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ABSTRACT

This report describes a series of tests designed to evaluate the per-
formance of statistical analyzers. The types of analyses that these analyzers
typically perform and that must be evaluated are:

Instantaneous Amplitude Probability Density
Instantaneous Amplitude Probability Distribution
Negative Instantaneous Amplitude Probability Distribution
Peak Value Probability Density

Expected Number of Maxima per Unit Time

Expected Number (Total, Positive, or Negative) of
Threshold Crossings per Unit Time

Joint Instantaneous Amplitude Probability Density
Joint Instantaneous Amplitude Probability Distribution
Extreme Value Density

Extreme Value Distribution
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Tests with both periodic (sinusoidal and triangular)and random (broad-
band Gaussian, narrow band Gaussian, and clipped Gaussian) signal inputs
are delineated for each of the above analysis modes. Tolerances on the out-
put wave shapes of the periodic signal generators are described so that gener-
ators whose outputs will not contribute significantly to the measurementerras
can be selected. It is suggested that the random test signals be recorded on
magnetic tape so that the identical signals can be analyzed by the statistical
analyzer and a digital computer. The digital computer analysis will accurately
define the statistical properties of the actual test signal so that the problems
associated with imperfections in the random noise generator and statistical
uncertainty flucutations can be avoided. The analytical derivation of all of the
above statistical functions for sinusoidal input signals are included to illus-
trate the operating principles of this analyzer.
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GLOSSARY
the ratio of the zero to peak value of a sine wave to the rms
value of the noise
the zero to peak amplitude of a periodic wave
the bandwidth of the data being analyzed
voltage
the maximum error
the frequency in cycles per second

the expected number of positive maxima per unit time occurring
in a narrow amplitude window

the probability density function of extreme values
the probability distribution function of extreme values
the total number of positive maxima per unit time

the expected number of positive maxima per unit time in excess
of the level o

the number of independent samples

the number of cycles

the expected number of threshold crossings per unit time
the probability density function of instantaneous amplitudes
the peak value probability density function

a joint probability density function

a conditional probability density function

the positive cumulative probability distribution function of
instantaneous amplitudes

ix



P {a) = the peak value probability distribution function for positive
P peaks below the level «

Ple,p) = a joint cumulative probability distribution function of instan-
taneous amplitudes

P{B,a) = a conditional cumulative probability distribution function of
instantaneous amplitudes

Qfe) = the negative cumulative probability distribution function of
instantanecus amplitudes

Q (a) = the peak value probability distribution function for positive
P peaks in excess of the level «

RC =  the time constant of a simple RC integrator
t = time
T = a specific value of time
X, = a specific amplitude value
z = the indicated average time in the window width Ax
o = a specific value of the normalized amplitude
§(B-a) = the Dirac delta functionat B = «a
At = the time inside of each Ax amplitude window
Axo = a small amplitude increment
Aa = the width of the analyzer window
X = percent error
£ = the average time spent in the amplitude window width when

averaging is performed over an integral number of cycles



1. INTRODUCTION

‘The purpose of this report is to formulate a series of tests for the
thorough evaluation of statistical analyzers. Statistical analyzers are those
machines used to study the amplitude characteristics of data signals., The
tests included are designed to evaluate the magnitude of the intrinsic machine
errors of the above analysis system. Errors from other sources should be

insignificant as:

1. It is assumed that these tests will be carefully performed so
that human errors will not occur.

2. Determination of the accuracy when random signals are used
as test signals is handled in 2 manner that permits one to
neglect the statistical errors that occur from taking a finite
sample from a theoretically infinite random process.

3. These tests will be conducted under near ideal conditions in a
laboratory environment so that the usage and environmentally

related machine errors will be negligible.
The tests can be segregated into four categories. These are:

1. tests with periodic wave shapes
2. tests with random wave shapes
3. tests of stability
4

. tests of miscellaneous features

In the first category, the basic operating modes of the statistical analyzer
can be checked quite accurately because the input signals are completely
deterministic and their appropriate probability functions can be easily calcu-

lated and compared against the output of the analyzer. The periodic signals
are also much simpler to generate in an undistorted form than are the

random signals.



Sinusoidal and triangular waves are suggested for the tests with periodic
signals since these two wave shapes are relatively easy to obtain and they
have markedly different probability density and cumulative distribution
functions.

