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ABSTRACT 

Since unconstrained layer damping treatments on vibrating plates 
dissipate energy by undergoing bending strain, the treatment in the 
vicinity of lines of contra-flexure contributes little to the total 
damping. This report investigates the effect of concentrating the 
treatment in the regions of highest bending moment in order to use all 
the material more effectively. Three methods of analysis are presented, 
two of them being approximate but relatively rapid in use. The third 
has been used in extensive digital computer calculations to determine 
the effectiveness of given quantities of treatment, having given 
stiffness, when distributed over different proportions of the length 
of a vibrating, simply supported strip. The effectiveness has been 
assessed using certain criteria which apply to different problems, 
e.g. to the problems of reducing harmonic resonant vibration amplitudes, 
or inertia forces exerted by randomly vibrating panels, etc. Different 
criteria relate to each problem. It has been shown that very considerable 
increases of effectiveness are obtained by concentrating the treatment 
over a proportion of the length or area. For a given quantity and 
stiffness of treatment, the effectiveness may be maximjs:.ed by covering 
certain optimum proportions. The optimum proportions corresponding to 
different criteria differ only slightly, permitting curves to be drawn 
showing the 'mean' optimum coverage required for a wide range of given 
quantities of treatment, and for a range of treatment stiffness. 

An experiment is described which confirms the validity of the 
theoretical approaches. The effects of temperature changes on the 
criteria values are also briefly considered, and it is concluded that 
the temperature bandwidth of the treatment when partially covering the 
plate is not significantly different from that when uniformly covering 
the plate. 

This technical documentary report has been reviewed and is approved. 

~~C:~,~..
W.J:~PP ~ 
Chief, strength and Dynamics Branch 
Metals and Ceramics Division 
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1. INTRODUCTION 

Unconstrained layer damping treatments have been used for 
many years as a means of alleviating vibration problems of thin 
plates, and of attenuating the associated transmitted sound. 
Recent developments of these treatments have produced materials 
which provide very large increases of the damping ratios of the 
structures to which they are added and, furthermore, very 
considerable increases of the structural stiffness. The latter 
is particular4r true when the structure consists basically of 
a thin aluminum alloy plate, such as in an aeroplane fuselage. 
In this context the use of damping treatments must be subjected 
to very careful considerations of weight economy. The optimum 
usage of the treatment must therefore be sought to provide the 
maximum attenuation of vibration, sound transmission etc. for 
a given weight of the treatment. 

An unconstrained damping layer dissipates vibrational 
energy by virtue of the bending strains to which it is 
subjected. For any particular mode of plate flexural vibration, 
it is evident that the treatment in the vicinity of strain 
nodes (and hence of displacement nodes) contributes little, if 
anything, to the damping of that mode. On the other hand. the 
material at the strain (and displacement) anti-node makes the 
largest contribution. Removing the material from the nodal 
regions to the anti-nodal regions should therefore result in 
more material being used more effeciently, with a consequent 
increase in the damping. This technique is known as "the anti­
nodal treatment". If this process is continued indefinitely a 
very large thickness of the treatment exists over a very small 
region, but for two main reasons the damping then becomes very 
small, approaching zero. In between these two extremes of total 
coverage (100% of length) and very small coverage (0%), there 
nmst obviously lie an optimum at which the damping is maximwn. 
A calculation of this maximum has already been carried out 
(reference 1) where one particular problem was considered with 
one given quantity of damping material. The calculation was 
directed towards finding the maximum "damping ratio" or lIloss 
factor" of a simply-supported beam vibrating in its fundamental 
flexural mode only, and it was found that the maximum occurred 
when the centre 40% of the beam l.ras covered. The damping ratio 
was then about 40% greater than that of the beam covered over 
the Whole length. 

lvanuscript released by the authors January .l.962 for publication as a 
RTD Technical Documentary Report. 
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This report presents experimental confirmation of the 
validity of the theoretical methods used in the previous work. 
In view of the lengthy nature of the experiment, this confir­
mation was obtained, again, considering one particular beam Ilnd 
one given quantity of a commercial damping treatment. (Aquaplas 
K 102). Furthermore, extensive computer calculations have been 
carried out to investigate, theoretically, the optimum usage of 
different unconstrained layer treatments applied to strips and 
plates. The results are presented in this paper. A wide range 
of treatment stiffnesses haTe been considered, together with a 
wide range of given initial weights of treatment. The calcu­
lations are based on the following assumptions: 

(a)	 The damping and stiffness of a plate may be 
represented by that of a thin strip, simply 
supported at its ends. This is justifiable if 
the plate is vibrating in a mode having a 
longitudinal wavelength much greater than the 
lateral wavelength. 

(b)	 The strip vibrates in its fundamental mode 
(equal to, or approximating to a half sine 

wave) • 

(c)	 The damping layer is of constant thickness, 
and is applied on one side of the strip only; 
when the strip is partially covered, the 
material is applied symmetrical~ about the 
centre. 

(d)	 The damping treatment acts as a linear 
hysteretic material. The effect of frequency 
change on the complex stiffness, Ed (1 + i Y1 d) 
is ignored. 

2 



{e}	 The bending stress distribution at all points in the strip is 
given by the simple beam theory - even up to the change in 
cross-section of the composite beam where the damping treatment 
ends. Stress diffusion effects are therefore ignored. 

The general method adopted in the calculations was as follows : 

With a given quantity of damping treatment, the damping ratio, the 
generalised stiffness am generalised mass were calcula.ted for the strip 
having several different proportions of its length covered. The damping 
ratio and stiffness were found by estimating the bending moment distribtuion 
along the strip, and from this, by estimating the bending strain energy 
stored in the covered am uncovered portions. The bending moment 
distribution obviously depems upon the mode of vibration and the mass 
distribution, and each of these change as the treatment coverage changes. 

Three different methods have been used to take account of this: 

( i) The Constant Berding Moment Method. Here, the change of mass 
distribution and mode are assumed to have a negligible effect 
upon the berding moment distribution, which is considered 
to be simlsoidal for all treatment coverages. 

(ii)	 The Complementary Energy Method. The change of mode is 
ignored, and the bending moment is computed by double integration 
of the inertia forces on the known distributed mass vibrating 
in a sine mode. This gives a better approximation to the 
bending moment than (i). 

(iii)	 Stodola's Method of Node Calculation. An iterative method is 
used to compute the correct mode and the correct bending moment 
distribution. 

Methods (i) and (iii) were used in reference 1. Method (ii) has been 
investigated in this report in an effort to find a more rapid method than 
(iii), yet a more accurate method than (i). Stodola I s iterative method 
is readily programmed for solution on a digital computer, and the results 
of computer calculations are presented in this report. 

