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SECTION I

INTRODUCTION

The general objective of this study is to develop techniques and tools necessary
for rapid design of an active control system for aircraft with lightly damped
structural modes. The synthesis techniques provided here are aimed at .
reducing the engineering man-hours presently required for a flight control
system design, thus effecting a cost reduction, Improvements in the fatigue
life, ride qualities, and/or handling qualities of military aircraft are sought
by controlling the lightly damped modes and thus improving their mission

performance,

The present scope of this study is to develop programs to interface the level
2.01,00 FLEXSTAB computer program system with existing Air Force-
owned optimal control computer programs. These programs represent ;.\d‘-
vanced computational techniques required to perform gquantitative analysis
of multisurface control systems, The resulting interface program system
is called "KONPACT - Computer Programs for Active Control Technology, "
KONPACT provides the capability to model, synthesize, analyze, and design
automatic control systems efficiently working together with FLEXSTAB, It

can also be used as a stand alone program.,

The work performed under this contract is reported in three volumes:
Volume 1. KONPACT Theoretical Description and Demonstration
Volume I[I. KONPACT Program Listing
Volume III. KONPACT Users Manual



This document reports the analytical techniques and algorithms used in
KONPACT. It also demonstrates how these techniques are applied to

flexible aircraft control system design.

An overview of the Honeywell theoretical approach to control system design
using KONPACT is provided in Section II, The process of the Active Lift
Distribution Control System (ALDCS) design, brief description of KONPACT,

and the application results for the C-5A vehicle are described in this section.

In Section III the technique for mathematical modeling of the dynamics
for the optimal controller design is presented. This is an automated

process which has been applied to multivariable systems.

System performance analysis in state space is briefly reviewed in Section IV
for completeness., The steady-state response modeling is considered in
detail since it is required for the ALDCS design., Some of the analytical
developments reported have not been incorporated into the existing soft-

ware due to lack of resources,

In Section V active control synthesis procedures are reviewed, A
description of performance criteria is given first., This is followed by
the control configuration for the required steady-state performance,
Subsequently, the full state and simplified optimal controller design steps
are described. Finally, a demonstration example is given for the ALDCS

design using the C-5A vehicle,

In Section VI the effects of modeling and model reduction procedures on

control system performance is presented, Two vehicle modeling procedures,



i.e., Air Force FLEXSTAB and Honeywell /{GELLAC, are reviewed first
for the C-5A vehicle, Subsequently, the theory of model reduction
procedures is briefly described. The residualization and truncation

methods are investigated using C-5A open-loop and closed-loop models.

Conclusions and recommendations are given in Section VII, Both future

analytical work and software development work are described,

Computer programs which implement the mathematical analysis and
models presented in this volume are listed in Volume II. Complete

documentation of KONPACT is beyond the scope of this contract,

In Volume III users' information on KONPACT is given, The input cards
are fully described for each program, A brief description of programs
and the information flow in KONPACT are also presented for completeness.

Demonstration examples are included to guide the user in data mechanics.



SECTION II

ACTIVE CONTROL SYNTHESIS APPROACH

This section presents the overview of Honeywell's work on the optimal
and suboptimal active control design for the C-5A aircraft and design

software,

First, the previous work of Honeywell on the subject {Reference 4) is
briefly presented to provide background information, Subsequently an
overview of the KONPACT package--Computer Programs for Active

Control Technology, developed in this program is given,

Finally, the results of the Active Lift Distribution Control System (ALDCS)
using the FLEXSTAB/LSA generated vehicle model are described.

REVIEW OF DESIGN PROCEDURE FOR THE C-5A ACTIVE
LIFT DISTRIBUTION CONTROL SYSTEM (ALDCS)

Honeywell has conducted a study (Reference 4) which was part of Lockheed
Georgia's (GELAC) program to increase the life of the C-5A airplane

with the use of active control. The design goals for the ALDCS are listed
in Table 1, The design rules were to meet these specifications with a
single accelerometer in each wing (see Figure 1) and without the use of
notch filters to remove unwanted flexure modes from the measurements,

Four flight conditions were chosen as shown in Table 2,
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Table 1,

ALDCS Design Goals

No. Performance Criterion Specification
1 Wing root bending moment due to 70% of free A/C values
maneuvers and wind gusts

2 Wing root torsion due to wind gusts Less than 105% free A/C

3 Handling qualities Same as A/C with existing
SAS

4 Stick force per g Same as A/C with existing
SAS

5 Stability margins 10 db gain, 60° phase

Table 2. Flight Condition Definition
KONPACT
CHECKCASE
Flight Condition CRUISE CLIMB TRAFFIC | CONTOUR | F.C, 37
412301 412502 412530 412020

Total Weight (1b) 578, 430 698, 400 698, 400 529, 500 593, 154
Mach No. .74 . 448 .228 . 333 . 533
Altitude (ft) 30, 000 7, 500 1, 500 | 10, 000
Dynamic Pressure 240 191 T3 418 292
{(ps)
Airspeed (fps) U_ 735 468 254 594 577
Fuel (1b) 94, 250 214,500 214, 500 94, 250 159, 750
Cargc {lb) 158,104 160,000 160, 000 30, 000 110, 000
Center of Gravity 30 31 30 29.9 31
{(% M.A.C.) (c.g.)




The resulting system was called Active Lift Distribution Control System
(ALDCS). It was developed as a means to reduce fatigue damage on the

wing root due to aircraft flight maneuvers and wind gust forces, The
control system developed by Honeywell (Reference 4) was designed to reduce
the fatigue damage enough to double the actual flight life of the aircraft.

The proposed system consisted of five sensors controlling the ailerons

and the inboard elevators. An accelerometer was placed in each wing;

an accelerometer and a pitch rate gyro were placed in the fuselage, and

a sensor was placed on the pilots pitch control column (see Figure 2),

The control system reduces wing bending during maneuvers by putting an
upward bias on the ailerons proportional to the g load., This causes the

life to be distributed inboard on the wing and requires the elevator to deflect
more, The wing bending due to wind gusts and maneuver are reduced by
sensing these forces with the accelerometer and cancelling them with the
aerodynamic surfaces. The aileron most effectively damps the higher fre-
quency bending modes, The elevator most effectively damps the low fre-

quency bending modes,

Structural mode control technology has been developed for aircraft in
programs with the XB-70, B-52, C-5A and YF-12A (References 11 and

18 through 21}, The XB-70 program demonstrated the effectiveness of

the ILAF (identical location of accelerometer and force) configuration
where the sensor and control force producers are placed near one another,
The control surfaces effectively cancelled out sensed aeroelastic forces due

to lower local acceleration.
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The B-52 and C-5A LLAMS programs established the feasibility of using
control forces to reduce fatigue damage ratio in air turbulence, The

C-5A LICS program showed the special effectiveness of the inboard spoilers
in reducing wing root fatigue. The YF-12A study extended the LLAMS
technology by examining additional control force producers. A canard

vane proved to be the most effective force producer for reducing structural

mode contributions to local accelerations,

In the C-5A ALDCS program all aspects of the control problem were considered,
These included handling gualities, flutter margins, and cost effective sensor
configurations. The elevators nroved to be effective force producers in
combination with the ailerons for reducing wing root bending moments, In
addition to low frequency bending mode suppression, the ailerons were up-
rigged for steady-state g loads to distribute the maneuver's lift forces

inboard to reduce root stress,

Honeywell-GELAC C-5A Vehicle Modeling

Modeling Procedure--One of the most difficult and crucial tagks in the

design of the flexure control system is constructing an accurate model of

the aircraft (Reference 5). The Lockheed Georgia Company provided the
complex model of the C-5A structural dynamics with 15 flexure modes
(Reference 4). The model allowed accurate determination of flexure mode
states over the aircraft wing as a function of aerodynamic and control sur-
face forces., The provided data also allowed the calculation of accelerometer
outputs for any sensor location, In addition, shear, torsion, and bending
moment equations were provided to calculate the control performance, The
above data were supplied for the four critical flight conditions presented in
Table 2,



The model was transformed from second order airframe standard form to
first order differential equations for state space analysis, Other minor
changes were made to the model to simplify the state space analysis. First
order actuator models were added. The Von Karman wind gust model was
replaced by the second order Dryden model. The Wagner dynamics for the
flexure modes were reduced from the second to first order to represent un-
steady model. The phugoid dynamics were removed so that the unstable roots
would not affect the design calculations, After the above transformations,

the steady and unsteady aircraft models contained 42 and 79 states,

respectively,

In order to make the design optimization cost effective, the design model
was obtained by reducing the 7th through 15 flexure modes in the steady
model through residualization, By this process the highest frequency flexure
modes were removed. This procedure is more accurate for SS maneuver

load calculations than modal truncation,

Specific modeling software was developed to perform the above data manipu-
lations, transformations, and reductions (Reference 26), We note, however,
that, because of the way the unsteady effects (Wagner dynamics) were modeled,
the steady low order models could not be obtained directly from the high

order unsteady model either by truncation or by the residualization processes.

This fact was overlooked in some current programs at Honeywell using the
C-5A high order model. It was also a source of some confusion in this pro-
gram when the comparison of Honeywell/GELAC and FLEXSTAR/LSA models
were made, The late discovery of this fact prevented reactivating specific
modeling software reported in Reference 26 to obtain accurate reduced order

models using the GELAC data for this study.
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Coordinate Systems--The rigid body dynamics of the Honeywell study are

described in the body fixed axis systems, The origin of this system is at
the aircraft's center of gravity {(c.g.) and moves with the c, g, along the

flight path, (See Reference 4 for additional details,)

Bending moments and torsional moments provided bv Lockheed are
described at the five wing station local coordinate systems shown in

Figure 3. Polarity is established by the ' right-hand" sign convention.

Bending moments are about an axis perpendicular to the elastic axis

(+ bending moment produces right wino-tip up). Torsional moments are
about an axis parallel to the elastic axis { + torsion produces leading-

edge up).

Active Control Using Quadratic Optimization

The quadratic optimization design methods were carried out on a six mode
model without Wagner dynamics, The design model required 28 states with

various compensator states included.

Quadratic optimization is a numerical technique. The technique is especially
suited to complex problems with many interactive loops and many conflicting
performance criteria. In such problems, intuition is confused, The
numerical technigue provides a systematic procedure for making complex
tradeoffs, By simply adding all the performance parameters to a response
vector and weighing their relative importance, the method gets near the

desired result very quickly,

For quadratic optimization the model and its responses are reduced to

algebraic quantities, The rms responses are described by the coefficients

11
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of the differential equations of the system. These responses can be summed
in a cost function with variable weights. The feedback gains are chosen to
minimize the sum of the responses. The design problem is to pick the
proper responses for the cost function with the proper weight ratio for the
performance tradeoff, Initially, feedback gains are chosen for all the

states {dynamic elements) of the system. Since only a limited number of
states can be fed back through the sensors, the gains have to be adjusted

later for that condition in order to make the system practical,

Cost Function

The cost function for the quadratic design was made up of flexure mode
rates, bending and torsion moments at several wing stations, control
surface position and velocity, and pitch response model error, All of

the above responses were minimized in accordance with selected weighting
ratios, The pitch response of the C-5A with the stability augmentation

system (SAS) was used as a model for handling qualities.

Design Procedure

The quadratic optimization of the above cost function produced a full state
feedback design., The design was then ''practicalized’ by adjusting the

feedback gains to be compatible with the actual sensors. This process is
accomplished with a numerical search algorithm which seeks tc adjust the

feedback gains with the least amount of increase in the cost function.

13



In this design procedure, for each response weights, the DIAK program
generates full state feedback, Successive response weights are chosen

until performance specifications are exceeded, Then the design is practicalized
using the FFOC program, If the practicalized desigh meets performance
specifications, performance plots are calculated using the analysis model,

If not, a new full state design is calculated, If the frequency response plot
shows insufficient stability margin, slight gain or filter changes are made.

Then the rms responses and transient responses are rechecked,

Performance Evaluaticn

During the d=sign process, the performance of the system was evaluated

by examining the rms values of the wing root bending and torsion moments,
The handling qualitics were evaluated by comparing the ALDCS design tran-
sient response to a slep pilol command with similar SAS aircraft responses,
In addition, the damping ratius and the natural frequency of the short period
roots are compared with that of the SAS aijrcraft, The stability of the ALDCS
system is yualitatively evaluated by locking at the damping ratios of all of
the roois of the characteristic equation, A guantitative measure of gtability
margin is obteined from loop breaking frequency response plots, One sensor
or actuator loop is opened at a time to determine the gain margin for each

loop.
ACTIVE CONTROL TECHNCIOGY COMPUTER PROGRAM
A computer program (KONPACT)Y was generated to facilitate dynamic

modeling, optimal and suboptimal controller synthesis, and performance

analysys of venicles with lightly darmped mmodes.

14



This program utilizes advanced computational techniques to perform system
modeling, modern control synthesis, analysis, and design of automatic con-
trol systems, Figure 5 shows its functional block diagram. It interfaces
with the FLEXSTAB/LSA program for vehicle description as well as per-
formance evaluation of the optimal closed loop system. Figure 6 shows the
LSA/KONPACT interface and also shows a proposed version of an advanced
FLEXSTAB program. KONPACT is also used as a stand alone program with
externally input vehicle descriptions. Specifically, KONPACT integrates

the relevant computer progréms in aerodynamics, and structures (FLEXSTAB/
LSA level 2,01.00) with programs in modern control theory (DIAK, T"FOC)
into a single interdisciplinary design tool. This integration is shown in detail
in Figure 7, Its variable dimensioning feature reduces the workload on the

interface data mechanics for design and analysis of large scale systems.
In the following a brief description of KONPACT is given,

Overlay Organization

KONPACT consists of two programs, namely, a modeling program
(KONPACT-1) and a design program (KONPACT-2), KONPACT-1 irterfaces
with FLLEXSTAB through the LSA program to obtain the vehicle model and
augments the specified dynamics to obtain the state space description
(quadruple data) of the flight control system. These data are utilized by
KONPACT-2 which contains the subprograms DIAK and FFOC (documented

in Reference 1) in the design of the optimal feedback gains, Also KONPACT-2
interfaces with FLEXSTARB through the LSA program to evaluate performances

of the above designed optimal flight control system.

15
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Table 3 provides a brief description of programs KONPACT-1 and KONPACT-2
and their subprograms, The detailed interface between KONPACT and the
L.SA program is illustrated in Figure 8, The overlay structure of KONPACT

is discussed in References 51,

Information Flow

The normal sequence for obtaining an overall state space model of a flight

control system using the modeling program (KONPACT-1} is as follows:

e The vehicle model is obtained by using either subprogram STAMKI1
for LSA data or subprogram STAMK4 for other types of vehicle

data.

. The actuator, sensor, controller, implicit and explicit models
are obtained by using either subprogram STAMEK?2 with transfer
function input data or subprogram STAMKS with quadruple input
data,

[ The subsystems defined above are combined to get an overall
system by using subprogram STAMKS3 with interconnection input

data,

® The overall system model is conditioned (modified) by scaling
and/or shuffling and/or truncating and/or residualizing the
variables using the CONDK program. This program also develops

the rate of change of response variables when required,

The normal sequence for designing optimal feedback controllers and evaluating
the performance of the resulting system using the desigh program KONPACT-2

is as follows:

18



Table 3. KONPACT Program Descriptions

PROGRAM SUBPROGRAM DESCRIPTION
KONPACT-1 State space modeling program
STAMKI1 Obtains state space model from LSA
simulator deck data
STAMK?2 Obtains state space model from transfer
function data
STAMKS3 Obtains state space model from
quadruple data and interconnection data
STAMK4 Obtains state space model from
simulation equations (User Written)
CONDK Modifies the state space model by
scaling, shuffling, truncating and
residualizing the system variables
KONPACT-2 Optimal design program
DATAK Prepares data for DIAK, FFQOC and
LLSA programs
DIAK Designs full state feedback optimal
controllers
FFOC Designs reduced state {practical)

feedback optimal controllers
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e Full state feedback control gains are obtained by using the DIAK
program and by varying the quadratic weights until performance

design requirements are satisfied,

® The resulting full state feedback control gains are rcduced to gains

only on specified measurements by using the FFOC subprograms.