For the evaluation tests to be made with random signal inputs, broad-
band Gaussian noise, narrow band Gaussian noise, and clipped broadband
Gaussian noise are suggested for inputs. These inputs are designed to
provide a thorough check on the various analysis modes of this statistical
analyzer, and still be relatively easy to generate, (All the equipment that
is required to generate the above inputs is a broadband Gaussian noise
generator, a bandpass filter, and a clipping circuit.) These random inputs
will provide contrasting instantaneous amplitude, peak, and extreme value
density and distribution functions, as well as different level crossing rates.

The stability test recommended utilizes a simple periodic triangular
wave plus DC as an input. By repeating this test over an extended period of
time, the stability of the analyzer, including the mean value detector, can
be determined.

Under the miscellaneous category, tests are recommended to evaluate

the performance and/or effects of the following items:

normalizing meter

frequency of periodic inputs

sweep rate of the amplitude aperture
mean value detector

differentiator and integrator

U W N

For convenience and easy reference, all figures have been consolidated at

the end of the report in numerical order.



2. SIGNAL GENERATOR REQUIREMENTS

The distortion and noise levels of all periodic signal generatars must
be carefully measured before they are approved for these evaluation tests.
The performance of the analyzer will not be accurately evaluated if the density
function of the test signal deviates significantly from its theoretical form. It
is recommended that the waveform on the output of the signal generator be
required to fall within _4_-_ 1% of the theoretical waveform at all points, and
the derivative of the signal be compared to the derivative of the theoretical
waveform. Determination of the allowable signal-to-noise ratio and percent
distortion on the signal generator output for a given percent error in the
probability density function is quite complicated. For the case of a sinusoidal
waveform, the calculations for the effects of distortion on the density function
result in an integral that cannot be integrated in closed form.

The allowable signal-to-noise ratio for a sinuscidal input can be deter-
mined by the techniques described in Reference 1. Since the probability
density function of a sine wave is infinite where the ratio of the instantaneous
value to the rms value is equal to + ﬁ, a compromise must be made when
this type of signal is used to evaluate the performance of a probability density
function analyzer. It is entirely reasonable to expect that the analyzer will
have no more than its advertised error if computations are performed at

(1) more than one amplitude window width away from the

above ratio
{2) a value of probability density less than the analyzers
full scale rating (usually 1. 0)
The probability density function of a sine wave with zero mean value,

{see Reference 2 or Reference 3 for development) is



pla) L when -'\E <a < +Y¥Y2
™ VZ - (a)2

= 0 otherwise

(1)

where
p(@) = the probability density of instantaneous amplitudes (dimensionless)

x
(—-—Q-)z a specific value of the normalized instantaneous amplitude
T

o=
¢ = the standard deviation of the underlying process x(t) = V2 osin wt
X, = a specific value of x(t)

Assume that the amplitude window width of the analyzer is equal to
0. 10, the full scale density is 1,0, and that x(t) has a zero mean value.
Therefore, the density function at o equal to + 1.3 should be properly
analyzed if its magnitude is less than 1. 0 because o = 1.3 is slightly more
than one window width away from « = -\[2‘._ Using Eq. (1}, the value of
density function is found as follows. (Because this density function is

symmetrical, calculations will be performed only on positive values of a.)

1

™ \/2-(1.3)2

= .5b71

p(l. 3)

Next, the averaging effect of a finite window width should be checked
to see if the rapidly changing slope of the density function near V’_Z—— will
cause an appreciable error. (The analyzer operation assumes that the slope
of p(x) is linear in the window.) To do this, the density is integrated over

the window width and divided by the magnitude of the window width.



35
: . 1 1
p(l.3) indicated = 1 ————— du

= ,585

Comparing this indicated value to the true value of a sine wave, it can be

seen that

. 585
-.571

. 014

The indicated density function is high by about 1. 4% of full scale [p(x) full
scale = 1. 0] . This factor could be accounted for, but to simplify the book-
keeping a point is chosen that is just slightly more than two window widths
away from the point where a ='\/E_. The true value of the probability density
function at e = 1.2 is 0. 425; the indicated value will be 0. 428. Therefore,
the averaging error at @« = 1. 2 can be neglected for all practical purposes.
The maximum allowable signal-to-noise ratio on the output of the
sinusoidal signal generator for a given error can be found from Reference 1.
Assume that a 1% of full scale error from generator noise is permissible,
and that the full scale density is 1. 0. Then one percent of full scale error
is equal to an error in the density of 0,010, Therefore, let the sum of a
sine wave plus random noise have a density function value of p(l.2) + 0.010 =
0.425 + 0.010 = 0.435 at o« = 1.2. From Reference 1, an approximation to
the density function of a sine wave plus noise, when the ratio of the zero to
peak amplitude of the sine wave to the rms value of the noise is large, is

