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ABSTRACT

Tnis report contains an investigation of "mode interaction" instabilities
of aircraft, "Mode interaction” refers to coupling between an elastic mode
end a rigid body mode of the free system. Three ratter general airframe
configurations are analyzed in detail. It is shown that systems which tend
tovard steady state divergence are particularly susceptible to mode inter-
action, Also, that serodynamic damping terms can have a destabilizingr
effect upon a free system. The analyses show that sercelastic systems which
possess no finite frequency elastic mode can be susceptible to a finite
frequency instability. Computer studies of several different airframe
confipurations are discussed. Aﬁ appendix to the report contains stability

charts for an ailrcraft having two rigid body modes and cne elastic mode,
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Is INTRODUCTION

The Investigetion of reference i, titied "Optimum Structural
Representation In Aeroelastic Analyses® was initiated as a study of
the effects of elastic modes of an aercelastic system on the low
frequency response of the system, The results of that investigation
provided a straight forwsrd method of representing a system in terms
of a fow of Its normal coordinates and the “residual flexibliity® of
all higher modes which proved to be an accurate approximation of the
aercelastic system for the prediction of 1ts dynamic behavior in the
frequency band from zero through the frequenclies of the normal modes

explicitly Included in the representation,

This method of structural representation was shown to be vaild
In 8!l confligurations studied except In the case of "mode Interaction"
where no conclusions were drawn. "Mode Interactlion® is defined as a
condition of potentiai or inclplent asroefastic instability involving

one elastic mode and one riglid body mode of the free system.

The Investigation reported here wos undertaken to provide some
insight Into the mechanism of "mode Intersction® and to provide a
means of predicting the susceptibiiity of a given configuration to
this phenomenon, Since the "mode interaction™ phenomenon Is definable
in terms of a potentlial acroelastic instability, this study was aimed
particulariy at the prediction and understanding of the instability

rather than at prediction of the response at a subcritical speed,.

Masnuscript released by authors August 1963 for publication as an
ASD Technical Documentary Report.
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The prediction of critical velocity (flutter speed) and the system
response at a subcritical speed Is certainly a solvable problem for any
system. Many standard references on flutter analysis and aeroelasticlty
present general methods which are comprehensive In their potential
application. Reference | presents equations of mofion of an aeroelastic
system which are an example of a compietely comprehensive analysis,
Equation (3.63) of reference | Is
] &3 = [20d (1] - (oo D) ( el (80 {83+ £52) o0
where:

[YKJ Is a diagonal matrix of the generallized mass and stiffness
of the normal modes, [YK] = EKR] - a? [mK] .
{gk} is the vector of normal coordinate deflections,
Eﬁma is the matrix of normal modeuﬁhapes o( the "modal matrix" P
of physical coordinates m.{l{@%K] Is & square matrix. .
[bmml is the aerodynamic lnfluencé.éoefficient matrix in the
physical coordinates m, defined by {Fm]-- [Qmwl {ym} .
[x;;] is the residual flexibility matrix or a matrix defining
the stiffness properties of the system which are not
included in the generallzed stiffnesses [KK] .

{Féﬁq'ls a vector of additional externally appiled forces.'

Equation (I-1) can provide a rigorous statement of the equations of
motion of a system if all elasfic modes of the system are included in
the K coordinates and at least an excellent approximation of the system
equations when the K coordinates include a reasonable number of the

lowest modes of the system,



Equation (I-1) Is useful In providing an accurate prediction of
the dynamic response of a complicated system, Such predictions, how-
ever, do not always give an understanding of the basic mechanism of
the phenomena being studied. Thus, such an equation can provide means
of discovering fhéf a given aircraft design has unsatisfactory stabll-
ity and control characteristics, but unless the basic mechanism of the
instability is understood by the designer, he will be unable to foresee
which design changes result in improvemeni. The systems analysed in
this study were selected so as to throw light on the basic mechanisms
of mode interaction. In order to lllustrate these mechanisms clearty,
it was often found useful to make simplifying assumptions. Therefore
the results of this study apply to more definlte stability and control

problems than does equation (I=-1), which is very general,

Three analyses are made in this study. These analyses consider

the following systems:

le (Section II) Analysis of an airframe represented by two rigid
body modes, one elastic mode, and the "residual flexibility"
of all higher modes. The chief simplifying assumption of this
analysis Is the omission of all damping terms from the equa-
tions of motion of the system,

2. {Section III) Analysis of an airframe consisting of a simple
airfoll flexibly attached to a rigid fuseiage. In addition to
the assumption that the fuselage is rigid, it is also assumed
that the airfoil has no mass,

3, (Section IV) Analysis of an alrframe having two rigid body modes

and one elastic mode. This analysis omits al! consideration of



wn«%ﬂ

residual flexibility of the higher modes of the system,

Since this study is aimed particuiariy at the supersonic and high
subsonic veloclity regime, serodynamic lag functions were omitted in all

analyses.




JI. ANALYSIS OF AN AIRFRAME REPRESENTED BY TWO RIGID BODY MODES,
ONE ELASTIC MODE, AND THE ™RESIDUAL FLEXIBILITY"
OF ALL HIGHER MODES

The "residual flexibility" approximation, derived in reference |,
in generalized modal analyses provides a means of including all stiffness
properties of a system In the analyses while the mass Is represented by
the generalized mass of a selected number of lower-frequency normal modes.
Advantages in simplicity of solution of the conventional truncated modal
approach are obtained when the coordinate veloclty dependent terms are
omitted. The omission of these damping terms in the equations of motion
will be detrimental to the accuracy of the predicted stabillity boundaries,
but this analysis will be shown to be usefu! by providing some Insight

into the stability problems of more complex structures,

The airframe configuration considered in this anatysis will be a
general one defined only by the following parameters.
m = the total mass of the system.
r = the radlus of gyration of the system (then mr 1s the
pitching mass moment of inertla of the airframe about
1¥S CeQe)e
r “m = the generalized mass of the first elastic mode of the
systems Thus r_ Is just a radius of gyration obtained
by dividing the generalized mass of the first elastic
mode by the total mass, and taking the square root,

) = the undamped natural frequency of the first elastic mode.

- —~|= the moda! matrix defining the mode shapes at the h (plunge)

coordinates and the @ (pitch) coordinates of the system



for the r modes Included, 3 modes are included, the
zero frequency plunge mode (mode 1), the zero frequency

pitch mode (mode 2) and the first elastic mode (mode 3).

I T
hh 1 Xen
—=—=t=—==| = the flexibility matrix of the complete free system
Xon | X6
L ! when the zero frequency modes are restrained to zero
displacement, partitioned by h and & coordinates.
°°| wl
“nh | %en
——wf——~— | = the "residual flexibility" matrix of all elastic modes
oo | o
;?Bh | XBB higher than the first, partitioned by h and 6 coordinates.

This matrix actually is not needed to define the system
since (from a special case of equation (3.21) of refer-
ence |) it Is determined from system parameters listed

above by the equation

S

where X, . Is the flexibility matrix with the zero fre=-

quency modes restrained.

The aerodynamic forces included in this analysis will be defined by
the following partitioned matrix equation
1
Fh 0 1 Qupl |"
P [ .4 i S (11-1)
1
LA 0 | 0 e

where q is the dynamlc pressure -é- Ve,

The equations of motion of the aerocelastic system can be written by
a process of partitioning equation {I-I}. The quantity =~ m? in equation
(I-1) 1s replaced by 52 in equation (II-2), since we look for sclutions of

st

the equations of motion having time dependence of the form e~ , where &

may be complex.



: iz
(§-11) %S ﬁmomxﬁ%mx*owv _.w,_& b W.& _”2& b - _HL PW&
Kl L.u_;ow

1], o s a
g Am3+m1mvm A 0 0
= ANUW 0 NﬂNLE Q
r_un i ) 0 musl
*(2-11) uojienba jo ap|s jybja ayy uo jonpoud Xjajew ayj $0 swis} oJaz-uou ayy Ajuo Bujpniduj
.mm.; Te 1! MyT]
&
- o — [ E
0o, | ue . N Al ==
0 | O X X o | o 1 1 o _
(e-11) Amuv A“”m Hvﬁ Hv *“ Hv I R o l | _.moe.__ ﬂm;e._
— Tl T i PRRY Rl Sl B Bl el PO b e I P P P
oy, | ue_ | uy ou, | | Ta1l a1
'y Ww*..“v*..”v o, 0 L X | wX ] ro_o 0o | I _._eo.___._ce._
L. ol I - — -] I._._r.. J il |_l
¢ [, @ @
2 AN3+NwVN Au 0 (¢}
= NU 0 NﬂNLE 4]
_M N 0 0 N»E




L e AR i N S i S S5 i 36 o A

iR bl 5

Ui S e e i

In order to shorten subsequent matrix equations we shall define an

"aeroelastic aerodynamic influence coefficient matrix" ['Ghe] as follows

ol - {021 - ] (3} ol

It Is well to note that [Q.ha] Is a function of the dynamic pressure
(q) and the number of elastic modes explicitly included In the analysis

(in this case | mode}.

The equations of motion of equation (II-3) may be further simplified
by recognizing that the modal column {Qel}, the pitching slope deflec-
tions in the rigid plunge mode, Is equal to zero, and that the modal col-
umns {@h'} and {1’92}‘ » the plunge deflections in the rigid plunge mode
and the pltch siopes in the rigid pltch mode, are equal to {I} s @
colunn of ones, due to normallzation, The equations of moflion now may

be written in the form

—

- Y el {1} ORISR

R R N [ S O Y R E
RS R N[O R R S A RE !