. The performance of the resuliing closed loop system is evaluated

using the LSA program.
e The above steps are repeated until a satisfactory design is obtained,

Table 4 describes all the data tapes used in the KONPACT-1 and KONPACT-2

programs. The state space model data (quadruple data) and the name list
Table 4, KONPACT Data Tapes

TAPE GENERATING | BENEFITING

NAME PROGRAM PROGRAM(S)

VDATA Simulator Interface data in the LSA KONPACT -1
form of card images

QDATA Quadruple (A, B, C, D} or state KONPACT-1 KONPACT-1
variable representation data KONPACT-2

NDATA Name list data of the state KONPACT-1 KONPACT-1
variable representation

DDATA Full state feedback gain data KONPACT-2 KONPACT-2
in the form of card images

FDATA Reduced feedback gain data KONPACT-2 KONPACT-2
in the form of card images

SDSTP Frequency domain representa- KONPACT-2 LSA
tion of guadruple data
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data are written on tapes QDATA and NDATA, respectively, The vehicle
data (simulator deck data) are written on tape VDATA, The feedback gain
data from DIAK and FFOC are written on tapes DDATA and FDATA,
respectively, The overall system data in frequency representation form

are written on tape SDSTP for use by the LSA program.

The DATAK subprogram is used in preparing data tapes for DIAK, FFOC,
and LSA,

Variable Dimensioning_

Dynamic data storage variable dimensioning techniques (Reference 7)

are used for efficient data storage., This technique also facilitates changing
the amount of allocated (required) storage space by a data card input.

In KONPACT the subprogram arrays, whose size depends on the maximum
system dimension inputs, are stored in scratch storage blocks using
variable entry points, In the subprograms the arrays are dimensioned

with integer variables, These "variable DIMENSION statements' remain
unchanged although the amount of required data storage is altered. The
maximum size of the scratch storage blocks is specified, in a "fixed

DIMENSION statement, "' in the main program,

The size of storage actually needed by the arrays varies depending on the
maximum system dimension inputs, Thus, if the maximum size a user
allows for his program changes, there is only the ''fixed DIMENSION
statements' in the main program to be changed., Changing the main program
of KONPACT-1 is done by a precompiler, The user provides the new

maximum system dimensions by data cards., Updating and running with the

23



updated main program are done with control cards in a single run, For
more details on variable dimensioning the reader is referred to Volume II

(Reference 3},

ALDCS DESIGN WITH FLEXSTAB C-5A VEHICLE DATA

Two of the contrant objectives were 1) to check out KONPACT by repeating
the past Honeywell design work (Reference 4) using the FLEXSTAB generated
C-5A vchicle data and 2) to compare and correlate the resulting FLEXSTAB
controller to a Reference 4 ALDCS,

Modeling Procedures

The Air Force supplied C-54 data for the cruise flight condition in the form
of cards (simulator datz deck), The FLEXSTAB simulator data were con-
verted to state format and augmented by the wind and wind distribution states,
actuators, and controlier dynamics as shown in Figure 9, Subsequently,

the augment=d data were scaled and shuffled to correspond with Honeywell/

GELAC data,

Controller Design

After having obtained zgreement between the two sets of data, a full state
design was obtained using the weights of Reference 4 and the DIAK program
in KONPACT software,

Subksequently, the gains on the measured variables were retained and other

gains were reduced to zero using the FFOC program in KONPACT software.
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Finally the pilot gain the reduced control law was adjusted to maintain the
same stick gradient per g as that of SAS, The closed-loop model was pro-
duced using KONPACT software with the final ALDCS controller to evaluate

several performances,

Time history plots were made using DIAK., Power spectral density plots
were made using the FLEXSTAB/LSA program. These results are presented

in detail in Section V.
This repeat design process thoroughly checked out the total KONPACT systemn
with respect to communication with its internal programs as well as with the

FLEXSTAB/LSA program system.

Coordinate Systems

The FLEXSTAB rigid body dynamics are described in the body fixed axis
system, The origin of this system is at the aircraft's c, g, and moves with

the c. g, along the flight path, (See Reference 2 for additional details,)

Rending moments and torsional moments are described at the five wing

station local coordinate systems shown in Figure 4. The polarity, orientation,
and location of these load axis systems are equivalent to the Honeywell/GELAC
data with one exception: the FLLEXSTAB inboard (w.s, = 120 in) system is
rotated 18, 6° right wing tip forward. Due to the late discovery of this

fact, all design performed with the FLEXSTAB model includes this discrepancy.
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SECTION III

DYNAMIC MODELING FOR OPTIMAL
CONTROLLER DESIGN

In this section we briefly present procedures cn the automatic modeling

of interconnected dynamic systems for optimal control synthesis and
analysis. State variable form is selected to characterize the dynamic
elements of a system, This is necessary for optimal control synthesis,
Also a uniformity in the model form (irrespective of the size or the internal
structure of subsystems) facilitates the analysis during the evaluation of

various performance measures,

In the state space representation a dynamic model is characterized by
four matrices (A, B, C, D) for the continuous model and (F, G, H, E) for the
discrete model. These four matrices are referred to as a system quadruple.
First we present an approach to develop a system quadruple from the
physical equations describing the dynamics of a system. Converting the
FLEXSTAB/LSA simulator data matrices to quadruple format is treated
here, This is followed by an approach for modeling with transfer function
inputs, This facilitates the augmentation of vehicle dynamics with the
actuator, filtered measurements, and controller dynamics, Subsequently
modeling of transport delays in the vehicle aerodynamics is treated using
the Pade' approximation and developing the corresponding quadruple.

This is followed by the overall system modeling using the dynamic blocks
and the interconnections between them. The response rate modeling is

treated next., Successful optimal control synthesis requires careful
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construction of design responses to force the desired performance. The

desired performance in general contain responses and response rates,

Finally we present briefly the conditioning of a model for optimal control
design, Model conditioning includes reduction, shuffling, and scaling
operations. Model reduction can be achieved in several ways. Here we

present only the residualization and truncation procedures,

Reordering of states is called shuffling., This operation is needed to bring
two different model variables into a common base for comparison as well
as to reduce the system order, The scaling operation also facilitates

the data comparison and overall system modeling by bringing subsystem

units into a common base,

DEVELOPMENT OF THE LINEAR SYSTEM MATRICES
FROM THE SIMULATION EQUA TIONS

In general, the simulation equations of the system take the following form:

X = (%, y, x, u) (1)

y = glx, y, x, u) (2)

r = hix, y, x, W (3)
where

X =n X 1 vector of the output of integrators

y = ny x 1 vector of the output of summing points
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=
1l

n, x 1 vector of the system variables of interest (response outputs)

=
]

n X 1 vector of the external inputs

The functions f, g and h are usually nonlinear, For the linear analysis
they can be linearized about a given operating point. In the following,
we shall assume that the simulation equations represent the linearized

model. In this case, Equations (1), (2) and (3) can be put in the following

form:
¥=F, ¥+F y+F x+F u (4)
X y x u
y=G}.{x+ny+GXx+Guu (5)
r=H.%¥+H y+H x+H u (6)
X y X u

and this set of equations can be reduced to the following standard form

by algebraic operations

Ax + Bu {7)

ble
1}

Cx + Du (8)

=
n

On the surface, this task appears to be very simple to carry out with
paper and pencil., However, for large systems the writing of simulation
equations in the format given in Equations (4), (5), and (6) is prone to

human error and should be avoided.
In the following, we present an algorithm which automates the transition

from the physical equations (analog simulation equations) to the state

variable representation given by Equations (7) and (8).
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L.et us define two vectors as follows,

v = col (%X, y, r) (9)

w = col (%, y, %, u) (10)

Obviously, Egquations (4), (5) and (6) can be written as

v = F(w) (11)
The matrix coefficients given in Equations (4), (5) and {6) are then obtained
by first finding

oF
bw

and then properly partitioning it, This term g-% is called the simulation

matrix. The sizes of its rows and columns are given respectively by

n=n_+n +n (12)
X Yy r

m = 2nx-|~ny+nu (13)

The coefficient matrices obtained by partitioning the simulation matrix

is indicated in Figure 10.

rt m

r—"x‘+-"y—+—“x—iln—"u
~ NTTE
oF F).( Fy Fx Fu Ny
& ——t |
G)‘( Gy Gx u ny
He | By | M | B | T
. J v

Figure 10, The Simulation Matrix
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The column vectors —Q\;’F—- i=1,2, ..., mare obtained simply by setting
i

w, =1
1 (14)

W 0, j=1, 2, o, , m, j#i

"

and evaluating (11), This yields the coefficient mairices,

In the sequel, the algebraic reduction process will be described. First,

Equations (4) and (5) are written in the following form:

(L= Fy) l -F_ (x) P | Fa (x (15)
-G}.{ l (I~ Gy) y Gx Gu u
Then is obtained in terms of x and u by solving Equation (15).

Then r is obtained in terms of x and u by substituting (15) into (16):

% X
r = (Hx | Hy) + (H_ l Hu) (16)
Y u

The subroutine which implements this algorithm is called STAMK.

Implementation of the Simulation Equations

The physical {simulation) equations describing the system dynamics
(Equations (4), (5) and (6)) are implemented in subroutines SIMK1 and
SIMK2,
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The physical equations describing the vehicle dynamics in the FLEXSTAB
system (Reference 2) are shown in Volume III, Figure 9 {Reference 51),
These equations are implemented in subroutine SIMK1!, The coefficient
matrices are read from the simulator interface deck in the beginning of the

above subroutine,
MODELING WITH TRANSFER FUNCTION INPUT

In the following we present an approach to carry out system modeling by
software with transfer function input, The approach consists of two parts:
1) obtaining the corresponding quadruple for each transfer function block,
and 2) combining the blocks using the connection equations and obtaining

the system quadruple. In the following we discuss each in that order.

Consider a system characterized by its output/input relation:

bnsn +bn-__lsn-:l Foure +bls +b0
= = H(S) = " o1 » an # 0 (17)
as +a 8 + .4 ta,s +a
n n-1 1 (o)

There are many ways of realizing this transfer function. (See Reference
31 for major realization forms.) In the following we shall develop input
Frobenius form realization and obtain corresponding quadruple in para-

metric form for software implementation.
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The long division of Equation {17) yields

+.‘.

b b
[b - (—E) a sn-l + I:b - (—-I;) a
b 1 n-1 a_ n-1 o] a o
PN SR Rt
= pres
n n

Figure 11 shows the state diagram corresponding to Equation (19) The

mlo

corresponding quadruple (A, B, C, D) is directly obtained from the state

diagram and is presented on the following page.

[~ ! | | | M
o0 4 1 | [
| ] | 1 | {20)
| j L 1
|
_ Eg |- _a_L_ZL : : _ an-2 : _ an-l
a a [ 4 [ ] 1 L ] Ll a a
n | n | | n | n
- J

B = col 0 0 - . » - L] L] L] L - L L L 4

=% |-
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Figure 11, Input Frobenius Form State Diagram of a Single Input,
Single QOutput Transfer Function
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The transfer function coefficients in Equation (17) form a 2 x n array as

indicated below.

I
H(s) = _é'_l_.J_.____ 1., _o
1 o) (21)

Equations {20) and (21) form an algorithm for obtaining the quadruple of
th
an n order transfer function. Subroutine TRANSK implements this

algorithm.

To develop the system quadruple, one must combine the block quadruples
obtained as described above using the connection relations, To demonstrate
the approach taken, consider a block diagram of a system containing three

transfer function blocks as shown in Figure 12,

HS?2 HS1
u(l) | + X r.(2) + r(1)

1

u; (2) tou(m) i

HS3

u(2) r;(3)
U S R G—— (x )
uy(3) 3

Figure 12, Block Diagram of a System Containing Three
Transfer Function Blocks
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Each block is identified by four quantities: 1) a block number, 2) HS array
representing the transfer function data, 3) state number, and 4) output-
input pair, We note that the inputs and outputs (i, e., u{l), u(2) and r(1))
external to the box are unsubscripted variables, whereas inside the box

they are subscripted with i denoting that they are internal variables,

With these definitions the simulation equations corresponding to the system
shown in Figure 12 can be written as follows.

\

g = Agxy B

N-
n

5 Azxz +B2ui(2) ? Dynamics (22)

k, Agx, + Baui(S)J

where HSi is defined by (Ai Bi Ci Di).

ri(1) = Clx1 + Dlui(l?
r,{2) = Cpx,+ D2u1(2)> Internal outputs (23)
ri(3) = Cst + D3ui(3)

S/
u = P r; + Qu Internal inputs (24)
r=Rr +8Su External output (25)
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The set of equations given above are implemented in subroutine SIMKT .
The quadruple (P, Q, R, S) appearing in Equations (24) and (25} are called

the connection quadruple, For the system shown in Figure 12 their values

are given below.

ot
[
o
o

0
P =1-1
o o0 0 0 1

(26)

=
-
o
n
[

R= (1 0 0 , S= {0 0)

The system quadruple is obtained via STAMK as described previously.
MODELING FOR TRANSPORT DELAYS

The transport delays resulting from the gust penetration effect in the

development of aerodynamic forces and moments are represented by

H(s) = 00  § =1,2,3 7

where Ty is the time delay at the ith gust input station, This irrational

transfer function in s-plane may be converted to a rational transfer function

it _ N(s)
Hi(s) " Dle) (28)

in different ways, Here we adopt the Pade’ approximation (Reference 30)
for this conversion, and Table 5 provides the numerator and denominator
polynonial coefficients for a specified degree of these polynomials, The

Pade’ table is inplemented in subroutine DFN.
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OVERALL SYSTEM QUADRUPLE

To develop the overall system quadruple, one must combine the subsystem
quadruple using the interconnection relations. The approach is similar

to the previous case, The main difference in this case is that quadruples
for the subsystem are part of the input data, and each subsystem may

have multiple inputs and outputs. Consider the block diagram of the system
consisting of two subsystems as shown in Figure 13, Each subsystem is
identified by four quantities: 1) system number, 2) quadruple data for the
system, 3) system states, 4) system outputs and inputs. Again the inputs
and outputs of the overall system are unsubscripted variables, whereas

inside the box they are subscripted with i denoting that they are internal

variables,
uﬂ(1) System 1 ”1‘2(” System 2 riz(”
u(1) (X)) req(1) (X r(1)
“1?) ugpf2)  [(AgB,Co0p) riz(2)
a(2) (AByCyDy) A r(2)
u{3)

Figure 13, Overall System Block Diagram
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The simulation equations corresponding to the system can be written as

follows:
Xy = Agxy tByu,
Dynamics (29)
x2 = Azx2 + Bzuiz
Tip = 1% T DYy
(30)
Internal Outputs
rig = CoXy + Doy

where System i is defined by quadruple (AiBiCiDi)'

uy = P11 rj,+ ]&”12 LN +Q1U
Internal Inputs (31)

i2 - P2 fin T

e
I

Py Tjg +QuU

r = R1 iy + R2 Tig + Su } External Qutput (32)

The above set of equations are implemented in subroutine SIMK. The set
of matrices {Pi., Q; Rj‘ S} are called the interconnection quadruples.