Several different values of Ed wex;e considered for the treat2ent, 
covering the range 100,000 lb. per in.~ to 1,500,000 lb. per in••E for 
Aquap1as falls in between these extremes. One density of treatmentdonly 
was considered, (that of Aquap1as K 102), as changes in d ensity should not 
affect the optimization process to the same extent as changes in stiffness 
or changes in the initial given quantity of treatment. The different 
given quantities ranged from an amount equivalent to the whole strip 
being covered by a thickness of treatment equal to 0.1 times the strip 
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thickness to 6.4 times the strip thic~ness. The ~sic strip was considered 
to be of aluminium alloy (E = 10 x 10 lb. per in. ). It has been shown 
in reference 3 that the magnitude of the damping ratio increment 
provided by a damping treatment is, in itself, an insufficient 
criterion by which to ju~ge the effect or efficiency of the treatment. 
The criterion to be used depends on the problem to be solved, i.e. a stress 
to be reduced, transmitted sound pressure to be attenuated, vibration 
amplitude to be cut down, etc. The efficiency of the treatment in relation 
to each of these different quantities must be assessed b,y a certain 
(different) criterion involving the stiffness and mass increments~ 
together with the damping ratio increment. Furthermore, if the mode of 
vibration changes appreciably due to the addition of the treatment, the 
generalised exciting force corresponding to the mode will also change. 
The efficiency of the 'partial-covering' treatment has therefore been 
assessed using some of the criteria developed in reference 3, taking into 
account, where applicable, the effect of the change of the generalised force. 

2. THE DAMPING OF UNIFORNLY COVERED STRIPS 

As certain of the steps in the partial-coverage calculations involve 
the damping of a completely covered strip, the results of theory relating 
to this will be outlined here. 

The damping ratio, b , .of a system vibrating in a single mode may 
be obtained from the relationship (reference 1): ­

(1) 

Using this expression to calculate the damping ratio for a uniform 
beam vibrating in flexure, we find 

, 

where '? is the loss factor of the d smping material, E and E are the 
Young's d Moduli of the damping material, and metal str~p respWctively, 
and I am I are the second moments of area, of the damping material anddmetal strip qlespectively, a bout the composite neutral axis of the whole 
section. 

The maximum damping ratio obtainable occurs when Ed Id is very much 
greater than Eml , and this is evidently <5 max = 1 •m d

/ 2 
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Equation 2 may then be written 

b Ed I d 

~ma~ 
- E 1 +E (3 ) m m dl d 

E m 

This gives an equation for the damping which depends only on the 
Young's Modulus Ratio, and the geometry of the strip section. The term 
l:,/b max will be referred to as the Hnormalised damping ratioH. 

3.1 DeriV3ti e>..n_?.[ _R.e.le":;?..n_t.. ..F.o_r_m..u.l_a_~ 

We consider a strip of length l , coated with a thickness, t, of 
damping treatment over the portion of its length from x ~ a to x ~ -~. 

The origin of x is at the centre of the strip. 

We now define the term b by analogy with equation 1, AS follows:t 

4 )(~t = ~l?.eat:.....Q.issipate~~~n.it ~engt~_<?i..coatecLr_~'1i0l'l..J:eL.._c.y_~l~ (= ed) 

Maximum Energy Stored per unit length of coated region during 
the cycle (= e s ) (4) 

~ t is therefore the damping ratio increment for a strip c03ted over its 
whole length with thickness t. 

The total energy dissipated per cycle in the damping trerytment is 

+a +a 
ed dx = 4lT'~ t e s dx (5 ) J J-a -a 

+a 72 
The total maximum energy stored in the strip is dx (6 ) J e dx + 2 f eu5 

-a a 

where e is the maximum energy stored per cycle per unit length of the u 



uncovered portion. Now es = ~ ,where M is the amplitude of the 

local bending moment, EI is tfi~lfleXllral rigidity at a.IW point, and ha.,s 
two different values, of course,depending on whether the point is within 
or outside the covered region. Let its value within the covered region be 
(EI) , and elsewhere be (EI) • Let k = (El) I(El). Then c u c u 

=
 

Likewise, e = u 2(EI)
u (8) 

Equation 1 may still be used to d etemine the damping ratio of the 
partially covered beam. If we write 

,E = Lh +a
2 2

2 ~ M dx + ! M Jk d.x 
a -a 

then it mal readily be shown (by substituting expressions 4 to 9 into 
equation 1) that 

b/b = 
max 

(10) 

bmax is still defined by '1d/2, as in ~r. 2. We call~/~ax the 

I Normalised Damping Ratio t, and E. the 'Energy Re.tio', since it represents 
the ratio of the maxL~um energy stored in the covered region during one 
cycle to the total maximum energy stored in the whole strip. 

k is readily determined by using the elementary composite beam theory, 
ignoring the effect of the imaginary part of the complex stiffness of 
the treatment. This effect has been discussed briefly in reference 1, 
and should not be of any significance for most practical problems. When 
the bending moment, 1-1 is known for all points along the strip, the 
integrals of equation (5) may be evaluated, leading to the calculation 
of thE:: damping ratio, b ,from equation 10. 

In addition to the damping ratio, a generalised stiffness ratio, a 
generalised mass ratio, and a generalised force ratio are also required. 
The generalised stiffness ratio, (J ,is defined by the relationship 
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er = Generalised Stiffness of Fumamental Mode of Treated Strip 

Generalised Stiffness of Fumamental Mode of Untreated Strip 

Writing the generalised stiffness in terms of the strain energy 
stored per unit generaliSed displacement, this equation becomes 

er = (11)
 

where M is the berrling moment in the untreated strip, and H the moment 
in the t~eated strip; these moments correspond to equal displacements at 
the centre of the s trip when vibrating at resonance. 

The generalised mass ratio, }J- , is the generalised mass of the 
coated strip divided by the generalised mass of the uncoated strip 

I.e. = 

In this, f and f are the normalised displacement functions corresponding 
to the runaamental°modes of vibration of the coated. and uncoated strips 
respectively. p is the mass per unit length of the coated reeion divided 
by the mass per unit length of the uncoated strip. 

The generalised force ratio is obtained by considering the coated and 
uncoated strip to be subj ected to a unifonn exciting pressure. The 
ratio 'p', is then given by 

p = ,generalised Force CorresE0nding to Fundamental Node of Coated Strip 

Generalised Force corresponding to Fundamental Node of Uncoated Strip 

r dx 
c( 

(lJ) 

r0 

f 
-

dx 
0 

0 
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The next part of the problem is the determination of the bending 
mOMent distributions and the modal displacement functions corresponding to 
the fundamental modes of the strips in the different pa.rtially-covered 
conditions. This is dealt with in the follmring sections. 

3.2. The Constant Bending ~Ioment l'.ethod 

In this method, it is assumed that the non-uniform mass and 
stiffness distribution does not change the moment distribution from the 
sinusoidal form of the uniform simply supported strip. Since it is the 
integral of i.? that is required in equation (9), small errors in the form 
of 1'1 should not lee.d to large errors in E:. In fact, reference 1 shows 
that in one special case the accuracy of this method was of high order 
over a considerable range of coverage. In equation (9), M is therefore 
replaced by M cos 1r X • To determine the generalised stiffness ratio, 

c -r­
it is necessary to determine the strain ener~ stored in the strip, with and 
without the treat~ent, for the same central (generali~ed) strip deflection• 
.'hen the fractional coverage, a/ (Jl. /2), is ol. , and the bending moment is 

H cos 1\ x (x measured from the centre of the s.iJnply supported strip), it 
c --r­

is readily shown that the central deflection is 

11 r [= + (1 _1) {' ~ (1 - o{) . sin 
(EI): 1'(2 k k -2 

Furtherrnor0, the strain energy stored may be shown to be 

~(-
C 1. S("" ) (14b)::: TID 8' 

u 

where K( oJ...) , S (01.) are defined by these equations. 