(11-5)

In an effort to obtain a solution in terms of parameters for which

engineers are more likely to have intultive judgment than for the general-

ized modal parameters of equation {II-5), we will Introduce the concepts

of steady-state elastic divergence and short perlod mode frequency,

Conventionally the short perlod mode frequency is the plitching fre-

guency exhibited by the riglid system when aerodynamic forces are Included,




For this analysis we wlll define the "aercelastic short perlod mode

frequency" (wb*) to be similar to the conventlonal definition except
that the system, Instead of being rigid, will include the "residual

flexibi11ty" of alt elestlic modes higher than the first. This fre-

quency can be obtalned from equation (II-5) by letting 63 be zero,

then assuming harmonic motion.

oo () T o Rl {1}

Steady-state elastic divergence is conventionally defined for a
supported system as that aercelastic instability which can occur at
zero frequency and is therefore Independent of the mass of the system.
This simple definition cannot be applied to a free system bacause in
this case:

1. Other potentlial zero-frequency Instabl|ities exist which

are not aerocelastic in nature.

2. The mass distribution of a free system must be considered,
The only reasonable definltion for steady-state elastic divergence of
a free system Is available through the description of the elasticity
of the structure when restraints are placed on the zero-frequency
normal modes of the system. In this case sfeady-state divergence can

be defined by the singularity of the matrix <{[I] -q [?mé] [fhé[}

where q EQmm Is the matrix of aerodynamic influence coefficients and
[}m;] is the deflection influsnce coefficient matrix of the structure
when the zero-frequency modes are restrained. |In this analysis elastic

divergence Is determined by the vanishing of the determinant

RIRRICWEN




which may be expanded as follows in the parameter q

[] - o [one] e

is the sun of the first symmetric minors of [Qha] [Xeh]

-I-qu-l- DEq-.....Dhqh (11-7)

where: [)l

(sum of the diagonal elements).

02 {s the sum of the second symmetric minors of E?hE][XBh_] .
th

B, Is the sum of the h  symmetric minor of [Qhe:] [Xeh] .

Then defining the "aeroelastic index" D by

- 2 h

D= qu - Deq * o s e ¢ o Dhq (II‘B)
from equation (IXI-7); O will equal O when q = O and T will equal | when

q is the dynamic pressure at divergence.

Steady-state divergence of the free system can also be determined

from equation (II-5) by letting § =& =25=0. Then

el 02 = {0,7F op 0] fo7 - o (119
where 9 is the dynamic pressure at divergence. We now note that the
quantity | 5 T 3

—_— 4.7} o [Oe] 426+ (11-10)

exhibits the same known dependence on q as D; that Is both functions:
1. Equal | when g = O,
2. Equal 0 when g = the dynamic pressure at divergence.
2. Are equal to q Qxhe when applied to a system containing
only | elastic degree of freedom, | palr of aerodynamic
coordinates,

It is then postulated that

P o 1 o Bl {4} o
e e

10



A rigorous proof of equation (II-11) was not obtained and Its validity

will be tried by example problems,

The characteristic equation obtained from the determinant of the

matrix coefflcients of equation (II~5) is

&2 [shi- As® + a] -0 (11-12)

where

ol - B B {0} - B 80T ol {1
- B BT B0 b < B T < 83
- {4’93} {"I’ha}T 9 Eéhe] {'}}

For a configuration where the slope deflections "sensed"™ by the
aerodynamic representation are all equal in the first elastic mode,*
then the lest term In equation (II-12) for the factor E is zero, since
fhrough normalization {ﬁ’f} can be made equal to {l} « For the
configuration considered in Section IV (since only | aerodynamic cell
is included) this term is zero and probably for a rather large range
of configurations this term has fittle importance. Therefore because
this term is of doubtful significance and because its omission greatly

simplifies the results of this analysis it wil! be assumed that
{'}{“’ha:? 3] {&’} - {"93} {"h;}T [ﬁhe] {'} =0 (11-13)

*An example of this configuration Is one containing a rigid t11fting
surface,
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Then by substitution of equations (I1-6), (II-t1) and (II-13) into

equation (II-12), the characteristic equation can be written

s° [sh + AsS + a] -0, (I1-11)
where

A= mba(l ~ D)+ “5*

In equation (II=-1L) with (1 = D) =0, 32 will be real and negative
uniess A2 - LB is negative. If A% - LB is negative, then two of the
roots s of equation (II=14) wiil have a positive real part. The
system is therefore on the verge of instability when

A% w18,

Then marginal stability Is given by

*
6

2 =2 (. -V%) ; (1I-15)
Ye
ﬁ!*
and since both D and E?— are always continuous functions of the dynamic
e

pressure beginning at the origin, the lowest dynamic pressure which wilil
satisfy equation (II-15) 1s given by

*
()

2. -\7 (11-16)

w
(-]

Both sides of equation (II-16) are functions of the dynamic pressure,
The dynamic pressure at flutter is defined as the intersection of these

2 functions,

The first observation we may make from the results of this analysis

is that a strong relationship does exl{st between mode interaction, or

Ie



ftutter resulting from coupling of the first elastic mode and the rigld
body modes, and elastic divergence. This analysis shows that for free
systems which fIt the assumptions made, classlical "elastic dlvergencé"
will not occur because a flutter instabilify will alweys exist at a

veloclity lower than that corresponding to divergence.

The second observation we may make from equation {II-16) s that
when D, the Maercelastic index", is negative the frequency ratio Is
complex and ftherefore flutter will not occur. The signlflcance of a
negative D Is that the system Is losing aerodynamic effectiveness (at
a glven rigid body mode pitch angle, the aercelastic deflections of the
structure reduce the total tift force). This observation provides the
following useful qualitative criteria for the susceptibility of a given
configuration to mode Interaction:

1. If a system loses aerodynamic effectiveness as velocity Is

Increased, then mode interaction will not occur.

2. [f a system increases In aerodynamic effectiveness as velocity
Is increased, then mode interaction will probably occur; the
system will be unstable at a velocity less than that predicted
for steady-state divergence. At the velocity of Instabillty
the ratlo of the uncoupled short period mode frequency to the

first elastic mode frequency will be less than I.

COMPARISON WITH KNOWN SOLUTIONS

A number of aircraft were studied on the CEA analog computer in
the course of this pro ject and that reported in reference I. Most
conflgurations studled exhibited a flutter Instability involving the

rigld body modes and the first elastic mode, and in all but one of

13
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these cases the system tended to diverge at some higher speed. One con-
figuration, (conflguration 3 of reference |) a swept wing alrplane, lost
aerodynamic effectiveness as velocity increased, This configuration
showed no tendency to flutter even though the short period mode freduency
virtually colincided with the elastic mode frequency. The one configura-
tion which did not tend to diverge but did exhibit mode interaction was
one where finite aerodynamic damping witl be shown to be a necessary
parameter for flutter to occur and therefore could not be predicted by

this analysis which ignored all damping terms,

These results In general coincide with the qualitative criteria
drawn from this analysis; however, in most cases the aserodynamic damp~
ing appeared to have a reasonably large effect on the quantitative value

of the flutter speed, precluding accurate prediction by this analysls,

Configuration lj of reference I, the delta winged airplane, showed
very rapld variations in damping at flutter. This phenomenon usually
indicates that aerodynamic damping terms have |ittie influence on the
Instability because they do not vary rapidly with speed or A.C. location,
The criterlon of equation (II-16) was applied to configuration L because

damping did not appear to be a controlilng parameter in this case. This
criterion was the only one produced In this study which was in a form

applicable to this "plate~lTke™ structure,

DESCRIPTION OF CONFIGURATION L

The aircraft used in this comparison is [dentical to configuration
L, of reference |, The geometry, mass distribution and structural param-

eters are repeated in this report in Figures | through 5. The aero-

L



dynamlc forces were represented as follows:

l. For the purposes of describing aerodynamic forces, the wing
was divided into three strips shown in Figure 6, The strips
are assumed to be rigid planes whose deflection Is defined by
the plunge deflections at the I/} and 3/1; chord coordinates
shown in Figure 6. The serodynamic 1ift and moment on each
strip are rigidly beamed to these same I/L and E/h chord co-
ardinates of the elastic structure.

2. The aerodynamic center of each strip is located on the mean
chord of the strip and aft of the effective leading edge of
the strip a distance xc (¢ = mean chord length of strip).

x was varied in the study.

3. The aerodynamic lift force on a strip is given by
i z
L‘ng25CL (e-v)
a
where

) =-§ (z%_- z%) s the pitching slope of the strip

{positive nose up),

z s the plunge deflection at the A.C. (positive up),
z%. and z% are the plunge deflections at the 1/)
chord and 3/l; chord points of the elastic structure
(positive up).

Thus

*
This equation Is given Incorrectly in reference |.

15
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Le The aerodynamic moment about the A.C. Is given by

2
11
M= - é- P V2 S 5 cvse (positive nose up).

5 The basic flight condition used in the following numerical
study Is described by the parameters:
Veloctty = 1655 mph
Altftude = [0,000 feet
Dynamic Pressure = q = 1.9 Ib./In.2

Liff Curve Slope = L * 5.0 per rad.

a
The dynamic pressure is varied in the numerical study and is

expressed as fraction of the basic value gliven above (qo).

