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ON THE DERIVATION OF STIFFNESS MATRICES
FOR THE ANALYSIS OF LARGE DEFLECTION
AND STABILITY PROBLEMS

Harold C, Martin*
University of Washington

The derivation of stiffness matrices necessary for analyzing large
deflection and stability problems is developed from basic nonlinear
theory. Detailed derivations are given for the stringer, heam-column,
and arbitrary thin triangle in plane stress. A suggestion is offered for
representing large deilection behavior of the triangular element in
bending. A brief acoount of previous contributions is included.

INTRODUCTION

Development and application of the direct stiffness method to geometrically nonlinear
problems has been underway since 1958, Only a portion of the early work has appeared in the
general technical literature, Furthermore, the derivations which have been given for stiffness
matrices required for the large deflection problem have often been confusing and, in some
instances, have led to incorrect conclusions.

Therefore, in this present paper, several goals will be attempted. The first is that of
presenting an account of previous work in the subject — from 1958 to 1965. The second is to
present a basic and unified approach toderiving the desired stiffness matrices. The suggested
theoretical procedure will then be illusirated by application to the axial force member, the
beam-column, and the arbitrary triangle in plane stress. Finally, it will be pointed out that
currently available theoretical information is sufficient for handling large deflections of the
triangular element in bending.

HISTORICAL BACKGROUND

The original work in the subject was presented in 1959 and appeared the next year as
Reference 1. This first paper contributed the following: (1) showed that a new class of stiff~-
ness matrices had to be introduced if large deflection and stability calculations were to be
undertsken; (2) presented derivations for this new stiffness matrix for the axial force membor
and the arbitrary triangle in plane stress; (3) described the concept of using linear, incre-
mental steps for numerically approximating large deflection behavior,

The new stiffness matrix Km depends on the state of stress existing in the element prior
to the imposition of an additional disturbance. Hence, it is termed the ‘‘initial stress stifiress
m.filtrix." The conventional stiffness matrix is then termed K'Y . Superimposiny K sn2
KM furnishes the total stiffness matrix K.

References 2, 3 and 4 represent some of the work carried out during 1959~60 on the beam-
column, Reference 2 is particularly noteworthy. It arrives at the correct K" matrix for
the beam-column. Several later publications have given an over-simplified form for this
matrix. References 3 and 4 contain some of the early attempts at carrying out large deflection
calculations by the direct stiffness method,
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In 1962, a solution was obtained for K{IJ for the thin, rectangular element in bending
(Reference 5). In this reference it is also shown that, using the stiffness method, excellent
results could be obtained for critical compressive stresses on thin plates. It is interesting
to note that no corresponding developmeni had appeared for tl?e triangular element, This
is not surprising, of course, since derivation of a satisfactory K9 stiffness matrix for the
triangle has been a much more difficult problem than for the case of the rectangie. Basically,
the problem is that of choosing a displacement function which will permit a solution to be
obtained while, at the same time, satisfying continuity conditions along common edges of
adjacent triangles.

Reference 6 was presented at the Agard Structures and Materials Panel in Paris, France,
1962. One of the four main sections in this paper was devoted to large deflection problems, It
made clear, for example, how well-known matrix techniques could be applied to the calculation
of critical loads once K© and K had been assembled. In addition, it suggested a new
procedure for deriving K{!) matrices, This new approach was essentially geometric in
nature and, in Reference 6, was applied to right triangular element in plane stress, The result
for K" is not in agreement with that obtained from Reference 1.

In a technical note, Reference 7 takes up the question of column stability from the stiffness
method point-of-view. Although details are necessarily kept to a minimum in this note, it
does present the same K'’' matrix as found in Reference 2. The derivation, however, is
quite different. Reference 7 also shows that excellent results are obtained for the buckling
load of a uniform, pin-ended column even when a minimum idealization is used to represent
the actual structure,

‘I)Xeference 8 also discusses structural stability and gives energy expressions for calculating
K" for the beam-column. Explicit final results are, however, not given in this reference,

