AD0607244 Downloaded from Digitized 10/10/2019

ADobo 7244 — A

ML-TDR-64-51

DAMPING TREATMENTS, /

Q tTHE OPTIMUM USE OF UNCONSTRAINED LAYER

N

w TECHNICAL DOCUMENTARY REPORT No. ML-TDR-64-51

AUGUST 1964

b

AIR FORCE MATERIALS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION
: - AIR FORCE .SYSTEMS COMMAND:- ,
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Project No. 7351, Task No. 735106

ontract No. AF 61(052)-504 by the
uthampton, Southampton, England;
ead, T. G. Pearce, Authors)

Confirmed public via DTIC 10/10/2019

(Prepared under
University of
D. J.



AD0607244 Downloaded from Digitized 10/10/2019

NOTICES

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the Govern~
ment may have formulated furnished, or in any way supplied the said draw-
ings, specifications, or other data, is not to be regarded by implication or
otherwise as in any manner licensing the holder or any other person or
corporation, or conveying any rights or permission to manufacture, use,
or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense
Documentation Center (DDC), (formerly ASTIA), Cameron Station, Bldg. 5,
5010 Duke Street, Alexandria, Virginia, 22314,

This report has been released to the Office of Technical Services, U.S.
Department of Commerce, Washington 25, D, C,, in stock quantities for
sale to the general public,

Copies of this report should not be returned to the Research and Tech-
nology Division, Wright-Patterson Air Force Base, Ohio, unless return
is required by security considerations, contractual obligations, or notice
on a specific document.

600 - October 1964 - 448 - 6-178

Confirmed public via DTIC 10/10/2019



AD0607244 Downloaded from Digitized 10/10/2019

FOREWORD

This report was prepared by the University of Southampton,
Department of Aeronautics and Astronautics, Southampton, England, under
USAF Contract No. AF 61(052)=504. The contract was initiated wmder
Project No., 7351, "Metallic Materials", Task No., 735106, "Behavior of
Metals" and it was administered by the European Office, Office of
Aerospace Research. The work was monitored by the Metals and Ceramics
Divisiom, Air Force Materials laboratory, Research and Technology
Division, wmder the direction of Mr. W. J. Trapp.

This report covers work performed durimg the period of Januesry 1961
to January 1962.

The authors wish to acknowledge with gratitude the encouragement
and support of this work by Professor E., J. Richards of the Department
of Aeronautics and Astronautics at the University of Southampton; also
the financial assistance of the U, S. Air Force in Europe who sponsored
the work.

Confirmed public via DTIC 10/10/2019






ABSTRACT

Since unconstrained layer damping treatments on vibrating plates
dissipate energy by undergoing bending strain, the treatment in the
vicinity of lines of contra-flexure contributes little to the total
demping, This report investigates the effect of concentrating the
treatment in the regions of highest bending moment in order to use all
the material more effectively. Three methods of analysis are presented,
two of them being approximate but relatively rapid in use, The third
has been used in extensive digital computer calculations to determine
the effectiveness of given quantitles of treatment, having given
stiffness, when distributed over different proportions of the length
of a vibrating, simply supported strip. The effectiveness has been
assessed using certain criteria which apply to different problems,

e.g. to the problems of reducing harmonic resonant vibration amplitudes,
or inertia forces exerted by randomly vibrating pasnels, etc., Different
criteria relate to each problem, It has been shown that very considerable
increases of effectiveness are obtained by concentrating the treatment
over a proportion of the length or area, For a given quantity and
stiffness of treatment, the effectiveness may be maximised by covering
certain optimum proportions., The optimum proportions corresponding to
different criteria differ only slightly, permitting curves to be drawn
showing the 'mean! optimum coverage required for a wide range of given
quantities of treatment, and for a range of treatment stiffness,

An experiment is described which confirms the validity of the
theoretical approaches, The effects of temperature changes on the
criteria values are also briefly considered, and it is concluded that
the temperature bandwidth of the treatment when partially covering the
plate is not significantly different from that when uniformly covering
the plate,

This technical documentary report has been reviewed and is approved.

A W

Chief, Strength and Dynamics Branch
Metals and Ceramics Division
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1. INTRODUCTION

Unconstrained layer damping treatments have been used for
many years as a means of alleviating vibration problems of thin
plates, and of attenuating the associated transmitted sound.
Recent developments of these treatments have produced materials
which provide very large increases of the damping ratios of the
structures to which they are added and, furthermore, very
considerable increases of the structural stiffness, The latter
is particularly true when the structure consists basically of
a thin aluminum alloy plate, such as in an aeroplane fuselage.
In this context the use of damping treatments must be subjected
to very careful considerations of weight economy. The optimum
usage of the treatment must therefore be sought to provide the
maximum attenuation of vibration, sound transmission etc, for
a given weight of the treatment,

An unconstrained damping layer dissipates vibrational
energy by virtue of the bending strains to which it is
subjected., For any particular mode of plate flexural vibration,
1t is evident that the treatment in the vicinity of strain
nodes (and hence of displacement nodes) contributes little, if
anything, to the damping of that mode. On the other hand the
material at the strain (and displacement) anti-node makes the
largest contribution. Removing the material from the nodal
regions to the antl-nodal regions should therefore result in
more material being used more effeciently, with a consequent
increase in the damping, This technique 1s known as "the anti-
nodal treatment", If this process is continued indefinitely a
very large thickness of the treatment exists over a very small
region, but for two main reasons the damping then becomes very
small, approaching zero. In between these two extremes of total
coverage (100% of length) and very small coverage (0%), there
mist obviously lie an optimum at which the damping is maximum,
A calculation of this maximum has already been carried out
(reference 1) where one particular problem was considered with
one given quantity of damping material., The calculation was
directed towards finding the maximum "damping ratio" or "loss
factor" of a simply-supported beam vibrating in its fundamental
flexural mode only, and it was found that the maximum occurred
when the centre 40% of the beam was covered, The damping ratio
was then about 40% greater than that of the beam covered over
the whole length.

Manuscript released by the authors January 1962 for publication as &
RTD Technical Documentery Report.



This report presents experimental confirmation of the
validity of the theoretical methods used in the previous work,
In view of the lengthy nature of the experiment, this confir-
mation was obtained, again, considering one particular beam and
one given quantity of a commercial damping treatment. (Aquaplas
K 102), Furthermore, extensive computer calculations have been
carried out to investigate, theoretically, the optimum usage of
different unconstrained layer treatments applied to strips and
plates. The results are presented in this paper, A wide range
of treatment stiffnesses have been considered, together with a
wide range of given initial weights of treatment. The calcu-
lations are based on the following assumptions:

(a) The damping and stiffness of a plate may be
represented by that of a thin strip, simply
supported at its ends, This is justifiable if
the plate is vibrating in a mode having a
longitudinal wavelength much greater than the
lateral wavelength.