The ce~tral deflection of an untreated strip (k ::: 1) is clearly 

M . ~ 
u 

thence the central bending moment per unit central displacement is 

The correaponding strain energy stored per unit central displacement 
is 

1\4(EI)u 

8 i? 
8 



Similarly, the central bending moment per unit central displacement of the 
treated strip is rr2 (EI) 1 , and the corresponding strain 

u 

energy stored is i 2 K (0<.) 

The generalised stiffness ratio, cr , is therefore given by 

s (0£ ) 
2 

[ K( cI.. ~ 

3.3 The Complementary Energy Method 

An approximate mode of vibration is assumed, of a form which can be 
easily manipulated and integrated. From this, the inertia loading, shear 
force am bendi~2moment distributions are found by successively 
integrating. W- is then integrated to give the terms required for 6 
(equation 9). For the simply supported strip a cosine mode of deflection 
may be assumed, with its origin at the middle of the strip. The 
deflection at any point is then given by 

y = y cos _1t__x ., (- ..t /2 ~ x ~ .R./2). 
o 

,! 

When undergoing flexural vibrations in this mode, at the frequency, W , 
the inertia loading is 

W 
2
Y f> me) 

'tlith the strip coated with d amping treat~'Tlent over the middle portion from 
x =-a to x =a, the shear force in the beam at any station is given by 

2wymo 0 
(o<x -ca) 

and <be: + 
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(Note: Both f and k he.ve unit value for a <:: x <	 g. ).
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The bending moment at arv station may then be shown to	 be 

M=JYomo(e-1) (~-~~Sin~ - (/,,-1)1: oosna +ri:OOSfrx],(o<x<a) (15) 
1t 1 1(2 1 rf 1. 

snd M =3yOffiO[ (r-1)( ~-x)~ Sinlt,," + ~OOS Ittx] • (a	 < x < ~ ) • (16) 

Substituting (15) and. (16) into the integrals of equation (9), we have­

+a 2	 2 2I \ M dx = g [({'_1)2!(! _a.\t ff! _a)sin lJ!l -z.gs~nffi!. CC5~la + l:<s>;trA oa} + 
w4-~~m~ k k Z Inzl'Z t 11" L .£J 1(4 .{ 

-a 

+ fsl+ (.a. +1 ~inZ1fa) + (f'-I)P.~t f(!_a)sin2 m,. - ~",.s~os~n1tal] ... (17)0 

1\"4- '2. 47r.t I 1(4[ Z t. 11' L J.. J 

4 

4 {t ~ 1sin 21ra} .+ 1. _ _	 . .... (IS) 
1t 4 Z 40ft .t.. 

Havin~: chosen values for a , and. knowing the corresponding values of 
p and k, the integrals 17 and 18 may be evaluated, and. the energy ratio
 

(equation 9) determined. p and k, of course, vary with the value of DC. and
 
..lith the initiHl amount of damping treatment. Equations 17 and 18 mar also
 
be used2to determine the generalised stiffness ratio, cr (equation 11),
 
but w must first be found by equating the total complementary energy
 
to the maximum kinetic energy.,
 

%. 

~ 
+!

Jrroo"} CQs 

2'lX .Ix • 

_11.. 
2" 

The generalised mass ratio, ~ , (equation 12) is found. by putting
 
f =cos 1t xiX- • As this is also equal to f , a less accurate value
 
or fA- will be found from this 'Complementary EBergy' NethOO, than from a
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method which employs a more accurate estimate of the displacement 
function f c • 

The generalised force ratio (equation 13) will obviously have unit value 
if f =cos 1tx/l~ and will again be of less accuracy than that given by 
a morg accurate displacement function. 

3.4 The Iterative Method 

In this method, Stodola's method of calculating torsional modes of 
vibration (reference 2) is adapted to the calculation of the fundamental 
flexural mode of the coated strip. The differential equation for the 
modes of flexural vibration of a beam is 

EI • U2 ] = w2.m(x).y 
2dx

where m(x) is the mass per unit length 

Integrating this four times 

y= w2JI~I\lm(x).y. dxdxdxdx • (20) 

If we now guess the fundamental mode (Yl , sayan 'approximate' mode) 
am substitute into the right hand. side, the integral will give a mode, 
Y2' which is a better approximation to the fundamental mode than Y • If

lY2 is now substituted into the right hand side, the result will be a mode 
wni6h is more accurate still. If this process is continued the mode cal­
culated in successive stages rapidly converges on the correct fundamental 
mode. 

Tre integral of equation 20 may be non-dimensionalised by writing 

EI =k(El) ,m =() m ,x =~£. , and y =y f( of! ). Equation 20 may then u I 0 0 ~ 

be written 

f( ~ ) If ~ If r( f ) dfdfdfdf
(El)

u 

This is the form used for the computational purposes of this paper. The 
multiplier outside the integral may, in fact, be ignored for the purpose 
of mode calculation. 

Now if equation (19) is integrated twice an equation for the bending 
moment is obtained. Use is made of this in calculating the energy ratio. 
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Having integrated numerically to obtain the accurate mode (which w~s 
obtained after 2 iteration processes) the ~ccurate mode may then be 
integrated twice to get the bending moment distribution. This is then 
used in equation (9) to c~lculate the energy ratio. 

This process being jde;:jl for a digital computer, a programme was 
developed for a simply sup'Jorted beam, usinq 30 ordinates equi-spaced 
throughout the length, to define the mode shape. Assuming symmetry about 
the centre, it was possible to obtain the energy ratio for each of 15 values 
of percentage coverage. The integration process was repeated three times, 
this being more than sufficient to converge on t he correct mode to the 
degree of accuracy reguired. The generalised force ratio, and generalised 
stiffness ratio are also easily obtainable by this method, 3nd their 
calculation was also included in the computer programme. The generalised 
mass ratio is also very readily obtainable by ap~ropriate integration. 

In the former, limited, investigAtion into the effect of partial 
cover3ge (reference 1) the effect on the damping ratio only Was considered. 
It has been pointed out in reference 3 that in general, the damping r~tio 

increment is an insufficient cri terion by which to judge the effectiveness 
of ."1 treat:'1ent, except when" the effect on harmonic resonant inertia forces 
is concerned. It is shown in reference 3 that when the effect on other 
resqonse qU'3ntities is being investigated, the contribution to the generalised 
stiffness and mass from the tre'3tment must also be taken into ",ccount, "'s 
the r'?sponsG is nbviJusly dependent upon these quantities "1S well as upon 
the damping ratio. The manner of the dependence of different response 
quantities on the dam~ing ratio, generalised stiffness and mass has b?en 
determined, considering both harmonic and random exciting forces. Cerbin 
criteria, containing the d~mping ratio, stiffness ratio (cr-) and mass 
ratio (A), have been derived by which the effectiveness of the damping 
tH';Jtment should be judged in relation to the various response qu:ontities. 
Sone of the more important response qU'1ntities and the associated criteria 
are listed oelow: 

(i) Harmonic resonant inerti 3 forces - S (as above) 

(ii ) Harmonic resonant vibration ampl i tude - 0- ~ 

(i ii ) Random vibration amplitudes (r.m.s., assuming one dominant 
mode only in the response) 
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(iv)	 Random acceleration amplitudes (r.m.s.) - p.5/4 a--i- h t p -1. 
This criterion relates only to that component of the acceleration 
deriving f rom the 'resonant t response of one mode of the 
system. 