given by



p{a) R

sine + V’;‘

noise

(2)

where
1 [“)
= —_— 3
y= a| VI+3 (3)
a = the ratio of the zero to peak value of the sine wave to the rms

value of the noise

F{y - a) = a function graphed in Figure 3 of Reference 1 which permits the

approximation of (@) when a is large.

sine +
noise

Because a is large, the above equations can be further simplified to the

following form:

(v2) [riy - o))

ple)_. ~ (2a)
sine + -,["
noise 2
a
vy x (@) (3a)
V 2
It is now desired to solve Eq. (2a) for the value of a such that P(1°2)sine+ = 0.435,
noise

An iterative procedure can be used. Over most of the range graphed, F(y -a)
is between 0.1 and 0.23. As a first attempt, assume that F(y - a) is equal

to 0.1. This value occurs only at (y- a) = +0. 8.

)]

= 37.8

0.435

I




(1.2)

V2

32.2
(32.2 - 37.8) = -5.6

(37.8)

y-a

which differs from the value of (y - a) where F{y-a) = 0.1. After several
iterations of the above steps, one finds that a2 20.

Next, one should check to see that errors greater than 1% of full scale
do not occur at values of | al < 1.2. From Figure l in Reference 1, this
appears to be a reasonable assumption, The graphed values of F(y -a) permit
a check only where a is in the range between 1.13 and 1.56 when a is equal to
20. A check will now be made on the magnitude of the error due to a signal-

to-noise ratio of 20 at e¢=1.15.

p
(1.15) 1+-2-9-)

¥y = 2
= 16.3
y~a=16.3-20 =-3.7
F(-3.7)y=.124
2
pla) . = ( - zg ) (.123)
noise V 20
= .390

The value of the probability density of a pure sine wave at ¢ = 1,15 is

1

sine >
T \/2 +{1.15)

= .386

pla)

It




The percent of full scale error is

(.390 - . 386)

=00 x100 =0.4%

This is less than the 1% error ate= 1. 2.
Further check of the error at @ = 1. 3 reveals that it is about a 1.3%
error. So it is a reasonable assumption that the error is continually increasing

from a=10 tobeyondlal =1.2 when a = 20,

AT osren A D11k ~ 1 =
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3. MISCELLANEOQOUS TESTS

This category of tests should be performed first since these tests
check some of the basic operating features that must be used to perform alil
other tests. If any of the following tests reveal malperformance of the
analyzer, all testing should be discontinued until the performance can be
corrected.

For most of these tests, a triangular wave superimposed upon a DC
voltage will be used as the input. This particular input is chosen because
it has a uniform probability density function with a nonzeroc mean value.
Figure 1 depicts the input wave shape and Figure 2 shows the resulting
probability density of instantaneous amplitudes. That the probability
density function of a triangular wave is uniform can be seen from inspection
of the wave shape. Because both the positive and negative slopes of the
wave are linear, the probability that the signal will fall between x, + Axo

where

x an arbitrary voltage amplitude

0

Axo = a small voltage increment

is independent of the magnitude of x as long as -A < X, <A where A is
the zero to peak amplitude of the triangular wave, and is equal to 1/2A.
The probability is zero that %, is outside of these bounds. Note that the
positive and negative slopes of the triangular wave do not need to be equal.
Before starting any of the following tests, the triangular wave shape

should be carefully checked as described in Section 1.



3.1 TEST OF NORMALIZING METER ACCURACY

Almost all commercial statistical analyzers have a voltage level
normalizing circuit on their input. This normalizing circuit maintains the
rms voltage level into the main analyzer sections constant. There are
three basic reasons for inclusion of this circuit. First, it permits the
dynamic range of the main analyzer sections to be independent of the level
of the data signal. Second, it greatly simplifies calibration of the relation
of the amplitude window to the standard deviation of the signal, and calibra-
tion of the readout. Third, it provides a measure of the rms level of the
data signal if the normalizing controls are appropriately designed.

