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ABSTRACT

The pehavior of a dynamic damper in a simple structural
environment is studled. The structural model used is a
stretched string under harmonic lcading at the ends. The
aim of the analysis 1s to estaovlish conditions under which
maximum damping is obtainable. The unsymmetrical modes are
undamped and the analysis is concerned only with the damping
of the symmetrical modes.
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SYMBOLS
Arblitrary constants.
Velocity of transverse waves in string =J(140) .

n th root of Cos(¥ ) + (4/5)81:1 ¥ ) = 0, arranged
in ascending values of

Restoring force produced by damper at x = O.

Real part of complex shear modulus G(1 + %ﬂ) of
damping material.

Thickness of layer of damping material.

/1.

w/c. Wave number.

Length of string.

Integers.

Amplification factor defined as ratioc maximum reso-
nant amplitude to maximum statlic ampllitude under same
spacewlse loading conditions.

Load carrying area in shear of damping material.
Time.

Tension 1in string.

Transverse displacement of string at point x.
Transverse displacement of string at x = 0.
Distance from center of string.

Maximum transverse dlsplacement of string supports.
G S L/ 4Th.

(1/2qQ). Effective damping ratio.

2%/L.

Loss factor of damping material.

kL/2.

Linear density of string {mass per unilt length).
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INTRODUCTLON

A dynamic damper in the form of a mass, connected through
a viscoelastic layer acting in shear to an antinodal part of a
vibrating structure has recently attracted some interest. How-
ever, the mass required 1s often so large that the weight pen-
alty has been unacceptable. It is sometimes possible to consider,
instead, a devlce with an effectively infinite mass i1.e. a con-
nectlon through the shear damping material layer stralght to a
fixed polnt in the structure. In such a case it is of interest
to examine the amount of damping that can be introduced in this
way, and the conditions for the dampling to be an optimum. Since
the damplng 1s zero when the statiec stiffness of the layer 1s
both zero and infinite, the optimum must exist for some finite
value of the static stiffness of the material. In the present
note, this problem 1s discussed with reference to a slimple sys-
tem comprising a finite string, with thils type of damper at its
center, and vibrating in a symmetrical moede. The damper will
not, of course, contribute any damping to the unsymmetrical modes
in this posltion.

THEORY

viscoelastic —p X

vibrating
supports

”*Eza:j& X exp{iwt)

X exp(iwt)i"
.

ground

Figur=s 1. Illustration of Vibrating System

Conslider a string of length L fixed to two oscillating sup-
ports, each having equal amplitudes X exp(iwt). The damping de-
vice is attached at the center of the string. Let the thickness
of' the layer be h and the load supporting area S. The complex
shear modulus of the damping material is G(1 + i) where «is the
loss factor., It 1is assumed that the mass of the connectlng pleces
shown 1s small compared with that of the string (although this is
difficult to realize in practice for a string, it will be more
representative in thils respect of plate or shell structures where
the mass added can be made small). The equation of motion of the
string is:

(d%W/ax?) + k2w =0 (1)
where k =W/c and ¢ = \/TZ; (2)

Manuscript released by author Septambar 1964 for publication as an RTD
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with T the string tension, £ the linear density of the string
and w the fre.uency. The solution of (1) is:

W(x) = A Cos{kx) + B Sin(kx) (3)
The boundary condition at x = L/2 is W = X. The condition at
x = 0 is that 2T(@W/? x), = o is equal to the force produced
by the damping layer. Now for the damping layer material:

Stress/Strain = a(1 + iya)

WO F el 1)

F = (08/n)(1 + 14) W(O) ()
where W(0) 1s the displacement of the string at x = ¢ and F is

the restoring force produced by the damper. The solution of
(1) which satisfies both these boundary conditlons is:

Wix) =[x - (L/8)(1 + 1u) sin(E) W(0) | cos(kx)/cos(¥)
+ (L/E)1 + i/u) W(0) sin(kx) (5)

with 8 = XI/2 and oL = GSL/4Th (6)

If we now put x = 0 in e,uation (5), we obtain a linear first
order eyuation for W(0), the solution of which is:

w(o) =

X
cos(8) + (L/8)(1 + j_/a)sm(g‘i (7)

Putting (7) back into (5) then gilves the equation for W{x) in
the form:

W) = x [COS(EAJ s (L B) (0 + in) sm(g&)}
Cos(€) + (L/B)(1 + 1) 5in(E) (8)

with o = 2%/L (9)

From equation (8), 1t is seen that the condition for reso-
nance 1s:

Cos(®) + (L/B) 5in(E) = 0
t.e. §= (L) (10)

where n 1s the number of the symmetrical mode belng investi-~
gated and f(e{ ) is the n th root of Cos(¥) + (,L/E)sm(§g - 0.
Note that B lies between 7/2 and 7 for the first mode (n = 1), as
& varies from O to o© . From (8) the amplitude at resonance is
seen to be:

-2-

TR NN s




)l . Jleos(Ea) + (£/®) sin(¥s)]% + (4%4%/8%) sin(Ea)
x (Ly/B) (B/E% L)

(11)
where ® 1s given by equation (10) and Sin( ¥) = -E%/§?+¢?
from (10). If &« i1s less than 0.2 cor 8o, the term involving

A will be negligible in eguation (11) for all values of o
and, to a sufficient degree of approximation, (11) then becomes:

§J_§}L+|W-(—)J—*—f [COS(§&) + (L/€) sm(ga)]g (12)

JE+ L sin[EQ - a)] (13)

Therefore W(x) is a maximum when:
€(1 - ) =m /2
b=1-mw/2€ =1 -mmu/2f (oL ) (14)

where m 1s an odd integer. The number of values of m for which
O£4<€1 is limited e.g. for n = 1, only one value of m exists
subject to this requirement, namely m = 1. From equation (14)
it is seen that &4 = 0 when L= 0 and A = 0.5 when £ = for

n = 1. A graph of 4 against oL is plotted in Figure (2) for
several values of n and m. Putting (14) oack into (12) now
gives the peak value of {(W(x)] for given oL in the form:

Bolu Ju(x)] _ 2 21/2
X@af%mm (B+d)
i.e. Iw(x)lmax = X[f;(o(.) +oL2]/°{/¢¢ fa(L) (15)

Now at zero frequency5'§= 0 and so0o W = X everywhere, by equation
(8). The maximum value of |[W(x)| at zero frequency 1is there-
fore X. The amplificatlion factor @, defined as the ratlic of the
peak resonant amplitude to the peak static amplitude, therefore
becomes;:

@ = (s ) L) fop ) (16)

For small amounts of damping corresponding to small values of
/A (#<0.2 or so), the eyuivalent damping ratlo is defined as for
viscous damping i.e. as 1/2Q.

6 = 1/20 = oLu fn(cL)/2 [f;(a(_) +=(_2] (17)

We note from equation (17) that 820 as o =0 and as £>w. The
optimum value of 8 occurs for an intermediate value of o .
Figure (3) shows the variation of #8/u with &£ for the first

few modes. For the first mode, 1t 1s seen that o ~ 2.3 for an
optimum.
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The physical significance of &L 1s of great importance. ¢
Consider the statlc displacement of the string of length L :
by an amount W(0) due to a force F at the center. The dis-
placement function for the statlc case will vary linearly
from W(0O) at the center to zero at the ends. The restoring
force due to the string tension will therefore be:

F=20(2W/dx), - o
i.e. F = 27 W(0)/(L/2) = (41/L) wW(O)

1.e. the static stiffness of the string under a point load
at the point of application of the damping device is 4T/L
in this case. Similarly, for the viscoelastlc layer, equa-
tion (4) shows that the statlc stiffness of the damper is

aS/h.
oL

GSL/4Th = (GS/h) / (41/L)

gtatic stiffness of damper
statie stiffness of string

1.e. the static stiffness of the damper must be in a fixed
ratio to that of the string (referred to the point of appli-
cation of the damper) for the damping to be a maximum. This
conclusion will be relevant to far more complex systems than i
this, although the exact relationship between the two stiff-
nesses need not be maintained (Figurs 4).

CONCLUSIONS

Although the mathematical model used to represent the
structure on which the damper operates was so simple, the
analysis has highlighted a number of features which, at least
qualitatively, can be expected to occur for far more complex
structures and has provlided some insight into the parameters
likely to be involved.

An optimum ratioc of damper stlffness to structure stiff-
ness at the point of appllication of the damper ls found to
exist, for which the damping ratio 1s a maximum. For dampers
much stiffer than this optimum, the antinocdal point at which
the damper l1s placed becomes more and more constralilned and
eventually becomes fixed i.e. a nodal point. This is, of
course, physically cbvious but it 1s useful to know what damp-
er stiffness to glve consideration to when designing experi-
ments on more complex structures, so as to avoild this possi-
bllity, and this was the aim of the present analysis.
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Variation of positlons of peak resonant amplitude
with damper stiffness.
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