3
The combined system quadruple is obtained via STAMK as before.
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MODELING FOR RATE RESPONSES

The original system is described by

Ax + Bu (33)

]
X

r = Cx +Du (34)

From the response set specification the program computes

r =Cx+Du {(35)
s s s

Then, Equations (33) and(35) form the description of the new system with
specified responses., The elements of Cs and DS matrices are constructed

as shown in Table B,

As can be seen from this table, unless Dj is a null matrix, the input space
should be extended to include u. When the implicit model error rate response
is specified in the response set, the program computes it using the following
algorithm.

Implicit Model Following Error Response

In general the description of the original system (33) and (34) contains the

implicit model as follows:

. -] 7
X A 0 X B
p P P P
= + u {36)
X 0 A X B
m m m | | m |
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P_r ] _C c ) _x i -D )
P P p p
= + u (37)
r C C X 0
L E:_ L 1 ZA L m_ L J

where X _ is the plant state vector and X the implicit model state vector and
p - . -
r is the error vector in the responses between plant and implicit model, If
€

the specified response set includes implicit model error rates, we obtain

from (36) and (37)

1"e = ClApxp + CzAmxm + (Cpr + C2Bm) u (38)

It is assumed that the implicit model follewing error is small, This yields

approximately

r =Cx +Cx =0

€ 1I'p 2 m (39)

or

x_ = -c lox (40)

m 2 1'p
Substituting this in (38) we get

. - "'1

r (CIAp CzAmC2 Cllxp + (Cpr + CzBm) u (41)

Finally the overall system description with implicit model following error

rates is given by

X =Ax +Bu (42)
p PP p
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= X -+ u (43)
p
r C D
€ € e
where
_ o -1 (44)
Ce = (ClAp L’2Am 02 Cl)
= (45)
D€ (Cpr + CZBm)

If the specified response set does not include implicit model following

error rates, then the implicit model states are directly truncated to obtiain

[
X

p Ap}cp + Bpu (48)

iy
[}

Cpo + Dpu 47

MODEL CONDITIONING (REDUCTION, SHUFFLING AND SCALING)

Reduction of Order

Reduction of the size of a dynamic equation of a system can be achieved in

several ways depending upon the reduction criteria,

In the following we present two approaches for reduction. Table 7 shows

these and criteria for reduction,
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Table 7. Reduction Criteria (:x2 = collection of states to be reduced}

Reduction Procedure 1 Criteria for Reduction
Truncation x2 =0, x2 =0
Residualization Xy = XKoo 5:2 =0

Now consider the system described by

% = Ax + Bu (48)

r Cx + Du

where x and r are the state and response vectors of appropriate sizes,

Partition the state vector x = col (xl, xz) where x, represents the collection

2
of state components to be reduced, Equation (53) can be written as

1 11 12 1 1
Xg A1 Bag Xg B,
(49}
*1
r = (Cl Cz) + Du
%9
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The truncated model is obtained by setting 5:2 = 0 and X, = 0. The reduced

system is described by (~ denotes reduced system wvariables)

(50)
r = (.'!1 X, + Du
Residualized model is obtained by setting 5:2 = 0 and Xg = Xy oo
This implies
0= A21 X, +A22 X, + B2 u (51)
Assuming that Azz is a stable matrix we get
| ~ (52)
X, = A22 (A21 X4 + Bzu)
The substitution of (52)into (49) yields the residualized system model as
follows:
¥ o=, -A AYA )X +(B, -A,_ A 1B (53)
1 11 127722 7217 71 1 12 7722 72
Y- -cata )% +(m-c.AalB)u
TE T Teen Far’ My 2722 T2

9, - I~ et
xz A21 Xl + A22 xz + Bzu

The smaller the time constants associated with states Xq {compared with

the time constants associated with states xl) the closer the agreement is
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between the time responses of the residualized system (53) and the original

system (49) to step inputs.
Define
X =%+e¢ (54)

where %, X and ¢ denote actual state response, approximate state response

and error response, respectively,

Using Equations (49) and (53) in (54) one obtains the differential equation

of the residualization error as follows

1" A%

[0
H

- A - R (55)
+ {All All) x1 + A12x2 + (B1 Bl) u

A + A (56)
9 91%1 T S92

Me
1|

with the initial conditions el(O) =0, 32(0) o .

Equation (55} shows that the residualization error is driven by the input

and x_,.

u as well as actual system states Xy 9

The integral of the square error can be computed by augmenting (55) to (40)
and using the Lyapunov equation (Reference 31), The resulting performance

number can be used to measure the goodness of the residualization and for

selecting variables to be residualized,

The two options of the reduction algorithm presented above are implemented
in a subroutine called REDUCE,
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Shuffling (Reordering of States)

Denoting the reordered (shuffled) system variables by x_, u_ and r_ the
relation between reordered variables and the original variables is expressed

by

x = Px

p X

up=Puu (57)
r =Pr

D r

where P < Pu, and Pr are the shuffling matrices (obtained internally by

software from the shuffling data provided by the user).

Substituting (57) into (48) we get

¥ =AX +Bu
P PP PP

{58)
r =Cx +Du
S
where
A =papt
p X
-1
B =P BP
p X
(59}
-1
C =P CP
p r x
-1
D =P DP
p ru
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Note that the operations described by (59) to obtain Ap. Bp, Cp and Dp
are merely row and column operations (i, e., permutations) on A, B, C
and D,

The shuffling algorithm is implemented in the subroutines SHUFF, SHUF 1
and SHUF 2 (SHUF 2 shuffles the name list table).

Scaling of States

Denoting the rescaled variables by Xgs U and ry» we have

X =8 x
s X
u =S u (60)
S u
r =35 r
s r
where Sx’ Su’ and Sr are the scaling matrices (obtained internally by
software from the scaling data provided by the user),
As before, the scaled system is described by
X =A x +Bnu
s s s s's
(61)
r =Cx +Du
s s's s s
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where
A =8 ag’1
s X
B =8 BS ]
s X u
. (62)
C =S CS
] T
_ -1
D, = S DS

The subroutine which computes the scaled matrices is called SCAL,
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SECTION IV

SYSTEM PERFORMANCE MODELING

In this section we briefly review specific performance modeling procedures
for the ALDCS design process, First, general performance measures are
stated for completeness., Subsequently, the steady-state modeling procedure
is described in detail. This is followed by the frequency domain modeling

in the form of a system matrix., Finally, the closed loop response modeling

is given with output feedback,
GENERAL PERFORMANCE MEASURES

As illustrated in Section II, general performance measures for design

and analysis can be listed as:
e Poles and zeros
e Frequency response and phase and gain margins
L rms response to turbulence and random pilot inputs
e Power spectral density and power in a given band

] Time response

Detailed models for the development of these performance measures are
given in References 1, 31, and 50, In addition to these, ALDCS design
requires the steady-state values of time response with step inputs for
prescribed steady-state specification, In the following subsection, we

give an approach for this requirement.
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STEADY-STATE RESPONSE MCODELING

Consider a system described by

X = Ax + Bui (63)

r, = Cx + Du, ' (64)
i i

where x, T and u, are the state, response, and input vectors of sizes

nx, nr, and nu, respectively.

As previously discussed, the maneuver load control calculations involve
computation of steady-state control surface deflections for prescribed
steady-state responses. For the steady-state response modeling, the

input vector u, in general consigts of three parts

u, = col [uo, u, u}

where
u, = set of inputs with prescribed steady-state values,
uyg = set of inputs defined by prescribed interconnections, and
u = set of inputs with unknown steady-state values,

The response vector is also divided into two parts, namely

r

s a set of specified outputs with prescribed steady-state values r,

r total outputs
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The input vector u, and the specified response vector r_ can be represented

¥

by the steady-state interconnection quadruple (PS, Q_, Rq, SS) as follows:

u,
1

+ (65)
Ps ri Qs 1b]
r =R ri +3 u (66)

Figure 14 shows the input/output definition for the steady-state response

calculations,

] -
= r
Ss
"s
Figure 14, Interconnection Model for Specified Steady-~State
Inputs and Outputs
The set of equations defining the steady-state system is given by:
N (67)
Ax + Bui = 0
(68)
r, = Cx + Dui
- (69)
u, = Ps r; + QS u
, ('70)
r =R r.+5 u=r
s s i 5 o
(71)
r=r
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with the unknowns x, and u. When ri and ui are eliminated from the above
set as described in Reference 31, we obtain the following set of equations

in terms of x and u,

Ax +Bu =0 (72)

ﬂéx + 511 =r (73)
fo)

r = Cx + Du (74)

The solutions of (72) and (73)yield the required steady-state input for the
prescribed steady-state output. Equation (74) provides the steady-state

value of the total response vector.

In case no response steady-state value is specified and all steady-state
inputs are given, Equation (67) is directly solved for x and the total

response is computed from (66},

As an example, consider ALDCS design for the C-5A, For the stick per
G specification, the outboard elevator deflection is to be computed for 1G
maneuver with SAS system and no aileron. The steady-state interconnection

diagram for this case is given in Figure 15,

¢

a
= - U]“) - r
T4 Sej q

)+ 5 acg
e
u > U](B) - T's
KSAS

Figure 15, Steady-State Interconnection Diagram

94



The input and specified response equations are given by:

5 =0
a
.= +
Yei KSAS d 6eo
(75)
& =u
€o
- 1Y%
a = -
cg g
where
q = pitch rate
u, = forward velocity
g = acceleration due to gravity

Using these equations, the interconnection quadruple is formed and combined
system quadruple (A B & D) is obtained. Finally (77) and (78) are solved
for the required u = 5eo given the steady-state value aCg = -1G. (See Refer-

ence 51, Figure 18, for definitions of variables.)

The Honeywell Software which implements this algorithm is called Program
SSK, This program is not integrated into KONPACT System due to present

scope of this contract,

FREQUENCY DOMAIN MODEL FOR OVERALL SYSTEM

Consider the system described by

X Ax + Bu (78)

a1
H

Cx + Du (77)



where %, r, and u are the state, response, and input vectors of sizes
NX, NR, and NU, respectively. The s-plane (or frequency domain)
description of the system in the FLEXSTAB/LSA form is given by

[cs)] F} =0 (78)
u

where C(s) is called the system matrix (Reference 2). For systems
described by quadruple (A, B, C, D), it takes the form of

C(s) = C,s +C0 (79}

1

The steps to compute C1 and C0 from the quadruple data (A, B, C, D)

are given below:

Taking the s~-transform of Equations (76) and(77) we get:

(sl -A)x~-Bu=0 (80)

r-Cx-Du=20

Equations (80) and (81) can be combined and written as follows:

sI-A{O | -B x

1

Sl el B r{ =0 (82)
¢ '1 1 -p u
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Hence C1 and C0 are given by:

' |
I I o ¢ o
C == — o omooe— —
1 ': T (83)
0o, 0 I o
-A Lo !.B
| [
Co=|TTTTTTT (84)
- 1 I -D

CLOSED-LOOP MODEL WITH OUTPUT FEEDBACK

Consider the design model of the system described by

Ax + Bu (85)

L]

b'e

Cx + Du (86)

'1
n

where x, r, and u are the state, response, and input vectors of sizes

NX, NR, and NV, respectively.

The input and output vectors are in the form of

u = col {uc, ul; (87)

r = col {r,, r .} (88)

where

u, = control input vector
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N = disturbance input vector
ry ° design response vector
r, = measurement response vector

Equations (85) and (86} can be written in terms of these subvectors as

follows
x = Ax+]31 uc+B2 ll
rd = Clx + Dluc
rm = sz

The closed-loop equations are obtained by defining the

control as:

u =u +Kr
c m

Substitution of (92) into (89)and {90) yields

b4 =(A+B1K02)X+B1u +B2T]
T4 =(C1+D1K02)x+D1u
rm=02x

The corresponding closed-loop quadruple is given by

A =(A+B K C,)

1

B =B-= (B1 B2)
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(90)

(91)

output feedback

(92)

(93)

(94)

(95)

(986)

{(97)
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SECTION V

ACTIVE CONTROL SYNTHESIS PROCEDURE

INTRODUCTION

This section presents a design procedure for the longitudinal Active Load
Distribution Control System (ALDCS). First, applicable performance
objectives are described in general. Then specific ALDCS design goals
are stated, Subsequently, a controller configuration for the Active Load
Distribution Control System is given., This is followed by a brief descrip-
tion of full state optimal controller design and simplified optimal controller
design, Finally, the ALDCS design results using the FLEXSTAB C-54A

residual elastic math model as documented in References 5 and 6 are presented,
PERFORMANCE OBJECTIVES FOR ACTIVE CONTROL SYNTHESIS

The goal of a Control Configured Vehicle (CCV) design is to improve the
performance of an aircraft using active control, The CCV concepts include

the following areas (Reference 13).
] | Improved handling qualities
) Flight envelope limiting
® Reduced static stability
8 Gust acceleration reduction
¢ Maneuver load control

e Active control of structural modes

60



In the following, each area is discussed briefly for the longitudinal active
control design, For detailed lateral specifications, see Reference 13, The
enforcement of each criteria is achieved by properly weighted response

vectors as described later,

Improved Handling Qualities (Handling Quality Control)

The longitudinal axis-handling qualities are specified in various ways.
The major ones are C* model response, the short period pole locations,

and the Time Response Parameter (TRP).
The lateral directional handling qualities include good roll rate response,
improved Dutch roll damping, and good turn coordination over a wide

variation in angle-of-attack.

Time Response Parameter (TRP) Criteria--The command performance

is specified for a step stick input in terms of normal acceleration at the
c.g. and pitch rate, A figure of merit called Time Response Parameter
{(TRP) (see Reference 15} is defined to measure the command response

(Figure 16), The requirement is for a TRP below a specified number,

This criterion is generally applicable to any system order and degree of
linearity. It appears to correlate reasonably well with existing specifica-
tions, e.g., MIL-F-8785B{ASG), without many of the interpretation
problems of the latter, It is amenable to both computerized performance
evaluation and pilot response assessment, Furthermore, it deals directly
with input/output relationships which are significant to the aircraft function

as a weapon system,
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Note: (%) Bracket Terms 7ero if Negative.
(2) t, = « for No Overshoot.

el

nz

oty T -t

TRP = (TRP} + (TRP),
z

t
. d) .
(TRP); {fg) ; +0.08 (A1é -

(TRP), = 0.5 (tdn - 0.7) + 0.3 (A1n - 0.3) +0.2 [Tn! - 0.2)
z
z z

Figure 16, Definition of Time Response Parameter

There are certain difficulties with the TRP in its current form, however,

which merit consideration. (See Reference 14.)