The purpose of the following test is threefold. First, the amplitude
linearity of the statistical analyzer is determined; secondly, the accuracy
of the normalizing meter is measured; and thirdly, the accuracy of the long
term averager is measured. The test signal is a triangular wave voltage
superimposed upon a DC voltage. The peak to peak or rms voltages can be
measured. In either case, the input voltage should be measured to an
accuracy of .01% of the reading or better.

The rms value of a triangular wave can be calculated from Figure 1.
Assume for simplicity that the DC value is zero so that the amplitude of the
triangular wave varies with -A to +A. Then the expression for the tri-

angular wave can be written as follows

24
-A + Tl t ;051:5T1
f(t) = (4)
2A
A - TZ—T(t'TI)’Tl<t gTZ

The rms value is simply

10
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Note that this result is independent of the slopes of the triangular wave. If

there is a DC voltage (eDC) present, then the total rms voltage simply is

2
2
erms :‘\/é—j_ * (eDC) )

Compute the probability density functions and record the DC level

indicated by the mean value detector over the entire permissible input voltage
range as shown below for an analyzer that has a -5 volt to +5 volt input range.
Then compare the results to the theoretical values. (Set the triangular wave

frequency at about one octave above the lowest advertised operating frequency. )

test triangﬁfa{.)rt?va?\?:]f/oltage DC voltage
(1) 5. 000 0

(2) 0. 500 0

(3) 0. 050 0

(4) 0. 005 0

(5) 2.5 +2.5
(6} 2.5 -2.5
(7) 0. 500 +4. 500
(8) 0. 050 +4. 950
(9) 0. 005 +4. 995
(10) 0. 005 -4.995
(11) 4,500 +0.500
(12) 4,950 +0. 050
(13) 4, 995 +0. 005
(14) 4. 995 -0. 005

All of the above tests should result in probability density functions that fail

within the advertised accuracy of the analyzer.

11



3.2 TEST OF FREQUENCY RESPONSE

For this series of tests use a test signal composed of a positive DC
voltage equal to one-half of the full scale voltage range superimposed upon a
triangular wave whose peak to peak voltage level is also equal to one-half of
the full scale voltage range. Compute the probability density function at a
number of frequencies over the advertised frequency range, or ranges, of the
analyzer. Also record the DC voltage indicated by the mean value detector.
Compare the computed values to the theoretical values {density function and
mean) and determine if the advertised accuracy is obtained. The following
example is from a series of tests designed to measure the frequency response
of an analyzer that had an advertised upper operating frequency of 20 KC,
and an advertised lower operating frequency of 4, 1, or 0.1 cps,depending upon
the time constant setting of the mean value detector (MVD) circuit (this circuit
provides high pass filtering of the data signal in addition to measuring the

mean value).

M. V. D, input M. V. D. input
test time frequency test time frequency
constant constant
(1) {short) 4 {12) 1, 000
(2) 8 (13) 10, 000
(3) 10 (14) 4 20, 000
(4) 100 (15) (long) 0.1
{5) 1,000 (16) 0.2
(6) 10, 000 (17) 1
() v 20, 000 (18) 10
(8) (medium) 1 {19) 100
(9} 2 (20) 1, 000
(10) 10 {21) 10, 000
(11} 100 (22) # 20, 000

12



3.3 TEST OF SWEEP RATE

The probability density function of a periodic signal should be "in theory"
independent of the sweep rate. But, in fact, the indicated density function will
be dependent upon two factors.

First, in any analyzer that uses RC averaging instead of true integration,
the allowable sweep rate is controlled by the magnitude of the time constant of
the averager. The error caused by failure of the output of the RC circuit to
accurately track the probability density function as the amplitude window is
scanned is called the smoothing error. The faster the window is scanned over
a given amplitude range for a given RC time constant, the greater will be the
magnitude of the smoothing error. The probability density function of periodic
signals or truncated random signals may have infinite slopes at their end points.
One method of determining the allowable sweep rate for these types of density
functions is to assume that the RC circuit has a step input of voltage applied.
This voltage step is proportional to a step change in the probability density
function. The time required for the smoothing error to diminish toc an allow-
able value is then computed as follows.