NUMER] CAL COMPARI SON

This configuration was simulated on the CEA passive analog computer

in the pro ject reported In reference I, At that tIme it was observed to

exhibit the following unusual aeroetastic properties:

l. Three distinct flutter Instabiliflies were observed for various

combinations of dynamic pressure and A.C. location. Two of

these instablifities were Tdentifled as conventional flutter

phenomena Involving the coupling of 2 elastic modes. The third

instability was the result of coupling of elastic modes and

rigid body modes, It Is the latter case which will be consider-

ed in this comparison,
2, The system was observed to have a much smaller stable reglion
when the system was represented by one elastic mode than when

the higher modes were included in the representation,

16



%2« The stability of the system was sensitive to small variations

in flexibillity,

The application of equation (II-16) to configuration L involved

two ma jor steps:

*
W

1. The determination of ;fl- for various A.C. locations and
e

values of él o« This calcuiation was accomplished using
Q

equations (II-6), (II-L) and the modal properties of the
system presented In reference I.
2. The calculation of D from equatfon (11-8) and the flexi-
bility matrix of the system glven In reference I,
The results of these calculations are presented graphically In Figures
7 through || for values of x of .25, .30, .35, .375 and LD, Also

included on Figures 7 through 1l are curves of the dimensionless short

©
period mode frequency of the rigid system 32 and the curve of 1 =V D
e

when the elasticlty of the system is represented by only the generallz-

ed flexiblitlty of the first elastic mode. The intersection of the latter

two curves defines the dynamic pressure ratio (éL) at marginal stabillty
O

when the Mresidual flexibility® of all elastic modes higher than the
first Is Ignoreds The Intersection of the upper curves deflnes the
stabiiity boundary for the system when all flexibillty of the system

Is included,

The stability boundaries calculated from equation (II-16) are pre-
sented in Figure 12 along with the corresponding boundary observed in

reference i,

7
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Curve A of Figure I2 s the low frequency stability boundary of
reference 1 (dynamic pressure ratio (éL) has been substituted for the
equivatent parameter "flexibllity fact:r" of reference | for convenience).
Curve B of Figure |12 is the stabilility boundary calculated from equation
(II-16) including the residual flexibitity of all modes of the system,
Curves A and B are In substantial agreement. The discrepancy between
curves A and B can be attributed to any one or all of the following
reasons.,

l. The approximations made in this analysis,

2. The omission of all damping terms from this analysis,

3. Experimental error In the defermination of system flexibillty.

Discrepancies were also observed on the analog computer between

the modal simulation and the "exact" representation. The staw

bility boundaries were recorded for the "exact" representation,

Curve C of Figure 12 Is the stablility boundary, determined from
equation (II-156), when the flexibllity of the system is represented by
the generalized flexibility of oniy the first elastic mode. The stable
region sbove curve B is much larger than that above curve C. This fact

agrees with observations of the analog computer analysis of reference |,

It is not claimed that this comparison proves the validity of
equation (II-16). However it is known that equation (II-18) Is valld
for very simple systems and this comparison does show that it is useful
for qualitative evaluation of a complicated system. The conclusion Is
made that the criterla of equation (II-16) is useful In the prediction
of the susceptibility of a conflguration to the "mode interaction"

phenomenon,
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ITI. ANALYSIS OF AN AIRFRAME CONSISTING OF A SIMPLE
AIRFOIL FLEXIBLY ATTACHED TO A RIGID FUSELAGE

in order to place‘frequency coalescence methods in proper perspective,
It is useful to analyze & basic aeroelastic system consisting of a simple
rigid 11fting surface flexibly mounted to a rigid fuselage (see Figure I3},
Since we are not concerned here with conventiona! binary flutter, we shall
assume that the inertia of the I1fting surface Is entirely negligible,
Of course, by fgnoring the inertia of the {ifting surface, we leave out
of account instebilities which occur because of coupling between the short
period mode and a low frequency elastic mode. This type of Instability

will be discussed In Section IV of the report.

Clearly, If the system possesses instabiliities, they are not of the
type which can be predicted by frequency coalescence metheds, since there
Is no finite frequency elastic mode which caen coalesce with the short
pericd mode, We will demonstrate that this system can exhibit three

distinct types of Instability.

The configuration of the system can be specified by four coordinates:
z = vartical deflection of the center of mass, positive up,
6 = pitch angle of the fuselage, positive nose up,
z, " vertical deflection of the aerodynamic center, positive up,

6, - pitch angle of the lifting surface, positive nose up.

Al} coordinates are measured relative to an Inertial reference system,

The equations of motion are

6) =L

m = K(z, = 2 = %8 = X, a

8,)

I8 = k(ea -9) + %o K(za ~z-x08- X0 Oa

bl
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0= - K(za -z - %8 =% aa) + L

8,) - k(e, - 8} + M

O-xeK(za-z-xee-xae a

The 11t and moment at the aerodynamic center are

[, 13

z c
L "S(CL %% v*S% v)
a a q

23,
M.qucm_v_)
q

q"-ng

(the geometrical quantities x_, x_, X, are deflined In Figure 13).

Introducing matrix notation, these equations may be written:

x
X
e

]
-
oe
'
x
e

-qs 0

K k
-E,(l)ee'-f, I-mr‘a.

where o 2
z

(I1I=1)

Introduce ¢ as a unit of length, é as a unit of time, and PSc as
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a unit of mass. Then the following quantities are non-dimensional:

C
% -.X_Q. [ --c—s— - n E - La
e * ¢ Y PS¢ Lg =
x ” %
_ ae _ z
Xae = ¢ 0,5 E.Lq'%
Cc
c m
- r 8
Feg By =~ fmq'mﬂ
T = _z.
z c
— Za
T & e
a c

_ —_ e -

s 2 — 2 e & 1 — 2

S +Ez_4|-— xeﬁz —L wz ] ) "ae ., z

_ 2 22 2. _2 2 ol 2 2 3

Xe @ !rs M +xemz! X T, Re T B - & °

PIY I At st iy |y e

-, | = X% @ chas+mz l-ch_g- La-xaemz ‘a

- _.________d.._____t,______r__,__.____..____

— 2 2 2 — 2 = _ _.2_2 2

X0 & R ¥ae &, - F2 By |~ %ae B, lcmqs TR, B, * Fzﬁe .
(III—Q)

and the characteristic equation is obtained by taking the determinant

of the matrix of coefficients. Laplace's method of expanding a deter-

minant (reference 3) is convenient and ylelds the following characteristic

polynomial:

§2[ah§h+ a3§5+ a2§2+ a|§+ a ]- 0,

where

o]

2
ah-?‘ Em EL

q “a
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3 L ae e "L
CL CL a
a a
b2 2 _2_2_ 22, 222 = . 2_ 2= =
o = T8 B, - T8, %, T ¢ (xe + ¥ )mz CL Ch + 7 B C T
a a 9 a
[ [}
L m
R - 2 - q q
a. I Ei Ee L xac + ?2 ﬁsc —
a T, C
L L
a a

Before deriving any conclusions concerning the stability of the
system, It Is useful fo introduce a fictitlous frequency, @, , which

would be the undamped short period frequency if the airframe were rigid,.

I 2 |
(’ZPV)SCL Xac EpSCL Xac
o =\/- — =y \[- 2“ (111-3)

°© mr mr

The usefulness of this parameter depends upon the fact that given W, the
veloclty V is determined and vice versa, and upon the fact that stabl|=~
ity criteria are more converiently expressed in terms of frequency ratios
than in terms of velocity. The non=dimensional frequency corresponding

to o is simply

o= b

and divide the equation by F* @_*. In this way we obtain

5° [Ah§h+ A5 3 4 Ay 52 +A B+ Ao] = 0, (I11-L)

3h



c
m
=2 (111-5)

Xac Lu
2 C C 2
W L m -2 /@
i ( z) (.. 2 - q q F ( 9)
A =2 - e | e 4 -y + - g | assne (111-6)
3 xac mo ae ae L L , E.:u:. mo
a a
w2w2 wai w2 22+P2)cm mal’zm2 cm
Az.(_e) (_%.)+(_5) _ae.+(_2) 0220 Cq,,( )____T
® w © x ) (o} - ©
0 (] o ac [+) xac La (o] Eac I.‘1
(111-7)
-2 2 2 c C
o w L m
(+] 2 -] - 2 2 .
A = o= e (..._) (._.) (x + F =% =3, 4 (I11-8)
| ?ac mo too ac ac CL CL
a a
2 2 c
A 0, m
2 (% (% o2
Ao = B (zr) ('ar) (‘ il N ) (111-9)
o (s Xoc l.u

Obviously, the characteristic polynomial has a pair of zero roofs.
These roots merely express the fact that all altitudes and alt directions

of flight are equivalent. There are several interesting special cases,

A. Suppose the torsional stiffness is infinite (Ea =},

In this case the characteristic polynomial is

50+ by §2+ by 4 b = 0, (111-10)
where
X () e ‘t&a cm
b, = = == (-E) $ o (111-81)
e rz_ mo Xac CL
a
2 2 o] C
() © t m
by = :g_ (EE) (iace + ¥ - Rac Fﬂ * 'C_ﬂ) (111-12)
r o L L
a a
- 2] o
X Q m
T [ Lyt )
F (o)
ac a



For a given airframe, it is convenient to take the frequency ratio

o
-mf- as a measure of velocity. Since ®, is known and is independent of

Zz
w

velocity, =2 s proportional to velocity Vo The value of V at which

9

the airframe Is neutrally stable is of particular interest, and can be
determined as follows. Suppose the alrframe Is neutrally stable, then
there s at least one root of the form § = [@ where & is real., It

follows immediately from the characteristic polynomial that If @ o O

2
(7 b,
b
2 o
O =
B2
or
wo
This condition determines the vatue of o~ at neutral stabilitys
z
B c 7]
2 m
|+ —n e 9
0 2 2 cm x & °° CL
4 r 2 q ac a
—_—] = 8 + (111-14)
% 2|e CL 2 CL cm
Xac a el - f 'Cj+ | Fﬂ
X %ac “L X
2 X 2
ac a ac a

In many cases, especlally in cases where the surface is mounted

well aft of the center of mass of the airframe, the effects of CL and
q
Coy (pitch damping coefficients) will be negligible compared to the
9 % Cn
effects of CL « In such a case we can fgnore the ratios . » l'.'-g ’

& L

a a
and an especially simple expression for the frequency ratio -E-Z- (at
o

neutral stability) is obtained:
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mi) r2
) - I1I-}
(“B ro4+ x ( 5)

ac
Thls criferion can be glven a simple physical characterization. Imagine
the aerodynamic center to be rigidly constrained, the airframe being
otherwise free of forces and constraints, then the natural frequency

of the system is

* I"2 + Xaca
0 =0 |——— (I11-16)

Therefore, when the short period frequency oy (computed as though
the airframe were rigid) equals the frequency mf, neutral stability

occurs, The frequency of the neutrally stable oscillations of the air~

b
frame s simply wa = 32 - wba, the short perlod frequency computed by
2

assuming the airframe to be rigids Although the presence of pitch damp-

Ing due to C, and C will modify these conclusions slightly, the basic

q q
mechanism of the Instabillty for practical cases is revealed by {111-15)

and (III-16).