C* Criterion--The C* criterion is an example of specifying short period

handling qualities in terms of aircraft parameters familiar to a pilot,
The concept implicitly includes the traditional short period frequency and
damping requirements but is more general in its application. The usual

definition for C* is
* - ] L X ]
C KaNZ + Kbﬂ + Kce

where Ka' Kb’ Kc are dimensional constants., The g term represents

the normal acceleration increment at the pilot's location caused by the
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moment arm from vehicle center-of-gravity. Therefore, the expression

can be written as

U
Cx = N_ tK, = -2
Pilot ° 8

where K = "erossover' velocity, The steady-state perturbation relation

between q and Nz is

N

z .
qsS = ﬁ: s Uo = forward velocity

The wvelocity at which the contribution of pitch rate equals the contribution

of I.\Tz to the C* response is the so-called crossover velocity,

The C* criterion for flight control has evolved because it allows the
designers to control one response with one forecing function (the elevator),

At high dynamic pressures the elevator produces primarily normal accelera-
tion, and at low dynamic pressures it produces a composite variable that

is significant at all flight conditions. (References 52, 53)

The handling qualities can be summarized as:
e The dominant short period frequency as excited by a sharp-edged

gust shall have a minimum damping ratio of 0,3

e For a step pilot input, the time response shall meet the C*
envelope of Figure 17 where the categories are defined as:

(Reference 13)
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I Optimum response (aerial combat, etc,)
II Not as critical (refueling, cruise, etc,)
111  Categories for conditions not covered by 1,2, 4

v Power approach

For details see References 52 and 53,

Y warmalizen

Ttme | $mcords)

Figure 17, Typical C* Envelope

e The pitch Command Augmentation System (CAS)} will produce
a steady-state short period centrol stick gradient consistent with
MIL-F-8785 requirements (Reference 16), A C* feedback
permits the stick gradient requirements to be met without scheduling
the stick gain (Kf). This is illustrated in Figure 18 for several

points representing extremes in the F-8C data (note % R -za).
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Short Period Pole Locations--In this criteria the natural frequency (wn)

and the damping factor ({) of the short period dynamics are specified,

It is the simplest criteria for handling quality specification,

Flight Envelope Limiting (Boundary Conirol)

The flight envelope limiting controller design involves two steps., First,
control laws are defined for limiting certain variables of the aircraft

(i. e,, @) during maneuvers, Second, a method of transition (i,e., mode
switching) between boundary control laws and normal control augmentation

system is developed (Reference 13).

Reduced Static Stability (RSS Control)

For a conventionally designed aircraft, static stability and acceptable
handling characteristics are obtained through aerodynamic design which

includes proper location of the c.g. This is shown in Figure 19,

Wing and Fuselage Lift

/’-—__,-""- “'—-q.____h_.—.-—
- ——
\_‘“% A _-—___—________._——-—’
Tail Down
W xg's Load

Figure 19, Conventional Static Stability
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In maneuvering subsonic flight and in supersonic flight this usually results
in significant tail down loads to provide the required moment balance for

the aircraft.

If a high authority feedback control system is used to provide artificial
stability, then the unaugmented aircraft's longitudinal static stability can
be relaxed, This enhances the maneuvering capability of the aircraft

by reducing the drag. Figure 20 shows this case,

Wing and Fuselage Lift

< | T e— L
N oad
\"'h-..__ P C.G. __.——"" \

Wxag's

Figure 20, Relaxed Static Stability A/C with Active Control

The reduced static stability controller (Ma augmenter) restores the stability
lost in the CCV aircraft due to shifting the c¢,g. aft. It basically consists

of additional pitch rate feedback to the elevator,
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Gust Acceleration Reduction

Reduction of the aircraft accelerations due to wind gusts without deteriorating
the response to pilot commands normally enhances the stability of the aircraft
and results in improved mission performance, It also improves the ride
qualities for the pilot as well as enhancing his ability to perform precision
tracking tasks, It is well-known that the conventional elevator together with
direct lift force producers (canards, flaps and symmetric ailerons) can be
effective in reducing gust induced accelerations. Combining these control
surfaces with the elevator controller to produce direct lift for gust alleviation

is an important mode in active control laws,

Maneuver Load Control (Steady-State Load Relief Control)

For transport A/C the reduction of the wing root bending moments during
maneuvering flight (i.e., 1 incremental g pitch up) is described to alleviate
structural load and fatigue of the wing, This reduction in wing bending is
obtained by shifting the wing lift distribution center of pressure inboard as

shown in Figure 21,

Effect of MLC

Maneuvering

Figure 21, Transport Aircraft Ideal Lift Distribution
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A Maneuver Load Control System (MLC) positions control surfaces with
steady-state accelerations to redistribute the loading on a wing, For fighter
type A/C, the objective is to redistribute the wing loading to reduce drag

during high-g maneuvers (Reference 13},

Structural Mode Damping (Flexure Control)

Active control is used to regulate the response of flexure modes to turbulent
air or pilot commands for reducing fatigue damage. These can be extended

to damping of flexure modes for flutter suppression also.
By placing the sensor and control force producers near one another the

sensed aeroelastic forces can effectively be cancelled out by the control

surfaces to lower local acceleration (References 18 through 21),

ALDCS DESIGN GOALS - FORMULATIONS AND PROCEDURES

Active Lift Distribution Control System (ALDCS) Design Goals

One of the objectives of this contract was to repeat Honeywell's ALDCS
design (Reference 4) using the FLEXSTAB generated C-5A A/C data and
KONPACT software. The cruise flight condition was selected for this

demonstration as shown in Table 2,

Full State Quadratic Design Formulation

The theory and numerical techniques used in quadratic design are well

documented in other sources (References 12, 23, 24, and 25) and therefore
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will not be repeated here, We shall be concerned here primarily with

formulation of the problem, The system description has the form

¥ = Ax + Blu + B2T] (100)

ry -~ Clx + Dlu (101)

ry = sz (102)
where

x = state vector (including rigid-body states, actuator and servo states,

flexure-mode states, sensor states, model-following states, and

wind states)

u = control input vector

N = unit~variance white noise vector

ry = design response vector

r, = measurement vector {consists of actual and complementary
measurements)

We wish to find a time-invariant controller of the form

u = K’-‘fr2 = K*sz (103)

which minimizes the performance index

J = E{r‘l Q r1] = tr[Q Rl] (104)
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where Q is a symmetric weighting matrix, and R, is the response covariance

1
matrix given by

[

R1 =(Cl-rDlK*Czyx(cl—leK*Cz) (105)

and X is state covariance matrix given by the solution to Equation (108).

Figure 22 shows the block diagram of the overall system.,

ry (Design Response)

u
ry (Actual and
Complementarv
Measurements)
Figure 22. Optimal System Block Diagram
The optimal gain on the full measurements is given by
-1 -1
* = (T t ' t '
K (D1 QDI) (Dl QC1 + B1 P) X C2 (C2 X C2) (106)
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where P (Riccati matrix) and X (covariance matrix) are determined from

7 z
X b ¢ =
(A + B1 chz) P+ PA+ BlK Cz) + (C1 + Dlecz) Q(C1 + DIK*Cz) 0
{107)
)
= ! =
(A + BlK*Cz) X +X(A + BIK FCz) + ]E’:2 B2 0 (108)

When C2 is invertible (for full measurement feedback), the solution of

Equation (106)

. -1 -1
K o= - t J 1
K (D1 Q Dl) (D1 Q@ Cl + Bl P)C2 (109)

and does not depend on the covariance X, For limited-measurement feed-
back, C2 is not invertible since the number of measurements is generally

fewer than the number of states, so that K* will be a function of both P and X.

Simplified Quadratic Design Formulation

The design procedure described in References 12, 23, and 25 is used
to simplify the full state controller, In this procedure, the measurement

gains are written as a function of a scalar parameter, 4, such that

u = Ki*(}) r, {110)

where

K*(?\)=K1(?\)+7\K 0=sXx =1

2

The starting point (A=1) is found by using the optimal state feedback gains

and the measurement matrix (corresponding to actual measurements

72



augmented with complementary measurements so that C; exists)

-1 (111)

K*(1) = KC2

The measurement constraints are applied gradually by stepping X to zero,

thereby reducing gains on the complementary measurements, The matrix

Kl(O) is the fixed-form solution and has the gain structure desired.

This procedure of "backing off" from the state feedback controller is

illustrated in Figure 23,

(Gains on complementary measurements)

/—-—'—-—-:.___“-\
f’/ /_/ — “\\ \\
J ’ ‘-\ \ >
/ ..'., r~ . \ \
A'] Lt N \
( ..-..-..__.-ann‘“ \,
! T opt NN
| l 1 o il \“ '.\ N
‘ L [LATL5 ‘! \\ ' ~\ \'\
i NN
._._L__. .\_ \\ ..\\._‘ ~-—
N \ o \\_‘\"“-.\ \-“"\\
)\:0 \ ‘\ — = . \\ N K.I
) \ \\ . ~ : 0y .\ -
\\ \\\‘\ ~- ’/ j' (Gains on direct
.~ o~ T~ / measurements )
‘-____‘.- ~ —— ,/—‘ ,/ .
e T e
Figure 23. Optimal Control with Measurement Constraint

The same quadratic performance index as of the full state feedback is

minimized using the K1 gains after each stepping down of A parameter,
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Constrained Quadratic Design Formulation

As will be shown later, the maneuver load control requirements generate

an equation in the form of

XS’SK - bagg = 0 (112)
where

X T state of the overall system at one incremental g

6, = required steady-state aileron deflection to reduce bending moment

S8 by specified amount

K = aileron feedback gains

This equation generates additional constraints on optimal gains, Dynamically
enforeing the related equation will be given later. Figure 24 shows algebraic

forcing with two gains.

Figure 24, Optimal Control with Gain Constraints
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This problem can be handled the same way by performing a transformation
in the gain space and stepping down of X parameter on K2 and optimizing

ith K. .
with 1

Response Selection Procedure

Quadratic design formulation shows that design problem is essentially
reduced to defining proper responses (response selection) for the cost
function and finding proper weights (weights selection) for the performance

achievement.

These two steps require design experience and insight to the physics of the

problem as well as familiarity with the synthesis software,
Response selection for design depends on the design criteria to be enforced.
Converting a set of design criteria into a minimization of a set of responses

is one of the fundamental steps in optimal control synthesis.

In the following, we will discuss typical cases briefly to demonstrate the

mechanics of the response selection.

Response Selection for Enforcing Handling Quality Criteria--The C~5A

aircraft is augmented with a simple Stability Augmentation System (SAS)
to enhance the handling qualities of the aircraft. It consists of pitch rate

feedback to the inboard elevator input in the form of

Seic = Kgagd (113)
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One way of incorporating the effect of this SAS into optimal handling quality
controller design with an aileron input is to define the inboard elevator

residual response (deviation from ideal) using (113).

sas? ~ Seic (114)

Thus by varjfing the weights on r, the short period roots can be indirectly

controlied,

implicit Model Following

When handling guality criteria specifies the desired short period locations,
as in C-5A case, the model following error rate response may be generated

to enforce the specified pole locations in the following way.

The rigid body (RB) and model M equations are given by

Xpy © ARB XpB + B&e (115)

x. =A

M~ Am*m T B (116)

The rate of residual is defined as

R N (117)
and given by

P = App Xpp = Ay Xy (118)
Assuming that rigid body and model states are close together

X.. m~ X (119)

M RB
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yields

F=(A -A_ ) x

RB ~ M’ *RB (120)

Let Wy and QM be the natural frequency and damping factor of the model

short period modes. The corresponding characteristic equations are

given as

2 2
s +(2CM mM}s+wM=0 (121)

In terms of the model transition matrix

2
s° + (tr AM) s + det AM =0 (122)

Equations (121) and (122; provide two equations to determine the elements

of model transition matrix A If we assume that the W equations for model

Ml

and vehicle are identical, then the remaining elements of A, can be found

M
from (121) and (122), Equation (120) is the response equation to force the

desired pole locations, with the coefficient matrix as computed above.

If symmetric ailerons are used together with the inboard elevators for
Manevuer Load Control (MLC) and Gust Load Alleviation (GLA), then

handling quality can be enforced in the following way.

Figure 25 shows the block diagram of the rigid body part of the flexible
vehicle dynamics and corresponding handling guality model which generates

).

existing SAS pitch responses (‘WM, chy
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Figure 25, Response Generation to Enforce Handling Quality Criteria

The rigid body part of the flexible vehicle equations are in the form of:

b's + A +A x, +A_, x (123)

RB - 211 %rB V212 *BM T 813 %A Y 814 %

where
Xop = Rigid body states
XBM = Bending mode states
XA = Control surface states
XG = Gust states
Xp = Pilot states
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Handling quality open-loop model is in the same form of rigid body equations

and given by

- = +

v T A1 *m A2 *em T As Fam T Ae %G (124)
where

XM = model states

X = maodel control surface states

AM

Here the model control surface states are specified as

[~ T r— T
ﬁaM 0
= -+ 125
Seint Ksas v T *p (125)
eoM 5ec:)
. _ L i

This assumes that the SAS aircraft is the ideal model, The residual

response rate on the rigid body state is defined as

r = % - % (126)

Substituting (123) and (124} into (128) yields

re T 211k~ *w T 213 (B4 7 *aw! (127)
Assuming that
XRB = XM (i28)
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Equation {127) yields the residual response rates in terms of the linear

combination of states and the system coefficients

- N ]
B . a (129)
w Z 5a Z bei Z beo
'RB ~ § 8ei " Bsag® ™%

Mg a M bei

m*

m=

M Yeo

— - b ad 0

Thus by varying the weights on ¥ the handling quality is enforced in

optimal ALDCS design.

RPB’

Explicit Model Following

In the preceding analysis, the response equations contain only the original
system states, The model states are discarded using the rates of the residuals
and the assumption that model and system states are approximately the same,
This technique is known as the implicit model following. It has the benefit

of not increasing the system order and not yielding high gains in the controller

design.

In the following, we present for completeness another form of response
development to enforce handling qualities which is known as explicit model

following.

Figure 26 shows handling quality controller which produced improved short
period response with an explicit model (Reference 13). The integrator

in the controller enforces the following equation in the steady-state

e=yM-y=0
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where
Ypg © Model response to command

y = Blended pitch rate and lagged normal acceleration

The design response to enforce the desired handling quality is in the form
of :

= 8
r = col (e, X e)

which contains the model following error and its integral, It also contains

actuator rate response to limit the bandwidth of the actuator due to feedback.

Figure 27 shows the general structure of controller with explicit model
{Reference 23), The actual model in the control law to generate model

response x,, increases the dynamical order of the controller and generally

M
yields higher gain values as compared {o controller with implicit model.

r 1

Model-Following
Controller

jn

Plant -

—] Commands

I Model

Figure 27, Explicit Model-Following Structure
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The control law ig in the form of

1 = K= * e
u Kﬁx+KMxM+Kp xp

where
x = plant state including vehicle, actuator, sensor and gust filters
X © model states
xp = pilot input states

Response Selection to Enforce Maneuver Load Control~--Maneuver load

control involves computing bending moment response of free Af/C for 1G
normal acceleration pitching maneuver at the level flight and determining
control surface positions to reduce the bending moment as specified by the

specification (see Figure 28).

The normal acceleration is given by

a(:g =w - qu (132)

where Uo is the cruise speed and w = o for level flight,

K SAS On Bl
q SAS j a3 A/C
. 6
Pilot o0y _
Input v

Figure 28, Maneuver Load Control Surface Position Calculation
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First pilot stick input to free A/C as shown in Figure 28 is calculated to
produce a steady-state pitch rate corresponding to 1G normal acceleration.,

The value of the specified-bending moment is obtained at this maneuver.

Subsequently, the pilot input for 1G maneuver with SAS'd A/C is calculated
to enforce the stick/g requirement. This determines the steady-state
deflection for the outboard elevator 6eo' Now the aileron and inboard
elevator deflections are computed to obtain 1G maneuver and reduced

bending moment response, with the fixed value of aeo.

After having determined the steady-state surface positions, the next task

is to enforce these positions by properly selected controller configuration,

Maneuver load control can be enforced either by integral control or by a
high-passed aileron control, The integral control enforces the following

aileron deflection equation at steady-state.

n -3% =0 (133)
KSS a g

Figure 29 shows the MLC configuration with integral control,

The integral control has one obvious drawback - it may require a sensor to
measure aileron position (Reference 8). High passed aileron control, as shown
in Figure 30, washes out all steady-state aileron commands except for MLC.