(b} The strip vibrates in its fundamental mode
(equal to, or approximating to a half sine
wave),

(c) The damping layer is of constant thickness,
and is applied on one side of the strip only;
when the strip is partially covered, the
material is applied symmetrically about the
centre,

(@) The damping treatment acts as & linear
hysteretic material, The effect of frequency
change on the complex stiffress, E5 (1+ 1 n d)
is ignored,




(e) The bending stress distribution at all points in the strip is
given by the simple beam theory - even up to the change in
cross—-section of the composite beam where the d amping treatment
ends. Stress diffusion effects are therefore ignored.

The general method adopted in the csalculations was as follows ¢

With a given quantity of d amping treatment, the demping ratio, the
generalised stiffness and generalised mass were calculated for the strip
having seversl different proportions of its length covered. The damping
ratio and stiffness were found by estimating the bending moment distribtuion
along the strip, and from this, by estimating the bending strain energy
stored in the covered and uncovered portions. The bending moment
distribution obviously depends upon the mode of vibration and the mass
distribution, and each of these change as the treatment coverage changes.

Three different methods have been used to tske account of thiss

(1) The Constant Bending Moment Method. Here, the change of mass
distribution and mode are assumed to have a negligible effect
upon the bending moment distribution, which is considered
to be simisoidal for all treatment coverages.

(ii) The Complementary Energy Method. The change of mode is
ignored, and the bending moment is computed by double integration
of the inertia forces on the known distributed mass vibrating
in a sine mode. This gives a better approximation to the
bending moment tham (1).

(iii) Stodala's Method of Mode Calculation. An iterative method is
used to compute the correct mode and the correct bending moment
distribution.

Methods (i) and (1ii) were used in reference 1. Method (ii) has been
investigated in this report in an effort to find a more rapid method than
(iii), yet a more accurate method than (i). Stodola's iterative method
is readily programmed for solution on a digital computer, and the results
of computer calculations are presented in this report.

Several different values of Ed were considered for the treatpent,
covering the range 100,000 1lb., per in.” to 1,500,000 1b. per in.“.E, for
Aqueples fells in between these extremes. One density of treatment only
was considered, (that of Aquaplas K 102), as changes in density should not
affect the optimization process to the same extent as changes in stiffness
or changes in the initial given quantity of treatment. The different
given quantities ranged from an amount equivalent to the whole strip

being covered by a thickness of treatment equal to O.1 times the strip



thickness to 6.4 times the strip thickness. The bgsic strip was considered
to be of aluminium alley (E = 10 x 10" 1lb. per in.”). It has been shown
in reference 3 that the magnitude of the damping ratio increment

provided by a damping treatment is, in itself, an insufficient

criterion by which to juage the effect or efficiency of the treatment.

The criterion to be used depends on the problem to be solved, i.e. a stress
to be reduced, transmitted sound pressure to be attemuated, vibration
amplitude to be cut down, etc. The efficiency of the treatment in relation
to each of these different quantities must be assessed by & certain
(different) criterion involving the stiffness and mass increments,

together with the damping ratio increment. Furthermore, if the mode of
vibration changes appreciably due to the addition of the treatment, the
generalised exciting force corresponding to the mode will also change.

The efficiency of the 'partial-covering! treatment has therefore been
assessed using some of the criteria developed in reference 3, taking into
account, where applicable, the effect of the change of the generalised force.

2. THE DAMPING OF UNIFORMLY COVERED STRIPS

As certein of the steps in the partial-coverage calculations involve
the damping of a completely covered strip, the results of theory relating
to this will be outlined here.

The damping ratio, § ,.of a system vibrating in a single mode may
be obtained from the relationship (reference 1):-

LS = Energy Digsipated the Damping Treatment per cycle . (1)
EEEIE%E SEraEﬁ Energy Sforea Hu%!ﬁg The cyc&e

Using this expression to calculate the damping ratio for a uniform
beam vibrating in flexure, we find

E.I
6 = X% " EI +ET ’ (2)
m'm d™d
where 1s the loss factor of the demping material, E, and E are the

Young's 4 Moduli of the damping material, and metal strgp respgctively,
and I, and I are the second moments of area, of the damping meterial and
metal strip ?espectively, about the composite neutral axis of the whole
section.

The meximum damping ratio obtainable occurs when Ed Id is very much
greater than E I , and this is evidently Y =
mm max Vd/Z .



Equation 2 may then be written

& _ Rt

Smax E, I qud (3)
E
m

This gives an equation for the damping which depends only on the
Young's Modulus Ratio, and the geometry of the strip section. The term
§/§ nax Will be referred to as the “normalised damping ratio".

3. THE DAMPING OF PARTIALLY COVERED STRIPS

3.1  Derivation of Relevont Formulae

We consider a strip of length L s coated with a thickness, t, of
damping treatment over the portion of its length from x = a to x = =,
The origin of x 1is at the centre of the strip.

We now define the term gt by analogy with equation 1, as follows:

4 ISt = Energy Dissipated per unit length of coated region per cycle (= ed)

Maximum Energy Stored per unit length of coated region during
the cycle (= es) (4)

St is therefore the damping ratio increment for a strip coated over its
wholé length with thickness t.

The total ecnergy dissipated per cycle in the damoing treatment is

+a +a

j ey dx=4TrSt j e dx 5)
-a -a
+a /2
The total maximum energy stored in the strip is J‘ es dx + 2[ e, dx (6)
-a a

where e, is the maximum energy stored per cycle per unit length of the



uncovered portion. Now e = _ME » where M is the amplitude of the

s
local bending moment, EI is tﬁglflexural rigidity at any point, and has
two different values, of course,depending on whether the point is within
or outside the covered region. Let its value within the covered region be
(EI)C, and elsewhere be (EI)u . Letk= (EI)C/TEI)u. Then

= _W 7
eS Ek—(—E-f)—u— . ()

2
Likewise, &, - M

2(EI)u ) (8)

Equation 1 may still be used to d etermine the damping ratio of the
partially covered beam. If we write

+a 2
S M [k dx
~— -a S
€ - Ly, 2 +a 2 (9)
28 M dx + S M /x dx
a ~a

then it may readily be shown (by substituting expressions 4 to 9 into
equation 1) that

8/8mm = €-St .
Snax (10)

Smax is still defined by de/z, as in par. 2. We callgD/éax the

'Normalised Demping Ratio', and & the 'Energy Retio', since it represents
the ratio of the maximum energy stored in the covered region during one
cycle to the total meximum energy stored in the whole strip.

k is readily determined by using the elementary composite beam theory,
ignoring the effect of the imaginary pert of the complex stiffness of
the treatment., This effect has becn discussed briefly in reference 1,
and should not be of any significance for most practical problems. When
the bending moment, M, is known for all points along the strip, the
integrals of equation (5) may be evaluated, leading to the calculation
of the damping ratio, § , from equation 10.

In eddition to the damping ratio, a generalised stiffness ratio, a
generalised mass ratio, and a generalised force ratio are also required.
The generalised stiffness ratio, ¢ , is defined by the relationship



o = Generalised Stiff{ness of Fundamentel Mode of Treated Strip .
Generalised Stiffness of Fundamental Mode of Untreated Strip

Writing the generalised stiffness in terms of the strain energy
stored per unit generalised displacement, this equation becomes

+a 2 1/2 2
5 M/ dx  + 2‘ M dx
o = - a (11)

‘12
[ T ax
©

where M is the bending moment in the untreated strip, end M the moment
in the tReated strip; these moments correspond to equal displacements at
the centre of the strip when vibrating at resonance.