Notice that the frequency ratio at neutral stability can be express-~

ed In terms of four dimensionless parameterss

r2

g |

o
L

()
Nl

ac

x1__
]
=1
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= 2

X

ac

CLG'.

and If damping terms are small, only a single parameter Is involved, _r;_g .

B. Infinite plunge stiffness (Ez =00 ),

The characteristic polynomial is agaln of third order:

c3§3+ c2§2+ c'§+ co-O,
where
cL Cm
c3s_.l._(_ 2-'- ....—q.+ q)
b4 ae ae C c
ac La La.
(we)e iae 2 iea*?‘?
C. = = —— + —— D
2 "’o Rac o 5 2
ac
-2 2 C
[ o L
°:'=9“("e') % 2+ P-x 3
Xoc \Ws c a L
a
2 (o]
W 2 m
c--Ee(—g) (I+:‘62F —d
o o \w o

Suppose § = 1§, B real,

- -_3 =
c3m +c'E 0,

-.2 =
@ + ¢, C.

-

Obviously, w = O implies <, = 0, and this is not possiblie unless

Then

“o

o

2

xac

(I11-17)

(1TI-18)

(111-19)

(111-20)

(111-21)

= 0,

This last condition implies that the surface Is connected to the alrframe

by means of a torsional spring of zero stiffness or else the velocity Is

infinite. 1f @ ¥ O then
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o %
“o
and we get for ol
v}
c C
L m
- 2 _ — _9 q
2 — _2 _2¢cC c Xae Xae T +C
) X X +T m 2 m L L
L) - 22.gl e difieg? ;3 g 3
x) 3 o o 2 o _ 2¢C c T
o ac X L X L > i m
ac a ac a F2+ x -3 9, 9
ac ac CL CL
a a

(111-22)

Now Eéc is negative if the airframe has a positive static margin, There~

ae

fore If the elastic axis is aft of the aerodynamic center, = is

‘I

X

ac

posltive, and instability is certainly possitle. |t appears that the
existence of an instabifity is closely connected with the divergence
properties of the lifting surface, Thus, if = E;e is poslitive, the
surface Is capable of divergence when the fuselage of the alrframe is
restralned. The instability predicted by (ITI-22) is as close as the

free system can come to divergence. The instabllity is not ordinary

divergence since the frequency of the instability is greater than zero,

It is not generally possibie to Ignore the pltch damping terms CL ’
q

Cm in equation (I1I-22), since the character of the instability cen be
q

drastically modified by these terms. In fact, there is one interesting
case where the pitch damping terms can produce instabillity at a very
iow airspeed, Suppose we position the aerodynamic center with respect

to the elastic axls in such a way that

CL Cm
s 2.% .49, 9,
¥po = %ag + oy o] (111-23)
a a



We can then position the |ifting surface with respect to the center of

gravity of the alrframe so that

cL cm
2, < 2 _ o q q -
o+ xac xac —-—CL + E—-—L =0 (III 2’4)
a a

Then it Is obvious from the expressions given for the coefflclents of

the characteristic polynomlal that

“’92 %ae 23(-924'?2 Cl'“q 52 2 ")92 -2 F'2 Cmq
(zr) ‘TS T B (zr) '+ & T m 0 (1125
o] ac x L o} X L
ac a ac a
WA
and therefore the system can be neutrally stable for all values of (Eg)
o

(esg. the system is neutrally stable at every alrspeed from 0 to 00},

Notice that CLq is crucial fto this phenomenon, |f ch =0 it is not
possible to satisfy either of equations (III-23) or (III-2L). It wouid,
of course, be rare to encounter an airframe which satisfied the conditions
of equations (III-23), (III-2l;) exactly. However the example does show
that the effects of pltch damping can be very important. Note also that
structural damping (dashpot in parallel with the torsional spring of

Figure 13) would tend to eliminate this instability at low alrspeeds.
The frequency of the instabi{lty is apparent from equation (I11I-25),

In the general case, where both @y and ®, are finlte, the substitu=-
tion & = {B Into the characteristic equation (III-L) ylelds

- "'3 =
A3 W+ Al a=0
& - -
Ahﬂ A262+ Ao 0
where the A's are given by equations (III-5), (III-6), (I11I-7), (II11-8),

(II1-9). f B ¥ 0, these two equations can be combined Into

Lo
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A A
AL(T)'AeT*Ao'O‘
3 3 5
%)
Happily, if this equation Is rearranged, it becomes linear in &59) »
(-]
and we find
2 = 2 2 c c
(f.".e) .-(ﬁ) Yae, Yo *F o2l # 27
@ ) x - 2 o = 2 ©0
o ¢ ac Xuc CLG ac cLa
Pog 2oy tat
c * Rac T Si‘an:'(':"g“’ )
m, -2 L
+5°2.9.7 . a a
° C ¢ 2 @ 2 EL Cm
a ac © - 2 q
P (?T) * Xae ~ %ae 'C_a"' [
2 L L
a a
5] 2 CL cm
2 z 2
L ey P (e )
F- -2 °q a a
* (l * o B e ) T, (111-26)
ac a = 2
ac - Yac'C'g'+ C;!
L L
a a
Ay
The frequency of oscillation is obtained from t‘»e = -A-; 3
C c
L m
=2 2 _ L |
2 (r * Eat: 32euc: Ct. * CL )
(ef - S (v
) ® m
(—E) ?2 + | ¥ 2. b S gt |
w, ae ae CL cL
] a
e
The frequency ratio —= at neutral stability Is determined by the
o

fol lowing set of sewen non~dimensional parameters:

e

X 2
ac

X
ae

X
ac
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Our conclusions regerding airframes which consist of a single light

ITfting surface elastically mounted to a rigid fuselage may be summarized

as follows:

Ao

Be

C.

The system may be dynamically unstable even though it is

statically stable,

The velocity at which the airframe becomes neutrally stable

©
can be determined from the frequency ratio 'EE » which can
o

be expressed in terms of the seven non~dimensional parameters

C
m
iisted above, The parameter 552 E_E is usually quite small
L
a

and is less important than the other parameters.

if the torslional stiffness between the iifting surface and the
fuselage is infinite, an instability will occur when the short
period frequency ©, equals the fregquency w*. The latter fre-

quency is simply the natural frequency of the fuselage on the

L2
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D.

E.

Fe

plunge stiffness when the displacement of the 1ifting surface
at the aerodynamic center is restrained. This simple criterion
is strictly correct only if the effects of aerodynamic pitch
damping are ignored; however, the criterion Is not sensitive
to pitch damping for practical airframes,

If the plunge stiffness between the |ifting surface and the
fuselage is infinite, either of two types of instability may
occurs |f the aerodynamic center is forward of the elastic
axis (xae<: 0), an instability occurs which is connected with
the possibility of lifting surface divergence, In addition,
by careful positioning of the elastic axis with respect to the
aerodynamic center and the center of gravity, it is possible
to obtain an airframe which Is neutrally stable at all air-
speeds. This fype of instability can only be produced if CL
Is different from zero. §
None of the above instabilities can be predicted on the basis
of frequency coalescence methods. We can describe the insta-
bilities as being due to aerodynamic coupling between zero
frequency modes (rigid motions) and infinite-frequency modes,
since the structure in vacuo possesses only these types of
modes.

The conclusions of this section should apply to airframes with
a simple, Iight, !ifting surface and a falrly rigid fuselage.

A more realistic type of airframe is analyzed in Section 1V,

b3
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Ve ANALYSIS OF AN AIRFRAME HAVING TWO RIGID
BODY MODES AND ONE ELASTIC MODE

The conflguration shown in Figure IL Is in some ways more general

than the configuration analyzed in Section III and is also a configura=-

tion which frequently occurs in practice. A detailed analysis should

therefore be useful. !t is convenient to glve the equations of motion

In modal form, There are two rigid body modes and one elastic mode.

1f the rigid mode shapes are properly normatized, the equations of

motlon of such a system can always be written in the form
mz = / p(x, y)ds
16 = /xp(x, y)ds {Iv-1)
n(8+ 6 &) = A(x, y)p(x, y)ds

where
m = the total mass of the system
I = the total pltching Inertla about the center of mass
m, = the generalized mass of the elastic mode
p(x, y) = net vertical pressure on the etement of area
ds at the point (x, y)

#(x, y) = mode shape of the elastic mode

1f £ = 0, then the two normal coordinates z and & have a simple geomet-
rical signlflcance, z being the vertical displacement of the center of
mass and @ the pitch angle of the fuselage. The geomefrical significance
of £ depends upon the way In which the mode shape ¥(x, y) is normalized.
We shall assume that a single rigid lifting surface Is mounted at some
point on the fuselage as shown in Figure 1L. Then the vertical displace-
ment of any polnt of the surface Is

z + x0+ ¥(x, y)&

L5
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and the slope of the (ifting surface is

6+ FE,
obtained by taking the partial derlvative of the vertical deflection
wlth respect to x. Since the surface is assumed to be rigid, g—g must
be a constant over the surface, |f we normalize the elastic mode shape
by setting g‘; = |, then § has & simple geometricai signlficance. When
¢ =0, §is simply the pitch angle of the lifting surface. It follows
from é;? = | that &(x, y) = x + constant. |t Is convenient to express
this constant in terms of the position of the node line of the elastic
mode, When z =0, @ = 0, the vertical deflection of the node line is,

by definition, zero, Therefore ®x, y) = x = X Over the 1ifting sur-

8
face and the vertical deflection of any point on the lifting surface Is

z+ x8 + (x-xM)E

while the slope of the I|1fting surface is 6+ £ ,

The total 1ift, L, and the moment about the aerodynamic center of
the 1Tfting surface, M, can be expressed in terms of p(x, y):
L = /p(x, y)ds