CONTROLLER CONFIGURATIONS

Handling quality controller with explicit model and state feedback corresponding

to Figure 28 is shown in Figure 31. The desired reduced form is shown in
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Ga K ——&— 1 K
Ny Il S % Actuator
+ 6aC a
—
X wmeet K - S + aa — 5a
5ac = Aileron aciuator input

KI = Gain integral of error state

z = Error

XZ = Error state

x = Total system state

K = State feedback gain matrix

Figure 28. Integral Control Configuration to Enforce MLC

Ma —_— Kss
Wash-out Actuator
5 + ¥ + 6&(: Da 6a
X ==t K -~ 5 +al—O- "l st [

Figure 30, High-Passed Aileron Control Configuration to Enforce MLC

Figure 32. Boundary controller require isclation of a common proportional
plus integral function, as given in Reference 13, Gain scheduling is also
facilitated by this configuration. The factorization process is not unique.

One such factorization is given in Reference 13.

Figure 33 shows the configuration used in Reference 4. Design problem is
to determine the coefficients of the second order maneuver load control

and gust alleviation filter and the four feedback gains shown in the diagram.
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®REF *1Boundary
Con-
a l__" troller
n, Ha(s)
oo T e L

d Hals) b Select | :

: . -
Pilot Hp(s) .

Figure 32, Desired Form of Handling Quality Controller Configuration
(Proportional and Integral Control Factorized)

This configuration provides steady-state aileron deflection proportional to

gsteady-state normal acceleration as given by

%, = Kss Aa1r (134)

The KSS is obtained from the steady-state maneuver load control require-
ments as described previously., In addition, this filter shapes the frequency

response of the aileron loop to provide gust load alleviation.

The decomposition of this filter into a lagged acceleration and an integrator
is shown in the state diagram as given by Figure 34. Table 8 provides
a relationship between the filter coefficients and the optimal feedback gains.

Again this decomposition is not unique, and can be accomplished in different
ways, For instance, the filter decomposed as shown in Figure 34 entorces

the relation given by Equation 134 whereas the decomposition given in Figure 38

enforces an equivalent relation given by
A21R
§ =
6 a KAF 6

(1342a)
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Table 8. Relation of Filter Coefficients to Controller Gains
(as implemented in Figure 34}

£y = 80 - KIDELA)
A6 7 8 Kigraw
B P

1 = 9K a9 RL

B =K A
0o ss o

In both configurations additional states are introduced into the control law,
These states are included in the response set so that they can be weighted

for proper overall response,

The lagged normal acceleration (A21RL) time constant is chosen to be the
gsame as aileron actuator (63) time constant. This selection eliminates the

need for the aileron actuator sensor,

Past Honeywell work (Reference 4) indicates that the third bending mode
damping is difficult to control during the ALDCS design. To facilitate
design and reduce damping factor sensitivity to gains, one may include a

roll-off filter in the elevator loop as shown in Figure 33,
C-5A ALDCS EXAMPLE

The ALDCS example presented here is based on Reference 4 and utilized
to verify the KONPACT software results, The ALDCS design goals are shown
in Table 9. The C-5A ALDCS controller design via the optimal control
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synthesis technique is carried out in three steps: a) Design Model Genera-

tion, b) Controller Design, and ¢) Performance Evaluation.

Design Model Generation

The detailed steps to obtain the design model are described in Section VI

of Volume II (Reference 51). Essentially it involves converting the FLEXSTAB/
LSA, 15 mode, residual elastic simulator deck data into state space form
and augmenting it with the gust model and actuator to obtain the plant model.
These are done by the software, This plant model is subsequently reduced
by residualization procedure {see Section VI) and the reduced model is
augmented with the controller, After this, design responses are selected
to obtain the design model. Figure 35a and b show the input/output diagram
of the design model. The actuator state diagram is shown in Figure 36.

The form of the gust model transfer function block diagram is shown in
Figure 37. Parameter values are given in Reference 4, The ALDCS
controller state diagram used in Reference 4 is shown in Figure 38, In

the controller, the constants K AF and KM1 are determined to satisfy the
steady-state maneuver load control requirements. The steady-state
response computations on the plant model are illustrated in Table 10, In
the first case we set éa = 0 and 5ei = Seo = p. The value of p is determined
to obtain g = q = 0,04377. (For consistency, the steady-state values are
computed at +1 incremental g, i,e., 2g, in level flight, At the cruise speed
of 735 fps this corresponds to a pitch rate of 0.04377 rad/sec.) The

corresponding steady-state value of B, is also obtained. This is designated

1
as Bl' In the second case, wesetd =0, 6§ . =p+0,5gands =p

a el - eo
and again the vulue of p is determined to obtain q = q. This is designated
as [-). In the third case, we set Geo = '[3 and compute 5a and '5ei to obtain
q=qand B, =0.7B.
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) Wing
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1 1
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o T3s + (T4) 5+]

—» Tail Section

Pigure 37. Gust Model Transfer Function Block Diagram

Referring to Figure 38 and Table 10, for the full state feedback design,

the MIL.C1 integrator input gain for aileron is calculated as

an - ACG

a

-0,2752

-1.0

3. 63

Similarly the maneuver load control gain is calculated as

6.06 /g
K,_ = 2
AF ~ A2iRL/g

(6.0) (-0.2752)

(1/6,0) (~1,0)
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The steady-state value gei is used to adjust the feedback gains of the ALDCS
controller in the end to meet the steady-state requirements for maneuver

load control.

Controller Design

The ALDCS controller design presented here is repeat design. Figure 39
represents a block diagram of the design process., The design response
weights are shown in Table 11. The following steps describe the controller

design.

Design

n

White Noise ng____ :_—:2 Response
—
4er N

Disturbance Overall System

Inputs
Design Model
{ Uc2 _} Measurements

-

Control
Inputs

=
Feedback
Gains

Figure 39. ALDCS Controller Design Process
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Table 11. Design Response Weights for ALDCS Controller Design
(C-5A Cruise Flight Condition)

Responses Weights Value
MLC1 Q, 0. 800E+01
B, Q, 0.100E-01
T, Q, 0.100E-08
qs Q4 0
B, Qg 0
T, 6 0
'aa . 0. 500E+04
B, Qg 0
T, Qq 0
Bei Q. 0. 600E+06
By i 0
Ty Qs 0
6a Q13 0
By Q4 0
Ts Qs 0
Sei Qs 0
1'31 Q. : 0.750E~13
'i‘l Qg 0. 100E-10
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Table 11, Design Response Weights for ALDCS Controller Design
(C-5A Cruise Flight Condition) (Concluded)

Responses Weights Value
) Qg 0
Bz Qy 0.100E-13
T2 Q,, 0,100E-11
h2 Qo 0
]'33 Q4 0.200E-13
fi"3 Q,, 0. 200E-11
M, Qg5 0
1%4 Qg 0. 800E-13
’1‘4 Q,, 0.100E-10
.“4 28 0
1'3.5 Qg 0. 200E-12
&*5 Qq 0.200E-10
s Qg 0
ﬁﬁ Q35 0
C Qs 0. 100E+01
éq Q,, 0.100E+01
¢ Q5 0
Hey Qg 0
uCz Q37 0
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Full State Optimal Controller Design=-~Full state optimal control is unique

and is used for initial studies., It determines what performance can be

achieved from the system under idealized conditions,

Using the overall system design model described earlier, the optimal

full state feedback gains are computed for the specified quadratic weights.

Simplified Optimal Control Design--Starting from the optimal full state

feedback gains, simplified feedback gains are obtained as described in
References 25 and 4. The reduced control law is given by the following

equations (see Figure 38).

- 135
uaa (Klaa) 53 + (KlAleL) A21RL + (KIGLAF) GLAF {135)
usei = (KZAle} A21R + (KzAFUS) AFUS + (KzTFUS) TFUS +

{1386)
(K2p)P

The reduced feedback gains are shown in Table 12,

Adjustment of Gain K2, and Calculation of the MLC Filter Coefficients~~

The gain K2p obtained in the previous step is adjusted so that the steady-
state maneuver load control requirements are met for the elevator channel,

From the steady-state response calculations

§ . ==0,0226rad & = -0.0896 rad
el eo

Since the actuator steady-state gain is unity (refer to Figure 38) we have:
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Table 12. Reduced Feedback Gains for ALDCS Controller Design
(C-5A Cruise Flight Condition)

Gains Values
KlpELA -7. 81200
Kl 91RL 11. 94000
KlGLAF 1.96900
K2 921R 0.00256
K2, pUs -0. 06400
K2 1wus 0. 49040
K2 ~0.40150
P
by = Uy = U +P=(K2,, ) A2IR + 137)
ei )
(K2 ) pug) AFUS + (K2,.p,g) TFUS + (I<:2=n=p + 1.0)P

Substituting the steady-state values for 1G maneuver and solving for K2 *p’

we obtain K2*p = 0.1%8,

Table 13 shows the adjusted reduced gains. Figure 40 shows the final form
of the ALDCS controller configuration for cruise flight condition. The final
maneuver load control and gust alleviation filter coefficients are obtained

from A2]1RL and GLAF filters (Figure 38) by setting the integrator feedback
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gain AF = 0.0, These calculations are shown in Table 14, The final ALDCS

controller is shown in Figure 41,

Table 13, Final Gains for ALDCS Controller Design
(C-5A Cruise Flight Condition)

* K2 Gain obtained by FFOC is subsequently adjusted to satisfy the

Gains Values
K]‘DELA -7.812000
K1A21RL 11,940000
KIGLAF 1.969000
K2A21R 0.0025865
KZAFUS -0.064010
KZTFUS 0. 4920400
sz* 0. 178000

ste%dy-state ALDCS requirements for 6ei'

Table 14, MLC and GLAF Filter Coefficients

(As implemented in Figure 38)

Filter
Coefficient Equation Value
Al 6(1-K1DELA) 52, 872
AO Ss*KlGLAF 70. 88
B1 K1A21RL 11. 94
Bo K.AF*KIGLAF 19.51
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Performance Evaluation

The detailed performance results are presented in the next section. Here
the variation of some key performance variables as we move from full

state feedback to simplified feedback (i.e., as (1-A)goes to 1) is presented.

Figures 42, 43, and 44 present the variation of quadratic cost and the sensor
feedback gains as (1-1) varies from 0 to 1. These variations are fairly
smooth (an erratic variation would indicate that the step size in A was too
large). Note that the aileron feedback gains essentially remain zero until
(1-1) approaches zero and then guddenly shoot up. This corresponds to taking

out the temporary MLC1 integrator and putting in the GLAF integrator in Figure 38,

Figures 45, 47, 49, and 51 present the variation of rms responses (éq,

éw' T1, Bl1) due to wind gust as (1-A) varies from 0 to 1. And Figure 46,

48, 50, and 52 present the variation of rms responses (éq, éw’ Ti, Bl)

due to pilot as {1-1) varies from 0 to 1. In all of these figures, we observe
that full state feedback determines what performance can be obtained from

the system under ideal conditions and the simplified feedback is obtained by

a minimum loss of the performance obtained by full state feedback, Also

note tk;at the final ALDCS performance is slightly different from the simplified
{reduced) feedback controller performance, (Final ALDCS controller satisfies
the steady-~state requirements completely whereas the simplified feedback
controller does not, This is because of the small feedback around the GLAF
filter (i,e., AF # 0 in Figure 38) in the simplified controller as well as the
adjustment of pilot gain sz to K*zp for meeting steady-state requirements.)
Figures 53, 54, and 55 present the variation of the closed~loop roots (rigid

body, first flexure mode, and third flexure mode) as (1-1) varies from 0 to 1,
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SECTION VI

IMPACT OF MODELING AND MODEL REDUCTION PROCEDURES
ON CONTROL SYSTEM DESIGN AND PERFORMANCE

Complete representations of flexible airplanes requires models of very
high order (100 or more). These complete models must be used for final
analysis and verification. Most control synthesis can be determined from
much lower order models, The subject under digcussion is how to make
the best low order approximation, Best cannot be well defined. Roughly,
we desire to synthesize using the low order model and hope that only minor

tailoring is required to obtain comparable results on the complete model,

In the following, model reduction procedures are reviewed briefly., Then
the truncation and residualization reduction procedures used in KONPACT-1
are described, This is followed by a detailed comparison of Honeywell/
GELAC and FLEXSTAB data on C-5A aircraft using the truncation and
residualization operations,

REVIEW OF MODEL REDUCTION PROCEDURES

In the following, closed and open-loop approximations are discussed.

Closed-Loop

Considerable progress towards developing synthesis and analysis of the
regulator problem for high order systems is presented in References 32

and 33. The plant is taken Lo be
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= 138
3{1 Alxl +A2x2 + Blu (138)

A X = A x, + A%, +Byu ©(139)

2 1 42 2

where A is a small parameter, If A = 0, the usual residualization approxima-

tion is being made,

Synthesis and analysis are performed after invoking the quadratic performance

¢riterion
J=[ {y'Qy+u'Ruldt (140)
0
where
y = Clxl + szz

R is positive definite

Q is positive semi-definite.

Theorems and examples show continuity with respect to A as x - 0+. Refer-
ences 32 and 33 present the only results found on the closed-loop approximation
problem. They have made consid;rable progress; the procedures appear

to be sound, tractable, and capable of extension. These efforts should be
continued toward resolving whether they can provide a better solution to

control synthesis for flexible aircraft,

128



Oeen-LooE

There is a surfeit of open-loop approximation schemes to reduce the order
of large systems. Unfortunately, they have not been ranked (even for a
simple application), Promising schemes for applicability to the flexible

vehicle are discussed below,

Truncation and Residualization--With truncation, x2 and 5:2 are set equal to

zero in Equation (138); Equation {139} is omitted, This approximate model

for high order systems has as its main virtue simplicity in application,

For a given reduced order model it is usually the worst,

With Schwendler and MacNeal's residualization (Reference 46), X\ is set
equal fo zero in Equation (139). This approximation yields exact values
with respect to the steady-state response of the large system, Further
details on these are given in Section III on Model Conditioning and in this

section,

Stable Partial-Pade Moment Matching-~-References 34 through 38 present rather

simple computational methods for approximating the system H(s) by an

approximate models Hk(s) where

X{s) = His) U(s) (141)
blsn"1 Fmm e e e e a - +b
H(s) = — 2 (142)
as +a_s tommmmm - ta
1 n
and
- b Sk-1 I A T N +b
_ 1 k
H (s) = - (143)
k ~ k. n-1 a
a8 +a.s + - - +a
o 1 k



X(s) = p-vector

U(s) = r-vector

bi = p X r matrices
a,,a, = scalars

1]

k <n

The approximation f{k(s) is stable if H(s) is stable.

Let the MacLaurin expansion of H(s) and Hk(s) be

~ 2
H(s) = “0 + @, s + ¥,8 t - (144)

- ~ A 2
Hk(s) 2 &0 + &ls + &8 + = --- (145)
The criteria for obtaining reduced system is to match the coefficients in

(144) and (145) starting with the lower degree terms.

Another interpretation of (144) or (145) is available. For a single-input
single-output system

@*

[, the at (146)

i

a, (i1) -1y

>

the ith time-moment of h{t}

where h(t) is the impulse response corresponding to H(s).

125



It is seen that this is a generalization of residualization: exact not only in

the steady-state but also a good approximation at low frequencies.

Iterative Matrix Matching By Identification--Reference 39 presents an |

identification scheme that has been used at Honeywell to construct lower

order approximations to high order models,

x = Ax + Bu (147)
y = Cx + Du (148)
% = Ax + Bu ' (149)

Equation (147) is the known plant of nth order with prescribed response
relationship (148), Equation (149)is an mth order approximation with m<n,
Both systems are forced by a prescribed u, A and B are determined to
minimize quadratic cost due to error between aided and approximate response,
This scheme has the advantage that it can be forced over the bandwidth

over which it operates the closed-loop controls,

Single-Input Single-Output Transfer Matching--Reference 40 presents a

method which has been shown to yield excellent results on particular examples.