The generalised mess ratio, p , is the generalised mass of the
coated strip divided by the generalised mass of the uncoated strip

+a 2 2 ,

' J_a e fodx + 2 ia fc dx

i.e. poo= i . (12)
S fo dx

In this, f and £ are the normelised displacement functions corresponding
to the funfamental®modes of vibration of the coated and uncoated strips
respectively. f is the mass per unit length of the coated region divided
by the mass per unit length of the uncoated strip.

The generalised force ratio is obtained by considering the coated and
uncoated strip to be subjected to a uniform exciting pressure. The
ratio 'p', is then given by
p = Generalised Force Corresponding to Fundamental lMode of Coated Strip
Generalised Force corresponding to Fundamental liode of Uncoated Strip

f dx
c

i

—1 —————— .

lfdx
o

L
(13)
(o



The next part of the problem is the determination of the bending
moment distributions and the modal displacement functions corresponding to
the fundamental modes of the strips in the different partially-covered
conditions. This is dealt with in the following sections.

3.2. The Constant Bending Moment Method

In this method, it is assumed that the non-uniform mass and
stiffness distribution does not change the moment distribution from the
simisoidel form,of the uniform simply supported strip. Since it is the
integral of M that is required in equation (9), small errors in the form
of M should not lesd to large errors in € . In fact, reference 1 shows
that in one speciel c ase the accuracy of this method was of high order
over a consideratle range of coverage. In equation (9), M is therefore
replaced by Mc cos N x « To determine the generalised stiffness ratio,

it is necessary to dete'%-mine the strain energy stored in the strip, with and
without the treatment, for the same central (generalised) strip deflection.
‘hen the fractionzl coverage, a/( X /2), is ol , and the bending moment is
M cos Rx (x measured from the centre of the simply supported strip), it

is readily shown that the central deflection is

| . 2
1 +(‘l' -1>{T-E(l-°().s:m ol -cothoQ: ML g od)
2

M g2
ED, 72 |7 2

k 2 2J (EI)u R2
(lke.)
Furthermorc, the strain energy stored may be shown to be
& £
" . ’?: [l + i ( }. - )(ﬂ’o( + sinﬂo()} = ;E—IT . %LS(O() (14b)
EI a 3 T™\k u

where K(X ) , S () are defined by these equations.

The ceatral deflection of an untrseted strip (k = 1) is clearly

L2 u
7R zEISu
whence the central bending moment per unit ceatral displacement is
1\'2(2}1) « The corresponding strain energy stored per unit central displacement
—_—l g A
22 e qu)u .
3
gl



Similarly, the central bending moment per unit central displacement of the

treated strip is KZ(EI)u 1 , and the corresponding strain

energy stored is A2 K@)

rhED, S (o)
84’ [x 0] *

The generalised stiffness ratio, ¢ , is therefore given by
S ) .
2
[x(< )
3.3 The Complementary Energy Method

An approximate mode of vibration is assumed, of a form which can be
easily manipulated and integrated. From this, the inertia loading, shear
force and bending moment distributions are found by successively
integrating. M° is then integrated to give the terms required for &
(equation 9). For the simply supported strip a cosine mode of deflection
may be assumed, with its origin at the middle of the strip. The
deflection at any point is then given by

y = yc08 T _x (-R/2<x <42).
£

When undergoing flexural vibrations in this mode, at the frequency, & ,
the inertia loading is

2
Wy pmy

With thestrip coated with d amping treatment over the middle portion from
x = -a to x = a, the shear force in the beam at any station is given by

X

wzyomo p cos ("T x) dx (0<x<a)

L
@]
: a X
and Wzyomo [P cos( 7; x) dx + cos( T‘£ x)d.x (a<x<§-).
(<} a



(Note: Both p and k have unit value for a < x < L),
2

The bending moment at any station may then be shown to be

2
M= wyomo[((’-l) (%—a);g sinTg - (P -1)13 cosMa +Ff cos 7_’_x_],(0<x<a) (15)
£

T L Kz i 2
and M =L§yomo[ (f—l)( ﬁ_—x)_)@ sinTa + 1:_"05 &] Jfa<xel), (16)
2 Ix L r L 2

Substituting (15) and (16) into the integrals of equation (9), we have.

4 2 2 14

w som

.2 . d 2
[(L-a)sm Ra _20sinfla cosRala + Lcosma .al,
2 L ® ¢ g ™ 20

+a ) . .
L M dx = 2[(p-1V(L -2)E,
a

o

2 .4 . .2 .

+ P%‘t (% +4%rSmZ%Q)+ (p—l)f.Zgl(%-a)sm%g. -%wsl}:'a..smii_a]] e (IT)
and L, .

2 2 3.2 «2 «? 5 .
tﬁl‘;r_n"; S Mdx _ (f’“') {_%(% -a) ’%2sm %}-(e—l){(l—?a)#‘sm %@ _2%5 $|n):%a_,_c¢5%a,} .

2
N f{ﬁ_g__&s'mmra} e (18)
la 2 an £

Havin: chosen values for a , and knowing the corresponding values of

anl k, the integrals 17 and 18 may be evaluated, and the energy ratio
(equation 9) determined. p and k, of course, vary with the value of & and
with the initial amount of damping treatment. FEquations 17 and 18 may also
be used,to determine the generalised stiffness ratio, o (equation 11),
but w™ must first be found by equating the total complementary energy
to the maximum kinetic energy,

+

Yo

2

2 2
/omow c.os_‘)})_( dx .

NIR

The generalised mass ratio, pr , (equation 12) is found by putting
f =cos K x/ . As this is also equal to £ , a less accurate value
of = will be found from this 'Complementary Egergy' Method, than from a

10



method which employs a more accurate estimate of the displacement
function fc .

The generalised force ratio (equation 13) will obviously have unit value
if £ = cos1tx/l, and will again be of less accuracy than that given by
a mor8 accurate displacement function.

3.4 The Iterative lMethod

In this method, Stodola's method of calculating torsional modes of
vibration (reference 2) is adapted to the calculation of the fundamental
flexural mode of the coated strip. The differential equation for the
modes of flexural vibration of a beam is

g EI , Q_z_z] = wz.m(x).y (19)
ax? dx?

where m(x) is the mass per unit length
Integrating this four times
y = wzﬂ;_ Hm(x).y. dxdxdxdx . (20)
EI

If we now guess the fundamental mode (y, , say an 'approximate' mode)
and substitute into the right hand side, the integral will give a mode,
Yoo which is a better approximation to the fundamental mode than yi- If
¥~ is now substituted into the right hand side, the result will be~a mode
wﬁi¢h is more accurate still. If this process is contimed the mode cal-
culated in successive stages rapidly converges on the correct fundamental
mode.