Further work on the beam-column is presenied in Reference 8. Based on the geometric
point-of-view a derivation is given for K" for the beam-column, The result differs from
that found in References 2 and 7. In fact, this work arrives ata K" which is identical with
that previously found for the stringer (Reference 1). Reference 9 goes on to show that, by
using a number of elements fo represe)nt a nonuniform column, excellent buckling loads can
be calculated by using the stringer K" stiffness matrix. Similar conclu:‘ons are reported
in Reference 10,

It now becomes evident that a problem of considerable interest has arisen. Two different
K} matrices have been derived for the beam-column and each has given satisfactory
numerical results when applied to column stability problems. Is there then a basis for
selecting a K" matrix as being correct? Also, what is the significance of the fact that
different matrices have led to the same result for column buckling loads ?

A useful step toward eventually resolving some of these questions arose during the course
of the work reported in Reference 11, Althoughthis reference is primarily concerned with the
application of computer programs to nonlinear vibration analysis, it also contains a discussion
of basic nonlinear theory as found in Reference 12, In particular, it suggests that fundamental
theory be taken into account when basic derivations of K" matrices are to be undertaken.

More or less concurrently with the developments leadingto Reference 11, a Master’s Thesis
at the University of Washington undertook the derivation of K!') for a thin, right triangular
element in Dbending (Reference 13). The results given in this reference are probably of
questionable value since a modified cubic equation was selected for representing the bending
displacement, Nevertheless, this reference approaches the derivation of K{!) by utilizing
certain fundamental expressions from the nonlinear theory of elasticity.
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An additional application of the geometric approach to obtaining K" is given in Reference
14, The problem undertaken is that of the tetrahedron — a usefu’ element for idealizing solid
bodies. Assuming K (1} for the tetrahedron to be necessary, it would appear worthwhile now
to re-examine the basis for its derivation, This is indicated by the restricted result obtained
for the beam-column when K{!" is obtained from essentially geometric arguments,

Reference 15 again takes up the problem of the beam-column. The end result is the same as
given in References 2 and 7, However, Reference 15 refers to K ) as the ‘‘stability coefficient
matrix.?” This term seems unnecessarily restrictive in that it fixes aitention on the role of
K1) in stability analyses, but completely overlooks its much larger role in describing the
detailed behavior of large deflection problems. Of interest to the structural engineer is a
comparison given in Reference 15 for critical column loads as calculated by the direct
stiffness method and by finite differences. The superiority of the stiffness method, in terms
of accuracy of results based ©r ecquivalent representations, is clearly brought out in this
reference,

Finally Reference 16 presents an alternative solution to that found in Reference 5 for the
case of the rectangular element in bending, A large number of stability calculations are
reported in Reference 5. For a wide variety of applied loadings and houndary conditions, it is
shown that stifiness method results compare very favorably with theoretically calculated data.

We, therefore, see that a considerable backlog of useful information already exists for
applying the stiffness method to large deflectionproblems, At the same time questions remain
which should be answered., The most important of these at this time would seem to be connected
with the derivation of the initial stress stiffness matrices. In particular, a straightforward and
consistent procedure is desired, which rests on basic theory and which can be applied to any
structural element.

THEORETICAL BACKGROUND

No attempt will be made to discuss the stiffness method, or the fundamental equations of the
nonlinear theory of elasticity., However, those concepts which are useful in applying the basic
theory will be briefly outlined at this time.

First, the large deflection problem is intrinsically different from the small deflection
problem. This is so, not because large deflections necessarily occur in a literal sense, bhut
rather because stresses exist which, in the presence of certain displacements, exert a
significant influence on structural stiffness. The beam-column illustrates this typical, large
deflection behavior. Existence of axial loading in the presence of bending displacement does
affect the stiffness of the member. In fact, if the loading is compressive and approaches the
critical value, the bending stiffness tends toward zero. Consequently, the need for an *‘‘initial
stress stiffness matrix’’ becomes evident.

