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ABSTRACT

The prevalent methods of estimating structural damping are based on the
FFT of the test data. The paper discusses the distortion introduced by FFT to
show that any post-processing of the FFT will provide a poor estimate of
damping, typically overestimating it; this will be the case even with curve
fitting in frequency domain, or in time domain after aﬂplying inverse FFT,
The paper then presents an alternative time domain met odology called Data
Dependent Systems (DDS) for precise damping estimation. The DDS methodology
uses difference equation models directly fitted to the time domain data for
estimating damping ratios, natural frequencies, and mode shapes. After
explaining the rationale of why the DDS damping estimates are more precise
compared to those from FFT, the paper gives examples to highlight the
precision.  These examples demonstrate that the DDS is capable of precise
system identification even in the presence of high damping, high modal density
and considerable noise. In particular, it is shown that the frequency and the
damping ratio are correctly identified even when the damping ratio is so high
that the corresponding peak disappears from the authospectrum and hence it is
impossible to identify it from FFT.
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INTRODUCTION

Determination of structural damping is a difficult problem that can be
solved only using test data in most cases. Although finite element modeling
can be used to determine natural frequencies, modal testing is usually needed
to provide the damping estimates mnecessary in predicting the realistic

response from the finite element codes.

Much of the current modal testing hardware and modal analysis software is
based on Fast Fourier Transform (FFT) of the test data to take advantage of
the computational efficiency of FFT. However, the FFT of test data introduces
distortions due to problems such as leakage and resolution, and also errors

such as bias and variance (random error). moothing of raw FFT by averaging
or windowing is necessary to reduce the effect of such errors. Such
distortion and smoothing both affect the damping estimates. Therefore,

damping estimates obtained by post-processing FFT of test data are usually
unreliable; typically FFT overestimates damping.

This paper briefly outlines an alternative time domain methodology called
Data Dependent Systems (DDS) for precise damping »estimati% and reviews some
of the results illustrating the precision from references which may be
referred for more details.  Difficulties in damping estimation from FFT of
test data are discussed at the beginning. The rationale of more precise
estimation by DDS is then explained. Examples from the literature

demonstrating the precision of damping estimation by DDS are given at the end.

Why Does FFT Overestimate Damping?

Usually FFT and its post-processing tends to flatten a sharp peak and thus
leads to overestimation of damping. The primary causes of such flattening of
thg_ . (peaks are discussed below briefly, more details may be found in texts such
as

1. Frequency Resolution, Leakage and Aliasing: When the record length say T
of the data is not large enough, since the FFT is calculated at multiples of
frequency .}., the frequency resolution may not be adequate to capture sharp

peaks. [Even when the record length is increased, the leakage caused by the
absence of integral number of cycles in the record length spreads over
neighboring frequencies and flattens the peaks as illustrated in Figure 1.
This flattening of peaks persists even when damping is high, as illustrated in
Figure 2. Post-processing of FFT by averaging and windowing to reduce leakage
and use of antialiasing filtering also adds damping. Figure 1 illustrates the
peak flattening caused by truncation-another windowing effect. '

2. Bias and Variance (Random Errors): The finite amount of data used in FFT

may be considered as the original “infinite” data truncated by a rectangular
"box-car” window, which introduces bias in the estimate of the peak.  Since
this bias is usually negative, it has the effect of increasing the damping.
Moreover, when the test data is noisy, the FFT iatroduces variance (random
error) and is consequently erratic and choppy. containing many spurious peaks
in addition to the genuine omes. It is tEerefore usualfy necessary to smooth
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the FFT by averaging, either simple or weighted, which applies another window
that also increases damping. To make matters worse, one cannot reduce bias
and variance simultaneously, a window that reduces bias inevitably increases
variance and vice versa.

PRECISE DAMPING BY DDS

The DDS methodology [1-7] estimates damping by fitting difference equation
models of successively higher order until the reduction in the residual sum of
squares is statistically insignificant or the variance of the residuals drops
below a known noise floor. The eigenvalues or characteristic roots of these
models then yield the estimates of natural frequencies and damping ratios. No
prior assumptions or conjectures about the model are needed, they can be
obtained directly from the data by available computer routines . The
difference equation is in the form of ‘an Autoregressive Moving Average model,
ARMA (n,n-1):

X‘ = ¢1 Xt_l + quXt_2 + ... + a - Glat_l - e =

n-lat-n+l

where X' is a single scalar or multiple vector series of data, <i>l and 0l are
scalar or matrix parameters and a represents scalar or vector white noise.
These a’'s model and remove the noise in the data to provide modal parameter
estimates from one sample without any need for averaging.

The natural frequency and damping ratio corresponding to each mode are
obtained from the characteristic roots or eigenvalues ).! efined in the scalar

case by
(1-¢B- ¢2132 .o ¢ B") = (1-A B)(I-4.B) ... (1-4_B).