The integral of equation 20 may be non-dimensionalised by writing
EI = k(EI)u,m =pm_, x = €4 , and y = yof(f ). Equation 20 may then
be written

£ ) = th U 1 [ £(f ) agagagag . (21)
(EI) k

k

This is the form used for the computational purposes of this paper. The
multiplier outside the iategral may, in fact, be ignored for the purpose
of mode calculation.

Now if equation (19) is integrated twice an equation for the bending
moment is obtained. Use is made of this in calculating the energy ratio.

11



Having integrated numerically to obtain the accurate mode (which was
obtained after 2 iteration processes) the accurate mode may then be
integrated twice to get the bending moment distribution. This is then
used in equation (9) to calculate the energy ratio.

This process being ideal for 2 digital comnuter, a programme was
developed for a simply supnorted beam, using 30 ordinates equi-spaced
throughout the length, to define the mode shape. Assuming symmetry about
the centre, it was possible to obtain the energy ratio for each of 15 values
of percentage coverage. The integration process was repeated three times,
this being more than sufficient to converge on the correct mode to the
degree of accuracy required., The generaliged force ratio, and generalised
stiffness ratio are also easily obtainable by this method, =nd their
calculation was also included in the computer programme. The generalised
mass ratio is also very readily obtainable by aporopriate integration.

4.  THE VARIATION WITH COVERAGE OF THE EFFECT IVENESS OF A DAMPING TREATMENT

i ——— - T— A ———— - - ™

4,1 Criteria for Assessing the Effectiveness

In the former, limited, investigation into the effect of partial
coverage (reference 1) the effect on the damping ratio only was considered.
It has been pointed out in reference 3 that in general, the damping ratio
increment is an insufficient criterion by which to judge the effectiveness
of a treatment, except when the effect on harmonic resonant inertia forces
is concerned, 1t is shown in reference 3 that when the effect on other
resononse quantities is being investigated, the contribution to the generalised
stiffness and mass from the treatment must also be taken into account, as
the resnonse is nobviously dependent upon these quantities as well as upon
the damping ratine. The manner of the dependence of different response
guantities on the damping ratio, generalised stiffness and mass has bzen
determined, considering both harmonic and random exciting forces. Certain
criteria, containing the damping ratio, stiffness ratio (g~ ) and mass
ratio (M), have been derived by which the effectiveness of the damping
trestment should be judged in relation to the various response qu=ntities,
Some of the more important response quantities and the associated criteria
are listed pelow:

(1) Harmonic resonant inertia forces - § (as above)
(i1) Harmonic resonant vibration amplitude - G"S

(iii) Random vibration amplitudes (r.m.s., assuming one dominant
mode only in the response)

12



(iv) Random acceleration amplitudes (r.m.s.) = #5/4 S 6% p =1l.
This criterion relates only to that component of the acceleration
deriving f rom the 'resonant' response of one mode of the
gystem.

(v) Random inertia forces (r.m.s., assuming one dominant mode)
pt. ot g% p=1. This may be related to the reaction
Torces at the edge of a plate, vibrating randomly in one
dominant mode. A practical application is therefore to
jet~excited random loads on the rivets attaching a fuselage
skin 'panel' to its boundary members.

(vi) Harmonic, resonant sound transmission - ubp 1 This
relates tothe simplified system of the sound pressure
transmitted through a finite plate set in an infinite rigid
wall.

Reference 3 gives a detailed derivation of these,criteria, and a detailed
description of their applicability. The term p~ was not, however,
incorporated in this work, as it was assumed that the addition of the damp-
ing treatment did not significantly change the mode of vibration. It should
be noted that the expression for p (equation 13) is only true when the

strip (or plate) is being excited by pressures which, at any instant, are
uniform over the surface of the plate., If the source of excitation is

a point force at the centre of the s trip (where fo = fc =1), thenp =1.

For other pressure and force distributions p may be determined in a straight-—
forward way.

4.2 Computed Criteria for Different Coverages
Calculstions of the criteris have been made in the following way :

(i) A particular value of E./E_ was chosen, together with an amount
of damping treatment sugfigient to cover the strip uniformly
on one side to a thickness of T x the strip thickness. T is
referred to as the 'initial thickness ratio', and therefore
represents the amount of treatment used.

(ii) Using the methods of section 3, values of S/ S P
and p were calculated with the quantity T of tP8%tment
distributed over different proportions of the strip. The
criteria have then been calculated from the sets of the ratios
obtained for each fractional coverage. 8/ § may be used
instead of &  in the criteria since it is assumBd that the
damping treatment properties do not change significantly with
the frequency change associated with the increase of o and o

(iii) A range of values of T (from O.l to 6.4) and a range of
values of Ed/Em (from .0l to .15) were taken, and the criteria
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were calculated for all combinations of these values, and at
fifteen different fractional coverages.

Figure 5 shows a typical set of curves relating the criteria to the
percentage coverage. These correspond to the values.

Ed/Em = ,07 , = 0.8

It will be seen that as the percentage coverage is voried, 2 maximum

value is obtained for each criterion. These maxima do not all occur =t

the same value of percentage coverage. Consideration of similar sets of
curves corresponding to other values of Ed/E and shows that different
maximum values of the criteria are obtained (as expected), at different
values of the percentage coverage. These maximum values of each criterion
are plotted against in figures 6 to 11, and the coverage at which these
maxima occur are shown in figures 12 to 15. The 'average' values of these
maximum coverages for given quantities and stiffnesses of treatment are
shown in figure 1l6.

5. THE DAMPING OF PARTIALLY COVERED PLATES

5.1 A Simplified Treatment

The determination of the damping ratio, stiffness ratio and generalised
mass ratio of a partially covered plate involves the integration of the
bi-harmonic plate equation. The difficulties inherent in applying either
the complementary energy method or the Stodola integration method (as
used for the strip,ar.3) are obviously very great. A computer programme
to cover all possible plate sizes (length-breadth ratios) and all possible
coverages of treatment (different percentages in both directions) would be
very lengthy, as also would be the presentation of the results., The
fol'owing simplified treatment is therefore put forward, on the basis of
which calculations have been carried out.

It is assumed that the length of the rectangular simply-supported
plate is more than, say, three times its breadth. The dynamic characteristics
of the fundamental mode of the plate, may then be regarded as being
proportional to those of an elemental strip of spam equal to the width of
the plate. We next assume that the damping treatment is applied such that
it covers p.% of the width and pc.% of the length of the plate. If the
amount of treatment is such as to cover the whole vlate to a thickness
of t, then the thickpess when p. % of the length and breadth are
covered is . 10%pc“. It is now assumed that the uncovered regions
at the two ends of the plate contribute very little to the ootential energy
of vibration of the system, and that energy associated with longitudin»l
strain is small compared with that associated with lateral (width-wise)
strain. This assumption should be satisfactory provided that the thickness
of treatment, » 1s not excessive and that p, is not too small. Under
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these assumptions, it is evident that the plate problem may be solved
approximately by regarding it as a bea£ (05 strip), having p % of its
span covered by a thickness of T t.10%/p “ of treatment. T8e methods of
par. 3 may now be applied on this basis.