M=/ (x = x, Ip(x, y)dS = /xp(x, y)ds = x, L

it follows that the equations of motion can be written

mZ =

10 = M+ X,o L (Iv-2)

<

me(:‘f-* we2 E) =M+ x L

where Xan ™ Xae = *ng * The 11ft and moment on the 1ifting surface can
be expressed In terms of the vertical displacement of the aerodynamic

center, the pittch angle of the surface, and the derivatives of these

Lé



quantities:

( 2a céa
L=qg5|C O =C —+C ~—
L(1 a La v Lq V'
2 é, (1v=3)
Me=-qgsC
m v
q
where
2,2t X, 0% (xac N xns)g =zt X 0, &
ea-e+g
qQ sépve
In matrix form, the equations of motion are
- r
m52 ) o] zT
SR I B
o | 152 e (Iv-L)
| ) 2 2
—0 Y me(s +meﬂ_.f,-l
— -
s s s
- Vl L (xach cCL )V | G (xanct. =< )V
e @ q | q
=qS|{=x_C I C EC - cC, + cEC = Ix C X x_C X cC + c2C >
¢ acL V| %ac L. Xac "L " *ac Lq mq V |TacL ac an L ac Lq mq Y
—_—— b e e e e e e e o ——
- s : 2 1= ox 2e - R
xanCL vV ixan L (xanxacCL xandi.+ ¢ Cn )V'IxancL (xan CL =X * G |V
| a q q q qi" ]

Introduce ¢ as 2 unit of length, é-as a unlt of time, and PSc as a

unit of mass. Also, introduce the radlf of gyration

2

= I/m

2
re = me/h

L7
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Then the followlng are convenient ron-dirensional quantities:

F =r/e 5 = csiv 7 = m/Pse
F, = r/c ®, = cu cLcl = cLa/am
%, = xac/c I e2z/c ¢ =¢ /om
q q
Xan ~ xan/c cmq = Cmq/em

The equations of motlon can now be writtfen

—
-(E°+C ¥ € - %x . C =T |3 T A% C =«C |5
( Lu, ) La ( ac La Lq | LII an La Lq
]
= = - 2 - = = 221 - = - = = - = —
T XaeL s lxacCL .( ac CL " *acL * Cm )g Ps l x.eu:CL (xacxanCL Xac"L * Em )s
a a a q 9 1 a q q
1

The characteristic egquation Is obtained from the determinant of the

matrix of coefflicients In (Iv=5):

§2(gl‘+ A3‘5'3+ A252+A|?+ Ao)-o { Tv-6)
— 2 c c c c
W L m L m
A3t T Fr R, - %, tf*tf*;z(*an "‘anqﬂ*q")
a a e a a
2 - c -
) X L2 m =2 X
A2-52l+—-e- +F2 _a_n+.n.’2r Fﬂl-pr L
[+ w 2 X% o - & - — D
o r ac x L r r
e ac a e e
L c C g
ae-2(Rreg 2. % _L_q__._g.)(i)
l Xae ac anc:(:L CL o,
a a
2




where ®, and Eo are defined as In Section III of this report:

(—é—PV‘e)SCL Xae
TN T R R

In order to determlne the velocity at which the airframe becomes
neutrally stable, substitute 8 = {& in the characteristic equation,
then 1f & o O3

-A362+A'-0

0 . 2 -
7] A2 B+ Ao (v}

or
AV A
r) - Aa(x—) + AO = 0 (IV-?)
3 3
®y 2 w, 2
This equation Is linear In| tf we divide through by i £
o (o]
”b is given, then @, can be determined from the ratlo EF « Furthermore,
o
since
L 1
{ 0 V2 xac cLa 0 xac cLa
o =\ f= S - - s v
o Z o ) -] mrz

Is a llnear function of V for a given airframe, it follows that the
veloclty at neutral stabiilty can be determined from (IV-7). Note that
the frequency 0, does not represent the short period frequency of the
airframe except In the trivial case where the airframe is rigid. ©,

Is simply a convenient way of specifylng the velocity V. From (IV-7)

we get 2
mo - 02 - 8 (IV 8)
5, ) "®T< -

L9
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where
C C
_ \2 L (]
r I |
- ,,_) R P
(xac xac.cljﬂ X T'rl.-g
A= a2 ac a . .
C -
|+_.?._)2-_.!_.C_Lﬂ+_...2' {a(?)e("a" B e O T
ac %ac “L x e/ \x 2 Xac %ac % =4
a ac a aC ac a
(1v-9)
c - 2
— 2 %X m X
b=+ (f. .._af.+632F2 9 I-l-"2 (l+ né (Iv=10)
Fe J".-.m ° 2cL ?2 F2
ac a )
C
2 m
c=1+B° —oz (Tv=11)
x L
ac a

Equations (Iv=8), (Iv-9), (IV-10}, and (IvV=11) were used to construct

the stability boundaries presented in the Appendix.
A

The frequency of the

neutrally stable oscillation is obtained from @ = z—l-
3
- & C c
Tn Zn | g, 1 Tq
W 2 2 X *ac ﬁ; L x, CL
& P ac a ac a
e = | % (IV"E)
w F e 2 C, Co
i ' + —----E.';i - —l-..- + ———?l -—-S-
X ia:t: L X cl.
ac a ac a
“e
Six parameters suffice to determine the frequency ratlos 5 °nd
@, °
- They are
*an
-
ac
Fe 2R
'.;"2’
e
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where m is the mass parameter, m = m/bSc. These parameters are the same

as appegred In connection with the simple airframe discussed In Section

=2
III of the report, except that the parameter :;g replaces the frequency
r

e
© .

ratio parameter EE » and the node fine position §ns replaces the elastic
]

axls position Ea .

In the Iimlting case, where the generallzed mass of the elastic mode
is allowed to approach zero (Fee--O), equation (Iv-6) becomes ldentical
with equation (III-17)} of Section III, provided we identify the node line

[

position Xne with the elastic axis poslition i; N

As was found previously, the presence of aerodynamic damping can
have a profound influence on the stabitity of the alrframe. Consider,

for example, the case where

cL cm
- 2 —
Xan ~ *an E[S'+ = 0; (1v=13)
a a
then 5
(=
— = O’
Ya
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which shows that the airframe is neutrally stable at zero airspeed, This
instability Is caused by the [oss of aserodynamic damping on the elastic

mode due tao the destabillzing effect of CL « Thus, since structural damp=
q

ing Is lgnored, the structural mode is neutrally stable in the absence of
aeradynemic damping. Now the aeradynamlc damping can be positlve or nege-
tive in general, and the condition (IV=13) is just the condition that the

aerodynamic damping be zero. |If CL = 0, the instability cannot occur
q

since equation (IV=-13) cannot be satisfied. This type of instabllity
Is entirely simllar to one of the instablilfties discussed in Section III

and accounts for a prominent feature of the stabllity boundarlies present-

w *
given In the Appendix for the

ed in the Appendix. The curves of
ofc

case of subsonic aerodynamics display a sharp dip. The value of E;n at
which the dip occurs Is correctiy predicted by equation (IV=13), The
curves drawn for supersonic aerodynamics do not exhibit this feature,

since ¢ = O for these curves. Instabillty due fo loss of aerodynamic
q
damping is very sensitive to the presence of structural damping and may

be masked at low airspeeds by the structural damping.

A much more violent instability will be exhibited by the airframe
of Figure 1L 1§ the aerodynaﬁlc center Is forward of the node line., In
this case the short period frequency and the elastic mode frequency will
come close together at a sufficlentiy iarge airspeed. At higher air-
speeds, one of these two roots will become qulite unstable. It Is useful
to examine this type of instabiility by the frequency coalescence technique.

*

W

5 |5 defined in equation (Iv=19).
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Ignore all damping terms In the equations of motlon (IV=l;), Then the

q-c'“
In this way we obtaln the

characteristic equation can be obtained from (IV-6) by setting L
= O and dropping the terms of odd order in S.

following characterlistic equation:

Heafip=o (Iv-1L)
2
b4
— 2 wh an
A= l+(——) + R = (Iv-15)
° % Xac
2
-—h me
B ll)o ' (IV-|~5)
(o]
2
where R-—t-z-
Fé
I f Ae-hB

52 will be real and negative uniess Aa - 18 Is negative.

s negative then two of the roots of equation {(Iv-Il) will have a positive

The airframe is therefore on the verge of instabliity when

real part.
2
A =L =0 (v=17)
or, according to equations (IV=15) and (Iv-16), when
2
2 = 2
© X o
o an o
I + (5_) + R'§"- = L (6') (Iv=18)
() ac e

To distinguish the value of ®, determined by equation {1v-8) from

the value given by equation (Ivei8), denote the solution of (IvV-18} by

w « Then

ofc
o X
we - |+ -R;.S'.'.'.‘. (1v=19)
ofc ac

Thus, according to the frequency coalescence criterion, there are only

two parameters involved In the stability problem,
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R :"E (gengraiized mass ratio)

e

X X =X
an ac né

xac xac

X
The parameter ;22 is negative if the aerodynamic center is forward of
ac

the node line. According to frequency coalescence, Instabiiity can occur

onty if the aerodynamic center is forward of the node line of the elastic

qofc Xan
mode, is plotted versus — in Flgure 15 for several values of
e ac

R. The frequency coalescence solution of the stability problem is re-
markabty simple, however It can be highly unconservative due to the fact
that the effects of aerodynamic damping are entirely ignored. Also, only
one of the two essentially distinct instability mechanisms is explained

by the frequency coalescence approach,

The discrepancies between the predictions of the frequency coales~
cence method and predictions of the more exact theory are clearly exhibit-
ed in the stabiiity boundaries of the Appendix. On the graphs presentad

in the Appendix the frequency coalescence soiution is simply the straight

W

line = '.

ofc
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V., CLASSIFICATION OF AEROELASTIC STABILITY PROBLEMS

The study and analysis of the stability of airborne vehicles was

historically divided info three flelds of interest:

le
2.
3

Stability and control,
Flutter.