Two sources of nonlinearity exist for the large deflection problem, The first is connected
with the strain-displacement eguations. Even if strains remain small in the conventional
sense, rotation of the element adds nonlinear terms to the strain-displacement equation. As
will be seen in the simple case of the stringer, if these nonlinear, rotational terms are
omitted, the derivation becomes incapable of yielding 4

The second source of nonlinearity exists with respect to the equilibrium equations. It is
necessary to keep the deformed geometry in mind when writing the equilibrium equations. This,
in turn, causes these equations fo become nonlinear. In the stiffness method this is taken into
account by the incremental step procedure. The deformed geometry is taken into account at
the start of each step. In this manner a close approximation to the actual behavior can be
maintained,
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It is therefore seen that the stiffness method accounts for both sources of nonlinearity in
the large deflection problem. That entering into the derivation of the stiffness matrices
through the strain-displacementi equations is sufficient for stability snalyses. By using the
stiffness matrices so derived, in conjunction with the incremental step procedure, corrections
in the equilibrium equations due to structural deformation can be taken into account. This
makes it possible to carry out a detailed analysis of the large deflection problem,

A particularly convenient procedure for deriving stiffness mairices is to write the strain

energy U in terms of nodal displacements u; , An application of Castigliano's first theorem
then gives the stiffness coefficient k” as
k = 0%y ()
' du; Odu
]
Equation 1 need not be carried out in detail provided U can be expressed in quadratic form
as follows:

U=—12-—uT(ATBA}u (2)
where, u-r = transpose of v, which is the cclumn of nodal displacements, The stiffness
matrix K , whose elementis are kij y is then given by the triple matrix product

K=A' BA

This procedure will be found to yield the desired stiffness matrices with a minimum of
mathematical effort.

AXIAL FORCE MEMBER

We first consider the case of the uniform, constant stress, truss member or stringer, It
is assumed to have a cross-sectional area A , modulus of elasticity E , and length L . Nodes
1 and 2 lie at opposite ends of the member.

We concern ourselves with the behavior which takes place during an incremental step. Let
€% be the stram present at the start of the step. As additional deformation takes place, addi-
tional strain €° develops. The total strain € is then simply

€ = e® +¢€° (3)

Total strain energy U may be expressed as

-—z—fffcredxdy dz

l L
=—j—2— At [ € ax
r o
On substituting from Equation 3 we find that
L

2 2

L AEL (€9) +AE¢°f € dx+—AEf (€9) dx
o o

U=z

(4)

Up + U +U,
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The first term on the right side of Equation 4, Uy , is simply the strain energy present prior
to imposition of the additicnal t}isturbance. The second term, U, , depends on the initial
stress; hence, it must yield K¢ The third term, U, , depends on the additional strain;
therefo'rl%, it is no different from the conventional, small deflection, elastic case, It must
yield K¥/,

The nonlinear strain-displacement equation is represented bv

2 dy )2

|
- ( = (5)

du i du
€ = dx +? (dx )

When strains are small comsw,red to unity €” can be taken as the true physical strains,
Furthermore we can omit (d“) compared to £ x) . However, we cannot similarily discard
(dv/dx)? | If we do we are omitting the contribution of rotation to €? and this is precisely the
term which must be retained. As mentioned previously, the lowest order rotational term
appears as a nonlinear contribution to the strain-displacement equaticn. In view of these
considerations we retain Equation 5 in the simplified form

d | dv 2
<otz (o)

d x

(el

For this member u,, v, , u,, v, represent the relevant nodal displacement components.
We choose u(x) and vix) as linear functions or

u{x) = a5 + a; x vix) =bgy+b, x {n
This choice provides the necessary constant strain along the length of the member and, at
the same time, furnishes as many constants as there are nodal degrees of freedom. The need
for the first condition is obvious; the second condition is necessary if the strain energy is to
be expressible in terms of nodal displacements.

