calculate the effect of displacement of normal stresses
O‘l and of surface loads Q% (z, s).
As for equations (2,33) and (2,34) we have the displacement

elementary couples:
d H =- &Jﬂ(a(, x) & ejdz-a_?i(:r ~x)$d Hd2

(2,78)

-Q2(%3) (-'(,-x)_sﬁdd az

dH = &4A(ry) Sodze EROY)$aAdz e
+Q:c<a)(w, y)$dsdz

from which, by integrating on A, we obtain:

==~ [8 (X, -x) Je l—-‘(r-x)fdﬁ) /@ ao)(:r-x)fdo
(]

(2,80)

My =

o; (¥ A '”Jﬂ j 9% 2% () $ah f Qz (Y, -Y)#dd

A (2,81)
Now we calculate the inertia forces appearing during the

torsional motion,
With reference to elementary mass dA dz, we have the elementary

forces:
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df = -/ dAdz(y,-v) a:_‘
i = pddz(xo0) 22

. 9 .d (2,82)
Jf'- /w/ﬂdz wZ=,

correspondingly, we have the elemantary couples:

dw_ = ~M dAd2 wy ae-r-
J"y =-F hdz wx azat‘- 4
dm, = ~pdRldz [(-r,-x YA | %l'—"'

2 (2,83)

Equations (2,B2) and (2,83) give the cross and axial distributed

forces:
2 =0
B =-pPy, Et% /4/9:,6—5 2 (2,84)
and the couples!: <
X
m, =0 M, =0 m, =pdo 553 2,85

while the components df, give the bimoment variation:

a)
i'é f" w az‘;t"' (2,86)

being ]; and 1;0 the quantities:
3
f.=fl=f.-1)'*(n-v)‘144=1,¢*Iy*/»’(n*x‘); I..:"Z“’ A e
A

polar moment of the cross section in regards of the shear center 0 and

sectorial moment, respectively.

2,5) Effects due to extensional oscillation

Let us consider the extensional oscillation,

Since the sections have only displacements w{(z) along z
(fig. 21), in the extensional buckling we do not hawe variable slopes
of stresses, in regards of axes x, y and z, and corresponding unstabi-
lizing effects do not appear. On the contrary, we notice some unstabi-

lizing effects because, due to the extensicnal displacement w, variable
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with z, the shearing stresses "l‘."‘ and 'C“r and the loads Q% (z, 8)

and Qoy (z, 8) move in parallel with themselves, So we have the bending

distributed couples:

S % (5, wan)- /s QU ywds

A
m, = - 4 £ (t.-aw-m)-i Q2 (23)wds

\\
\.\\
b
z w
. .
’ "’l

Fig. 31

The ilnertia forces are given by:

) . P L
Py =0 Py =0 P, flﬂ 7y

!x=5=lz=B=0
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(2,89)

(2090)1

(2,91)



2,6) Gemeral equations of dynamics of thin walled beams

In paragraphs 2,2), 2,3) and 2,4) above we calculated the actions
developing on the thin walled beam during its displacement caused by
flemural, torsional and extensional buckling. They are always balanced
with thw elastic reactions and the loads directly applied; if we approxi-

mate the curvatures in the planes xz and yz to the curvatures in }3

and 7} , we will obtain the following differential equations system:

. j;—[ (402 dﬂ] j 5, $44) j”{ 95[:- (yyx-t (xd)&]"‘.’}
jﬁ.( r wdh) ji(Q;—wda) jﬁ,—.(glwlﬂyji(q wds)
'F”“ ‘H ’a:at‘ i X,a,“ fQ 93 _jao ds
E-L 2 [%'3—(; x- &y)dt?] j B s "’-Wﬂl
2 acx-x)a .ﬁy /f’-(r $d4) fa:: [“[tu(r-vy 5 (e ]d f}
]&.(3” ""‘9[ (@ oty F (5[ (&) et
958 'f‘-’i 4/"‘9%-% fQ ds - faQ‘r"'ﬁ
E”.ff-’ oz(axaz ‘raz)‘m j [ [eclion -ty (2, -.x)].a‘z} Fgaw 'ds
:: a'éje,[%[ (r‘v-azc::-x)]dly/ Lt oy u)dﬂ/(Q v-Q ,,)d,
{°¢ 22 exrtgny? ](ﬂj f/_‘q'c%.x )¢ Q ()] #
foza[(zwz .)“"'”] / [Bx(Y &-x;]mf?}
o rds %‘ ‘r'”(Y 25 +

{2,92)
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Above system, together with the boundary and initial conditions,
furnishes the motion of the beam under (F°) and (A®); these latters are
represented directly by distributed loads Q°x (z, 8), Qo)r (z, 8) and
Qoz (z, 8) and indirectly by stresses components 62 , f‘x ) t} ,
corresponding to the basic equilibrium condition.

As far as stability is concerned, it is interesting to determine
the value of the multiplier ) of (F®) and ( A®) for which the motion
is no more limited;insuch case of conservative forces and dislocations
the change from stahllity to unstability will be expressed by the value
zero of the motion frequency,

Above system (2.93) also includes all the problems of stability
and dynamics of thin walled beam of close section and of the solid section
beam and can be easily applied to the various particular cases, expressing

from time to time the applied loads and the stresses companents g , J-ttty'
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