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A test structure, namely a two-tiered structure (TIS), was used as a physical model for obtaining 
modal parameters of flexible structures. These parameters, which were determined analytically and 
experimentally, are natural frequencies, mode shapes, and damping ratios. In the analytical 
portion, finite element method (FEM) was used with MSC/NASTRAN, MSC/pal 2, and 
MSC/MOD. In the experimental part, the structure was excited by random noise, and frequency­
response function (FRF) plot and modal parameters were obtained. Both the HP 3566N3567 A 
(Hewlett Packard Spectrum/Network Analyzer) and STAR System (Structural Measurement 
Systems software) were utilized. An exact model-reduction technique was used to obtain a 
complete mathematical model of a reduced-order system, which includes the reduced-order 
physical mass, stiffness, and damping matrices. 
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Introduction 

Analytical and experimental modal analysis can be used to determine dynamic properties or modal 
parameters of flexible structures. These modal parameters are natural frequencies, mode shapes, 
and damping ratios. The characteristics of flexible structures are low natural frequencies, low 
damping, and some of the modes are closely spaced. 

In finite element analysis, it is necessary that the structure under consideration is modeled using a 
large number of degrees of freedom (DOF's) for accurate results. But if the number of DOF's is 
large, the results from finite element program become unmanageable for the purpose of design and 
analysis of vibration control or for subsequent studies. A model reduction technique [1] can be 
used to reduce a large-DOF model to a small-DOF model which exactly represents the first few 
modes. 

In experimental modal analysis [2-4], also called modal testing, natural frequencies and damping 
ratios can be obtained from the frequency response function (FRF) plot. In modal testing it is 
important to have high-quality test setup, testing craftsmanship, and data processing, etc. 

The equations of motion of a structure can be written in the configuration-space form [5] as 

mx+cx+kx=f (1) 

where m, k, and c are the physical mass, stiffness, and damping matrices, respectively; and f is 
the applied forcing vector. 

The physical mass and stiffness matrices of a structure under consideration can be obtained 
analytically by the given physical properties, dimensions, and boundary conditions; however, the 
physical damping matrix must be determined experimentally. 

A complete mathematical model of a reduced-order system will be determined, which includes the 
reduced-order physical mass, stiffness, and damping matrices. 

The Test Structure 

The test structure, a two-tiered structure (TIS), shown in Fig. 1, is chosen so it can be used for 
studying vibration ·characteristics of flexible structures. It was designed specifically to possess the 
following characteristics: 

. low natural frequencies, light damping, and intuitive mode shapes for the first few modes 

. inexpensive and easy to build 

. instructive for analytical analysis and computer simulation, and experimental modal analysis 

Finite Element Model 

A finite element model of the structure is created using MSC/MOD (Fig. 2). The floors and the 
columns are modeled by plate elements and bar elements, respectively. The brackets connecting 
the plates and columns are modeled by concentrated mass elements. The model has 136 elements, 
146 nodal points and 790 (active) degrees of freedoms (n = 790). It may appear that the number of · 
plate elements is more than adequate; however, in this study, the model is relatively small and 
simple so that mesh optimization is ignored. 

The finite element model is then analyzed by using two commercially available finite element 
nalysis packages: MSC/NASTRAN (on main-frame computer), and MSC/MOD and MSC/pal 2 
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(on MS-DOS machine) [6] . The undamped natural frequencies obtained, using these packages, are 
given in Table 1, and the corresponding mode shapes (from MSC/pal 2) are shown in Figs. 3-8. 

Exact Model Reduction 

For the undamped free vibration or eigenvalue problem, Eq. (1) reduces to 

mx+kx=O 

When the structure vibrates in its natural modes, we have 

(k- w,2m)</J, = 0 r = 1, 2, ... , n 

(2) 

(3) 

where Wr and <Pr are the undamped natural frequencies and the corresponding mode-shape vectors, 
respectively. 

The orthogonality properties are mass normalized so that the modal mass and stiffness matrices are 
given as 

M=<l>rm<l>=l 

K = <l>rk<l> = diag[ w,2] r = 1, 2, ... , n 
(4) 

where the full-order (mass-normalized) mode-shape matrix is given as 

(5) 

The full-order physical mass and stiffness matrices can be written, from Eq. (4), as 

m = <l>-T <l>-1 

k = <l>-r diag[ w,2]<1>-1 r=l, 2, ... , n 
(6) 

The 790-DOF full-order model (n = 790) is reduced to a 6-DOF reduced-order model (m = 6) 
which exactly represents the first six modes using [1]. The reduced-order model is obtained by 
selecting the four translational DOF's located at the centers of the floors for the first four bending 
modes. For each of the first two torsional modes, the angular DOF is defined by a set of any two 
translational DOF's of a given floor. Using the numerical values of the full-order mode-shape 
matrix (from MSC/NASTRAN, not shown), the reduced-order mode-shape matrix can be selected 
as 
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<l>R = 
4.175227 0 0 6.274968 0 0 

0 4.195279 0 0 -6.261847 0 

0 0 -0.500879 0 0 0.657553 

6.724909 0 0 -4.559574 0 0 

0 6.710377 0 0 4.580626 0 

0 0 2 --0.711376 3 0 4 0 s --0.561635 6 

(7) 
where the subscript R denotes reduced-order model. 