Writing u and v at each node (Node 1 at x=y =0 , Node 2 at x = L,y= O) gives

Ay =M, bo =V
(8)
_ uz-u Va " V)
[T L b L
Equation 6 may then be written as
2
- TPRCTH | Va " ¥
&I = 0.+-—‘2—b| =—-——2L +T ( C ) (9

Substituting Equation 9 into Equation 4 gives the following form for the strain energy:

L - - 2
u=u, +aEe® [ [%+'?('VJ’LA} ] ax
Q

+_é,_AE ,/;L [_IJ%_+__£~ (_‘fg%)z]zdx

This last equation can be rewritten, First, we note that the integrands are constant. Second, we
use the fact that AE€® = Ac®= PP the initial loading, Third, we only retain quadratic terms
in the displacements, Lower order terms do not contribute to K , (Bee Equation 1) and

701



AFFDL-TR-66-80

higher terms give K as a function of displacements. These terms are dropped, as is also

the case in the classical nonlinear theory. We, therefore, retain U as
]

! 2
e | - AE b=
7z T [ v) [-I !] [:lz]*'"'é‘_l_— [0, ue] [-| |] [:'2]
Equation 10 conforms to Equation 2, Hence, we have obtained
v, Vg up ug
f1) p° TS (o) _AE T
S T =] t

It is now a sirople matter to expand these stiffness matrices to order 4 x 4. This i8 done by
adding columns and corresponding rows of zeros for the added displacements (as u; and
Uz for the K" matrix). Finally, a simple matrix transformation will give the stiffness
matrix for the element when it is arbitrarily oriented in the xy plane. The final result
for K{'is then the same as that given in Reference 1. As expected, K(°} turns out to be
the conventiolzal stifiness matrix for the axial force member. We also observe that if the
term {dv/dx)/2 is omitted in €2, Equation 6, we will never obtain K" from the above
derivation,

The derivation given above for the stringer illustrates all the features which arise when
more complex structural elements are being considered. It therefore represents a useful
guide for investigating other, more difficult cases,

Initial stress stiffness matrix K ll)' as obtained above for the stringer is now sufficient
for analyzing several large deflection problems. Among these are: (1) critical loading for the
arbitrary pin-jointed fruss; (2) deflection and self-equilibrating internal forces for the
self-strained truss; (3) deflection and stiffness of the pretensioned string.

As an example, we consider the stability of the truss shown in Figure 1. A detailed solution
along classical lines may be found on page 147 in Reference 17. The critical value for load
P is found to be

P _ Agd E sina cos’a
crit © A )
1+ sin® a
x

(12)

The notation used in Equation 12 is that of Reference 17.

The stiffness method of solution will now be applied to this same problem. The applicable
stiffness matrices, K(°) and K!'), are derivable from Equation1l, For the truss of Figure 1

we obtain uy Va
o e [T 0
-3 d sina cosa sin" a -3
Ju3 Vs N3V
SRS S Ko == 2[5 9]
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In writing the above stiffness matrices, boundary conditions have been imposed; hence,
only v, and vy are retained as displacement components. The above matrices may now
be superimposed to give the total stiffness matrix K , The critical condition is obtained by
putting the determinant of K equal to zero., This leads, quickly and simply, to the result
expressed by Equation 12. The reader should note the simplicity of the stiffness solution
compared with that given in Reference 17. More important, the opportunity for readily
applying the stiffness procedure to complex problems should be appreciated,

A corresponding calculation, utilizing the incremental step procedure for obtaining a
nonlinear force-displacement curve will not be given here. Such calculations are given in
Reference 11.

BEAM-~-COLUMN

This problem has already received considerable attention as pointed out in the historical
introduction, We examine it here with the following three purposes in mind: (1) to see
whether the derivation procedure used for the stringer will again l?ﬁdto the end result
with a minimum of confusion and calculation detail; (2) to see what K' ' is obtained and to
compare it with results from previous derivations; (3) to explain, if possible, the reasons
for the different results which have been found for this structural element,

The physical picture is the same as that for the stringer with the following additions: we
add 8, and §, as nodal bending slopes and introduce E I as the flexural stiffness factor.
The member again lies in the xy plane both before and after deformation takes place.
Initially it is oriented along the X~-axis.

Equation 3 applies once again. However, Equation 6 must be augmented by including the
contribution of bending to the strain expression. This term is known from elementary beam
theory. As a result we replace Equation 6 with

2 2
a du I dv d v
) - (i3)
€ ax T2 (dx ) -y dxZ

The negative sign is used since positive y (measured from the neutral axis in the xz plane)
and positive curvature correspond to fibers undergoing compressive bending strain.