Very favorable comments have been voiced by independent users,

Given a high order transfer function

His) = K o (150)

where m < n which is to be approximated by
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1+ cls i B B R N
L(s) = K P 3 (151)
1+ dls IR d s
where
p<g<n
Define
s | HGo) |2
by £
(w) = IL(jw) | (152)

The A{w) is expanded in a MacLaurin series. This leads to a set of non~

linear algebraic equations for determining <, and di'

Multiple~-Input Multiple~-QOutput Transfer Matching--Reference 41 presents

results of a procedure that could be used for developing low order matrix
transfer function or state equation approximations. The user specifies

(by the data input) the bandpass over which the approximations are to be made,

Reduced Models from Noisy Data~-References 42 through 44 discuss open-

loop low order approximations in a noisy environment, They approximate
with respect to noise in a manner analogous to frequency domain apprexima-

tions.

Hierarchal Control-~Hierarchal control is concerned with control of large

systems., The flexible aircraft is certainly represented as a large system.

Hierarchal control makes synthesis tractable, in part, by special
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decomposition techniques. Recently, two treatises have been published
(References 48 and 49); they should be reviewed for applicability to the

flexure control problem,

TRUNCATION OF LARGE MODELS CONTAINING RATES

In general, the physics of dynamical processes generate a model in the

form of
[ s N 5 ]
X 11 12] %1 By
= + u
i (153)
* A A X B
2 | 21 22| | *2] B2 |
*1 X
r = [Cp; Cpyl PGy Cypd | | + Du
X2 X?

in which the response vector contain state rates.

In this case, care should be exercised in obtaining the truncated model,
The truncated model can be obtained either before or after differentiation
with different results, It is recommended that the response data matrices

C C

117 7127

Case I: Truncation Before Differentiation

First the system described by equations (153) is truncated to obtain

128

C21, and C22 should not be modified before the truncation operation,



(154)

xl = All Xl + Blu
{155)
T = (Cyq + Cyq Ayy) X + (Cyy By + Dhu
Case II: Truncation After Differentiation
First the substitution of state rates into response equation is made
- - e T -
"1_1 Air B | B
- + u
*g Agy  Bag %9 B,
L . L - e - L. ..
811 By *1
r = Ecll C12Zl + EC21 szﬂ A A (156)
21 29 )
L
Bl
* ECZI szi] + D u
Bz
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and then Equation {156) is truncated

Xl = All xl + Blu

r = {C + C A + C A_ ) x

11 21 711 22 721 (157)

1

*(Cyy By + Cyy By + DI

As can be seen, the truncated models represented by Equations (155) and
(157) differ in the response equations. For good steady-state response,

the differentiation of response must follow the reduction process as presented
in Case I, In the residualization, models obtained by either methods are

identical,

In Reference 4, truncated models were obtained as described in Case I,
before differentiation because of the availability of C~5A model generating
program, generating data in the form of (153), In the present study the
response data in the form of {156) was available only. For this reason, the

responses containing state rates are in error in steady-state for truncated

models,

Effect of Truncation on Response Rates

Consider the system described by
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X 811 Py Xy B,
- + u (158)
X A A X B
3 2d i 21 22_ i 2d L 2_4
X

where r is the set of responses whose rates are required as design responses.

The response rates can be obtained either before or after truncation,

Response Rates Before Truncation~~Response equation is differentiated first.

[
X

i"“ECu Clzzl )
X

Then the state rates are substituted from (158) and the resulting equations

1 (159)

2

are truncated.
This yields
%, = A _x, + B,u (160)

r=(C11 A11+012 A21)x1+(C11B + C B_ }u
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Response Rates After Truncation--The model is truncated first yielding

Xl = All Xl + Blu

(161)

Then the truncated response equation is differentiated and the truncated

state rates are substituted from (161) yielding

. . . (162)
r=0C,, % (Cl1 All) Xy + (Cl1 Bl)u

If the steady-state value of the response rate of the reduced system is
required to be zero, then the truncated model represented by Equations
(161) and {(162) should be used, This means that one should obtain the
response rates after obtaining the reduced model, In the present study,
response rates were obtained before truncation, Because of this some of
the response rates in the truncated model do not satisfy steady-state

requirements.

Wind Simplification

A1l previous discussion has been concerned with simplifying the flexible
body representation. This is the primary concern., However, time and
money could also be saved by using the simplest wind (and wind distribution)
filter that met requirements. For FLEXSTAB C-5A ALDCS effort, a Tth
order filter was used for both synthesis and analysis., It is believed a much
lower order would have been adequate for the relatively expensive synthesis

effort.

132



In summary, a cursory survey made in this study indicates that there is a
dearth of closed-loop and a surfeit of open~loop methods for model reduction.
We recommend that an attempt be made to extend the closed-loop scheme pre-
sented in Reference 32 into an engineering tool to reduce design computation
time. Furthermore, the cpen-loop methods should be ranked for potential

applicability and the more promising refined and incorporated into KONPACT,
C-5A MODEL COMPARISON (FLEXSTAB AND HONEYWELL/GELAC)

The Honeywell/GELAC 79th order model (HG79) for the cruise flight condition
was made available at Honeywell for this program. The 42nd order model
(HG42) is obtained by truncation of the Wagner dynamics. Because of the

way the unsteady effects were modeled in the 79th order model, the 42nd
order reduced model had slight errors with respect to the original Honeywell/
GELAC 42nd order model, Table 15 shows an eigenvalue comparison between
these two models for the bending modes, Note that HG42 used in this study
has less damping than the original model. This required more iterations on

the reduced optimal course design.

Table 15, Root Comparison of Free A/C with HG42
and Original HG42 Models

HG42 nG42
Association (used in this study) {used in Ref. 4)
wn o wn C
T ML 5.9 .086 5.9 . 147
n2, m2 11,4 . 021 11,4 . 021
n3, T3 14.5  ,028 14,5 . 034
T4, M4 16,1 . 044 16.0C . 066
n5, M5 17.5 . 023 17.5 . 024
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Air Force supplies C-5A data for the cruise flight condition in the form of
cards (simulator deck data) { Reference 2, 5, and 6), This data was con-
verted to state space data and augmented by the gust model and actuators
(used in the Honeywell/Gelac HG42 model). The resulting system was
scaled and shuffled to bring it to correspondence with Honeywell/GELAC
data., This FLEXSTAB model (F42)} is then compared and correlated to
the Honeywell/GELAC model (HG42).

In the following the open-loop comparisons are made.

e Steady-state values

e rms values due to wind gust

e Roots (Eigenvalues)

e PSD plots due to wind gust and white noise

inputs to aileron and inboard elevator

For these comparisons the FLEXSTAB inboard load axis system (see Figure 4)
was rotated 18, 6° right wing tip aft to be comparable to the HG42 model., This
rotation was performed at the completion of this study. This correction is
reflected in Tables 18, 17, 27b, 29 only and Figures 57, 59, 61, 63, 65, and
67 only.

Table 16 compares the steady-state 1G maneuver responses for the HG42
and F42 models. The rigid body responses (w, q, &) compare very favorably
between the two models, Elevator deflection requirements for the HG42
model are 50 percent larger than those for the F42 model; this is to be
expected since the HG42 model data have been corrected for the disc effects,
The bending and torsion moment data also agree reasonably closely. The
numerical comparisons between the bending moments and torsion moments
are very good, with an exception being that of T1 and T2. A magnitude

difference is to be expected.
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The torsional moments are about an axis parallel to the wing elastic axis.
The magnitudes of the torsional moments are extremely dependent on the
chordwise location of the net load center of pressure and therefore are
extremely math model dependent. Sensors outputs (A21F, A21R, AFUS,
and TFUS) are exactly the same as should be expected. The first hint
that there are major differences between the two models comes in viewing
the bending mode selection data, Magnitudes and signs just simply do not
agree any place, This indicates (but does not prove) that there may be

significant difference between the two models.

HG42 and F42 model free aircraft rms responses due to wind gust are
compared in Table 17, Generally, the comparisons indicate that the F42
model is matching the HG42 model well, There are two significant dis-
crepancies: the HG42 T2 torsion moment and the accelerometer outputs
AZ1F and A21R are larger than the ¥42 data. Since exactly the same gust
field is "striking" each model, data indicate that the HG42 model is
more responsive to gust. Other than that, the comparisons are very good.
This would indicate that the F model is a good approximation to the HG

model for the wind gust inputs,
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Table 18. Root Comparison of Free A/C with HG79, HG42 and
F42 Models
HGTS HG42 F42
Association Real Real Real
W W, L W, o

9, @ 1.7070 | 0,4617 | 1.667 | 0.4976 1.550 | 0.5775
T]l, T.]l 5.9350 | 0.0803 5,932 | 0.0861 5.528 | 0.0893
ﬂzs ﬁz 11,4639 0.0211 11.460 | 0.0207

ﬂ3. ﬁS 14,7083 § 0.0390 14,490 | 0.0277 15.600. 0.0693
Mg ﬁ4 16,0974 | 0,0439 16.060 | 0.,0438 17.230 | 0,0471
'ﬂ5, T.l5 17.4729 0.0233 17,470 | 0.0234 18,370 { 0.0241
Tlss ﬂS 19,2202 0.0265 19.110 | 0,0231 18.35 0.0313
T]7. ﬁ7 21.4328 0.0308 21.510 | 0.0328 22,140 | 0.0482
ﬂg, T]B 27.3576 | 0.0206 27,340 | 0.0205 29,4904 0.0219
'ﬂgs ﬁg 35,3109 0.0285 35.340 | 0,0283 33.510 _ 0,0284
T]IO, ﬁlO 37.3090 ; 0.0232 37.350 | 0,0234 34.300 | 0.0375
nll' ﬁll 40,9267 0,0539 41,140 | 0.0574 38,590 0.0289
Tl12’ ﬂ12 41,6351 § 0.0193 41,610 | 0.0193 43,740 0.0891
1]13. T.]13 44,9485 | 0,0246 44,780 ] 0.0221 48.140 | 0.0464
T]14, TI14 45,9438 | 0.0185 45,250 | 0,0167 51.240 | 0.0242
T|15- ﬂ15 52,7879 { 0.0203 52.370 [ 0.0159 75,3201 0.0461
e Tyg 80.010 | 0.0211
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Table 18, Root Comparison of Free A/C with HG79, HG42 and
F42 Models {(Concluded)
HGT9 HG42 F42
Association Real Real Real
© a @, L ® Y

5a -6.0000 ~6,000 ~5.000
5 . -7.5000 -7.500 ~7.500

ei
& =T7.5000 -7.500 -7.500

eo
Gust Filter -0, 2100 -0,210 -0.210
Gust Filter ~0,2100 -0,210 -0,210
Wing Kussner ~-9,1560 -9,156 -9.156
1st Order Delay -13.4270 -13.427 ~13, 427
2nd Order Delay 9.8020 0. 8165 9,802 { 0.8165 9.802 | 0.8165
Tail Kussner -18.4930 -18.493 -18,493
Wing Wagner (19) | -9.1560
Tail Wagner (20} | -18,493
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In Table 18 the roots of HG7Y9, HG42 and F42 aircraft models are compared.,
The root values are quite close, They are good enough so that based on
these data alone, one would expect that there were only small differences

between the HG and F model,

Figures 56 through 'i'Efkpresent the power density plots for HG4Z2 model ang
¥42 model. The rms values as obtained from PSD plofs are different {ror:
those obtained from covariance analysis, This difference is due to frequency
factor in the rms values computed by integrating the PSD plots as given

below,

Y,
rmSPSD 27 rmSCOV

The PSD plots provide two valuable services, First, they are an excellent
means of checking models to ascertain that errors have not been caused
by the data handling procedures. Second, the qualitative nature of the

plots provide a good indication of where the problem areas are,

The PSD plots for HG42 model, as presented here, compare very well
with the previous PSD plots obtained during previous ALDCS work
(Reference 4), This shows that the data handling in KONPACT with the

HG42 maodel is accurate,

The first comparison to note between FLEXSTAB and Honevwell /GEIAC
moaodels is to compare Figures 56 and 57 for the bending moment due to
wind gusts, For the HG42 model resonant peaks occur at rigid hocdy

near 0,2 cps and also at the first mode, at somewhat less than 1 cps.

* IFigures 56 through 151 appear behind the main text of this section.
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The data for the F42 model show a lot of resonance for only the rigid body.
Similarly, the bending moment due to the elevator shows for the HG42
airplane {in Figure 58) has resonant peaks at the rigid body first and

third bending modes, The F42 model in Figure 59 shows a majority of

the resonance at the rigid body, a neglectable amount for the first mode,
and then apparently picks up a fourth mode, Figures 60 and 61 show that
the HG42 model has significant first and third mode energy; the F42 model
has significant resonant peaks for the first flexture mode only. Torsional
plots, due to gusts for the HG42 and F42 models in Figures 62 and 63,
show that the HG42 aircraft has rigid body, first and third flexure
resonant peaks; the F42 model has resonant peaks in the rigid body area
only. Torsion, due to the elevator, is shown in Figures 64 and 65, For
the HG42 model there are resonant peaks for the rigid body, the first
mode, second mode, third mode, fourth, sixth, seventh and eighth mode;
for the ¥42 model, there are resonant peaks for the rigid body, first
mode, fourth mode, and seventh mode; these latiter frequencies are very
low relative to the values that we see on the HG42 model, Torsion due

to aileron is shown in Figures 66 and 67. For the HG42 model, there

are resonant peaks for the rigid body, first, second, third, sixth, seventh,

and thirteenth mode; for the F42 model, there is also an additional

resonant peak for the fifth mode.

The third flexure mode response due to gusts is shown in Figures 68 and 69,
The HG42 model has resonant peaks for rigid body, first, third, and fourth
modes; the F42 model has resonant peaks for the rigid body only. The

third flexure mode due to elevator are shown in Figures 70 and 71. TFor the
HG42 model, there are resonant peaks for rigid body, third and fourth modes;

and the F42 model has it for the rigid body, first and third modes. For the
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third flexure mode bending due to aileron, plots are shown in Figures 72 and
73. There is qualitative agreement between the two sets of data, except

that the rms values differ by a factor of Y27, Pitch rate responses due to
gusis are shown in Figures 74 and 75. The comparisons show that the only
responses due to the rigid body are quite good. Pitch rate due to the inboard
elevator are shown in Figures 76 and 77. The comparisons are very good.
Pitch rate due to ailerons are shown in Figures 78 and 79 and again the
comparisons are quite good, although there is a little more first and third

mode response in the HG42 data.,

Further open-loop comparison on the reduced (residualized) models for

FLEXSTAB and Honeywell/GELAC is given in the next subsection,
RESIDUALIZATION AND TRUNCATION STUDY ON FLEXSTAR MODEL

The 42nd order FLEXSTAB model is used to obtain three different models
of 24th order for residualization and truncation study. The names of the

models and the procedure to obtain them are shown in Table 19,

Table 19, Models for Residualization and Truncation Study
Obtained from the F42 Model

Model Procedure
*F24RR Residualize states, responses and sensors,
" F24RT Residualize states and responses and

truncate sensors.

e

" F24TT Truncate states, responses and sensors.

