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ABSTRACT 

The SILFD (Step-by-step Incremental Linearization 
Frequency Domain) method for the frequency domain analysis of 
nonlinear structural systems with frequency dependent damping, 
described in Venancio-Fiiho and Claret [ 1989] is implemented 
in this work through the IFT (Implicit Fourier Transform) 
algorithm, Venancio-Filho and Claret ( 1991]. A new and more 
efficient process for the consideration of the initial 
conditions in the SILFD method is presented. Numerical 
examples are presented which show the applicability of the 
proposed method . 
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INTRODUCTION 

A very efficient and accurate method for the treatment of 
structural dynamics engineering problems with frequency 
dependent damping is based in the frequency· domain solution of 
the motion equations. Physical and geommetrical 
nonlinearities, when present, · should be considered in these 
problems. Only recently methods of \ nonlinear dynamic 
structural analysis in the frequency domain have been 
adressed. Several researchers have presented contributions in 
this subject. Kawamoto [1983] described a method called Hybrid 
Frequency-Time Domain, abreviated HFTD, for nonlinear analysis 
in frequency domain. Wolf and Darbre [ 1986] presented the 
segmenting approach of HFTD method and obtaine(i its 
convergence properties. Hilmer and Schmii;:l [ 1988] describe a 
technique similar to the segmenting approach using Laplace 
Transform which computationally differs from Fourier Transform 
only in the treatment of initial conditions. 

All these methQds present so~e problems related to its 
applicability to real situations in structural engineering. 
Two problems are adressed in this work. The first refers to 
the computational effort in nonlinear analysis in the 
frequency domain where the conventional process needs numerous 
executions of direct and inverse Fourier transforms of complex 
series with a great number of terms. Consequently, the memory 
allocation and the computational effort is normally very high. 
The second problem is the treatment of initial conditions by a 
segmenting approach. Hilmer and Schmid [ 1988] state that the 
treatment of non null initial conditions through Fourier 
Tra,nsforms is numerically unfavorable because, in general, 
step functions cause great errors in transformed functions. 

The SILFD method, described by Venancio-Filho and 
Claret [1989], combined with the Implicit Fourier Transform 
Algorithm for dynamic response in frequency domain, 
Venancio-Filho and Claret [1991], solves efficiently the first 
problem. The second problem is treated here using the physical 
significance of initial conditions and transforming the 
original problem in another with null initial conditions. 

THE IMPLICIT FOURIER TRANSFORM ALGORITHM 

The dynamic response of a SDOF system in the frequency 
domain can be expressed by the following equations, Clough and 
Penzien [1982]: 
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and the discrete times in which the load is defined are given 
by 
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The frequency range is likewise divided into N equal intervals 
l1w expressed as 
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and the discrete frequencies Wm are taken according Table I 
( see Appendix 1 ). 

In equation (2), P(Wm) is the discrete Fourier transform 
of the load; in equation (1), H(Wm) P(Wm) is the discrete 
Fourier transform of the response ( or the response in the 
frequency domain ) and v( tn) is the inverse discrete Fourier 
transform of the response ( or the response in the time 
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domain ) . 

The dynamic response expressed by equations ( 1) and ( 2) 
can be numerically determined by the Fast Fourier Transform 
algorithm. 

Let now 

and 

{ V} = { V ( t ) , V ( t ) , V ( t ) , . . • , V ( t ) , . . . , V ( tN 
1 

) } ( 7 ) 
0 1 2 n -

be, respectively, the vectors of the load and the response at 
the discrete times 

and let 

t = nil t, n = o, 1, 2, ••• , N-1, 
n 

( 8) 

{P} = { P(w ), P(w ), P(w ), •.• , P(w ), ••. ,P(wNl)} (9) 
0 1 2 m ~ 

be the vector of the discrete Fourier transform of the load 
defined at the discrete frequencies Wm interpreted according 
ta Table I. 