If )‘x and}.’: are a complex conjugate pair of roots, then the corresponding
damping and natural frequency terms are obtained by

2{w = In (Aia’:')/a

Iml_i

w = tan™ [m] 14

i

where A is the sampling interval and Im and Re represent imaginary and real

parts respectively. The mathematical background, procedure and expressions
for obtaining other parameters such as mode shapes and mass, . damping and
stiffness matrices from the response data may be found in references™’.

The number of parameters in the model fitted by DDS is limited by the
actual  effective degrees of freedom reflected in the response  data.

Therefore, as the number of data points is increased, the additional
information improves the accuracy of the limited number of parameters such as
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mode shapes and damping ratios. This is in contrast to the FFT, where such
additional information from the increased number of data points is spread over
the increased number of frequencies, and the accuracy of estimates at any
given frequency does not improve; subsequent processing by averaging,
smoothing or windowing adds its own distortion as ex lained earlier.  This 18
the basic reasons why the DDS methodology provides far more precise damping
estimates than the FFT. '

ILLUSTRATIVE EXAMPLES

The relative precision of DDS compared to FFT is already clear graphically
from Figures 1-2. These figures show that the DDS estimates of damping almost
exactly match with the actual, whereas the FFT always overestimates it. This
is true at low damping, Figure 1, as well as high dampinﬁ, Figure 2. We will
now give examples with numerical estimates to demonstrate the precision.

Table 1 gives results from reference’ on a simulated 3-degrees-of-freedom
system using gOO data points and scalar models. Note that the results are as
precise with noise as without it; the only difference is that the model order
needs to be higher for noify data to model the noise modes. Results in Table
2 from the same reference’ then show that closely :gaced mode shapes can also
be resolved if high enough model order is used. Simijar results on a
2-degree-of-freedom system in Table 3, taken from reference’, show that this

precision extends to mass, damping and stiffness matrices [m], [C] and [K].

Table 1: Comparison of Estimates With and Without 17% Noise

Theoretical Noise-Free Noisy
ARMA(12,11) | ARMA(26,25)

Natural 0.58569 0.58567 0.58503
Frequency 1.2319 1.2323 ' 1.2312
(Rad/Sec) 1.6003 1.6002 1.5999
Damping 0.03122 0.03122 0.03118
Ratio 0.16404 0.16412 0.16412
4 0.10206 0.10200 0.10202
Mode 2.4829 2.4788 2.4912
Shapes 3.7044 3.7023 3.6976
(Relative - 1.0420 1.0493 1.0493
Amplitudes) 2.0963 2.0959 2.0651
1.0000 0.9988 1.0009

0.7122 0.7149 0.7111

CBB-4

Confirmed public via DTIC Online 01/09/2015




Theoretical: b

DDS Estimated: '0

respectively.

From ADA309668

Downloaded from

Table 2: Comparison With Closely Spaced Modes

Theoretical ARMA(28,27)
Natural 0.96697 0.96698
Freguency 1.8881 1.88888
(Rad/Sec) 2.0000 2.0009
Damping 0.15512 0.15503
Ratio 0.07944 0.07965
{ 0.07500 0.07471
Mode 1.0669 1.0667
Shapes 1.0000 1.0009
(Relative -1.4366 -1.4359
Amplitudes) 1.0000 1.0071
0.0 0
-1.0 -1.0010
Table 3: Comparison of Parameter Matrices
[m] [C]
E o] [1 -0.5 4
10 -0.5 1.5 | -2
5001 0 [1.000  -0.5002] [ 4.000
10.001 -0.5002 l.SOOJ -2.001

Tables 4 and 5 present
a 2-degree-of-freedom

for

ratio estimates is quite good

data

system with

ints per series.

light

Digitized 01/09/2015

-2.001
6.001

results from reference’ obtained using vector
and heavy damping
Note that since the vector models use multiple series of data
simultaneously, their estimates are even more precise than the scalar models

with the same number of The precision of damping

in botlfolow and high damping environment.
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Table 4: Comparison of DDS and Theoretical Mode Shapes
and Natural Frequencies for ACSL-Simulated 2
DOF System With Light Damping

PARAMETER THEORETICAL DDS

IST MODE SHAPE Mag. Phase(deg) Mag. Phase(deg.)
1.0 0.0 1.0 0.0
3.14603 -2.57608 3.14573 -2.5750

2ND MODE SHAPE 1.0 0.0 1.0 0.0
0.159754 175.714 0.159753 175.7140

1ST NATURAL

FREQUENCY (Hz) _ 68.3069 68.3067

2ND NATURAL

FREQUENCY (Hz) 114.298 114.298

1ST DAMPING RATIO 0.0216419 0.0216420

2ND DAMPING RATIO 0.0601704 0.0601704

Table 5: Comparison of DDS and Theorctical Mode Shapes
and Natural Frequencies for ACSL-Simulated 2
DOF System With Heavy Damping