The next step is crucial. It consists of selecting displacement functions u{x) and vix) .
For bending vix} must be a cubic. This is necessary since the third derivative (the shear) is
then a constant, which is consistent with the nodal force pattern assumed for beam elements
(shear and bending moment at the nodes represent the beam loading permitted the beam
element), This also gives a second derivative which is linear in x . Hence, the term
y ( 2 ) in Equation 13 is seen to fulfill the usual requirements of beam theory for the
casé Of uniform shear along the member. The contribution of ulx)to €° must be the same as
for the stringer. On this basis we choose
*a, x W(x) =by +b,x + by x4 byx’ (14)

ulx) = @,

As a final check on Equations 14 we now note that they contain a total of six constants.
This agrees with the total nodal degrees of freedom { v , v , and 8 at each node), Con-
sequently, the problem of expressing U interms of nodal displacements is now mathematically
possible. Hence, having justified our choice of v(x) , we are forced to accept ulx) as a
linear function.
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Strain energy U is now given by a slightly modified form of Equation 4. Since we cannot
integrate immediately, we write

u

Up +U, +U,

U+E¢fffe dx dy dz + — Efff(e)dxdydz

Since U, does not contribute to K we drop it at this point, Substituting Equation 13 into
U, gives

(15)

0 d?v
=Ee ) dx dy dz
| 2""2 (ie)
d
t g €] () axey @
In the same manner we find U, to be given by
2, .2
U, = Efff[dx -2y u L5+y (£%) ]dxdydz
()

2 .2

+ g [5G (3 (8 (G Jox av ez

These equations must now be rewritten in terms of nodal displacements, However, it is
useful to substitute first from Equations 14 as follows:

du _ dv _ 2

E—X— = q a“; = b' + 2b2 x + 3b3 X
2 (18)
—— = 2be + ©6b3x
d x2 2 3

With these substitutions U, and U, may be expressed as follows:

Uy = Eeofff[al-y {2by +6by x)]dx dy dz

(9}

S5ym
L | 2T by
+ 3 P°f [b, b2b3] 2x  4x2 bz | dx
2 3 4
0 3x" 6x Ox ba
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f sym 9,
Up = %Efff["t be bs] -2y 4y? b | dx dy dz
-Bxy I2xy2 3612y2 bz

{20)

4
+ SE[f[[ 4 (b, + 2byx +305x%)*  + o, (b, + 2by x + 3bg x2)2

“‘,’(Bl + 2b2x + 3b3x2)2( 2b2+6b3!)] dx dy dz

Equations 19 and 20 are interesting. The first integral in Equation 19 will be discovered
to contain only linear terms in the nodal displacements; hence, it does not contribute to K .
The second integral in Equation 20 will be discovered to contain only cubic and higher terms
in the displacement components. These are dropped for the same reasons as given for the
stringer. Hence, only the quadratic terms in Equations 19 and 20 need be retained,

It is now necessary to write u , v , and @ = dv/dx at each node from Equations 14.
Doing this and algebraically solving for the constants in Equations 14 provides:

do = U bO = v
. Uz~ Va—V|
ﬂl - bl =
L L
(2n

bp = S(va-v) =L (26+8
2 = Zlve-vl - (2606
by = =2 (vomv ) + -5 (8 +82)
3 L3 e ‘l:é t 2

From these last equations we can now check %o see why only the matrix expressions in
Equations 19 and 20 need be retained.

Equations 21 enable us to write the quadratic part of U, (termed U; ) as,

[x] [L.] {v,e} dx (22)
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where

["' ] : :"l 6 “292]
[0 -3/12 2/13 ]
[LI]T= -2/l /L8
o 3/t -2/1°
[0 -1/ /LR

[ n] = gquare matrix of Equation 19

The conformity of Equation 22 with Equation 2 permits us to immediately write the initial
stress stiffness matrix for the beam-column as,

T L
K = PO[L,] (}; [x] dx) [L,]
v 8 v 8 __
[ 651 sym —
1210 2L/715 (23

1
-
o

-6/5L ~-1710 6/5L

/10 -L/30 -i/10 2L/i5

Equation 23 gives the same form for Km as originally found in Reference 2, and later
reported in References 7 and 15. It differs ftr?m K{!) as given for the beam~column in
References 9 and 10. These latter sources give K!' for the beam-column identical with that
found for the stringer. This point will be discussed subsequently.