The response of an RC circuit to a step input voltage of unit amplitude

is
-t
e =1-e /RC (7a)
out
where
e ut - the voltage at the output of the RC circuit
RC = the time constant of the circuit
The percent error by which the output fails to track the input step
function is
-t
% smoothing error = 100 e /RC (7b)

If the analyzer is to be accurate to 1%, the time required for the analyzer
to reach 99% of the final value can be found from Eq. (7a}jor (b)to be 4.6 time

constants. Thus, the sweep rate used should be set so that 5 or more time

13



constants are required to sweep through one amplitude window width. If the
data being analyzed has an exactly Gaussian probability density function,
digital computer studies have shown that 2 or more time constants per window
width are required for the smoothing error to be 1% of full scale or less.
Since the tests in this report are designed to accurately evaluate the perform-
ance of the analyzer, a sweep rate should be selected so that the resulting
error is about an order of magnitude below the advertised error figure for

the analyzer.

The second practical consideration limiting the sweep rate is the number
of cycles of the periodic function over which averaging is performed. If this
average were always to be taken over an integral number of cycles, then
there would be no problem. However, if the averaging is over a fraction of
a cycle or n integral cycles plus a fraction, then an error in the averaging
occurs, Obviously, the greater the number of integral cycles, the lower
the percentage error for a given fraction of a cycle of a particular periodic
wave. This error can be computed from Figure 3 for a triangular wave.

To simplify computations, the triangular wave will be assumed to have
complete symmetry and only the bounds on the maximum error will be com-
puted. When Ax is located very near to the positive peak of the triangular
wave in Figure 3, the maximum positive error occurs, and when Ax is located
very near to the negative peak of the triangular wave, the maximum negative
error occurs. The average time that the triangular wave is in the interwval
Ax is 2At/T when the averaging is performed over an integral number of
cycles. The indicated average value reads high when the Ax window is near
to the top of the triangular wave. Assume that Ax is very small and that
the average has been carried out over N cycles plus At. Then the indicated
average is

_ 2NAt + At (N +1/2)24at
T NT+At 7 NT

since At<< T (8)
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where

Z = the indicated average time in the window width Ax
(Probability density function when Ax = 0)

N = the integral number of cycles over which averaging is performed

At the time inside each Ax amplitude window

T = the period of the triangular wave

Equation (8) can be modified slightly to read

z-¢ (N;llz)
24t

£ = —F = the average time spent in the window width Ax when
averaging is performed over an integral number of cycles.

where

The maximum positive error in percent is

_(Z-¢
El-(g>100

N+1/2
N
50

=] (9)

- 1] 100

Thus, for the probability density function to read 1% higher than the
theoretical value, N must be 50 cycles.

The indicated average time reads low when the Ax window is near to
the negative peak. To determine the maximum negative error, assumne that
an average is taken over N cycles plus one-half of a cycle minus At. If
we assume Ax is very small, then At becomes negiigible with respect to

T/2 and the indicated average value of time is
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2N At

Z
T
NT +?
{10)
e
CIN+ 172
The maximum negative error in percent is
_(Z2-¢
E2 = ( z ) 100
N
= [——— - 100 11
(N+1/2 1) (n
-100
ZN + 1

Hence, the positive error is the controlling error,

Although the above development is for the special case of a triangular
wave, note that in reality the result in Eq. (9) applies for any periodic wave
shape. To reach this general result, replace the At in Eq. (8) by Ati, the
time inside the Ax amplitude window when it is centered at the ith amplitude
level. (For the triangular wave /_\ti is independent of i.} However, in the
development of Eq. (9), it can be seen that gi = Z.f_\.ti/T and that the Atiis
divide out of the final result.

In terms of the allowable percent error for a nonintegral number of

cycles, the total sweep time for a triangular wave should be

1\ (%27 % (50)
Ts >(?)( Aa ) E (12a)

1
where
T!5 = the time in seconds for a cormplete amplitude scan
f = the frequency of the triangular wave in cycles per second
@, = the amplitude value at which the scan is started
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a, = the amplitude value at which the scan is ended

Ag = the width of the analyzer window

For an analyzer that has a window width of 0. 1, an error of 0. 25%, and scans
only between equal starting and ending amplitude values, the scan time is
400

TS > (———9 o

f 1

The above discussion also illustrates the necessity for high pass filtering
of the data before it is applied to the main analyzer sections. Rearranging