With the definition of equations (6) and ( 9), 
equation (2) can be casted in matrix form as 

• {P} = Llt [E] {p} (10) 

• where the (NXf) matrix [E ] is defined as the matrix whose 
generic term E is 

mn 

E• = e-imna 
mn 
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or, explicitly, 
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where (X = ( 2rr/N). By the same token, the response from 
equation (2) is written in matrix form as 

~w 
{v} = [EJ [HJ {p} (13) 

2rr 

where [E] is the matrix defined in equation (11) with positive 
signs in the exponentials instead of negative ones, and [HJ is 
the diagonal matrix formed with the complex frequency response 
f,unctions calculated at the discrete frequencies of Table I. 
The typical term of [HJ is given by 

H(w) = (k - mw2 + iw c)-
1

, 
m m m 

(0~m~m-1) (14) 

where k, m, and care the stiffness, mass, and damping of the 
SDOF system, respectively. Substituting now {P} from 
equation ( 10) into equation ( 13), the following equation is 
obtained: 

{v} 
1 

N 

• [EJ [H] [E J {p} (15) 

Equation (15) expresses the matrix formulation of the dynamic 
analysis of SDOF systems in the frequency domain. The 
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9alculation of the structural response in the frequency domain 
through this equation is the IFT algorithm. 

THE SILFD METHOD 

Consider the SDOF system of Fig. 1 submitted to an 
arbitrary excitation p(t). The spring stiffness k depends on 
the displacements v due to the system non-linearity and the 
damping coefficient depends on the frequency of the 
excitation, w. The problem is then to integrate the dynamic 
equilibrium equation 

mv+ c(w)-i + k(v)v = p(t). (16) 

As the damping coefficient is w dependent a 
frequency-domain analysis has to be performed and, as the 
stiffness depends on the displacement, a linearization 
technique must be employed. Consequently the present method is 
a ~tep-by-step Incremental Linearization in the Frequency 
Domain (SILFD) method. In each linearized step a secant 
stiffness is considered. 

In order to calculate the response of the system governed 
by Eq. 1 two approximations are made. The first one is the 
approximation of the given load by piecewise linear segments. 
The total time interval in which the response is to be 
calculated is divided in intervals AtJ = tJ - tJ-1; PJ and 
PJ-1 are the values of p( t) in the times tJ and tJ-1, 
respectively, and ApJ = pJ - pJ-1, Fig. 2a. The load variation 
in time interval AtJ is given by, Fig. 2a, 

Ap 
( ) + __ J-r 

p T = PJ-1 ... 
AtJ 

(17) 

where T is the current time in AtJ ( o ~ T ~AtJ). The second 
approximation referi to the spring force versus displacement 
curve. This curve is also approximated by piecewise linear 
segments as indicated in Fig. 2c. The levels of these two 
approximations depend on the accuracy with which the load and 
the stiffness variation can have a good representation. 

The response of the system is calculated through the 
linearized steps along the time . intervals AtJ in which the 
spring is considered linear with stiffness kJ, Fig. 2b. the 
linearized dynamic equilibrium equation in time interval AtJ 
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is 

mv + c(w)v + k v = p('t') 
j 

(18) 

with the initial conditions VJ-1 and VJ-1, Fig. 2a. Herein the 
treatment of the initial conditions departs from 
Venancio-Filho and Claret [ 1989] in order to circumvent the 
errors in the transformed functions to the step functions. 

The displacement response in time interval AtJ due to the 
applied load obtained through the IFT algorithm is 

{v } = Aw [E] • (19) [H] [ E ] {pj}L 
J L 27l 

where {PJ }L is the load vector in the time interval A tJ. 