Steady state aeroelasticity (divergence).

A definition of scopes of these flelds has never baen established; how=-

ever, In their origin these areas of technology were directed et specific

phenomeana.

2.

S

The analytical effort, most commonly called the study of
"stability and control®™, was concentrated on aircraft

stabllity problems which exist when the alrcraft is a rigid
body. The effects of elasticity have been incorporated Into
these analyses but often in such a manner as to exclude the
dynamic response of the system in any of Its finlte frequency
normal modes.

The field of flutter analysis has been limited to the study of
aeroelastic Instabilities which arise from the "coupling® of

two or more finlte frequency elastic modes of the aircraft,

In many, and possibly most, flutter analyses of alrcraft, the
vehicle has been represented by a relatively small number of

(10 or less) finite frequency elastic modes of the free system.
Zero frequency modes have commonly been omitted from flutter
analyses along with conslderation of the generalfzed flexibility
of modes higher than those specifically included in the analyses.

Steady state aeroelastic instability, commonly called divergence,



has been a recognized problem since fthe very early days of
aircraft design. The analyses of steady state aeroelastic
phenomena in essence ignore the inertia of the vehicle except

for the consideration of "inertia relief" in free systems.

Recent years have brought about some changes in the analytical fields
discussed above which tend to merge their technologies. The results of
this study indicate that a unification of these analytical fields Is
desirable and necessary to produce a reliable aeroelastic stabillty

analysis of a modern airborne system.

CLASSIFICATION OF AEROELASTIC PHENOMENA

Collar presented a classification of aeroelastic problems in the
well known "Collar's triangle of forces™ by which aeroelastic phenomena
are described as being the result of various combinations of aerodynamic,
elastic and inertia forces. We propose another aeroelastic triangle

(Figure 15} for free systems as a supplement to Collar's triangte,

A classification of aercelastic phenomena is made In the trlangle

of Figure 16 by the normal modes of the system which are required in a
representation of the system to produce the phenomenon. The apexes of
the triangle of Figure 16 are:

0 = zero frequency or rigid body modes

F - finite frequency modes

o0 - infinlte frequency modes or residual flexibitity
Since Flgure 16 applies to aeroelastic problems, aerodynamic forces are

inwlved in all phenomena described.

The problems Included in the numbered boxes are:

58




2.

Se

S

Classical stability and control problems invotving a rigid

vehicle and aerodynamic forces.

Classical flutter problems Involving 2 or more finite frequency

modes and aerodynamic forces.

Classical steady state aeroelastic problems involving only
elasticity and aserodynamic forces.

"Mode interaction,"™ To a stabillty and control analyst this
problem is described as one where elastlc modes have a pro-
nounced effect on the low frequency response of the system,
To a flutter analyst this is a problem involving coupling of
the rigid body modes with the elastic modes. This phenomenon
is shown to be a stability probiem In the analysls of Section
Iv of this report and Is undoubtedly a problem in the predic~
tion of the dynamic behavior of a system at a velocity below

the flutter speed.

The analysis of Section IV shows that this stability
problem can be predicted, for many systems, by "frequency
coalescence™ methods (omitting damping terms) but for certain
systems the damping terms can have a dominating effect on the
solution,

"Elastic Interaction,” This problem area will include the

modification of "rigid body" dynamic response by the elasticity

of the system and the stabiilty problem shown by the analysis
of Section III of this report where a free system can be un-
stable by virtue of only plunge or pitch flexibllity of its

aerodynamic surface,
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This stabitity probtem involving plunge flexlblility is

qulite interesting because:

a, It is a flutter problem which can exist for en
idealized system which has no finite frequency
rormal modes.

be It is a flutter probiem for which the "mechanism®
of instability can be easily understood.

Most flutter phenomena are the result of complicated, relative
phasing between structural motions which cause aerodynamlc

forces to either add or subtract energy from the system, For
this case of "elastic Interaction™ the structural deflections
have no relative phase angle and the phenomenon can be easily

explalined as follows.

Consider the airframe of Figure 13 with a rigid pitch
spring (Ke) and a flexible plunge spring (Kh)’ Flgure 17
shows the airframe at the instant of maximun deflection (of
unit pitch angle) in lts short period mode for various values

of veloclty.

Figure 17a corresponds to a low value of velocity. The
short period mode frequency is low as well as the 1Ift force
L. The short period mode is well damped by virtue of the

1i¥t due to the plunge velocity h.

Figure I7b corresponds to a higher value of velocity.
The 11ft force has increased from that of Figure I7a; and,
therefore, the short period mode frequency and the deflection
of the spring K, have Increased. Since h s smaller, the

damping of the short period mode has decreased.
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Figure |7c corresponds t5 a higher velocity than Figure
I7be At this speed the lift force on the aerodynamic surface
is sufficient to deflect the plunge spring (Kh) the distance
y and therefore reduce the plunge of the surface to zero,
Since the plunge of the surface 1s zero, the damping due to
plunge Is also zero. |f this system Is subjected to a still
higher velocity the aerodynamic surface wiil plunge in a
direction opposite from its attachment point, Since the
plunge velocity h of Figure 17 contributed positive damping
to the system, it is only reasonable that when the algebraic
sign of h s changed the damping will be negative. Since the
damping in the short period mode is attributable primarily to
the plunge velocity, the system will be unstable at a dynamic
pressure slightly higher than that depicted in Figure 17¢c.
"General Aeroelastic Problem.,® Section II of this report
presented an analysis and comparison of the solution of con-
figuration lj of reference |, |t has been demonstrated that
a reliable prediction of the dynamic response of this con=
figuration can be attalned only through the incluslion of zero
frequency modes, finite frequency modes, and the residual
fiexibility of all higher modes of the system in the modal

representation,

The analysis of Sectlon II omitted the aerodynamic damp-
ing terms for simplicity, Thls assumption was apparently
reasonable for the solution of configuration L, because of the
relatively high altitude considered. The analysis of Sectlon

I1I shows that this assumptlion cannct be used In the general
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case and for many configurations can lead to an extremely
unconservative prediction of the flutter speed.

The problem area described by area 7 of Figure 16 can be
described as an aercelastic instability which can be repre-
sented analytically when only an elastic mode and the residual
flexibility of the system are includeds Such a phenomenon is
not known to exist but it is posfulated that the problem area

will be discovered in the future.
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Figure 16, Diagram of Aeroelastic Phenomenon
of Free Systems
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VI, COMPUTER STUDIES OF MISSILE CONFIGURATION
AND COMPARISON WITH THEORY
Studies were made on the Computer Engineering Assoclates! passive
analog computer of a number of Mairborne missile™ configurations. The
purpose in making these computer studies was to provide a check or
independent verification of the analyses of this report and to study

the effects of parameters not included in these analyses.

The basic missile configuration considered in all computer studies
was configuration 2 of reference I, The geomefry, mass and stiffness
data for this basic configuration are repeated in Figures 18, 19, 20
and Table 1. During the conduct of this study numerous variations were
made In this configuration. (n most computer analyses the forward aero-
dynamic surface was omitteds All variations to the configuration are
sunmarized in Table 2, In all cases the aerodynamic surfaces were
considered to be rigid and elestically restrained by a "pitch" and
"plunge™ spring at the missile station listed In Table 2 as "e.a.

Station™,

The aerodynamic forces were represented as follows:
l. The forces on the body of the missile were assumed to
be zero,
2, The |1ft forces on the surfaces, normal to the surfaces
and positive upward are given by
sZ  csé

I
L"quvzscLa( "'-V—'P-N)

where Z Is the normal deflection (positive up) and @ is

€5



the pitching slope (positive nose up) of the surface at
the aerodynamic center of the surface,
3, The moments about the centers of pressure of the surface
are given by:
2
[ 2. ¢
M "EPV S-B- -V-se

L. The effects of downwash were neglected,

The "basic" flight condition is defined by the following aerodynamic
constants:
Velocity = 2250 mph

Altitude sea level

Dynamic Pressure = 9, ™ 90 Ib./in.2

Lift Curve Slope = CL = 1.5 per rad,
a

The flutter speeds measured in the studies were tabulated as a fraction

of the basic veloclty (Vo), thus flufter speed is listed as the ratio

VA .

o

The computer studies of the configurations listed In Table 2 deter-
mined the dynamic pressure corresponding to flutter, In all cases the
flutter encountered was of the general type discussed In this report;
that is, It inwlived the rigic body modes of the system as indicated by
a flutter frequency befow the lowest natural frequency of structure in

& vacuum,

RIGID FUSELAGE -~ CASES | THROUGH 9

Cases | through 9 considered a rigid fuselage with a single aero~

dynamic surface elastically attached near the aft end of the missile.



Listed at the right side of Table 2 are the values of flutter speed
measured on the analog computer, calculated from the criteria of Section

I1I and from the criteria of Section IV.

Cases | through 5 considered an aerodynamic center which coincided

with the elastic axis of the 1ifting surface.

Cases |, 2 and 5 are identical except for the pitch Inertia of the
elastically supported aft surface. The correlation between thecry and
measurement was falr for cases | and 5 where the Inertia was quite small
(zero in case 5} but much poorer in case 2 where the inertia was 10
times larger. The flutter speed calculated from the criteria of Section
III Is identical for cases 1, 2 and 5 because the mass of the surface
is completely ignored in the analysis of Section III. The discrepancy
between the theory of Section III and measurement in case 2 Is easily
explained by omission of the mass from the Section III criteria but
the discrepancy between the measurement and the criteria of Section IV

cannot be explained,

Cases 3 and L, are identical except that the mass of the lifting
surface, efastically mounted by a plunge spring, was omitted in case L.
The identical fiutter speed was measured on the computer for these 2
cases as also was, of course, predicted by the theory of Section III
which ignored the mass completely. The criteria of Section IV could
not be applied to cases 4 and 5 due to the absence of a finfte frequency
elastic mode. The correlatlfon between theory and measurement is con-
sidered reasonably good for these cases. The discrepancies can be

ascribed to the equivatent structural damping inherently present in
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the passive analog computer,

Cases L, and 5 are interssting specimens of flutter because in a
vacuum the structures in both cases have no finite frequency modes.
When described by their normal coordinates these configurations possess
two zero frequency degrees of freedom and one infinite frequency degree
of freedom, Nevertheless these confligurations exhibit a flutter in-

stability at a finite frequency.