The quadratic form for U, (termed U ) may similarly be written as

u, = %E‘W[uve] [LZ]T[x,y] [La] {uv 8} dx dy dz {22q)
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where

[uve] = :u, v 9, us vzaz]

L 0 0 |
o -3/12 2/.°
2
- /
[Lz] _|o 2/L 1L
L O 0
o) 312 -2/3

o  -i/L 1712 ]

[ X, y] = square matrix of Equation 20

From Equation 22a we then have
k- E [LZ]T (fff[x,y] dx dy dz) [Lg] (24)

It is a straightforward calculation to now show that the well-known result for KM for a
beam element {including uncoupled axial force stiffness for the element) comes directly
out of Equation 24. Details are not given here.

At this point we can examine the basis by which Km for the beam~column turns out to
be identical with that obtained for the stringer, This result occurs when the first two terms in
€9, Equation .13, are based on Equations 7, while the last term is calculated from vix)
as given by Equation 14, The net effect is to represent dv/dx in Equation 13 by a constant,
rather than by a quadratic as usedinthe derivation given above. This change will then produce
K"} which is the same as that for the stringer.

l? is also interesting to note that U'z does not include a term in dv/dx . As a result
K(O will turn out to be the same, no matter which choice is followed for determining KO,

The above makes clear that a consistent use of terms leads to Km for the beam-column
as expressed by Equation 23, This therefore may be regarded as the correct result. On the
other hand, it is interesting to realize that the simpler form for K{') , namely that of the
stringer, permits a solution to be found for large deflection beam problems, The reason for
this is explainable on physical grounds. The beam~column can be viewed a8 a member having
distinct bending and axial force stiffnesses. The axial force stiffness is essentially that of
the equivalent stringer. Furthermore, it is an initial axial loading which has a significant
influence on the overall stiffness against subsequent transverse loading. This point-of-view
would indicate that K!') might well be taken as that of the stringer. Numerical results
verify this conclusion. On the other hand additional elements are needed io secure the same
order of accuracy as can be obfained fromthe correct K{'} matrix, This can be demonstrated
by means of a simple example, Figure 2, For this problem the theoretical solution as found
from the differential equation is

707



AFFDL-TR~66~80

C _ 2 EI _ £l
PCFH. = 47 EZ_ = 39.44 "E'z'

For the first stiffness solution we use KM for the stringer, Equation 11, together with
Klo? for combined, but uncoupled, bending and axial loading. Due to boundary conditions
and assumed symmetry of displacement only u; and v, need be retained as displacements
in the total stiffness equation. It is then easy to show that K is given by

U Vo
AE
T Y
K =
I2E1 p°
0 2 (_13_' + L)

The critical condition results when the determinate of K vanishes, This gives

o _
Perit. = —48 -3

The negative sign in the stiffness solution indicates that P® is compressive,

{1}

On the other hand we can alternatively choose to represent K' ° by the beam-column

initial stress stiffness matrix as given by Equation 23. We then obtain

Uy A
AE
) 5 0
K = o
I2EX 6 P
‘ 0 2( LS +F 'L'.")

Again setting the determinant of K equal to zero now gives

0 - EI
Perit. = =40 52

We therefore see that, based on a two element idealization and using the correct form for
K, a surprisingly acourate result is obtained for the column critical load. Furthermore,
the stiffness method of solution in this case is surprisingly simple to carry out.