The differential equations for undamped free vibration of the reduced-order model are given as 

where 
(8) 

(9) 

(10) 

The numerical value 1 in Eq. (10) has dimension of length so xR is dimensionally homogeneous, 
and the subscripts 1 and 2 denote the middle floor and the top floor, respectively (Fig. 1). 

Introducing <I> R from Eq. (7) and ro, from Table 1 (MSC/NASTRAN) into Eq. (9), we have 
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(11) 

The numerical value 12 in Eq. ( 11) has dimension of length squared so the elements of m R and k R 

have proper dimensions. 
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Modal Testing 

The experimental setup is shown in Fig. 9. Continuous random signal and Hanning window were 
used to obtain the FRF plot (Fig. 10). This plot includes the first six modes of the structure, of 
which the natural frequencies can be read directly. In the process of obtaining the modal damping 
ratios, the FRF data was first converted from the HP 3566N3567 A format to the STAR System 
format, then curve fitting methods were used. For widely spaced modes, the determination of 
damping ratios by curve fitting is straight forward; because in these modes, the structure behaves 
as if it were single degree of freedom (SDOF). However, for closely spaced modes, the damping 
ratios are difficult to obtained with great accuracy. The experimental results for natural frequencies 
m, and damping ratios ,rare given in Table 2. 

Physical Damping Matrix 

A physical damping matrix can be determined as 

r=l, 2, .. . ,m (12) 

The modal damping matrix is given as 

(CR t = diag[2~rcor] = diag[0.4008 0.3314 0.1633 0.9068 0.8671 0.2771] rad (13) 
s 

or 

(cRt = diag[2~rcor] = diag[0.4032 0.3191 0.1184 0.9392 0.8767 0.2205] 
rad 

(14) 
s 

where wr in Eqs. (13) and (14) are the experimental and analytical (MSC/NASTRAN, Table 1) 
natural frequencies, respectively. 

Introducing Eqs. (7, 13) into Eq. (12), we have 
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0 0 
0.3417 

0 0 
-0.0685 

CR= 
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(15) 
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0 0 
0.2497 

i2 I2 

The numerical value l2 in Eq. (15) has dimension of length squared so cR is dimensionally 
homogeneous. 

Concluding Remarks 

A complete mathematical model of the reduced-order system has been determined, as given by 

(16) 
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It should be noted that the physical damping matrix can be obtained using the experimental 
damping ratios and experimental/analytical natural frequencies and mode-shape matrix. If the 
physical damping matrix is proportional, the modal damping maoix is diagonal, or if the off­
diagonal elements of the modal damping matrix are negligible, then the physical damping matrix 
can be approximated as proportional. Modal analysis can, then, be performed since the equations 
of motion can be decoupled via orthogonality properties [7]. 

Table 1 shows that the results obtained from the finite-element model agree very well with the 
experimental results in bending modes but not so well in torsional modes. Some explanation for 
these discrepancies is currently being sought. 
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Table 1 Comparison of Experimental and Analytical Natural Frequencies 

Mode Experimental MSC/pal 2 MSC/NASTRAN 
Number (Hz) (Hz) (% Diff.) (Hz) (% Diff.) 

1 2.125 2.184 (+2.78) 2.228 ( +4.85) 

2 2.334 .. 2.225 (-4.76) 2.247 (-3.73) 

3 3.938 2.796 (-29.00) 2.854 (-27.53) 

4 5.594 5.746 ( +2.72) 5.794 ( +2.77) 

5 5.750 5.789 ( +0.68) 5.814 (+1.11) 

6 9.188 7.224 (-21.38) 7.311. (-20.43) 

Table 2 Experimental Natural Frequencies and Damping Ratios 

Mode Frequency Damping Ratio 
Number (Hz) (%) 

1 2.125 1.44 

2 2.334 1.13 

3 3.938 0.33 

4 5.594 1.29 

5 5.750 1.20 

6 9.188 0.24 
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Fig. 1 The test structure (Aluminum 6061-T6) 
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Fig. 2 Finite e!e,ment model 



Fig. 3 First x-z bending, 2.184 Hz 
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Fig. 5 First z torsion, 2.796 Hz 

Fig. 7 Second y-z bending, 5.789 Hz 
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Fig. 4 First y-z bending, 2.225 Hz 

Fig. 6 

Fig. 8 

Second x-z bending, 5.746 Hz 
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Second z torsion, 7.224 Hz 
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Fig. 9 Experiment setup 
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Fig. 10 Frequency Response spanning the first 6 J!Iodes 
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