Eq. (12a) in terms of the time per amplitude window

T 50
t/window = —E--F-‘&-— = = (12b)
2" % ]

or in terms of the lowest frequency permissible for a given scan time

1 @, - @ 50
t= (T ) ( Ao ) (E_) (12c)
5 1

To numerically illustrate this result, assume that 1000 seconds has

been chosen for a complete scan between -bc and +6¢ on an analyzer with
a 0.lc window width. Further assume that only 0.25% error from a non-

integral number of cycles is permissible. The lowest frequency permissible

in the data is
1 12 50
f= (1000) (o. 1) (0. 5]  24cps (13)

To test the scan rate circuitry, the amplitude level voltage should be

recorded on an oscillograph along with an accurate timing signal. The
scanned voltage level versus time should be recorded for a number of scan
rates between, and including the maximum and minimum scan rates. Devi-
ations of the voltage versus time curve from linearity should be measured

and compared against the advertised linearity for the scan rate.

17



3.4 TEST OF THE INTEGRATOR AND DIFFERENTIATOR

An auxiliary feature of some statistical analyzers is that a portion of
the circuitry required to perform special analyses can be used to provide
integration or differentiation of the data signal when the circuitry is not
required for the special analyses. Because these are strictly auxiliary

features, only relatively simple tests are recommended.

3.4, 1 Integrator Test

The integrator output should theoretically be

e () = fein(t) dt (14)

Actually, the output voltage is dependent upon the frequency of ein(t) since
all practical integrators have upper and lower frequency limits. If the input
voltage is sinusoidal, the output voltage should be a cosine wave of the same
frequency as the input and whose amplitude is inversely proportional to the

frequency since

IA sin 2wft dt = 2-1:; cos 2wuft
where u = the integrator gain times the amplitude of the sine wave.

Use the above equation in conjunction with the gain and output voltage
characteristics of the integrator under test to calculate the theoretical
integrator output voltage as a function of the frequency of a constant ampli-
tude sinusoidal input voltage. Apply test voltages at the frequencies used
in these calculations. Compare the measured and theoretical results and
determine if the advertised accuracy for the integrator is met. The phase
shift should also be monitered. This should be 90o or 2700 , depending
upon the measurement points. From the measurements above, determine

. . /rms output volt
the frequency where the signal to noise ratio ( B
rms noise volts

) is equal to

ten, and the frequency where this ratio is equal to one.
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As a further check, apply a one-volt rms square wave voltage to the
integrator, The output voltage should be a triangular wave. Vary the frequency
of the square wave and determine the low frequency where the wave shape on
the output of the integrator departs from the shape of a theoretical triangular
wave by 5%. Also determine the high frequency where there is 5% distortion
on the triangular wave. This may be due to a low signal to noise ratio in this
case. {(Note that the square wave source should be checked on a high guality
integrator to assure that source distortion is low enough to permit the above
measurements. )

The test conditions for an integrator with an advertised frequency range
of 2 cps to 20 KC and a 7. 07 volts rms output voltage for a 1.0 volt rms 2 cps

sinusoidal input are listed below:

frequency theoretical output
voltage (rms)
2 7.07
3 4.72
4 3.54
6 2.36
8 1.77
10 1,41
20 .707
40 .354
80 177
100 . 141
200 . 0707
1000 .0141
2000 . 00707
10, 000 . 00141
20, 000 _ . 000707
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3.4, 2 Differentiator Test

Theoretically, the output of the differentiator should be

d[ein(t)]

eout(t) - dt (15}

Actually, the upper frequency of the input is limited in all practical differenti-
ators. If the input voltage is sinusoidal, the output voltage will be a cosine
wave of the same frequency as the input and whose amplitude is directly

proportional to the frequency since

d(A sin 2ft)

= 2 2
at wiu cos 2uft

where u = the differentiator gain times the amplitude of the sine wave.
Apply a full scale sinusoidal signal at the upper cutoff frequency. The output
voltage should be the maximum permissible. Maintain this full scale input
to the differentiator and measure the output voltage and phase shift at a
number of frequencies over the frequency range of the differentiator. Com-
pare these measured voltages to the theoretical voltages computed by use of
the above equation and determine if the advertised accuracy is attained. Also
monitor the phase shift between the input and output. It should be 90O or 270°
depending upon the measurement points. Also measure the rms noise level
on the output of the differentiator when the input to the analyzer is shorted.
From the above measurements, determine the frequencies where the rms
signal to rms noise ratio equals ten and equals one.