Cases 6 and 7 are similar to cases | and 3, respectively, except
that the aft aerodynamic surface was shifted forward 10% of 1ts chord
in cases 6 and 7 whlle retalning the attachment point of the surface
to the fuselage aft the same point on the fuselage. The effective
elastic axls of the aerodynamic surface was, therefore, at the 60%
chord, 10% of the chord aft of the aerodynamic center. The configura-
tions of case 6, where the pitch restraint between the fuselage and the
aerodynamic surface is flexible, tends toward steady state elastic
divergence. Divergence would be encountered at a dynamlc pressure
corresponding to VAV of 1.39. Table 2 shows that a dynamic Instabiiity

is encountered at a somewhat lower speed than the divergence speed,

The comparison of cases & and 7 to cases | and 3 demonstirate the
sensitivity of the flutter phenomenon to the relative locations of the
aerodynamic center and the elastic axis of the lifting surfece. This
extreme sensitivity may be considered as an explanation for some of the
discrepancies In theoretical predictions and computer measurements shown

in Table 2, The precise location of the aerodynamic center is difficult

to control In the experimental procedure followed on the analog computer.
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1t seems also worthwhile to point out that the preclse location of the
aerodynamic center is generally not known for a physical system and, in

fact, cannot be defined as physical point except for ldealized systems,

Cases B and 9 are similar to cases 7 and 6, respectively, except
that the I11fting surface was moved aft 300 inches in cases B and 9.
This variation affected the fluftter speed very little In the computer
measurements and had a somewhat larger effect on the theoretical pre-

dictions.

FUSELAGE WITH SVNGLE BENDING DEGREE OF FREEDOM ~ CASE 10

Case 10 considered a configuration where the entire system was
rigid except for a single flexibly restrained "hinge" at fuselage ste-
tion 700. The purpose of studying this design was to experimentally
eveluate the phenomenon shown on the charts of Sectfon IV where the
flutter speed 1s zero for specific parameter combinations. The flexi-
bility of the system was reduced to the single flexibly restrained
"hinge"™ Tn the fuselage to preclude considerations of "residual flexi-

bility®. The location of the Il1fting surface was varled In this case

*ng ~ *ac .
X

ac

to provide a variation in the dimensionless parameter

Figure 21 shows a comparison between the flutter speeds predicted
by the theory of Section IV, frequency coalescence, and analog computer
measurements. The radical difference between theoretical prediction by
Section IV and computer measurements is easily explained by the presence
of a small amount of equivalent structural damping in the computer

solution.
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Figure 22 shows some typical V-g dlagrams for the configuration of
case 10, The curve labeled "structural damping"™ shows the equivalent
structural damping level which existed In the analog computer at the

values of dimensionless velocity V/Vo. For the curve corresponding to

X ., =%
né ac

ac
is at a value of VA virtually Identical to that at Tts Intersection

of 3.8l the intersection with the structural damping curve

with the O damping axis which is considered to be the flutter speed,

X - X

né ac
*ns
reasonable agreement as shown in Figure 21,

At this value of

theory and computer measurement are in

*ng " *ac

The curve on Figure 22, corresponding to of .28l never

ac
Intersects with the "structural damping" curve; and 1f the structural

damping curve were subtracted out of the solutions, this configuration
would apparently be unstable at all finite velocities as shown In

Figure 2I.

This single example cannot be consldered to prove that the low
speed Instability problem shown in Sectlion IV can be completely ignored
in the presence of a small amount of structural damping. This example
does show that this problem may not be as serfous as might be concluded

from a consideration of only the results of Section IV,

EFFECT OF ALTITUDE = CASES 11 AND I2

Cases 1| and 12 may be compered with cases | and 3, respectively,

to show the effect of an increase In altltude. Cases I and 12 correspond

to an alr density 1/10 of the alr density considered in cases | and 3.
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The change In the flutter speed is shown to be an Increase of 12% to
16% 1t may be concluded that the "mode Interaction" phenomenon is

not sensitive to alr density or altitude parameters.

FLEXIBLE FUSELAGE =~ CASES 13 THROUGH 25

The comparison between theory and computer measurements for cases
involving a flexible fuselage, in all cases, showed rather poor cor-
relatlon. This-laek of correlation Is probably due to:

a. The presence of higher etastic modes in the computer repre-

sentation which were ignored in the theoretical analyses.

be Equlvalent structural damping in the computer measurements

which was Ignored in the theoretical analyses,

The analyses of Sections II and III were not applied to these con=
flgurations because they were known fo include assumptions which pre-
cluded their appllicability. The analysis of Section II cannot be con-
sidered applicable to any cases of this configuration because It ignores
aerodynamic damping. The resulfs of cases | through 9 and the analysis
of Sectlon III tdentify the mode interaction phenomenon of this "misslle
configuration"™ to be intimately related to the aerodynamic damping. How~
ever the flutter phenomenon observed in some cases of this conflguration

were undoubtedly retated to the Instabillty studled in Section II.

EFFECT OF FLEXIBLY MOUNTED LIFTING SURFACE = CASES 13 THROUGH 16

Cases |3 and I consider conflgurations that are identical except
for the flexibillty of the attachment of the lifting surface to the
fuselage. Case 13 consldered the attachment to be rigid and case Il con-

sidered the attactment in pitch and plunge to be of "basic" flexibility.
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The flutter speeds measured for these cases were virtually identlical,
but the system damping at speeds less than the fliutter speed were quite
different. Figures 23 and 24 show the V-g diagrams for these cases in-
cluding the "short period mode™ and the lowest "elastic mode of the
system", In case |3, where the aerodynamic surface was rigidiy connect-
ed to the fuselage, the short period mode remained well damped throughout
the speed range up to the vicinity of the flutter speed where its damping
increased. In case ilj, where the 1ifting surface was elastically connect-
ed to the fuselage, the damping in the short period mode became progres-
sively smaller as velocity increased until it became unstable at the

flutter speed.

The simplified analyses of this study are not capable of elther
predicting or providing an explanation for this difference between cases
13 and 1L, The results of this study are capable, however, of defining
the minimum complexity of an analysis which would be applicable to these
cases as an analysis which Includes consideration of

a. Two rigld body modes,

be One elastic mode,

ce The residual flexibility of the higher modes of the system,

de Aerodynamic damping terms.

e, Prediction of system demping at speeds less than the flutter

speed.
Such an analysis of a specific configuration is not considered overly
complex for practical solution, but the complexity does appear too great
for the type of generally applicable solutions sought in this study.

1t shoutd be noted that the infention of the analyses of this study
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was to predict the susceptibility of a configuration to "mode inter-
action" and that the difficulties experienced in predicting precise
flutter speeds or the response of the system at subcritical speeds

does not impair the fulfillment of this intention.

A comparison of cases 15 and |6 show that when the rigidly mounted
surface Is moved aft of the node line of the first elastic mode, the
instability disappears; but that when the flexible mounting of the Iift=-
ing surface Is introduced the system is again unstable at virtually the
same speed as In cases |3 and |l where the surface is forward of the

node line.

EFFECTS OF CANARD SURFACE = CASES 13 AND 19

The configurations studied in cases 18 and |9 are Tdentical to
those considered in cases |4 and 13, respectively, except that the
canard surface of the "basic® configuration is added in cases 18 and
19 The effects of the canard surface are simply to Increase the
flutter speed about 7%. The V=g curves of cases 18 and 19 are similar
in character to those of cases llj and 13, respectively, shown in Figures

23 and 2L,

EFFECTS OF THE POSITION OF THE SINGLE LIFTING SURFACE - CASES 22 THROUGH 25

Cases I3 through 16 and cases 22 through 25 show the effect of posi-
tloning the tifting surface at four locations along the fuselage from
station BOO to station 1000, At each location the effect of flexibility
of the tifting surface attachment was investigated. As shown in Table

2, the flutter speed was affected very little by the variations In position

73



PR

of the 1ifting surface or the flexibility of the aerodynamic surface
attachment, In each case, when the attachment was rigid the short
period mode damping remained constant over the speed range studied,
and when the attachment was flexible the short period mode damping
became progressively small as speed was increased unti! the short

period mode became unstable at the flutter speed,
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Table 1, Mass Distributlon for Conflguration 2
Mass No, Condition 30 Condition 3%}
(Figure 20) Station Mass Mass
(In.) Ib.o"’seCaa/I e 'bo-seC-e/' Ne

{ 0 L. 728 L.728

2 50 18.911 18,911

3 150 18.911 18,911

L 250 31,605 21,605

5 350 564734 18,911

6 450 8z.122 27.37L

7 550 9L.816 31,605

8 650 ol.B16 31,605

9 750 51.812 17.270

10 900 51.812 17.270

]| 1000 189.632 63,210

12 1100 L5.85] 15.285

i3 1200 22,929 7.6L2
Forward

Surface 250 Vo554 1.554
AT rface 900 15450 15,54
Pifchllng Mass Moment of Iinertia
lb.-sec.a-l Ne tbe -sec.a-i Ne
Forward : :
Curface 250 5.4 15504

Af;u face 900 2187, 2187,
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Table 2,