"Note the inboard bending moments (B1, T1) (for the F24RR, F24RT and
F24TT models) are about the axis system shown in Figure 4,
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In addition, these mcdels are also compared with HG24RR obtained from
HG42 model, Firsi, open-loop (free aircraft) results are presentec and then

the closed-loop (ALDCS) results are presented,

The following performance measures are used for comparison;
¢ Steady-state values
° rms values due to wind and pilot
® Roots (Eigenvalues)

¢ Time response plots,

Open-Loop Results

Table 20 compares the steady-state free aircraft 1G maneuver responses

for the F24RR, I"24RT, and F24TT models. The quantities w, o, d,

flexure modes, and bending moments compare favorably among all models,
Table 21 illustrates the effect of residualization and truncation on the steady-
state value of sensors. (Note that truncation here means truncation after
differentiation,} In Reterence 4, there was much closer correspondence
among the RR, RT, and TT models. (There, truncation was done before
differentiation.) Also note that the steady-state value of T5 for the I'24TT
model 18 about 20 times lower than that for the other models, (This again

+s due to truncation after differentiation operation,) This fact was not known

Lefore this study was undertaken,

One other significant thing to note is that the steady-state values of the bending
and torsicn moment rates for F24TT model are not zero as should be expected,

For this reason the response rates should be obtained after the reduced
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model is obtained. (In this study the response rates were obtained for the

F42 model and then the reduced models were obtained. )

Table 21. Free A/C 1G Responses

R Models
Sensors F42 F24RR F24RT F24TT
TFUS, rad/seq 0.04377 0.04377 0.04378 0.04326
AFUS, g's ~1,00000 ~1.00000 -0, 78000 -0, 75000
A21R, g's -1.00000 -1,00000 -3.90000 -3. 60000

Table 22 shows the comparison of free aircraft rms responses due to gust
input for HG24RR, F24RR, F24RT, and F24TT models. As indicated

by the rms comparisons between HG42 and F42 models, the rms comparisons
between HG24RR and F24RR are also very good, This means that the different
reduction procedures do not affect the rms values significantly (as they do for

the steady-state values).

Similar comparisons are made for the pilot response for the HG24RR,
F24RR, F24RT, and F24TT models as shown in Table 23, Again the com-
parisons among the models would indicate that the FLEXSTAB model is good
for design of contrellers to take care of the rms disturbances (i.e., to

handle the control problem, at least at low frequencies).
In Table 24, the roots of HG24RR, F24RR, and F24TT models for free A/C

are compared., Again, the root values are close, The damping ratios of

the F24RR model (as shown in Table 24 and in Table 18 for the F42 model)
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Table 24, Root Comparison of Free A/C with HG24RR, F24RR
and F24TT Models
HG24RR F24RR F24TT
Association Real Real Real
“n £ w, ¢ wy ¢
é, o 1. 6663 | 0.4981 1,5501 | 0,5785 1.6087 | 0.5854
T]l, T.ll 5.93089 | 0.0854 5.5283 | 0,0892 5,5501 | 0.0921
Ny My 11.4585 | 0.0207
ﬂ3, ﬁS 14.5012 | 0,0286 15,5911 | 0,06%9 15,5416 | 0.0707
T]4, T.]4 16,0682 | 0,044% 17,2662 | 0,0491 17.4777 | 0.0631
Ti5, ﬁ5 17.4781 | 0,0235 18,3701 | 0.0245 18.3842 | 00,0283
ﬂs, ﬁﬁ 19,1533 | 0,0252 19,3531 | 0.0315 19,3590 | 0.0323
Ny Ay 22,1171 | 0.0487 | 22,0976 | 0,0499
Ba -6, 0000 -6, 0000 -6. 0000
5ei -7. 5000 -7.5000 -7. 5000
Seo -T7.5000 ~-7.5000 -7.5000
AZ1RL -6.0000 -6. 0000 -6, 0000
GLAF ~-0.0200 -0,0200 -0, 0200
MLC1 -0,0100 -0,0100 -0.0100
Pilot Filter ~0, 1000 -0.10600 -0, 1000
Gust Filter -0,2100 -0, 2100 -0. 2100
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Table 24, Root Comparison of Free A/C with HG24RR, F24RR
and F24TT Models {(Concluded)

HG24RR F24RR F24TT

Asgsociation Real Real Real

Yy ¢ n C w, C
Gust Filter -0, 2100 -0, 2100 -0,2100
Wing Kussner | -9. 1560 -9,1560 -9,1560
1st Order ~13. 4270 ~18. 4270 -13. 4270
Delay
2nd Order 9.5020 | 0.8165 | 9.8020 | 0.8165 | 9.8020 | 0.8165
Delay
"Tail Kussner |-18,4630 -18, 4930 -18.4930

change very little due to model reduction process, Previous experience had
indicated that there would be typically about 50 percent more damping ratio
on the flexture modes for the lower order residualized models than for the

high order models,

Figures 80 througn 99 contain the time response plots for HG24RR model and
F24RR model to elevator input. The elevator input to produce this series of
plots is shown in Figures 985, 97, 88, 99; this is the amount of elevator
deflection required to pull 2 1-g incremental maneuver. The responses

(B1, T1, @, g, Mo Nas e 5 A 580} for the two models are all very

ei el
similar,



Closed-Loop Resulis

Table 25 compares the steady-state ALDCS aircraft 1G maneuver responses
for the F24RR, F24RT, and F24TT models, (Note: ALDCS controller

is designed with F24RR model as explained in Section V and the same
controller is used with the models F24RT and F24TT). The following
(Table 26) illustrates the comparison of steady-state values of sensors,

The different model reduction procedures seem to have less effect in

closed-loop performance measures,

By comparing the data for the free aircraft from Table 20 and the data
from ALDCS aircraft in Table 25 we get the data as shown in Table 27a
and 27b,

The maneuver relief for the F24RR model for Bl is nearly the exact value
specified {(namely 0.7)., The F24RT model gets a little more bending relief
than required and the F24TT model shows that only about 4/5 required
bending relief is achieved, Bending reliefs achieved with different models
is comparable to the data that were obtained during the ALDCS design
phase using the Honeywell/GELAC model, (Reference 4),

The second line presents comparable data for torsion. Here it is seen that
the relative torsion values for the F24RR, F24RT, and F24TT models are
0.2983, 0,3116, and 0,0761, These torsional moment ratios were produced
relative to the axis system shown in Figure 4, If the SS loads of Tables

20 and 25 are rotated 18. 6° to agree with the Honeywell/GELAC model,

then Table 27b results, These data agree very favorably with the Honeywell/

GELAC in that the torsional moments increase with the ALDCS aircraft,
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Table 26, Closed-Loop 1G Responses
Models
F24RR F24RT F24TT
Sensors
TFUS rad/sed 0.04375 0.04824 0.04916
AFUS, g's -1, 00100 -0, 89800 -0, 89400
A21R, g's -1,00100 -1.12800 -1,11700
Table 27a, Steady~State Maneuver Load Relief Ratio

(Moment ALDCS/Moment Free)

(Figure 4 Load Axis System)

¥F24RR F24RT F24TT
B1 0.6991 0.7635 0.7821
T1 0.2983 0.3116 0.0761

Table 27b. Steady-State Maneuver Load Relief

(Moment ALDCS/Moment Free)
(Figure 3 Load Axis System)

F24RR F24RT F24TT
B1 0.6686 0.7289 0,7328
T1 1,8046 2.009% 2.1702

In Table 28 steady-states are compared for the free and ALDCS aircraft

using the HG24RR and F24RR models, Table 29 compares bending and

torsion data relief for the F24RR and HG24RR models, It is seen that
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the torsion moment for the HG model has increased as was mentioned before,
However, the magnitude of this increase is greater than that obtained during
the past ALDCS design study. This difference might be due to the fact

that the ALDCS controller designed is not a very refined one. It is seen

that the T]i’s are markedly different between the HG24RR and F24RR models

Table 29, Steady-State MLC for HG24RR and F24RR Models
{(Figure 3 Load Axis System) -

F24RR HG24RR
Bl 0.6686 0.7002
T1 1. 8046 1.7428

and this raises a question on the aceuracy of the F model at higher frequencies.

{This discrepancy was also observed while comparing the HG42 and F42 models,)

Table 30 shows the comparison of ALDCS aircraft rms responses due to
gust input for HG24RR, F24RR, F24RT and F24TT models. Table 31

shows the relative rms reliel as obtained from Tables 22 and 30,

An observation is that the different improvement obtained between the RR,
RT, TT models would lead one to markedly expect the different results de-
pending upon which of the models were used, Experience in the past during
the design of the ALDCS was that the ALDCS rms relief in gust was the same
regardless of the model used, This difference is because of the different

truncation procedures used in this study.
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A second observation is in regard to the torsion relief, During the ALDCS
design it was observed that torsion increases could be maintained below
5 percent, The torsion reductions shown here for the FLEXSTAB models

are again attributed to the rotated axis system (cf, Figures 3 and 4).

Table 31. Relative ALDCS RMS Relief in Gusts

HG24RR F24RR F24RT F24TT
B1 0. 5032 0, 6045 0. 8757 0.7775
T1 1.3071 0.4820 0.6528 1. 3451

Table 32 presents the rms comparisons for the ALDCS aircraft due to
pilot disturbance, and Table 33 presents the results of a combined dis-
turbance, Table 34 compares the rms responses for the free and ALDCS

A/C with the F24RR model.

Roots for the ALDCS aircraft for all the four models (HG24RR, F24RR,
F24RT, and F24TT) are compared in Table 35, Here the very low damp-
ing rate ratio is generated on the third flexure mode for the HG24RR

model. To improve the damping ratio it was necessary to put low pass
filter into the elevator channel, As will subsequently be shown, the elevator
drives the third mode rather hard on the HG model., The table does

show that the rigid body objectives for all four aircraft are as desired.

Table 36 compares the roots of the free and ALDCS aircraft with the F24RR
model, The ALDCS aircraft displays better root positions than does the
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free aircraft. Note that the damping ratio for the F24RR, F24RT, and F24TT
models in the third bending mode is increased. This is not what would have

been expected from previous experience in designing the HG model.

The time response plots for the closed-loop systems are presented in Figures

100 through 151. The following closed-loop models are considered.

& SAS aircraft HG24RR

® SAS aircraft F24RR

e ALDCS aircraft HG24RR
¢ ALDCS aircraft F24RR
e ALDCS aircraft F24R'T

® ALDCS aircraft F247TT,

It is shown in Figures 100 and 101 that the SAS improves the pitch rate
response for both the HG24RR and F24RR models, The basic C-5A with
SAS is considered to have very desirable handling qualities and ALDCS is

designed to provide the same qualities for pitch rate,

Figures 102, 103, 104, and 105 show that the pitch rate response for the

ALDCS aircraft is very close to the SAS aircraft previously displayed and

show that the control design technique met their objectives, For the response

shown for the ALDCS HG24RR aircraft (in Figure 102), it is apparent

that there is a considerable amount of the third flexure mode appearing in the

pitch rate response; during the previous ALDCS design (Reference 4),

a better looking pitch rate response was obtained for the ALDCS aircraft,
This mildly oscillatory portion of the responses is due to the low damping

ratio of 0. 0051 that was previously discussed.
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Table 36. Root Comparison of Free A/C and ALDCS

A/C with F24RR Model

Frece ALDCS

Real Real
Association “n 4 ¥n ¢
6, a 1.5501 0.5785 1, 7393 0.17354
T ﬁl 5, 5283 0.0892 3, 7410 0.2501
T, ﬁo
T, T3 15,5911 0,0699 14. 2402 0,1852
Ty Ty 17,2662 0.0491 17. 2567 0.0169
5. 5 18,3701 0.0245 18. 3744 0.0218
g, Mg 19. 3531 0.0315 19,1853 0.0324
Ty Te 22,1171 0.0487 21.9848 0.05869
54 -6.0 ~1.2552
8 oi -7.5 -8.0200
beo -7.5 -7.5
A21RL -6.0 30. 5312 0. 8669
GLAF -0,02 30,5312 0. 8689
MLC1 -0.01 -0.01
Filot Filter -0.1 -0.1
Gust Filter -0.21 ~0.21
Gust Filter -0.21 -0.21
Wing Kussner -9.156 ~9,1586
1st Order Delay -13, 427 -13, 427
2nd Order Delay 9, 802 0. 8165 8, 802 0. 8165
Tail Kussner -18, 483 -18.493
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For the bending moment response, there are two objectives. The first is
that for the steady-state value of the bending moment with the ALDCS
aircraft should be 70 percent of that over the free aircraft, Second, it is
very desirable that there be as little overshoot as possible in the bending
moment response because each overshoot represents needless damage
to the aircraft, ‘The ALDCS designs under this contract, as shown in
Figures 106, 107, 108, and 109, all display rather good bending moment
response; there is little overshoot, The major objection to the response
is that on the HG24 model (Figure 106) there is the third mode oscillation
which would be eliminated in a more refined design; for example, the third
bending mode filters could be put into attenuate the elevator effects on the
third mode, HG24RR responses exhibit a little more of the third mode than

would be desired.

The torsion moment responses for the ALDCS aircraft are detailed in
Figures 110, 111, 112, and 113. As with the bending moment, the torsion
responses should be smooth with just a little overshoot. The results for
the HG24RR model are quite good except for the third mode; this

effect could be eliminated in a more refined design procedure than

was accomplished here. The results for the F24RR model again look
surprisingly close to those for the HG model with a lot of the third bending
mode appearing., The results for F24RT and F24TT models are very
different from what we expected to see, The reason could be the truncation
after differentiation procedure that was adopted during the study. The
results for the torsional version show that the general objectives for the

ALDCS are achieved,
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First flexure mode responses for the ALDCS aircraft are shown in Figures
114, 115, 1186, and. 117, Note that the first flexure mode for the HG24RR
model has very low damping. During the previous ALDCS design a higher
damping was achieved, The F24RR model ALDCS results are qualitatively
satisfactory although the deflections are large relative to that found on the
HG24 model., The resulis for the F24RT and F24TT models appear again

to be too different than previous experience would indicate,

The transient responses for the third bending mode for the ALDCS aircraft
are shown in Figures 118, 119, 120, and 121, For the HG24RR ALDCS
response, the third bending mode has little damping; this checks with the
damping ratio of 0,0051 that was shown previously, This corresponds to
an amplitude ratio of 0.966 per cycle., With the HG24 model as indicated
previousliy, the third mode is very difficult to control, It takes more
effort and more tailoring to suppress this mode. The other ALDCS traces

also show a well damped third mode oscillation,

The sixth flexure mode resulis for the ALDCS aircraft are shown in Figures
122, 123, 124, and 125, The sixth flexure mode shows rather modest
damping. In viewing these results, it should be noted that the amplitudes
and the responses are quite small; the normalized plots that we are

presenting here tend to over-emphasize the importance of these terms.