(v)	 Random inertia forces (r.m. s., assuming one dominant mode) 
}-'t. <Tt. b t. p -1. This may be related to the reaction 

?orces at the edge of a plate, vibrating randomly in one 
dominant mode. A practical application is therefore to 
jet-excited random loads on the rivets attaching a fuselage 
skin 'panel' to its boundary members. 

( -1(vi)	 Harmonic, resonant soum transmission - JA-o.p. This 
relates to "the simplified system of the sound pressure 
transmitted through a finite plate set in an infinite rigid 
wall. 

Reference 3 gives a detailed derivation of these-lcriteria, and a detailed 
description of their applicability. The term p was not, however, 
incorporated in this work, as it vas assumed that the addition of the damp­
ing treatment did not significantly change the mode of vibration. It should 
be noted that the expression for p (equation 13) is only true when the 
strip (or plate) is being excited by pressures which, at arry instant, are 
uniform over the surface of the plate. If the source of excitation is 
a point force at the centre of the strip (where f =f = 1), then p =1. o c 
For other pressure and force distributions p may be determined in a straight­
forward way. 

4.2	 Computed Criteria for Different Coverages 

Calculations of the criteria have been made in the following way: 

A particular value of Ed/E was chosen, together with an amount 
of damping treatment surfi~ient to c over the strip uniformly 
on one side to a thickness of "t"' x the strip thickness. 't'" is 
referred to a s the 'initial thickness ratio', and therefore 
represents the amount of treatment used. 

(ii)	 Using the methods of section 3, values of ~ / ~ m ' cr ,r 
am p were calculated with the quantity ~ of trfttment 
distributed over different proportions of the strip. The 
criteria have then been calculated from the sets of the ratios 
obtained for each fractional coverage. 6 / S may be used 
instead of £, in the criteria since it is assum~~that the 
damping treatment properties do not change significantly with 
the frequency change associated with the increase of }-" and. cr • 

(iii)	 A range of values of t' (from 0.1 to 6.4) and a range of 
values of E/E (from .01 to .15) were taken, and the criteria m 
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were calcul~ted for all combinations of these values, and ~t 

fifteen different fractional coverages. 

Figure 5 shows a typical set of curves relating the criteria to the 
percentage coverage. These correspond to the values. 

= 0.8 

It will be seen that as the percentage coverage is v~ried, a maximum 
value is obtained for each criterion. These maxima do not all occur at 
the sam~ value of percentage coverage. Consideration of similar sets of 
curves corresponding to other values of EdlE and shows that different 
maximum values of the criteria are obtained (as expected), at different 
values of the percentage coverage. These maximum values of each criterion 
are plotted against in figures 6 to 11, and the coverage at which these 
maxima occur are shown in figures 12 to 15. The 'average' values of these 
maximum coverages for given quantities and stiffnesses of treatment are 
shown in figure 16. 

5. THE DAMPING OF PARTIALLY COVERED PLATES 

5.1 A Simplified Treatment 

The determination of the damping ratio, stiffness ratio and generalised 
mass ratio of a partially covered plate involves the integration of the 
bi-harmonic plate equation. The difficulties inherent in applying either 
the complementary energy method or the Stodola integration method (as 
used for the strip, par. 3) are obviously very great. A computer programme 
to cover all possible plate sizes (length-breadth ratios) and all possible 
coverages of treatment (different percentages in both directions) would be 
very lengthy, as also would be the presentation of the results. The 
following simplified treatment is therefore put forward, on the basis of 
which calculations have been carried out. 

It is assumed that the length of the rectangular simply-supported 
plate is more than, say, three times its breadth. The dynamic characteristics 
of the fundamental mode of the p11te, may then be regarded as being 
proportional to those of an elemental strip of spaa equal to the width of 
the plate. We next assume that the damping treatment is applied such that 
it covers pc% of the width and pc% of the length of the plate. If the 
amount of treatment is such as to cover the whole olate to a thickness 
of t, then the thickgess when pc% of the length and breadth are 
covered is t. l04/pc. It is now assumed that the uncovered regions 
at the two ends of the plate contribute very little to the ootential energy 
of vibration of the system, and that energy associated with longitudinrll 
strain is small compared with that associated with lateral (width-wise) 
strain. This assumption should be satisfactory provided that the thickness 
of treatment, ,is not excessive and that Pc is not too small. Under 
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these assumptions, it is evident that the plate problem may be solved 
approximately by regarding it as a be~ (02 strip), having p %of its 
span covered by a thicknesG of '"t't.lO /p of treatment. T5.e methods of 
par. 3 may now be applied on this basis. c 

It might be thought that a 'constrained' modulus, E/( 1- ))2), should 
be used instead of the usual modulus E, (V = Poisson's Ratio). It will 
be assumed, however, that the values of V 2 for the plate and treatment 
are equal, in which case the facto~ (1 - )J ) will cancel out (except 
at the lengthwise extremities of the treatment. This will be a local 
effect, and \-Till be ignored). 

5.2 Computed Criteria for Different Coverages 

Calculations were carried out for the simplified plate theory, following 
the approach outlined in fBr. 4.2 for the strip theory. These calculations 
were computed on a digital computer~ using the Stodola inteeration method. 
Only tHO criteria (b d, and JA~(/P) were computed for this plate theory, 
using the s arne range of variablei'! , as were used for the s trip theory. 
Direct comparison of the results is made in figures 17 to 19 and par. 7.6. 
In figure 20, the "average" optimum coverage graph is reproduced for the 
plate theory, and curves from the strip theory, (figure 16) are super­
imposed for comparison. 

6. EXPE~,INEN'TAL VERIFICATION OF THEORIES USED 

6.1 Details of Experiment 

Experiments have been conducted as an experimental verification of the 
theories used, and of the validity of the assumptions. In particular, 
the effect of assumption (e ) (see par. 1) on the calculation of the 
energy ratio at small coverages required investigation. The experimert 
consisted of vibrating a free-free bear., in its fundamental mode and 
measuring the natural frequency and damping ratio. The beam was initially 
covered uniformly on one side, with 0.1 in. of '~quaplas Kl02', after 
which the coverap;e was successively reduced, while the thickness of the 
treatment was correspondingly increased. A free-free beam was used in 
order to minin:ise support damping. Calculations usinG the constant bending 
moment distribution, and the ite1'ative method \"el'C carried out for the 
free-free beam to predict, theoretically, the damping ratios and natural 
frequencies. 