As an additional check of the differentiator, apply a triangular wave
of one volt rms. The output should be a square wave voltage. Vary the
frequency of the triangular wave and measure the upper and lower (if possible)
frequencies where the square wave has 5% distortion in its wave shape.
(Note that the triangular wave generator must be carefully checked for

distortion prior to this test.)
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The test conditions for the differentiator with three different advertised
frequency ranges of 200 ¢cps, 2 KC, and 20 KC are listed below. This
particular one has a 7. 07 volt rms output whenever a one volt rms sinusoid

of the highest rated frequency is applied.

frequency in cps theoretical output
200 cps range | 2000 cps range |20 KC range voltage (rms)
200 2000 20 KC 7.07
170 1700 17 KC 6.01
140 1400 14 KC 4.95
110 1100 11 KC 3.88
85 850 8.5 KC 3.00
55 550 5.5 KC 1.95
30 300 3 KC 1.06
15 150 1.5 KC 0.531
10 100 1 KC 0.354
5 50 500 0.177
2 20 200 0.0707
--- 10 100 0.0354
--- 5 50 0.0177
-—- 2 20 0.00707
-— --- 10 0.00354
- --- 5 0.00177
_——— --- 2 0.000707
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4, TESTS WITH PERIODIC INPUTS

Periodic waves represent a convenient method to check out all of the
analysis modes of a statistical analyzer because their probability parameters
are well defined and the analyses have zero statistical uncertainty fluctuations
associated with them, Therefore, it is recommended that these tests with
periodic inputs be performed before the tests with random inputs. Specifically,
sine waves and triangular waves should be used as inputs.

This section is divided into three parts. The first part discusses the
meaning of the various probability functions that can be measured with this
analyzer, and analytically derives the theoretical results for the analysis of
sinusoidal data. The second part lists tests with sinusoidal inputs that
should be conducted to evaluate the performance of the analyzer. The third
part lists tests with triangular wave inputs that should be conducted to

evaluate the performance of the analyzer.

4.1 DERIVATION OF PROBABILITY FUNCTIONS
To illustrate how these analyzers compute all of the various probability
functions, the corresponding theoretical probability functions of a sine wave

are analytically derived.

4.1.1 Instantaneous Amplitude Probability Density Function

The instantaneous amplitude probability density function of a sine

wave is stated in Eq. (1) to be

1]

pla) L when —ﬁ fa < +V_2-

T VZ - (c:u)2

= 0 ; otherwise
To more thoroughly illustrate how this is derived, assume that

x=A sin © (16)
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where

A = the zero to peak amplitude of the sine wave

Therefore,

el

8= s.in-1 ( ) (17)

If the function x is sampled randomly in time, any value of the angle 0
is equally likely because it varies linearly between limits with time. To
make the function 6 single valued, limit it to be between -w/2 and n/2.

Because the area under the probability density function must equal unity,the

density,
1 n' L
= — - << < =
P&y =— 5 <0 <5
(18)
=0 ; elsewhere
To find the density of Xp,We set
p(x,) dx = p(6) de (19)

which can be done because the probability of being in theinterval(y, ytAy)
is equal to being in the interval f(y,y+tAy) where f(y) is a function of y

with only fairly general restrictions. Rearranging
d6
plxyF p(8) o=
et
dx _—
gy
1 1 1
e e er——— 20
plxp)= (w) (A) (20)
x \2
g
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To get into the normalized form of most analyzer inputs, we want p(xo/cr)
where ¢ is the standard deviation of x. Let = (xola), then as before

we can say

ple) da = p(xo) dx

dx
ple) = p(x0 da
X = oo
dx

do

ple)

—L ) el < V2 (21)

7]
f.—‘-l“
A |~
™
o8]

-

This function is plotted in Figure 4.

4.1.2 Instantaneous Amplitude Probability Distribution Functions

The positive cumulative distribution function for the instantaneous
amplitudes is the probability that the random variable will be less than

some given amplitude and is simply the integral of the density function.