At the same time we should keep in mind that by using the stringer matrix, and a finer

idealization for representing the beam-column, any order of accuracy (as far as we know) can
be obtained for the critical load.
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THIN TRIANGULAR ELEMENT IN PLANE STRESS

This problem is essentially a generalization of that already given for the stringer. In its
details it is simpler to carry out than the previous case of the beam~-column. This is perhaps
surprising, particularly when viewed in the light of the previous derivations as found in
References 1 and 6. <

We start by assuming the triangle to be initially in the xy plane. Nodal locations are
specified in Figure 3. In this initial positiown the element carries initial stresses o, , a'; .
and ‘rﬁ' . As in the case of the stringer these stresses have no influence on s&bsequent
displacements of the element within the initial plane. They do, however, have a significant
affect on displacements of the element out of its initial plane, Consequently, the rotational
terms in the strain-displacement eguations must be taken as those associated witha w -
component of displacement.,

Starting from the initial position, subsequent deformation of the element is therefore
assumed to take place such that

€ = €0+ € €y = e:yo + eyu Yay * 7xy°+ Txyu
where

a o Qu_ 1 (0w

x T T ‘s (ax)

o . Ov , l/dwy?
ey oy + 2( dy) (25)
a . du _ 9v 3w 9w
Yy ay T ax Y ox oy

It is seen that in Equations 25 the additional strains include the terms representing rotation
of the triangle out of its initial position inthe xy plane. Incidentally, the derivation is
simplest when carried out in these terms. Later, a simple matrix transformation can be
carried out to give the result for the case of arbitrary initial orientation in the xyz coordi-
nate system. Also, it should be observed that Equations 25 do not include rotation of the
element in the initial plane. This effect is also dropped in developing the classical nonlinear
plate equations,

Strain energy U is given by

U= Jffff(o-" €x+ Oy €y + Tyy Yxy ) dx dy dz (26)

At this point a choice is available for writing the stress-strain relations. In the calculations
which follow the conventional Hooke’s law expressions are used. In matrix form we have

Oy T N ¢ €y
. E
O"y = ‘I"':';;E v ] 0 Ey (27)

xy
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where )\I = (I-v)/2 and v = Poisson’s ratio.

Alternatively we might have chosen an orthotropic material defined by

oy Cy sym. €y
oy | = Ciz Cp2 €y {28)
Tyy 0 0 Css Txy

Elements jj then represent the actual properties of the orthotropic material, No addi-

tional dlfﬂculéy is encountered if Equation 28 isused in place of Equation 27 in the calculations
which follow

Substxtutmg Equation 27 into the expression for U results once again in three terms as
follows:

U = Ug+u +u,
where,
o ° “_va)ﬂ‘[(ex) +2vex €y ° 4+ (ey) +)\|()f,‘y) ]dxdy
Ui ff[exo 'Ex + v e cy +€ 0)+ £y Ey + X y,w y,“, ]dx dy (29)
Uz = 2(1- %) ff[(e*) + 2v € Gya + (Ey ) +)\(y“ ) ]dx dy (30)

The similarity between these expressions and those arising in the two previous derivations
can now be noted. As before, we omit U, in further calculations,

From Equation 29, the strain expressions of Equations 25 and Equation 27, we obtain

= tﬂ[gfg% N yog‘;+r,‘y (-%;L + —3—:—)]dx dy

(34
- aw
o® || ax
dw
+ E’ff[ ax a_y-] Txyo dyo _g—'w— dx dy
y
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At this point we assume displacement functions for u , v , and w , Guided by the one-
dimensional case of the stringer we select linear functions in x and y as follows:

ulx,y) = ogg+q, x+azy
vix,y) = bg+b x +bpy (32)
wix,y} = cotc x +cay

Equations 32 contain 9 constants. These agree in number with the total nodal degrees of
freedom. Consequently we can determine these constants in terms of nodal displacements.
Writing u, v , and w from Equations 32 at each node — see Figure 4 ~ and solving for
tte constants a,,- * -, ¢, gives

g = Y g, = (ug-u;)/xp a, = {xzpu; = xzup ¥ xp Uz }/ Xpy3
bg = ¥, b, = (vp=v )/ %, by = (x3pv) = XzVp + X, V3l xpy3  (33)
Co = W, ¢, = (wyp- IR P cp = (xgpw = Xgwy+ Xp wy)/X3y3

where x,, x4~ %, and x, y, =2A ,A= area triangle.