Heasurements of the dampir.g ratio, [~nd the resonant frequency, were 
taken at sevel'al values of percentage coverage. The bea~ \-TaS a top-hat 
section stringer with damping treatment on the crown surface. It was 
supported on thin wires at the two nodes of the fundamental mode. Two 
c:;ils 1,,,rere fixed to the centre of the beam, and positioned betwesn the 
poles of permanent magnets. One was used for exciting the vibration, and 
the other for meesuring the vibration velocity amplitude. As the visco­
elastic properties of Aquaplas were temperature sensitive, the rig was 
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enclosed in an asbestos-lined box and ther.mostatically maintained at 

680~1' ~ 20F. The dampinG ratios of the treated beams we:r'e found b;y­
using the well known technique of meaS111~ing thel,.zi..dth of the frequency 
response curve in the neighbourhood of resonance, the beam being excited 
bJ' a ~orce of constant amplitude. As the damping was found by other 
means to be virtuully linear, this method can be relied upon to give 
results of sufi'ici.ent accuracy. 

6.2 Compar~son of EA~erimental Results with Theoretical Predictions 

Fi~ure 1 shows the variation with percentage coverage of the 
measured and calculated damping ratios for the stringer-beam. Very good 
agreement is seen to exist between 50>~ and lO(1;'~ coverage. The existence 
of a maximum value of the dampinG ratio is clearly borne out b,y experiment 
and calculation. 

The Stodola Integration Method over-estimates slightly the peak value 
of the damping, and predicts an optilllUL1 coverage which is rather less than 
that indicated by the test. 

This is due to the invalidity of assl.l!1ption ( e) (per. 1) when the 
damping layer is thick over a limited region of the beam. The ends of 
the layer are not, in f~ct, being strained as much as is assumed b,y the 
eler.:cntary beam the0I"'J , and .consequently do not contribute as much to the 
danping as the Stodola Integr~tion method precicts. As the length of 
the lQye!' decreases with decreasing coverage, the ineffective ends of the 
1£.yer form a greater proport:.o:l. of. t11e total amount of the damping treat­
ment, t-Jith the result that the c..ctuc~ (measured) danping re.tio falls more 
and. more belml the Stodola Curve. This is seen to occur below 40;; coverage. 
The const8nt bending moment distribution method gives the maximum at the 
cor'rect coverace, but the maxlllUIfi dar;JpiIlG ratio is under-estimated. At 
101,]er covcrf.ges, the damping ratio exceeds the meEJ.su.red vclues b,y a small 
ar.lount. This is not to say that this met:lOd is, in general, more accurate 
for handling the lower coverage conditions than the Stodola integration 
r:lethod. The apparent improvement in accuracy is due to the cancellation 
of two sources of error inherent in the approximations, i.e. the error 
due to the inv8.1idity of assumption (e ), and that due to the bending 
moment distribution being inaccurate at low coverages. With different 
quantities of material or different material properties there may be a 
wider discrepancy between measured values and 'constant bendinc monent 
method' values. It does apgear, however, that the method gives a cood 
approximation to the maxirmun dampil'lb ratio obtainable, and also to the 
percentage coverage at which this occurs. 

The calculations and experimental results demonstrLlte that b,y 
suitably re-distributing the damping treatment, the d~~ping rBtio m~ be 
mede as much as twice that of a uniformly covered beam. 
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7. DISCUSSION OF THEORETICAL RSSULTS 

7.1 Comparison of the Results from the Complementary EnergY and the 

Iterative Methods 

The results from the complementary energy method are not shown 
graphically. However, the normalised damping ratios found b.Y each method 
were found to agree extremely well, even under conditions of large 't' and 
high E/E , where the approximate energy method would be expected to 
give t~e ~east accurate results. The agreement between the stiffness 
ratios was not, on the whole, as close, but the maximum values of the 
stiffness ratio, and the values of the percentage coverage at which it 
occurred, did agree closely. It can be concluded therefore, that the 
complementary energy method may be used with confidence to establish 
the optimum coverage and the corresponding (approximate) maximum value 
of the required criterion, although values of the criteria at off-
optimum coverages may be subject to some considerable error. It may 
be noted that the complementar,y energy method is exactly the same as the 
iterative method, terminated after one complete stage of the multiple-
integration process. It does not, however, provide an "improved moden 

which would permit a more accurate estimate of the generalised mass or 
generalised force. These quantities are always derived in this method 
b.r integration of the, initially chosen mode. 

7.2 The Variation of the Stiffness. Mass and Damping Ratios with 

Coverage 
, 

Figure 4 shows typical curves of p, }J.. and cr plotted against 
percentage covered. At 0% coverage, the beam (or strip) is virtually 
a uniform beam with a concentrated mass at the centre. If this mass is 
small compared with the total beam mass, the mode of vibration differs 
only very slightly from that of a uniform beam, and the generalised 
stiffnesses scarcely differ, i.e. The stiffness ratio, or , will be very 
close to unity. The generalised mass ratio will be considerably larger, 
since the mass of the treatment is nOli; concentrated at the c entre of the 
beam where the amplitude is greatest. 

At 100% coverage, the mass and stiffness ratio are identical with 
the ratios of the local mass per unit length and flexural stiffness, 
respectively, of the treated and untreated beams, the modes being identical 
in each case. Between 0 and 100% the existence of the maximum value 
of ,.... may be understood by reference to the curve of p, and also to figure 
3 which shows a typical modal variation with coverage. When the 
coverage is such that P is close to its maximum value, the mode exhibits 
a pronounced flatness (figure 3). With the correspondingly greater 
extent of the beam undergoing a displacement close to that of the 
centre (reference ) displacement, and with the mass of the treatment 
spread over this region, the generalised mass reaches its maximum value. 
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The existence of the maximum value of 0" follows from the fact that 
as the coverage is reduced from 100%, the treatment is at first being 
redistribllted to the regions of higher bending moment, which are therefore 
being stiffened up by the increased thickness. The regions at the ends 
carry little bending moment, and the removal of the redistributed 
material is of relatively little consequence. The nett effect is therefore 
an overall generalised stiffening of the beam. At very low coverages, 
the very large depth of treatment, ideally, gives a very great stiffness 
over the very small region; the remainder of the beam has the stiffness 
of the untreated beam. In the limit, as the coverage approaches zero, 
the generalised stiffness of the treated beam approaches that of the 
untreated beam, apart from a small factor arising from the difference in 
mode of the beam in the two conditions. The generalised stiffness of the 
beam therefore decreases as the coverage decreases to zero. Since the 
generalised stiffness also decreases as the coverage increases to 100% , 
a maximum must exist at some intermediate coverage. 

In practice, the theoretical maximum stiffness will not be achieved, 
owing to the stress diffusion and concentration at the abrupt change of 
section, where the treatn"ent is terminated. An experimental stiffness 
ratio curve would be expected to drop below the theoretical curve, more 
so at lower coverages, than at high. At both 0% and 100%, however, the 
experimental and theoretical curves must agree. 

The variation of the damping ratio with coverage follows a similar 
trend to that of the stiffness, and has been discussed in reference 1. 
It should be noted, however, that whereas the stiffness ratio approaches 
a value slightly greater than unity as the coverage approaches 0%, the 
damping ratio approaches zero. This follows from the damping ratio being 
proportional to t he energy stored in t he damping treatment, and the 
latter energy approaching zero as the coverage is made very small. 