The displacement response due to the initial displacement 
is equivalent to the response due to a constant force, in the 
time interval AtJ, given by 

(20) 

where {1} is a vector with all elements equal to 1. 
Consequently . the response is obtained from Eq. 19 as 

= Aw 

2rr 

(21) 

The displacement response due to the initial velocity 
J-1 is the response to an impulse m J-i which is obtained 

from the unit impulse response function as 

v = mv h ( t ) . ( 22) 
j J-1 

h(t) is the inverse Fourier Transform of the complex frequency 
response function H(w) and is given by 
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h(t) = -- H(w) e lWtdw. 
2rr -oo 

(23) 
I 

Considering Eqs. 23, 22, and 15, the response due to j -1 is 
obtained as 

mv Aw = __ J-_1 __ 

2rr 
[E] [H] {l}. (24) 

The total response in time interval AtJ is the given by the 
sum . of the responses in Eqs. 19, 21, and 24. The result is 

{v } 
j 

EXAMPLES 

2rr 
[E][H] [£E•] ({p} - k v ) - mv {1}]. 

j L j J - 1 J-1 
(25) 

A SDOF system formed by a mass m = 1 kg and by a bilinear 
spring with constants K1 = 10000 N/mm and K2 = 10 N/mm was 
analysed by Kawamoto [ 1983] considering undamped vibrations. 
The saine system is now analysed considering the following 
cases: I)- undamped system; II)- frequency-dependent damping 
acording to the function c(w) shown in Fig. 3; IIIl­
frequency-dependent damping acording to the function c(w) 
shown in Fig. 4. The load function is 

p(t) = 50 sin(l.5t) + 100 sin o.oo5t (26) 

which is pictured in Fig. 5. The natural period of vibration 
is T = 0.063 sec. Kawamoto [1983] considered At= 1 sec to 
perform the analysis of system's response through the HFTD 
method, and At = o. 02 sec using direct integration of 
equilibrium equations. 

In case I, using the SILFD method with the IFT, a time 
interval At = 25 sec is used, and the system's response is 
shown in Fig. 6. Comparing this response with Kawamoto's one 
( Kawamoto [1983], Figure 6.94, page 341 ), it is evident that 
the proposed method is efficient in predicting the maximum and 
minimum response of the system . Furthermore, the proposed 
method is better than HFTD in describing the "true" response 
of the system, particularly if we consider the accentuated 
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spring softening. 

The responses of cases II and III, Figs. 7 and 8, 
respectively, sho~ that frequency-dependent damping is treated 
conveniently by the proposed method. Others types of c(w) 
functions can be considered with no changes in the algorithm. 
A very small diferences in the moduli of maxima displacements 
are observed from Case I to Cases II and III. One reason is 
predominant for this fact: the steady-state response is 
calculated and the static amplitude p(t)/K2, for such a small 
value of K2, is predominant in the system's response. 

CONCLUSIONS 

The proposed method is efficient for treatment of dynamic 
nonlinear systems with frequency-dependent damping. In a 
future work, the computational effort needed will be measured 
and compared with the cpu time of others methods. Howewer, it 
is very apparent that the SILFD method combined with the 
IFTalgorithm is well suited for nonlinear analysis in 
frequency domain, optmizing computational effort and memory 
allocation. 
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APPENDIX 

The discrete frequencies employed in this formulation 
must be interpreted according Table I. Taking into account the 
frequencies w from Table I, H(w-) and H(w- ) , Eq. 14, are 

m m N-m , 

complex conjugate. 

Table I. Discrete frequencies {Nodd) 

-m m or (N-m) w 
m 

0 0 0 

1 1 l1w 
. 

2 2 2l1w 

. . . . .. . . . 
(N/2-1) (N/2-1) (N/2~1)l1w 

N/2 N/2 (N/2)l1w 

(N/2+1) (N/2+1) [-(N/2+1)]l1w 

. . . . .. . . . 
N-2 2 -2l1w 

N-1 1 -l1w 
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Fig. 1- SDOF system. 
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Fig. 2- (a) Load variation; (b) - displacement response. 
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Fig. 3- Frequency-dependent damping in case II. 
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Fig. 4- Frequency-dependent damping in case III. 
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Fig, 7- System response in case II. 
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Fig. 8- System response in case III. 
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