In terms of Equations 32 and 33 we see that the first integral in U, , Equation 31, contains
only linear terms in the nodal displacements, We therefore neglect this term and write the
remaining integral as U, , We then have

o b ] |55 SE|[0] @ o

. 1 S (34)

) BT % o] [

where

(7 Do ]
Y3 *32

["'V]T = Y3 T*3 (35)
] %o

[69+°] = square matrix from Equation 34

Following the procedure established in the previous derivations we therefore find that the
initial stress matrix for the triangle in plane stress is given by
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n t Tr o o
K = gz [a9] [0 [xy]
(36)
1) {1 I
= koo kN Py ki, 0
where
Wy Wp Wy
Y3 sym
0
| Oy t
K' )(Uxo) = TKA_ -yf y32 (37a)
) o 0
Wl Wa W3
132 Sym
{1) o 0')?¢ 2
K (O"y } = T —X3xa2 13 (37b)
Xa¥32 “XpXz  Xp
il wa w3
~2y3 %3 sym.
0
n o Tyt
K Ty ) = 43‘ (x3+ %33)ys -2x3y3 (37c)
= XpY3 X2¥3 0

It is now a simple matter to enlarge the Km matrices of Equations 37z, b, ¢ to order
9 x 9. In doing this we note that columns and corresponding rows of zeros must be introduced
for all v and v components of nodal displacement. The solution then agrees in form with
the 4 x 4 K" matrix obtained for the stringer.

The solution, as expressed by Equations 37 is significantly simpler in form than that
previously reported in References 1 and 6. In Reference 1 additional terms to those appearing
In Equations 25 were used in writing the strain-displacement equations. These additional
terms are unnecessary. Retaining them does not lead to an incorrect result; however, neither
is the result in its simplest form. The initial stress matrix obtained in Reference 6 for the
triangle also contains fewer zero elements than found above, Hence, in this case also, the
geometric approach has led to a result different from that given by a straightforward appli-
cation of basic theory,
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If we return to Up; , Equation 30, we discover that it can be written as
% = % aegam (o v] o] [N o] {es o

plus cubic and higher order terms in displacement components

where,
T
[u, V] = [ Uy U U3 V| V2 V3]
" 0] o v ]
[av] o M M 0 (38)
WY1 " 0] At Al 0
| v 0 o i
[-y3 O xsz O |
T o) 0 xp 0
[xv] -
o -y3 O X32
0 ya 0 _X3
0 o} o} Xo
Dropping the higher terms in U, we then immediately write K(Q)as
(0) E1 T
K : —_— . )y 39
a-v5) A [v] [ev] [%09] 39

Carrying out the triple matrix product yields K ©) g5 originally given in Reference 18. In
comparing solutions congruent nodal locations must be used.

0 '

Again it is a relatively simple matter to transiorm the results obtained for K{ ‘and K( )

so that they apply to the triangle which is arbitrarily oriented inan x , ¥y, Z coordinate
system. Reference 18 glves detailed information on such transformations,
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TRIANGULAR ELEMENTS IN BENDING
There are various approaches to developing a satisfactory K‘o)matrix for an arbitrary
triangular element in bending. These will not ba discussed here, Additional publications on
this subject will undoubtedly appear during the next several years.

Of interest in this present paper is the problem of obtaining a satisfactory K " matrix for
the triangle in bending. Such a matrix is essential if large deflection and stability problems
of thin plates and shells are to be investigated by the stiffness method.

Gulded by the discovery that the beam-column can be satisfactorily described by using the
stringer Kt matrix in conjunction with KI©} for the beam in bending we arrive at the
following hypothesis: large deflection of the triangle in bending can he satisfactorily described
by using X{!) for the triangle in plane stress, plus a KI°) matrix which has been found to
be suitable for the case of small deflections. This hypothesis was used in Reference 6 to
show that critical loads for a thin plate could be accurately calculated using an idealization
based on triangular elements. More complete data on such calculations will be submitted
for publication in the near future.
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Figure 1. Truss Stability Problem

L A
l————— [ = 2L

Figure 2. Two Element Idealization of the Uniform Beam-Column

Y, v
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Figure 3. Triangular Element as Initially Located in the XY Plane
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