It will be observed that the maximum value of the normali·sed damping 
ratio in figure 5 is not as great in proportion to the 100% value as the 
maximum stiffness ratio is to its 100% value. Now the damping ratio is 
proportional to the maximum energy stored per cycle in the treatment -:­
the maximum energy stored per cycle in the whole beam, and the energy 
stored in the whole beam is proportional to the generalised stiffness. 
The damping ratio of the non-uniformly covered beam is therefore 
proportional to the energy stored in the treatment -:- the stiffness 
ratio. Thus, it is not to be expected that the proportions of the 
stiffness ratio curve of figure 4 and of the normalised damping ratio ourve 
of figure 5 would be the s arne. The energy stored in the treatment 
increases at first as the coverage is reduced from 100%, due to a 
greater thickness of it existing over the region of greater bending 
moment. However, a s the coverage decreases and the thickness increases, 
the local flexural stiffness increases to t he extent that the curvature , 
and hence the energy stored in the treatment decreases. 
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It should be noted that the criterion (T'"b is the value of the 
generalised ~steretic damping coefficient of the beam, and is 
proportional only to the energy dissipated (or stored) in the treatment. 
It is really a more fundamental property of the system than the damping 
ratio, which is t x the hysteretic damping coefficient The 

the generalised stiffness coefficient 
explanation in t he last paragraph of the behaviour of tht energy stored 
in the treatment may be applied directly, therefore, to t he behaviour of 
the curve of CT 6 in figure 5. 

7.3 The Variation of the Criteria with Coverage 

The criteria plotted on figure 5 all behave in a similar way ~ the 
coverage changes. In particular, it is noteworthy that with one 
exception, the Qptimum coverages for the maximum values of the criteria 
are very close. The exception relates to the r.m.s. inertia force, 
which criterion contains the stiffness ratio raised to a negative power. 
As the coverage is reduced. from 100% the increasing stiffness ratio 
therefore has a detrmentvl effect on the criterion preventing it from 
rising to the s arne extent as the other criteria and also causing the 
optimum coverage to be greater than that for the other criteria. 

The r.m.s. sou~ pres3Ure criterion also contains u raised to 
a negative pouer. In this case, the increase of the generalised mass ratio 
(raised to the power of 5/4) helps to oppose the detrimental effect of 
the increasing stiffness, and the optimum coverage is of the same ord.er 
as that for the other criteria. 

No curves of criteria are shown for values of Ed and 'L other than 

those of figure 5. However, it may be stated that as these quantities 
are increased, there comes a point when the maximum vaLue of S occurs 
at 100% coverage. The value of ~ is then close to that at wHich the 
characteristic & vs. treatment thickness curve for a uniformly covered 
beam reaches a maximum (see, for example, Oberst's curves, reference 4) • 
Increasing the thickness of treatment over the covered portion (by 
redistribution) can then only reduce S+., (equation 10); the damping 
ratio of the non-uniformly covered beam -ctill then also be lower than the 
uniformly covered value, since the energy ratio, € , cannot be greater 
than unity. 

The maximur.l in the characteristic S ~. thickness curve for a uniform.ly 
covered strip also partially explains the smallness of the increase in 
damping ratio in figure 5 as the coverage is reduced. As the coverage 
is reduced the thickness of the treatment approaches the value for 
maximum 6 t and no further increase in 6 is obtained. The lm-Ter 
the value of Ed' however, the higher is the op~imun thicknes1 for 
maximum b t (reference 4); consequently for lower Ed' the optimum 
coverage for maximum Sd is lower. 
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7 -4 The Effects of Ed and Initial Thickness of Treatment on the 

Maximum Values of the Criteria 

The effects of Ed and initial thickness on the maximum criteria values 
are shown in figures 6 - 11. In interpreting these curves, it must be 
remembered that mate::-ials having different Young's Moduli, Ed.' also have 
different loss factors, "1 d. The normali sing process, whereoy a 
normalised damping ratio, S, has been used in the criteria, has 
effectively providej criterio~ values corresponding to the same value of 
loss factor for all Ed. The normalised damping ratio is the actual 
damping ratio divided by. h (the maximum possible value of the damping 
ratio obtainable with the trilHment) and. this is known to be VL/2. In 
order to incorporate the effect of different Yl I S in the cUrfes of 
figures 6 - 11, therefore, it is necessary to mu1%iply each curve by 
the appropriate value of Yl /2. Furthermore, materials having differentaE I s will, in general, have dIfferent densities, whereas the curves of 
F~guras 6 - 11 have all been calculated for the same density of treatment. 
The correction that must be made to allow for different densities is 
discussed at the end. of this section. 

The correction of the curves for the appropriate values of ~cI can 
only be carried out when particular materials have been specified. It is 
useful, however, firstly to consider the effect on the criteria of Ed 
and thicknes3 ratio togetheJ:, assuming that ~d is the same for eacn 
curve. The curves of figures 6 - 11 may be set into three categories: 

(i)	 Figures 7 and. 8, in which the criteria increase monotonically 
with both thickness and En. These curves relate to harmonic 
and random displacements respectively, and to a certain 
extent may be related to the bending stresses that occur at the 
ce;ltre of a vibrating panel. 

(ii)	 Figures 9 and 11, in which the criteria increase monotonically 
with thickness; at low thickness, the criteria increase 
with Ed' but at high thickness they decrease with Ed. These 
criterIa relate to random and harmonic transmitted sourxl 
pres 3Ures , respectively. 

(iii)	 Figures 6 and. 10, in which the criteria rise to a maximum as the 
thickness increases and then f8.l.1 off. At low thicknesses, 
the criteria increase with Ed but at high thickness they decrease 
with Ed. These criteria re:Iate to harmonic and rarrlom inertia 
forces, respectively. 

It will be noticed that the criteria of ~roup (i) have <r raised 
to a. positive power, whereas those of groups (ii) and (iii) have cr raised 
to 8 negative power. Since cr- is small at small val ues of the thickness 
ratio, it has a small effect upon each of the criteria in this range, and 
Ed affects the criteria mainly through the damping ratio &d. Oberst IS 
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work has shown that the highest damping ratio for a uniformly covered 
beam is obtainable with treatments of highest stiffness, Ed.' and it is this 
which explains the efrect of Ed on the criteria at low thi~knesses. At 
high thicknesses, however, the stiffness ratio becomes very large, the 
higher Ed's giving rise to the largest stiffness ratios. This is favourable 
for the ~riteria of group (i) (positive power of 0-). It follows from 
this that at the high thicknesses the group (i) criteria increase with 
Ed' whereas the othel'5decrease with Ed. 

The characteristic maximum of the criteria of group (iii) follows 
from the asymptotic behaviour of the damping ratio of a uniformly covered 
beam as the treatment thickness increases. At the same time, the stiffness 
increases monotonically. The r.m.s. inertia force criterion, containing 
the negative power of cr ,therefore decreases beyond the point at which 

6 reaches its maximum. The group (ii) criteria, although ha.ving 
negative l>0wers of cr , have,.,. raised by powers of one greater than those 
of group (iii). It is this mass effect at high thicknesses that causes 
these criteria to increase monotonically with thickness rather than to 
falloff after passing through a maximum. 