It might be thought that a 'constrained' modulus, E/(1- v2), should
be used instead of the usual modulus E, ( Y = Poisson's Ratio). It will
be assumed, however, that the values of Vv , for the plate and treatment
are equal, in which case the factor (1 - ¥*) will cancel out (except
at the lengthwise extremities of the trestment. This will be a local
effect, and will be ignored).

5.2 Computed Criteris for Different Coverages

Calculstions were carried out for the simplified plate theory, following
the approach outlined in par. 4.2 for the strip theory. These calculations
were computed on a digital computer, using the Stodola integration method.
Only two criteria ( Sd, and }ks /Ps were computed for this plate theory,
using the same range of variableg, as were ugsed for the strip theory.

Direct comparison of the results is made in figures 17 to 19 and par. 7.6.
In figure 20, the "zverage" optimum coverage graph is reproduced for the
plate theory, and curves from the strip theory, (figure 16) are super-
imposed for comparison.

6. EXPERIMENTAL VERIFICATION OF THEORIES USED

6.1 Details of Experiment

Experiments have been conducted as an experimental verification of the
theories used, and of the validity of the assumptions. In particuler,
the effect of assumption ( € ) (see par.l) on the calculation of the
energy ratio at small coverages required investigestion. The experiment
consisted of vibrating a free-free bearm in its fundamental mode and
measuring the naturel frequency and demping ratio. The beam was initially
covered uniformly on one side, with 0.1 in. of 'Aquaplas K102', after
which the coverare was successively reduced, while the thickness of the
treatment was correspondingly increased. A free-frec beam was used in
order to minimise support damping. Cealculations using the constant bending
moment distribution, and the iterative method were carried out for the
free-free beam to predict, theoretically, the damping retios and natural
frequencies.

Measurements of the demping ratio, and the resonant frequency, were
taken at severzl values of percentage coverage. The beam was a top-hat
section stringer with damping treatment on the crown surface. It was
supported on thin wires at the two nodes of the fundamentsal mode. Two
c2ils were fixed to the centre of the beam, and positioned betwecn the
poles of permanent magnets. One was used for exciting the vibration, and
the other for mezsuring the vibretion velocity amplitude. Ag the visco-
elastic properties of Aquaples were temperature sensitive, the rig was



enclosed in an asbestos-lined box and thermostaticelly meinteined at

68% I 2°F. The damping retios of the treated beams were found by

using the well known technique of measuring thewidth of the frequency
response curve in the neighbourhood of resonance, the beam being excited
by & Ilorce of constant amplitude., As the demping was found by other
means to be virtually linear, this method can be relied upon to give
results of sufficient accuracy.

6.2 Comparison of Experimental Results with Theoreticel Predictions

Figure 1 shows the variation with percentage coverage of the
measured and celculated damping ratios for the stringer-beam. Very good
agreement is seen to exist between 50 and 100% coverage. The existence
of a meximum velue of the damping ratio is clearly borne out by experiment
and calculation.

The Stodola Integration Method over—estimetes slightly the peak value
of the damping, and predicts an optimum coverage which is rather less than
that indicated by the test.

This is due to the invelidity of assumption ( €) (per.l) when the
damping layer is thick over a limited region of the beam. The ends of
the leyer ere not, in fect, being strained as much as is assumed by the
elementary beam theory, and consequently do not contribute as much to the
damping as the Stodola Integration method prediets, As the length of
the leyer decreases with decreasing coverage, the ineffective ends of the
leyer form a greater proportion of the total amount of the damping treat-
ment, with the result that the actucl (measured) damping ratio falls more
and more below the Stodola Curve. This is seen to occur below 405 coverage.
The constent bending moment distribution method gives the maximum at the
correct coverage, but the maximum damping ratio 1s under-estimated. At
lover coversges, the damping ratio exceeds the messured velues by a small
anount. This is not to say that this metiod is, in general, more accurate
for handling the lower coverape conditions than the Stodole integration
nethod.  The spparent improvement in accurecy is due to the cancellation
of two sources of error inherent in the approximetions, i.e. the error
due to the invelidity of assumption (€ ), and that due to the bending
moment distribution being inaccurate at low coverages. With different
quantities of material or different material properties there may be a
wider discrepancy between measured velucs and 'constant bending moment
method! velucs. It does apvear, however, that the method gives a good
approximation to the meximum damping ratio obtainable, and also to the
percentage coverage at which this occurs.

The calculations and experimental results demonstrate that by

suitably re~distributing the damping treatment, the damping retio mey be
mede as much as twice that of & uniformly covered beam.
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7. DISCUSSION OF THEORETICAL RLSULTS

7.1 Comparison of the Results from the Complementary Energy and the

Iterative Methods

The resultis from the complementary energy method azre not shown
graphically. However, the normalised damping ratios found by each method
vere found to agree extremely well, even under conditions of large "C and
high E./E , where the approximate energy method would be expected to
give the Peast accurate results. The agreement between the stiffness
ratios was not, on the whole, as close, but the maximum values of the
stiffness ratio, and the values of the percentage coverage at which it
occurred, did agree closely. It can be concluded therefore, that the
complementary energy method may be used with confidence to establish
the optimum coverage and the corresponding (spproximate) maximum value
of the required criterion, although values of the criteria at off=-
optimum coverages may be subject to some considerable error. It may
be noted that the complementary energy method is exactly the same as the
iterative method, terminated after one complete stage of the multiple-
integration process. It does not, however, provide an "improved mode"
which would permit a more accurate estimate of the generalised meass or
generaliged force. These quantities are always derived in this method
by integration of the initially chosen mode.

7.2 The Variation of the Stiffness, Mass and Damping Ratios with
Coverage

Figure 4 shows typical curves of p, po and O plotted against
percentage covered. At 0% coverage, the beam (or strip) is virtually
a uniform beam with a concentrated mass at the centre. If this mass is
small compared with the total beam mass, the mode of vibretion differs
only very slightly from that of a uniform beam, and the generalised
stiffnesses scarcely differ, i.e. The stiffness ratio, o , will be very
close to unity. The generalised mass ratio will be considerably larger,
since the mass of the treatment is now concentrated at the centre of the
beam where the amplitude is greatest.

At 1007 coverage, the mass and stiffness ratio are identical with
the ratios of the local mass per unit length and flexural stiffness,
respectively, of the treated and untreated beams, the modes being identical
in eachcase. Between 0 and 100% the existence of the maximum value
of ;1 may be understood by reference to the curve of p, and also to figure
3 which shows a typical modal variation with coverage. When the
coverage is such that p is close to its maximum velue, the mode exhibits
a pronounced flatness (figure 3). With the correspondingly greater
extent of the beam undergoing a displacement c¢lose to that of the
centre (reference ) displacement, and with the mass of the treatment
spread over this region, the generalised mass reaches its maximum value.
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The existence of the maximum value of o follows from the fact that
as the coverage is reduced from 100%, the treatment is at first being
redistributed to the regions of higher bending moment, which are therefore
being stiffened up by the increased thickness. The regions at the ends
carry little bending moment, and the removal of the redistributed
meterial is of relatively little consequence. The nett effect is therefore
an overall generalised stiffening of the beam. At very low coverages,
the very large depth of treatment, ideally, gives a very great stiffness
over the very small region; the remainder of the beam has the stiffness
of the untreated beam. In the 1limit, as the coverage approaches zero,
the generslised stiffness of the treated beam approaches that of the
untrested beam, apart from a small factor arising from the difference in
mode of the beam in the two conditions. The generalised stiffness of the
beam therefore decreases as the coverage decreases to zero. Since the
generalised stiffness also decreases as the coverage increases to 100% ,

a maximum must exist at some intermediate coverage.