PARAMETER THEORETICAL DDS

IST MODE SHAPE Mag. Phase(deg) Mag. Phase(deg.)
1.0 0.0 1.0 0.0
2.50746 14.8578 2.50745 14.8570

2ND MODE SHAPE 1.0 0.0 1.0 0.0
0.245211 163.0810 0.245211 163.0807

1ST NATURAL

2ND NATURAL

FREQUENCY (Hz) 113.624 113.624

1ST DAMPING RATIO 0.212392 0.212392

2ND DAMPING RATIO 0.606938 0.606936
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Some results of DDS modeling of tool vibrations from reference’® are
reproduced in Table 6. The second mode of tool vibration that is sensitive to
tool wear is small compared to other modes and hence difficult to use for tool
wear using FFT. Its damping increases with tool wear and the peak
corresponding to it altogether disappears from the FFT plot.  However, as
g‘able. 6 indicates, the DDS model continues to track it even at nearly 30%
amping.

Table 6: Tool Vibration Modes With Increasing Tool Wear

First Mode Second Mode
Nat. Nat.
Wear Freq. Damp.| Freq. | Damp.
(mm) (Hz) Ratio (Hz) Ratio
0.000 | 4340 0.007 8616 0.028
0.175 4320 0.007 8596 0.030
0.225 | 4276 0.007 8578 0.036
0.288 | 4328 0.006 | 8700 0.051
0.338 | 4354 0.009 | 8996 0.163

0.400 4526 0.007 9308 0.279

Finally, a comparison of DDS and FFT modal analys? of disc-brake rotor
vibrations is  partially  reproduced from  reference in Fi%ure 3.
Overestimation of damping by FFT is evident for every model. This study
further shows the capability of DDS in resolving repeated roots,
characteristic of symmetric structures like rotors, by closely spaced modes
that were illustrated by simulation in Table 2.

REFERENCES

[1]1 Paadit, S.M., 1977, Shock & Yibration Bulletin, 47, 161-174. Analysis of
vibration records by data dependent systems.

[2] Pandit, S.M., 1977, Trans. ASME Journal of Dynamic Systems. Meausreme
and Control, 99G, 221-226.  Stochastic linearization by data dependent

systems.

3] Pandit, S.M., Mehta, N.P., 1984, Proceedings of the 2nd International
Modal Analysis Conference, 35-43. Data dependent systems approach to
modal parameter identification.

CBB-7

Confirmed public via DTIC Online 01/09/2015



From ADA309668 Downloaded from Digitized 01/09/2015

4]

[5]

[6]

[7]

(8]

191

[10]

Pandit, S.M., Wu, S.M., 1983, Time Series & System Analysis With
Applications, New York: John Wiley.

Pandit, S.M., Mehta, N.P., 1985, Trans. ASME. lour. of Dyn. Systems,

Measurement and Control, 107, 132-138. Data dependent systems approach
to modal analysis via state. space.

Pandit, S.M., and Jacobson, E.N., 1988, Journal of Sound and Yibration,
122(2). Data Dependent Systems Approach to Modal Analysis, Part IL
Applications to Structural Modifications of a Disc-Brake Rotor.

Pandit, S.M., Helsel, RJ., and Evensen, H.A., 1986, Proceedings of the

4th Internaitonal Modal Analysis Conference, 414-421, Modal Estimation of
Lumped Parameter Systems Using Vector Data Dependent System Models.

Pandit, S.M., Suzuki, H. and Kahng, C.H, 1980, ASME Jourpal of
Mechanical Design, 102, 233-241, Application of Data Dependent Systems to
Diagnostic Vibration Analysis.

Jenkins, G.M., and Watts, D.G., 1968, Spectral Analysis and Its
Application, Holden-Day, San Francisco.

Priestley, M.B., 1981, Spectral Analysis and Time Series, Academic Press,
New York.

CBB-8

Confirmed public via DTIC Online 01/09/2015




6-4940

From ADA309668 Downloaded from

Figure 1: 1he Frequency Response
f(t)=10exp(-.01t)sin(2*pi*10t)
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rigure 2: 1e Frequency Response
of f(t)=10%exp(-10t)*sin(2*pi*5t)
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Figure 3: Comparison of DDS and FFT Modal
Analysis of Disc Brake Rotor

DDS MODAL FFT MODAL
MODE 1
Fd = 769 Hz Fd = 750 Hz
z = 0.0047528 ‘T = 0.02416
MODE 2 :
Fy = 849 Hz F, = 802 Hz
z = 0.,007445 g = 0.02499
MODE 3
P, = 1175 Hs ‘ Py = 1177 Hz
g = 0.0039828 v g = 0.015447
MODE & |
' F, = 1272 He ’ F, = 1275 Be
‘ g = 0.0087091 ‘ g = 0.01558
e, :
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