Missiie Configuration ~ Description of Cases

Case Fuselage Forward Surface Aft Surface Alr q/'qo at Flutter

No« ‘Fiexibility | fnertia | Position | Area Si;:;on e;:.%szl:Lon a;:.%Pgi;:Lon Area T;::??a Ii;::?a P;T:Sf Ei::? Density Measured | Calc, III | Calc, IV
q Rigid Basic Of ¢ --- 900 50% 50% Basic | Baslc Basic |Rigid Basic Basic 2,56 2.80 2.73
2 --- Basic | x 10 |Rigid | Basic 1.66 2.80 2.2,
3 - - Basle Basic |Basic Rigid 2,26 2,13 2.18
L -- - { 0 Basic |Basic | Rigid 2,26 2.13

5 - - 50% Baslc 0 Rigid | Basic 2.69 2.80

6 - - \ 607, Basic |Rigld Basic el .19 1.22
7 - - - 900 | Basic | RIgld 2,20 2.20 2.2
8 --- 1200 ‘ Y Basic | Rigld 2420 2411 1.86
9 - == ] 1200 60% 50% Rigld | Basle ! 1.10 1,13 117
10 - - - 25% 25% RIgid Rigid Baslc

1 Y - - - 900 50% 50% " Rigid Baslc % ol 2.97

12 Rigld - - Baslc |Basic Rigld x ol 2.53

13 Baslc --- x . 161 | Rigld Rigld Basic 1.0 .586
W - .- 900 | Baslc Baslc l 1.12

5 ] 1 Y - - 1000 Y Y 1 Y * Baslic Baslc * 1o 16

16 Baslc Baslc Of f - - - 1000 50% 50% Basic | Basic x 16t | Rigid Rigld Basic Stable

(8 Baslc Basic Basic Basic 900 50% 50% Baslc | Basic x ,161 |Basle Basic Baslc 1.18

19 Baslc Basic Basic Basic 900 50% 50% Baslc | Baslic x 161 | RIgid Rigid Basic 1ei7

o2 Baslc Basic of - - 850 509 50% Baslc | Basle | x .161 |Rigid | Rigld Baslc 1.08 56

23 --=- ] 850 | | | Baslc | Basic ] 1.09 193

2l t ! r --- 800 * 1 * + J Baslc Basic * .18 .5L9

25 Basic Basic off --- 800 50% 50% Baslec | Baslc x o161 |RIgld Rigid Baslc 1,18 «920
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VII. CONCLUSIONS

An accurate approximation for the aeroelastic behavior of a structure
may be made in terms of its normal coordinates by inciuding some of
its modes explicitly and the "residual flexibility" approximation to
all higher modes. This approximation for the system, derived in
reference 1, is applicable In the presence of ™mode interactlion™.
This conclusion is drawn from the fact that "mode interaction" was
found to depend on only the parameters listed in the foregoing

approximation.

In the presence of "mode interaction,™ the accurate determlination
of "residual flexibility" is extremely important. in the presence
of "mode interaction" the dynamics of a system can be very sensitive

to slight changes in flexlibllity,

Systems which tend toward steady state dlvergence are particularly

susceptible to "mode iInteraction.®

In most free systems where steady state divergence is predicted to
occur, a mode interaction or flutter instability wiil probably occur

at a velocity lower than that predicted for steady state divergence.

Aerodynamic damping terms can have a destabillzing effect on a free

system.

Aeroelastic systems which possess no finite frequency normal modes,

can be susceptible to a flnite frequency flutter Instabillty,

8l



7. A reliably accurate method for predicting the dynamic response of

a general, free, aercelastic system must include consideration of

a.
ba
Ca

_d.

€

The rigid body modes of the system.

The lowest elastic mode of the system.

The "residual flexibility® of all higher modes.
Aerodynamic damping,

Structural damping.

8. Flutter analyses of free systems must inciude the zero frequency

modes of the systems.
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APPEND1 X
STABILITY BOUNDARIES FOR AN AIRFRAME HAVING TWO
RIGID BODY MODES AND ONE ELASTIC MODE

A brief summary of the analysis of section IV Is first presented.

The aeroelastic system of Figure 25 is characterized by two rigid
body modes and a single elastic mode. |t is assumed that serodynamic
forces act only upon a rigld lifting surface and that these forces produce

a |1ft and moment about the aerodynamic center which are given by

— e —

-3
L -C v

_ ~
¢, + (1 = 2><)(':L€L -%S-T zacT

——--qs ——————————————— ——— —

where

2

q = -é- P V™ ls the dynamic pressure.

C is the lift coefficient.

L
a

CL

| - 2x = Fﬂ Is the ratio of lift coefficient caused by pitch

L
a

rate to the lift coefficient caused by angle of attack,

Cm is the pltch damping moment coefficient,
q
c is the chord length.

s is the Laplace transform differentiation operator (Sm—d%) .

The equations of motion for the system of Figure 25 can be written
mZ = L
2 L

mr =M+ xac

m re2(25'+ wea E) = b+ (xac - xn‘)t.

and the motlon of the lifting surface is related to the normal coordinates

0



z, 8, & as follows:

Zge T Tt Xy 00 (xac - xns)g

Oac = ©* 3

The symbols appearing in these esquations have the following
signiflicance:
m is the total mass of the system (generallzed mass of rigid plunge
mode) .
m r2 is the total pitching inertia about the center of mass (general=-
lzed mass of rigid pitch mode).
m réa is the generalized mass of the elastic mode when the efastic
mode shape is normalized by making the slope of the elastic mode
unity at the node line,
me2 is the frequency of the elastic mode,
Xne is the x-coordinate of the aerodynamic center relative to the
coordinate system of Figure 25 (1f the aerodynamic cenfer is behind
the center of mass, then Xac will be negative).

X is the x=coordinate of the node line of the elastic mode (negaflve

[f the node line Is behind the center of mass).

Analysis of the above system of equations produces the following

resul ts:

8. Let v be a fictitious short period frequency defined by

|
(2.9 VQ)S CL Xac PSC x5
w = \f- g =V \/[- 2
———
° m rzri 2mr
W

Then the system is neutrally stable whenever the frequency ratio 153
e
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takes on the value given by

e
where
C
(r)a l-2% . 1 Mg
I+ i) ~—x— ‘YT 3¢
ac ac B3 L
am ac a
2 C 2 C
r ! - 2% 1 Mg P2 | %08 = %ac\ . [*ne = %ac\(t -2% )
Mi\x—=) “ Tyt T3 % "= x|t T 3¢T
ac ac xac Lo‘. t's ac ac ac xac
_ 21
X, = X
¢ né ac . I
2 % - X m 2
be | - né ac | _ |+ r | + né
. < Xac CH Xpe ;2 ( v )2
e e e
X
cC
m
ctl-—.-g-—
2 X
ac

be As a corcllary, it follows that the stability of the system of

Figure 25 is determined by six parameters:

- X
xnﬂ ac

o2




The last of these parameters is much less important than the other five,
and the first two parameters are decisive when the effects of damping

are negliligible,

c. |f all damping terms are Ignored in the equations of motion,
then a frequency coalescence type of analysis can be applied, with the

following result. Let W ¢ e the value of w at which the system is

f
neutrally stable according to frequency coalescence, Then

©
ofc _ ]

w
e x - X

| +7\ /R

{n this case we see that the stability boundaries are especially simple,

and only depend upon the first two of the six parameters |isted above.

The above conclusicns suggest the following as a reasonable approach

to the construction of stability boundaries:
@

8, Plot ——~ versus the six parameters listed above. This made
ofc
of presentation has the advantage that the frequency coalescence
[
solution appears as the stralght line = |; thus, when the
ofc

exact solutions deviate significantly from this line, we know

that we are working in a regime where damping effects are

w © O
significant, Since — = = —Z, It follows that the
) ) @
e ofc e
(N ©,
value of E? at neutral stability can be determined from
e ofc
“of
provided that CAL-J PN plotted separately, The latter plot
e
Cot
is extremely simple, since hi depends only upon two param=
X o = X ¢
eters, R and —¥ 2C . Such a plot Is presented in Figure 26.
ac
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Note that the velocity V corresponding to neutral stabitity

can be found if the frequency of the elastic mode @, is known,

since
o s cLa Xac
W T and @ =V - ————————
o w, e (o om

Note that w, Is not a function of V, but is the frequency of
the elastic mode In vacuo., I1f the frequency of instability

is desired, it can be found from the equation

2 c
(xns xac) + *ne ~ Xac | - 2% + { mq
W 2 2 Xac *ac Xac x < :L
(_EJ .4 ac a
%) I o Cm
e ., ( r ) S d-2x . q
X -4 X - 2 C
ac ac ac Xac La
2 X - X
bs The three parameters R = 1;1? » nsx ac » and ;sl- are
r ac ac

e
important, and wide variation of these parameters must be

taken into account, We need only consider negative values

of X, since otherwise the system Is statically unstable.
Con
ce The ratios of aerodynamic coefficients, (I - 2%) and E—& »

I"Cl.

will be allowed to take on values characteristic of subsonic
and supersonic conditions, Thus, for subsonic flow (Flgures

27 through 35)
l-zi'os

c
m
9.
E:_ 0625
a
C » 6028

L
a

9L



and for supersonic flow (Flgures 36 through LL)

1 =25 =0
C
m
?TJi = L0625
L
a
CL = |,5
a

x
If we then allow iac = —%E fo vary over reasonable ranges,

we obtain practical ranges for the aerodynamic stability

parameters
| - 2%
X
ac
c
m
' .
-2 ifii“
X L
ac a
Cmq
de The parameter Y is not an i(mportant one for wvehicles
ac

moving In air, since the mass parameter

b o5
is ept to be very large and iac will not be zero for statically
stable vehicles. Thus, it suffices to choose a single value
for p (B = 100), The procedure of ¢ above then determines the

Cn

range of the parameter m gq « Figure L5 shows that the effect

ac

c

m
of varying ;—§S~ by a factor of 100 produces less than 7%
ag
W X , = X
» except at points near né o€ - 0.
ofc ac

variation in
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