In practice, the theoretical meximum stiffness will not be achieved,
owing to the stress diffusion and concentration at the abrupt change of
section, where the treatment is terminated. An experimental stiffness
ratio curve would be expected to drop below the theoretical curve, more
so at lower coverages, than at high. At both 0% and 100%, however, the
experimental and theoretical curves must agree.

The variation of the damping ratio with coverage follows & similar
trend to that of the stiffness, and has been discussed in reference 1.
It should be noted, however, that whereas the stiffness ratio approaches
a value slightly greater than unity as the coverage approaches 0%, the
damping ratio approaches zero. This follows from the damping ratio being
proportional to the energy stored in the damping treatment, and the
latter energy approaching zero as the coverage is made very small,

It will be observed that the meximum value of the normalised damping
ratio in figure 5 is not as great in proportion to the 100% value as the
maximum stiffness ratio is to its 100% value. Now the damping ratio is
proportional to the maximum energy stored per cycle in the treatment +
the maxinum energy stored per cycle in the whole beam, and the energy
stored in the whole beam is proportional to the generalised stiffness.
The damping ratio of the non-uniformly covered beam is therefore
proporticnal to the energy stored in the treatment + the stiffness
ratio. Thus, it is not to be expected that the proportions of the
stiffness ratio curve of figure 4 and of the normalised damping ratio curve
of figure 5 would be the same. The energy stored in the treatrment
increases at first as the coverage is reduced from 100%, due to a
greater thickness of 1t existing over the region of greater bending
moment.  However, as the coverage decreases and the thickness increases,
the local flexurel stiffness increases to the extent that the curvature ,
and hence the energy stored in the treatment decresses.
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It should be noted that the criterion o8 is the value of the
generalised hysteretic damping coefficient of the beam, and is
proportional only to the energy dissipated (or stored) in the treatment.
It is really a more fundamental property of the system than the damping

ratio, which is 4 x the hysteretic damping coefficient The

the generalised stiffness coefficient
explanation in the last paragraph of the behaviour of the energy stored
in the treatment may be applied directly, therefore, to the behaviour of
the curve of od® in figure 5.

7.3 The Variation of the Criteris with Coverage

The criteria plotted on figure 5 all behave in a similar wayas the
coverage changes. In particular, it is noteworthy that with one
exception, the optimm coverages for the maximum values of the criteria
are very close, The exception relates to the rem.s. inertia force,
which eriterion contains the stiffness ratio raised to a negative power.
As the coverage is reduced from 100% the increasing stiffness ratio
therefore has a detrimental effect on the criterion preventing it from
rising tothe same extent as the other criteria and also causing the
optimum coverage to be greater than that for the other criteria.

The r.m.s. sound pressure criterion also contains ¢ raised to
a negative pover., In this case, the increase of the generalised mass ratio
(raised to the power of 5/4) helps to oppose the detrimental effect of
the increasing stiffness, and the optimum coverage is of the same order
as that for the other criteria.

No curves of criteris are shown for values of E 4 and T other than

those of figure 5. However, it may be stated that as these quantities
are increased, there comes a point when the maximum value of 8§ , occurs
at 1004 coverage. The value of T is then close to that at wﬁich the
characterigtic d vs. treatment thickness curve for a uniformly covered
beam reaches a maximum (see, for example, Oberst's curves, reference 4) .
Increasing the thickness of treatment over the covered portion (by
redistribution) can then only reduce §_, (equation 10); the damping
ratio of the non-uniformly covered beam Elll then also be lower than the
uniformly covered value, since the energy ratio, € , cannot be greater
than unity.

The meximura in the characteristic & s, thickness curve for a uniformly
covered strip also partially explains the smallness of the increase in
damping ratio in figure 5 as the coverage is reduced. As the coverage
is reduced the thickness of the treatment approaches the value for
maximum & , and no further increase in § | is obtained. The lower
the value of “E., however, the higher is the op@imum thickness for
meximum §, (Teference 4); congequently for lower E q° tne optimum

coverage for maximum Sd is lower.

19



7.4 The Effects of Ei and Initial Thickness of Treatment on the

Moximum Values of the Criteria

The effects of Ed and initial thickness on the maximum criteria values
are shown in figures 6 - 11, In interpreting these curves, it must be
remembered that materials having different Young's Moduli, E., also have
different loss factors, Na* The normelising process, wher a
normalised damping ratio, - § ., has becn used in the criteria, has
effectively provided criteriof values corresponding to the same value of
loss factor for all Ed' The normalised damping ratio is the actual
demping ratio divided®by. $ (the maximum possible value of the damping
ratio obtainable with the tr@afment) and this is known to be W./2. In
order to incorporate the effect of different m;} 's in the curves of
figures 6 - 11, therefore, it is necessary to %iply each curve by
the appropriate value of 'z /2. Furthermore, materials having different
E 's will, in general, have $frerent densities, whereas the curves of
Fégures 6 - 11 have gll been calculated for the same density of treatment.
The correction that must be made to allow for different densities is
discussed at the end of this section.

The correction of the curves for the appropriate velues of can
only be carried out when particular materisls have been specified. It is
useful, however, firstly to consider the effect on the criteria of E
and thickness ratio together, assuming that M is the same for eac
curve. The curves of figures 6 - 1l may be set into three categories:

(i) TFigures 7 and 8, in which the criteria increase monotonically
with both thickness and E,. These curves relate to harmonic
and random displacements éespectively, and to a certain
extent may be related to the bending stresses that occur at the
ceatre of a vibrating panel.

(ii) Figures 9 and 11, in which the criteria increase monotonically
with thickness; at low thickness, the criteria increase
with E., but at high thickness they decrease with E..
criteria relate to random and harmonic transmitted gound
pressures, respectively.

These

(iii) Figures 6 and 10, in which the criteria rise to a maximum as the
thickness increases and thenfall off. At low thicknesses,
the criteria increase with E, but at high thickness they decrease
with E,. These criteria reiate to harmonic and random inertia
forces, respectively.

It will be noticed that the criteria of group (i) have o raised
to a positive power, whereas those of groups %ii) end (iii) have o raised
to 2 negative power. Since o= is small at small values of the thickness
ratio, it has a small effect upon each of the criteria in this range, and
Ed affects the criteria mainly through the damping ratio 8(1. Oberst's
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work has shown that the highest damping ratio for e uniformly covered

beam is obtainable with treatments of highest stiffness, E.,, and it is this

which explains the effect of Ed on the criteria at low thicknesses. At

high thicknesses, howewer, the stiffness ratio becomes very large, the

higher E.'s giving rise to the largest stiffness ratios. This is favourable

for the Sriteria of group (1) (positive power of o= ). It follows from

this that at the high thicknesses the group (i) criteria increase with

Ed’ whereas the othersdecrease with Ed.