Elevator response plots for the ALDCS aircraft in Figures 126 through 137
show considerable activity which reflects the feedback from the flexure
modes into the ALDCS controller, The aileron response plots are shown
in Figures 138 through 145, For ALDCS, the aileron response should be

compared with the bending moment response, The aileron, to a high degree
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establishes bending relief, Therefore, the aileron response needs to be
phased in such a manner that it prevents the overshoot in bending moment
response, The ALDCS objective of getting the bending moment response

to look like a second order system with a damping ratio of about 0.7 can be
achieved by phasing the aileron correctly with the feedback system. For
example, for the HG24RR results, it is seen that the bending moment has

a flat spot between 1 and 2 seconds and then peaks at around 2,7 seconds
and then backs off by about 5 percent; these are results in Figure 1086,

The aileron transient response is shown in Figure 138, If peaks at about
2,0 gseconds and stays there until about 0.2 seconds and retrenches at about
5 percent, If the aileron response was reshaped so that the portion between
0.7 of a second and 1, 8 seconds had the outer end moved from 1.6 to about
2,7, the bending moment response of Figure 106 would have been improved
because of the elimination of the overshoot. In any event since the step
command response is really a worse case situation, the response for normal
input with the system as shown here would have very little overshoot and
would be very desirable, Comparisons of the ALDCS results will show
that the aileron phasing is quite close to that desired in order to prevent the
bending mode excesses. (Note in Figures 126 to 130, BDEI is equal

to DELEI).
The angle of attack response plots are shown in Figures 148 through 151,

In summary, it can be said that on the basis of these comparisons, the

FLEXSTAB produces valid vehicle models for preliminary design of CCV

control laws,
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Figure 111. Command Response Plot of ALDCS A/C with F24RR Model (T1)
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Figure 114, Command Response Plot of ALDCS A/C with HG24RR Model (ETA1)
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L ]
-
»
*

- »
Ry T T T e s e

- - - . e

-
-

-
- w
e 4t e

J=eenmmnncaunrelecsssnsnn=nss]asnnsrranrorn]ancennsncrrnsjracnncreevmn=]

-
o ot omm da et 5t s ol B et ot At e e Bt el B el it B et e S A e bt A e S Y e A et et ran B e B v e s S Bt hen b et B ] e b el B B e Nl

ste's
£9¢'L
S2E°t
S69°L
P31 4
SCy'f
SE*S
s24'i
Les't
§+5°¢
PR
S95°K
52§°E
P30
[ ALRI+
Si*'g
SEL*F
hel't
$ui't
She'f
F1 4244
351°E
L TA N
Fhl*L
AL
sLerL
SEE"?
T
SES*?
S8 2
sCy'e
$6472
s2éd'e
S9%'e
A L]
st
SsE'2
wif*2
1132
FLAAT
sike
5582
LT 1
S
stgte
FL
5912
S71%¢
ShL*2
StLe
{02
SEE°T
SIE'T
ISR
shgtl

ainty

AT A )
Scid*l
5se°t
Shet
stE'T
$5¢°1
SEE'T
SEn*]
Sek*y
5(%'T
5981
5Lt
FLTaa]
5%2'%
1134
g€t
s21°1
SEiT
Shuty
S0 Y
$9°
£RE"
L1 1A
St
$06*
564"
S€4*
Il
1L
508"
s8¢*
s
560
LAY e
50¢"
§%8°
s¥K”
T
SHet
she”
§¢1°
szt
T
Sh{*
»00°0

aee* ELR R T (110 8 nihrgY- Wb ¥2- £Inry2-

(uk) ean
239

TIME {SECONDS)

Figure 121, Command Response Plot of ALDCS A/C with F24TT Model (ETA3)
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SECTION VII

CONCLUSIONS AND RECOMMENDA TIONS

The objectives of this study were threefold: 1) develop an interface
program between FLLEXSTAB/LSA and Air Force-owned optimal control
programs (DIAK and FFOC), 2) demonstrate the interface by using C-5A
model and Active Lift Distribution Control System D'esign Procedure, and
3} conduct a brief study on model reduction procedures for design, The

major emphasis has been on the interface software development,

These objectives were primarily met. The algorithms used in the interface
and the results of demonstration example are documented in this report.

The developed programs are listed in AFFDL-TR-75-146, Volume II.

Users information for the programs is given in AFFDL-TR-75-146 Volume III,

In the following, the results and recommendations for future studies pertaining
to the work in the area of analysis and synthesis and software developments

are presented,
SIGNIFICANT RESULTS
e The work reported here established the total software system

approach to Active Control Technology (ACT) and Control
Configured Vehicles Design (CCV) problems,
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¢ The chief benefit of the program was to provide integrated software
for rapid development of vehicle model and control laws for ACT

and CCV studies.

e The results of demonstration example with C-5A -ALDCS show that
FLEXSTAB program system generates valid models for preliminary

control system synthesis,

® The results also show that the residualization procedure is better
than truncation prdcedure when higher order models are reduced

to low order models for design.
RECOMMENDATIONS FOR FUTURE ANALYTICAL WORK

e Development of efficient model reduction procedures is needed
for feedback design of high order models representing unsteady

aerodynamics and bending modes.

e Development of design procedures uéing residualized Riccéti
equations via smgular perturbatmn and boundary Iayer techmques

is needed to reduce design cost for h1gh order systems.

¢ Development of efficient solution procedure is needed for constrained-
optimal control problems to enforce conventional design criteria

into optimal active control synthesis techniques,

RECOMMENDATIONS FOR FUTURE SOFTWARE DEVELOPMENT WORK

e Development of geometry definition interface module is needed
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to generate vehicle configuration/performance sensitivities for

Control Configured Vehicles design.

e Automatic weight selection and response selection modules should

be developed to speed up the quadratic design process.

e Algorithms developed for the Constrained-'Optimal Control problem
should be implemented.

e Existing optimal control routines should be revised for higher

computational efficiency.

e Optimal multirate digital control analysis and design capabilities

should be added using the Air Force-owned programs,.
CONCLUSIONS

A large-scale software system for automatic modeling and optimal design

of active control systems was developed in this study. The software system
was used to design controller for the C-5A vehicle with Active Lift Distribu-
tion Control S};stem design procedure, Automati¢c dimensioning and user
oriented statement features considerably improved the interface data mechanics

for optimé_ﬂ design,

272



6.

9.

REFERENCES

A, J, VanDierendonck and G, L. Hartmann, ''Quadratic Methodology, "
Volume II - Documentation for Computer. Program, Honeywell Report
No. F0161-FR, October 1973.

G. R. Hank et al,, ""A Method for Predicting the Stability Character-
istics of Control Configured Vehicles, " Volurhe II - FLEXSTAB
2.01.00 User's Manual, ATFDL~TR~74-91, November 1974.

A. F., Konar and J, K, Mahesh, "Computer Programs for Active
Control Technology, "' Volume 1I, KONPACT Program Listings,
AFFDL-TR-75-146 Vol, I, June 1976.

R. B. Beale, M. F, Barrett, and C, R, Stone, ''Control Design for
the C-5A Active Lift Distribution Control System, " Honeywell Report
No. RF-09523C, Volumes I and II, April 1974,

R. Schwanz, C. Stockdale, ''Effect of Structural Idealization on
the Aeroelastic Stability and Control Parameters of the C-54 Aireraft, "
AFFDL-TM-75-122-FGC, December 1975,

C. Stockdale and G. Grimes, "A Formulation of Dynamic Load Equations
using the Level 2 FLEXSTAB Data Base for Control Configured Vehicles
Design, "' AFFDL~TM-75-120, February 1976.

Phillips, A. C., Rosen, R, W,, ""A Note on Dynamic Data Storage in
Fortran IV," Computer Journal, Vol. 18, No. 4, November 1975,

M. F. Barrett and R, C, McLane, ''Design Procedure and Results
for ALDCS, " MR 12223, S&RC Honeywell, Minneapolis, September 1973,

E, N. Tinoco and J. E, Mercer, "FLEXSTAB, A Summary of the
Functions and Capabilities of the NASA Flexible Airplane Analysis
Computer System, "' NASA CR-2564, December 1975,

273



10,

11,

12,

13,

14.

15,

16.

17,

18.

REFERENCES (Continued)

R. D. Miller et al,, ''Feasibility of Implementing Unsteady Aero-
dynamics into the FLEXSTAB Computer Program System, '' NASA
CR 132530, October 1974, '

A, J. VanDierendonck et al,, "Application of Practical Optimal
Control Theory to the C-5A Load Improvement Control Systems
(LLICS)," AFFDL~TR-73-122, QOctober 1973.

A. F. Konar, "Development of Weapon Delivery Models and Analysis
Programs,' AFFDL-TR-71-123, Volume I, April 1972.

G. L. Hartmann et al,, "F-8C Digital CCV Flight Control Laws, "
NASA CR 2629, February 1976.

M. S. Borow et al., ''Navy Digital Flight Control System Development, "
Honeywell Document No, 21857-FR, GAP, Minneapolis, December
1972, .

C. R, Abrams, ""A Performance Index for Response Evaluation of
Highly Augmented Military Aircraft, "' NADC-AM-7103, Naval Air
Development Center, Warminster, Pa., 12 October 1971,

'""Military Specification - Flying Qualities of Piloted Airplanes,."
MIL-F-8785B (ASG), 7 August 1969,

"Military Specification - Control and Stabilization Systems: Automatic,
Piloted Aircraft, General Specification For, " MIL-C-18244A (WEP),
1 December 1962,

L. Edinger and T. Lahn, '"C-5A Data Base for Load Alleviation and
Mode Stabilization Program, '' Report 20564-DB1, Honeywell iInc,,
Government and Aeronautical Products Division, Minneapolis, Minn,,
1 April 1968,

274



18,

20,

21.

22,

23,

24,

25,

286,

REFERENCES (Continued)

"Ajrcraft Load Alleviation and Mode Stabilization (LAMS): C-5A
System Analysis and Synthesis," Technical Report AFFDL-TR-68-162,
Wright-Patterson Air Force Base, Ohio, November 1969,

C. R, Stone, M. D, Ward, C. A, Harvey, M, E, Ebsen, E, E. McBride,
and W, W, Hollenbeck, ''Studies on the Compatibility of Relaxed

Static Stability and Maneuver Load Control to C-5A-Type Aircraft, "
Volume I, Technical Report AFFDL~-TR-72-38, Wright-

Patterson Air Force Base, Ohio, June 1972,

Edinger, Schenk, and Curtis, "Study of Load Alleviation and Mode
Suppression (LAMS) on the YF-12A Airplane, "' NASA CR-2158 .
June 1872, ‘ .

""Electronic Load Improvement Control System (LICS) Cost and
Effectiveness Study for the C-5A, A Report to the C-5A Independent
Structural Review Team, " 13 Septernber 1872,

G. Stein, A, H., Henke, "A Design Procedure and Handling-Qualities
Criteria for Lateral-Directional Flight Control Systems, " AFFDL-
TR=-70-152, May 1971.

A. J. VanDierendonck, ''Design Method for Fully Augmented Systems
for Variable Flight Conditions, " AFFDL~-TR-71-152, January 1972.

A. L VanDierendonck, " Quadrater Metuodology: A Snort Course
on the Application of Quadratic Optimal Control Theory to the Design

of Practical Flight Control Systemns (or any other gimilarly Modeled
System), ' prepared for AFFDL under contract No. F33615-72-C-2008.

C. R. Stone, M, D, Ward, C. A, Harvey, M. E, Ebsen, E. E. McBride,
and W, W. Hollenbeck, 'Studies in the Compatibility of Relaxed Static
Stability and Maneuver Load Control to C~5A Type Aircraft, "
AFFDL-TR-72-38, Volume II, June 1872,

275



21.

28.

29,

30.

31,

32.

33.

34.

35.

36,

REFERENCES (Continued)

C. R. Stone, "From LICS to ALDCS with F.C. 37 of the C-5A,"
Honeywell Research Memo, MR 12184, 25 June 1973,

C. R. Stone, "LICS to ALDCS Revised,'" Honeywell Research Memao,
MR 12195, 10 July 1973,

C. R. Stone, "Modeling of Flexible C-5A's for ALDCS, "' Honeywell
Customer Engineering Letter to Lockheed Georgia Company, C.E. L.
No, ALDCS-2, 27 July 1873, |

J. G. Truxal, "Automatic Feedback Control System Synthesis, "'

- McGraw=-Hill Book Co, Inc,, New York 1855,

A. F. Konar and J, K, Mahesh, "Digital Control Systems for Tactical
Fighters, ' AFFDL-TR-73-119, Volume I, June 1974,

Petar V. Kototovic and Ricard A, Yackel, "Singular Perturbation of
Linear Regulators: Basic Theorems, ' IEEE Trans. Auto, Ctrl,,
Volume AC-17, No, 1, February 1972, pp. 29-37.

Richard A, Yackel and Petar V. Kokotovic, "A Boundary Layer
Method for the Matrix Riccati Equation, " IEEE Trans. Auto. Ctrl,,
Volume AC-18, No, 1, February 1973, pp. 17-24.

Y, Shamask, ''Stable Reduced-Order Models Using Pade-Type
Approximations, " IEEE Trans. Auto Ctrl., October 1974, pp. 615-616.

Y. Shamask, "Linear System Reduction Uéing_ Pade Approximation to
Allow Retention of Dominant Modes, "' Int, J, Ctrl,, Volume 21, No, 2,
1975, pp. 257-272. |

Y. Shamask, '"Model Reduction Using the Routh Stability Criterion and
the Pade Approximation Technique, " Int. J. Ctrl,, Vol, 21, No, 3,
1975, pp. 475'484- .

276



37.

38.

39,

40,

41,

42,

43,

44,

45,

REFERENCES (Continued)

M. Lal and R, Mitra, "A Comparison of Transfer Function Simplifica-
tion Methods, ' IEEE Trans, Auto, Ctrl,, October 1974, pp. 617-618.

Msurice F. Hutton and Bernard Friedland, "Routh Approximations
for Reducing Order of Linear, Time-Invariant Systems' JEEE Trans,

Auto, Ctrl,, Vol, AC-20, No., 3, June 1875, pp. 329-337.

E. E. Yore and Y., Takahashi, 'Identification of Dynamic Systems by
Digital Computer Modeling in State Space, " Journal of Basic Engineering,
June 1967, pp. 295-299, - ‘ ‘

T, C. Hsia, "On the Simplification of Linear Systems, " IEEE Trans.

Auto Ctrl, June 1972, pp. 372-374,

R, B. Beale and N, E, Miller, "Turbine Engine Control Synthesis,
Volume II: Experimental Engine Identification and Modeling, "' Aero
Propulsion Lab Technical Report AFAPL-TR~75-14, March 1975,

R. Genesic and R, Pome, "Identificatiori of Reduced Models from Noisy
Data, " Int. J, Ctrol, Volume 21, No. 2, 1975, pp. 203-211,

T. Subba Rao, "An Innovation Approach to the Reduction of the Dimensions
in a Multivariable Stochastic System, ' Int. J. Ctrl,, Volume 21, No, 4.,
1975, pp. 673-680,

Lewis Meier and David G. Luenberger, "Approximation of Linear
Constant Systems, " IEEE Trans. Auto., Ctrl,, October 1967, pp. 585-
588, o

C. T, Leondes and John F, Yocum, "Optimal Observers for Continuous
Time Linear Stochastic Systems, ' Automatica, Volume II, 1875,
pp. 61-73.

277



REFERENCES (Concluded)

46, Robert G. Schwendler and Richard H, MacNeal, "Optimum Structural
Representation in Aeroelastic Analyses, ' Flight Dynamms Laboratory
Report ASD-TR-61-680, March 1962,

47, Mihajlo D. Mesarovic, Theory of Hierarchal Multilevel Systems,
Academic Press, 1870, - _

48, Krzysztof Cichocki, ''Multilevel Control Systems, " University of
Minnesota, May 1975 (primarily a translation of Reference 49).

49, W, Findersen, 'Multilevel Control Systems, " (in Pclish), PWN,
Warzawa, 1974,

50. A Method for Predicting the Stability Characteristics of Control
Configured Vehicles, " Volume I - FLEXSTAB 2,01, 00 Theoretical
Descriptioit, Boeing Commercml Airpla.ne Company, AFFDL-TR-T74-91,
November 1874,

51, A. F. Konar and J, K. Mahesh, "Computer Programs for Active
Control Technology, '"Volume III, User's Manual, AFFDL~TR-75-1486,

Vol. II, June 1976.

52, '""New Short Period Handling Quality for Fighter Aircraft, "' Boeing
Document D6-17841 T/N, October 1965,

53. Kisslinger, R. L., and Wendl, M,, "Survivable Fllght Control System
Interim Report No. 1, Studies Analyeus and Approach AFFDL-TR-71-20
Supplement 1, May 1971,

54. Dornfeld, G., Fraser, R + "Review of AFFDL Program, AFLOADS,"
The Boelng Commercial Airplane Company, Contract F33615-75-C~
3132 Management Review Report August 197s.

278

¥r U. 5. GOVERNMENT PRINTING OFFICE: 1976 — 657-638/(057