Consider now the effect of changing the density of the treatment. 
If the stiffness of the treatment (E ), the thickness ~tio and the 
percentage coverage are maintained c8nstant, the mode of vibration of the 
beam changes due to the new mass distribution. This, in turn, results 
in a change of the generalised stiffness ratio, cr , and also in the 
normalised danping ratio, 6. It is evident, therefore, that it is 
not strictly permissible to a~ply a simple correction only to the mass 
ratio to obtaiJ;1 the new values of the criteria. The new density must be 
incorporated in the mode calculations from the start. However, a s this 
means that the already extensive munerical calculations should be repeated 
for a range of treatment densities, it is suggested that for the time 
being the density effect be included b,y a simple mass ratio correction. 
Let the density for which the calculations have already been carried out 
be p ~I and that of the new treatment under investigation be f d2 9 If 
the caicttlated generalised mass ratio using density f' d was JA ,then 
the mass ratio using the new density may be taken as 1 + t Pd2 (p.- l)

f'dl 
This is a good approximation to the correct value provided that the mode 
of vibration does not change appreciably with change of density. 

7.5 The Optimum Coverage for Maximum Values of the Criteria 

Figure 5 and Figures 12 - 15 show clearly that a different optimum 
coverage is required for each criterion, for each initial thickness and 
for each different value of E

il 
• It is to be noted that the highest optilm.un 

coverages are required for the group (iii) criteria, and the lowest 
coverages for the group (i) criteria. This has already been explained 
in para. 7.3, in which figure 5 was discussed. 
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The differences between the optimum coverages for the various criteria 
are not so great as to cause one criterion to be appreciably below its 
maximum value if the optimum coverage corresponding to another is used. 
In particular, if an average is taken of the different optimum coverages, 
it will be found that the corresponding value of each of the criteria 
is still very close to its ~aximum value. This suggests th~t this average 
value may be given as the optimum percentage coverage corresoonding to 
the particular initial thickness and materi~l stiffness. Accordingly, 
average values of coverage have been determined from many such sets of 
curves as figure 5 and have been plotted in figure 16. 

Figures 12 - 15 and figure 16 show that the greater amount of 
treatment (i.e. the greater the initial thickness ratio) the greater must 
be the coverage for maximum effect. Similarly, the greater the value of 
Ed' the greater must be the coverage. That this should be so follows from 
the fact of the asymptotic nature of the t" vs. 't" curve for a uniformly 
covered beam. The stiffer materials have the lower values of ~at which

S reaches a maximum. Consequently, as the percentage coverage of a 
non-uniformly treated beam is reduced and the thickness of the given 
amount of treatment over the beam centre is increased, the maximum value 
of 'is reached sooner (i.e. at a higher coverage) with the stiffer 
material. Also, if a greater amount of treatment is given, the maximum 
value of ~ will be reached sooner than with a lesser amount. 

Figures 12 to 15 also show that for a given amount of treatment the 
difference between the optimum coverages required to maximise the different 
criteria is greater for the larger values of Eo and initial thickness. 
This follows from the value of ~ increasing wlth both of these 
quantities. Since some of the criteria c~ntain negative powers of ar 
and some contain positive powers, the difference in the behaviour and 
optimum requirements for these criteria would be expected to diverge as 

d and therefore Ed and thickness increase. 

7.6 Comparison of Results from Strip Theory and Simplified Plate Theory 

In general the simplifed plate theory gives higher maximum criteria 
values than the strip theory, and at higher optimum percentage coverages. 
This is to be expected, as, for the Same initial thicknesses of treatment, 
the thickness over the covered region of a partially covered plate is 
greater than the thickness over the covered region of a partially covered 
strip. Hence the maximum criterion value is higher. Also, the damping ratio 
of a partially covered plate approaches its asymptotic value sooner than 
that of a strip, as Pc is reduced. It follows from this that the 
optimum cover~ge for a pl~te will be higher than for a strip. 

It will be noticed in figure 17 that the plate theory curves fall 
away more rapidly than the beam theory curves on either side of the 
maximum values. Hence if a coverage is used which is slightly different 
from the optimum coverage, a plate criterion will be a smaller proportion 
of the maximum value than will be the corresponding strip criterion. The 
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"average" optimmn coverage given by the curves of figure 20 differ, of 
course, from the optimum coverage for any specific criterion. Figures 
12 to 16 show that it is the Harmonic and RMS Displacement and RMS Inertia 
Force Criteria which have optimmn coverages differing most from the average 
coverage. It follows therefore that the Harmonic and RMS Displacelilen.t and 

"RYtS Inertia Force Criteria for a plate are likely to be considerably below 
their grinnm (optimised) value when the naverage" coverage is used, more so, 
in fact, than the criteria for a strip. 

7.7 The Applicability of the Theoretical Results 

The Curves of figures 16 or 20 JlBy be used to find the optimum 
coverage for a given 8.IOOUDt or material or known stiffhess. 11.1e calculations 
leading to these curves are based on the assumption that the rode of 
vibration is the f'unClamental of a simply supported plate (or strip). There 
is evidence to suggest that an aeroplane fuselage panel responds in such a 
mode when excited by jet erf'lux pressures, provided that the panel is 
botmded on two sides by open section stringers (reference 5). In this case, 
optimum damping would be obtained with an unconstrained layer treatment by 
treating the centre Popt% of the ~el width and length with a uniform 
layer of the treatment. Some evidence also exists to suggest that fuselage
 
stringers vibrate in f'lexural modes having nodes at the frame attachment
 
points. The stringer could then be regarded as a simply supported beam, of
 
spm equal to the frame spacing, and theoretical methods of this paper
 
could be used to obtain the optimum coverage of treatment. The vibration
 
of autoIOObUe door panels is sometimes fotmd to be primarily in the
 
f'undamental mode, and again the anti-nodal treatment !mY be used.
 

When the vibration is not in the f\mdamental IOOde, rot is primarily 
in one pirticular overtone, then it !mY be possible to use the anti-nodal 
treatment by considering each inter-nodal area as a single simply supported 
panel, or beam, vibrating in its fUndamental mde. The optimum coverage is 
then P pt% of the inter-nodal distance, each sepirate inter-nodal area being 
treatea. It is tmlikely, however, that it would be necessary to damp the 
overtone and not the f\mClamental mode and other overtones. 10lhen all the 
modes need to have increased damping, tmirom. coverage over the whole 
pinel (or beam) is required. The anti-nodal treatment is therefore of 
most value when only one rode (prererably the f'undamental) requires 
increased damping. 

When treating a pillel the edges of which are completely restrained 
against rotation, it is obrious that no treatment is required in the 
vicinity of the points, or lines, of contraf'lexure of the mode to be 
damped. I.f the areas between the lines of contraf'lexure are regarded 
as simp1y suPI-Orted at the lines of contraf'lexure, then the curves of 
figure 20 IrIly be used to assess the extent of the optinmm coverage over 
these areas. The area between a fixed bcnmdary and a line of contra­
flexure may be regarded in an analogous we.y, but since the plate bending 
IOOment is high at the boundary, the treatment should cover a region 
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adjacent to the boundary, of width equal to p t% of the distance 
between the boundary and the line of contraflg~re. 