The characteristic maximum of the criteria of group (iii) follows

from the asymptotic behaviour of the damping ratio of a uniformly covered

beam as the treatment thickness increases. At the same time, the stiffness

increeses monotonically. The rem.s. inertia force criterion, containing

the negative power of o= , therefore decreases beyond the point at which
reaches its maximum. The group (ii) criteria, although having

negative powers of o , have raised by powers of one greater than those

of group (iii). It is this mass effect at high thicknesses that causes

these criteria to increase monotonicéally with thickness rather than to

fall off after passing through a maximum.

Consider now the effect of changing the density of the treatmente.
If the stiffness of the treatment (E_), the thickness ratio and the
percentage coverage are maintained cgnstant, the mode of vibration of the
beam changes due to the new mass distribution. This, in turn, results
in a change of the generalised stiffness ratio, 0~ , and also in the
normalised damping ratio, & .. It is evident, therefore, that it is
not strictly permissible to agply a simple correction only to the mass
ratio to obtain the new values of the criteria. The new density must be
incorporated in the mode cslculations from the start. However, as this
means that the already extensive mumerical calculations should be repeated
for a range of treatment densities, it is suggested that for the time
being the density effect be included by a simple mass ratio correction,
Let the density for which the calculations have already been carried out
be a{) and that of the new treetment under investigation be f’d2’ If
the ¢ cﬂiated generalised mass ratio using density p qq7as A then
the mass ratio using the new density may be teken as 1 +°- £d2 ()L-|)

dl

This is a good approximation to the correct value provided that the mods
of vibration does not change appreciably with change of density.

7.5 [The Optimum Coverage for Maximum Values of the Criteris

Figure 5 and Figures 12 - 15 show clearly that a different optimum
coverage is required for each criterion, for each initial thickness and
for each different value of E.e It is to be noted that the highest optimum
coverages are required for thd group (1ii) eriteria, and the lowest
coverages for the group (i) criteria. This has already been explained
in paras 7.3, in which figure 5 wes discussed.
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The differences between the optimum coverages for the various criteria
are not so great as to cause one criterion to be appreciably below its
maximum value if the optimum coverage corresponding to another is used.

In particular, if an average is taken of the different optimum coverages,
it will be found that the corresponding value of each of the criteria

is still very close to its maximum value. This suggests that this average
value may be given as the optimum percentage coverage corresponding to

the particular initial thickness and materisl stiffness. Accordingly,
average values of coverage have been determined from many such sets of
curves as figure 5 and have been plotted in figure 16.

Figures 12 = 15 and figure 16 show that the greater amount of
treatment (i.e. the greater the initial thickness ratio) the greater must
be the coverage for maximum effect, Similarly, the greater the value of
Egs the greater must be the coverage. That this should be so follows from
the fact of the asymptotic nature of the J‘ vse T curve for a uniformly
covered beame The stiffer materials have the lower values of T at which

reaches a maximum. Consequently, as the percentage coverage of a
non-uniformly treated beam is reduced and the thickness of the given
amount of treatment over the beam centre is increased, the maximum value
of S is reached sooner (i.e. at a higher coverage) with the stiffer
material. , Also, if a greater amount of treatment is given, the maximum
value of will be reached sooner than with a lesser amount.

Figures 12 to 1% also show that for a given amount of treatment the
difference between the optimum coverages required to maximise the different
criteria is greater for the larger values of E,; and initial thickness.

This follows from the value of @ increasing with both of these

quantities. Since some of the criteria contain negative powers of @

and some contain positive powers, the difference in the behaviour and

optimum requirements for these criteria would be expected to diverge as
@ and therefore Ed and thickness increase.

7.6 Comparison of Results from Strip Theory and Simplified Plate Theory

In general the simplifed plate theory gives higher maximum criteria
values than the strip theory, and at higher optimum percentage coverages.
This is to be expected, as, for the same initial thicknesses of treatment,
the thickness over the covered region of a partially covered plate is
greater than the thickness over the covered region of a partially covered
strip. Hence the maximum criterion value is higher. Also, the damping ratio
of a partially covered plate approaches its asymptotic value sooner than
that of a strip, as p, is reduced. It follows from this that the
optimum coverage for a plate will be higher than for a strip.

It will be noticed in figure 17 that the plate theory curves fall
away more rapidly than the beam theory ‘curves on either side of the
maximum values. Hence if a coverage is used which is slightly different
from the optimum coverage, a plate criterion will be a smaller proportion
of the maximum value than will be the corresponding strip criterion. The
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"average® optimm coverage given by the curves of figure 20 differ, of
course, from the optimm coverage for any specific criterion. Figures

12 to 16 show that it is the Harmonic and RMS Displacement and RMS Inertia
Force Criteria which have optimm coverages differing most from the average
coverage. It follows therefore that the Harmonic and RMS Displacement and
‘RMS Inertia Force Criteria for a plate are likely to be considerably below
their maximm (optimised) value whem the "average" coverage is used, more so,
in fact, than the criteria for a strip.

7.7 The Applicability of the Theoretical Results

The Curves of figures 16 or 20 may be used to find the optimum
coverage for a given amount of material of known stiffness. The calculations
leading to these curves are based on the assumption that the mode of
vibration is the fundamental of a simply supported plate (or strip). There
is evidence to suggest that an aeroplane fuselage panel responds in such a
mode when excited by jet efflux pressures, provided that the panel is
bounded on two sides by open section stringers (reference 5). In this case,
optimum damping would be obtained with an unconstrained layer treatment by
treating the centre p % of the penel width and length with a uniform

layer of the treatment., Some evidence also exists to suggest that fuselage
stringers vibrate in flexural modes having nodes at the frame attachment
points. The stringer could then be regarded as a simply supported beam, of
span equal to the frame spacing, and theoretical methods of this paper
could be used to obtain the optimum coverage of treatment. The vibration
of automobile door penels is sometimes found to be primarily in the
fundamental mode, and again the anti-nodal treatment may be used,

When the vibration is not in the fimdamental mode, tut is primarily
in one particular overtone, then it may be possible to use the anti-nodal
treatment by considering each inter-nodal area as a single simply supported
panel, or beam, vibrating in its fundamental mode. The optimum coverage is
then p p‘t% of the inter-nodal distance, each separate inter-nodal area being
treated. It is unlikely, however, that it would be necessary to damp the
overtone and not the fimdamental mode and other overtones. When all the
modes need to have increased damping, uniform coverage over the whole
penel (or beam) is required. The anti-nodal treatment is therefore of
most value when only one mode (preferably the fundamental) requires
increased damping.

When treating a panel the edges of which are completely restrained
against rotation, it is obvious that no treatment is required in the
vicinity of the points, or lines, of contraflexure of the mode to be
damped, If the areas between the lines of contraflexure are regarded
as simply supported at the lines of contraflexure, then the curves of
figure 20 may be used to assess the extent of the optimum coverage over
these areas, The area between a fixed bouncary and a line of contra-
flexure may be regarded in an analogous way, but since the plate bending
moment is high at the boumdary, the treatment should cover a region
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adjacent to the boundary, of width equal to p_ t% of the distance
between the boundary and the line of contrafl&¥ire.