8. CONCLUSIONS 

The three methods which have been set out todetermine the optimum 
coverage of the s trip by the damping treatment have shown good agreement, 
insofar as the calculated coverages and corresponding maximum criterion 
values are concerned. The constant bending moment method gives results 
most rapidly, but is not as accurate as the complementary energy method 
which is rather more tedious in its application. The Stodola integration 
method really requires a high speed (digital) computer, and is the most 
accurate method of all. 

It has been established that the anti-nodal treatment does 'indeed 
improve the efficiency of an unconstrained layer damping treatment. 
The efficiency must be judged by criteria which contaiD the factors by 
which the stiffness and mass of the plate are increased, together with 
the damping ratio increment. The results have further proved that the 
damping ratio increment alone is an insufficient criterion by which to 
judge. 

The results have shown that the coverage required to maximize the 
different criteria are not aypreciably different from one another, 
for a given quantity and stiffness of treatment. Accordingly, it has 
been possible to draw up curves of the 'mean' optimum coverage for a 
wide range of givenqlantities of treatment and a range of material 
stiffnesses. In general, the greater the quantity of material to be 
used, and/or the greater the stiffness of the material, the greater is 
the opti.mu.m coverage. Ultimately, with very large amounts of treatment, 
or with very stiff materials, the coverage must be 100% for maximum 
effect. According to some criteria, there are optimum quantities for 
maximum effect, as well as optimum coverages. According to other 
criteria the greatest effect is obtained with the greatest amount of 
treatment. 

In the experiment to measure the dampiDg ratio of a vibrating beam, 
which was covered over different proportions of its length with a given 
amount of 'Aquaplas' damping treatment, the calculations of the Stodola 
integration and Constant Bending MOment methods vere confirmed over the 
range 50% to lOOi~ coverage. The measured maximum damping ratio vas slightly 
lo\·'er than that predicted by the Stodola method, but this was to be 
expected inviev of the stress diffusion effects at the ends of the damping 
layer, which vere ignored in the calculation. The measured optimum 
covereee was slightly greater than that predicted by the Stodola method, 
for the same reason. 
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The etfect of a change of temperature on certain criteria has 
also l:2en investigated, (see Appendix), temperature characteristios 
tor two specif'lc treatments being used. It has been shown that 
cbanging f'raa UDitorm to anti-nodal treatment does not signif'lcantly 
change the temperature bandwidth over which the criteria exceed one 
half of the JDAxhlDll values which occur at the optimmn temperature. 
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PERCENTAGE COVERAGE. 1\ 
flG.A 

Appen~ 

A.l	 The Effect of Temperature on th~~~ 

The purpose of this investigation was to assess the effects of the 
anti-nodal technique on the temperature bandwidth of the criteria. The 
temperature effects on the Harmonic Sound Transmission Criterion only are 
considered, but the method is applic~ble to all the criteria_ The criterion 
varies with temperature, due to the variation of both the Young's Modulus 
and Loss Factor of the treatment, but as the normalised criterion p,j~/p 
depends only on the Young's Modulus and is independent of '1d, the problem 
simplifies into two steps: 

(a)	 The determination of the value of p. c§d/p, for a range of temper"ltures,
 
due to v ariation of Young's Modulus.
 

(b)	 The multiplication of pd dip by t"/d/Z. at the corresponding 
temperatures, giving JAtJ/p for each temperature. 

Both Ed and "l d vary with frequency, but this effect is ignored in this 
present paper. 

A2	 The Effec~ of Y~~'s Modulus and Loss Factor on the Crit~~ia 

Figure A represents the 
variation of a criterion 
with coverage, in the 
region of the maximum 
values. The three curves 
relate to the same thick­
ness ratio, l , but to a 
different temperature, T_ 
At a certain temperature, 
T2, the material has a 
Young's Modulus of Ed2, 
and the corresponding 
optimum coverage is p 2% 
(point X2 in figure A~. 

Suppose the "normal operating temperature" is T2- Tre coverage chosen 
for the treatment will obviously be p 2% (at X2). If this cover~ge and 
thickness have been used, and the ~emperature rises, say to Tl' Ed 
will drop to Edl' and the value of the criterion will now be 2 
determined by point Xl. As this point is generally below ~, the value of 
the criterion will drop. 

If the temperature drops, say to T3, Ed2 will rise to Ed3, and the 
value of the criterion will be deter~ined by point X3- If the change 

- Ed2 is sufficiently small, X3 will be slightly above X2, but if theEd3 
change in Ed is larger, X3 will be below X2­

Thus from a graph similar to figure A, but which contains curves for 
many values of Ed' we cancetermine the variation of the criterion with 
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the variation of Ed. If we know the variation of Ed with temperature, we 
can hence determine the v8riation of the normalised criterion~~d/p, 
with temperature. 

Now we may regard the loss factor, vt d, as varying with temper~ture, 
independently of the Young's Modulus, Ed. Knowing the variation of' d 
with temperature, we may combine the correct value of' d with the 
normalised criterion to obtain the variation with temperature of the 
"unnormalised" criterion,.I4~/p. 

A.3 The Varia tion of the Criteria with Temperature, using Two Specific 

Treatments 

Dr. H. Oberst of Farbwerke Hoechst has supplied data relating Ed'
 
, d and temperature for two different damping materials: ­

(a) A "broad band" Vermiculite fi lIed treatment, having optimum properties 
at about 500C according to Oberst's criterion~, and a temperature band 
width* of about 9OOC. 

(b) A conventional,Vermicu1ite filled treatment, having ootimum properties 
at 40°C according to Oberst's criterion. The temperature band width of 
these properties is about 32OC. 

Using the "Simplified Plate Theory" values of Harm:)nic Sound Transmission 
Criterion ( ."... S d/p) for several values of Ed (at a given Pc%), in 
conjunction with Oberst's data, figures 21, 22 were calculated. These show 
the variation of the criterion with temperature for three different 
conditions of coverage:­

(I) Anti-Nodal Treatment, with an initial thickness ratio "t'" = 0.8, p~rthl1y 
covered to maximise the criterion J"fS/p at the temperature for the 
material optimum properties (i.e. 50C and 400C respectively). 

(2) Uniform coverage (1ClCf%) with a thickness ratio 't = 0.8. 

(3) Uniform coverage, but with a higher thickness ratio, chosen to give, 
at the temperature for the material optimum properties, the s::>me v'llue of 
the criterion as the anti-nodal treatment, (I). 

*The temperature band width is defined as that temperature range over which 
the damping properties are equal to, or greater than, one half of the 
maximum damping property. 

**The criterion used by Oberst, to estlblish the temperature at which the 
treatment has its optimum damping properties, is the dampinq ratio of a 
simply supported strip, covered, uniformly (locr;~) on one side with fue 
damping treatment, having a treatment weight 20% of the weight of the metal 
strip, at a resonant frequency of 200 c.p.s. 
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A.4 Conclusions 

Throughout the range of temperlture, considered in figures 21, 22, 
the anti-nodal treatment gives higher values of the criterion that the 
uniform (100% coverage) treatment of the same weight. For a given 
weight of treatment it is therefore always advantageous to use the anti ­
nodal treatment. It will be seen that condition (3), giving the same 
criterion values at certain optimum temperatures as condition (1), h~s a 
slightly greater bandwidth than candition (1). However the difference in 
the bandwidths is hardly sufficient to justify the additional weight of 
treatment required by condition (3). 
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