8. CONCLUSIONS

The three methods which have been set out todetermine the optimum
coverage of the strip by the damping treatment have shown good egreement,
insofar as the calculated coverages and corresponding maximum criterion
values are concerned. The constant bending moment method gives results
most rapidly, but is not as accurate as the complementary energy method
which is rather more tedious in its application. The Stodola integration
method really requires a high speed (digital) computer, and is the most
accurate method of 211,

It has been established that the anti-nodal treatment does ‘indeed
improve the efficiency of an unconstrained layer damping treatment.
The efficiency must be judged by eriteria which conteim the factors by
which the stiffness and mass of the plate are increased, together with
the damping retio increment. The results have further provcd that the
damping retio increment alone is an insufficient eriterion by which to
judge.

The results have shown that the coverage required to maximize the
different criteria are not appreciably different from one another,
for a given quantity and stiffness of treatment. Accordingly, it has
been possible to draw up curves of the 'mean' optimum coverage for a
wide range of givenmentities of treatment and a range of material
stiffnesses. In general, the greater the quantity of material to be
used, and/or the greater the stiffness of the material, the greater is
the optimum coverage. Ultimately, with very large amounts of treatment,
or with very stiff materials, the coverage must be 1004 for maximum
effect. According to some criteria, there are optimum quantities for
maximum effect, as well as optimum coverages. According to other
criteria the greatest effect is obtained with the greatest amount of
treatment,

In the experiment to measure the damping ratio of a vibrating besam,
which was covered over different proportions of its length with a given
amount of tAquaplas' damping treatment, the calculations of the Stodola
integration and Constant Bending Moment methods were confirmed over the
range 50% to 100% coverage. The meesured maximum demping ratio was slightly
lover than that predicted by the Stodola method, but this was to be
expected in view of the stress diffusion effects at the ends of the damping
layer, which were ignored in the calculation. The measured optimum
coverage was slightly greater than that predicted by the Stodola methed,
for the same reason.
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The effect of a change of temperature on certain criteria has
also been investigated, (see Appendix), temperature characteristics
for two specific treatments being used. It has been shown that
changing from uniform to anti-nodal treatment does not significantly
change the temperature bandwidth over which the criteria exceed one
half of the maximum values which occur et the optimum temperaturs.
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Appendix
A.1 The Effect of Temperature on the Criteria

The purpose of this investigation was to assess the effects of the
anti-nodal technique on the temperature bandwidth of the criteria. The
temperature effects on the Harmonic Sound Transmission Criterion only are
considered, but the method is applicable to all the criteria. The criterion
varies with temperature, due to the variation of both the Young's Madulus
and Loss Factor of the treatment, but as the normalised criterion ;téu/
depends only on the Young's Modulus and is independent of de, the problem
simplifies into two steps:

(a) The determination of the value of}léd/p, for a range of temperatures,
due tovariation of Young's Modulus.

(b) The multiplication of Mdd/p by YQ4g/z at the corresponding
temperatures, giving mdé/p for each temperature.

Both E . and v g Vary with frequency, but this effect is ignored in this
present paper.

A2 The Effect of Young's Modulus and Loss Factor on the Criteria

Figure A represents the
variation of a criterion
with coverage, in the
region of the maximum
values. The three curves
relate to the same thick-
ness ratio, v , but to a
different temperature, T.
At a certain temperature,

pdap’

Eqfm) I T,, the material has a
L Ygung's Modulus of E g,
PERCENTAGE COVERAGE R and the corresponding
FIG. A optimum coverage is p

(point X, in figure INE

Suppose the "normal operating temperature" is T,. The coverage chosen
for the treatment will obviously be p 2% (at X2). If this coverage and
thickness have been used, and the Eemperature rises, say to Ty, Ed
will drop to Edl, and the value of the criterion will now be 2
determined by point Xje. As this point is generally below X2, the value of
the criterion will drope

If the temperature drops, say to T3, Ego will rise to Eq3, and the
value of the criterion will be deternined by point X3. If the change
Eg3 - Ed2 is sufficiently small, X3 will be slightly above X2, but if the
change in Eq is larger, X3 will be below Xo.

Thus from a graph similar to figure A, but which contains curves for
many values of Ey, we candetermine the variation of the criterion with
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the variation of E,« If we know the variation of E, with temperature, we
can hence determiné the variation of the normalised criteriom/ASd/p,
with temperature.

Now we may regard the loss factor,‘[ d, as varying with temperature,
independently of the Young's Modulus, E .. Knowing the variation of'z d
with temperature, we may combine the correct value of 4 , with the
normalised criterion to obtain the variation with temperature of the
"unnormalised" criterion,/ﬂf/p.

A.3 The Variation of the Criteria with Temperature, using Two Specific

Treatments

Dr. He. Oberst of Farbwerke Hoechst has supplied data relating Eq,
N 4 and temperature for two different damping materials:-

(a) A "broad band” Vermiculite filled treatment, having optimum properties
at about 500C according to Oberst's criterion¥X, and a temperature band
width¥* of about 90°C.

(b) A conventional,Vermiculite filled treatment, having ootimum properties
at 40°C according to Oberst's criterion. The temperature band width of
these properties is about 320C,

Using the "Simplified Plate Theory" values of Harmonic Sound Transmission
Criterion ( A § d/p) for several values of Eq (at a given pc%), in
conjunction with Oberst's data, figures 21, 22 were calculated. These show
the variation of the criterion with t emperature for three different
conditions of coverages-

(1) Anti-Nodal Treatment, with an ipitial thickness ratio T = 0.8, partiaslly
covered to maximise the criterion,/4f/p at the temperature for the
material optimum properties (i.e. 5°C and 40°C respectively).

(2) Uniform coverage (100%) with a thickness ratio ¢ = 0.8.

(3) Uniform coverage, but with a higher thickness ratio, chosen to give,
at the temperature for the material optimum properties, the s=me value of
the criterion as the anti-nodal treatment, (1).

*The temperature band width is defined as that temperature range over which
the damping properties are equal to, or greater than, one half of the
maximum damping property.

**The criterion used by Oberst, to establish the temperature at which the
treatment has its optimum damping properties, is the damping ratio of a
simply supported strip, covered, uniformly (100%) on one side with the
damping treatment, having a treatment weight 20% of the weight of the metal
strip, at a resonant frequency of 200 c.p.s.
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A.4 Conclusions

Throughout the range of temperature, considered in figures 21, 22,
the anti-nodal treatment gives higher values of the criterion that the
uniform (100¥ coverage) treatment of the same weight. For a given
weight of treatment it is therefore always advantageous to use the anti-
nodal treatment. It will be seen that condition (3), giving the same
criterion values at certain optimum temperatures as condition (1), has a
slightly greater bandwidth than condition (l1). However the difference in
the bandwidths is hardly sufficient to justify the additional weight of
treatment required by condition (3).
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