For a sine wave
o

Pla) = / plu) d(u) (22)
= Q0
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Thus,

@ .
- [ O(=)
(%) sin~! ('\}E) +3 5 V2 <a< #V2 (23)

=0 ;a<-ﬁ
= 1 ;a>'\/§

i

This function is plotted in Figure 5.
The negative curnulative distribution is the probability that some

random variable exceeds a given amplitude and is simply equal to one minus

the positive cumulative distribution function

Qa) = 1 - Pla) (24)

For a sine wave

1 : a<—'\/§
0.5 -(-1-) ain'l(--"i-) ; -V2ga < 2 (25)
=0 ;o a > +'\/§

Qfa)

This function is plotted in Figure 6.
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4.1.3 Expected Number of Threshold Crossings per Unit Time

The expected number of threshold crossings per unit time, N ,
o

describes the mean number of times per unit time that the process x(t)

crosses through a narrow amplitude window centered at . Note that this

is neither a probability density or distribution function,

Q0

(N )dae#1 and N #1
-0 @ o0

For a sine wave, this function is zero at « less than -\/? and at o
greater than =+ '\/2_ For —-\/_Z— < o < +ﬁ Na is independent of the
value of o and is proportional to the frequency of the sine wave. (See
Figure 7.) For example, the magnitude of Na for a 200 cps sine wave is
four times the magnitude of Na for a 50 cps sine wave. In addition to
measuring the total expected number of times per unit time that the process
crosses through the amplitude window, the analyzer can measure the mean
number of times per unit time that the process crosses through the amplitude
window with positive slope only, or with negative slope only. The crossings
with positive slope are designated N; and can be thought of as the mean
number of times per unit time that the level a is exceeded. The crossings
with negative slope are designated as N;; . Both NZ and N; are equal

to one-half the total crossing rate.

4.1.4 Expected Number of Maxima per Unit Time

(a) In a Narrow Amplitude Window

The expected number of positive maxima per unit time occurring in a
narrow amplitude window, g(o} de, is determined by measuring the average
number of times that the process y(t) falls inside this amplitude window
while simultaneously having the first derivative equal to zero, and the second

derivative negative. In equation form (see Reference 3),
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=C0

g{a) da = da j— pla, 0, v) v dy (26)
0

where

Prob[a < y(t) S otde, PSS y(t) < B+dB, v <y(t) £ v+dv]

ple, B, v) =
dadpfdy

For a sine wave, positive maxima clearly occur only at a = +V? .
Therefore, g(a) da is equal to zero except for one amplitude window width
centered at o = +-\/-2- . (See Figure 8,) Here, the magnitude of g(a) da
is directly proportional to the frequency of the sine wave. For example,

a 50 cps sine wave has 50 maxima per second falling inside an amplitude
window centered at o = + V2 while a 200 cps sine wave has 200 maxima per
second in this window. Therefore, the magnitude of g(a) da for the 50 cps

sine wave is one-fourth that of the 200 cps sine wave.

{b) In Excess of a Specific Level

The expected number of positive maxima per unit time exceeding the

level o is simply
oo

Ma = f g(u) du (27)
a

For a sine wave, it can be seen that Ma =0 for o> +V€ as a sine wave

vs. no peaks greater than the V-Z- . Also, Ma will be constant from -o to

+ﬁ and will be directly proportional to the frequency of the sine wave

(see Figure 9).

{c) Total
The total number of positive maxima per unit time, ?7( , is

0

2( =f g(u) du (28)

-0
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Only a single value is obtained through implementation of Eq. {28). This

value is a direct measure of the frequency if the signal is periodic.

4,1.5 Peak Value {or Maxima) Probability Density Functions

{a) General

There are two peak probability distribution functions of interest. The
peak value probability distribution function, Qp{a), describes the probability
of positive peaks exceeding the level « . This function is closely related to
the expected number of maxima functions discussed in the preceding section.

In fact, from Eqs. (27} and (28),

M
@

Qp(af) = = (29)

7

The peak value probability distribution function, Pp(a), describes the
probability of positive peaks less than the level o occurring.
M

Pp(a) =1 - Qp(a) =1 -{-Z (30)

%

The peak probability distribution Qp(a) of a sine wave has a shape identical
to that for the expected number of maxima above a specified level, except
for the scale factor }] {see Figure 10). Qp(a) is independent of frequency
and is zero below a = Y¥2 and equal to one above «a ='\[2— . P (&), on the
other hand, is equal to one below o =-f2- and equal to zero al?ove o =_\[2-!-
(see Figure 11).
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The peak value probability density function pp(o:) is defined by

Pp(a +Aa) - Pp(a)

p_(a) = lim (31a)
P Ac=pD Aa *
= lim (J-)(i rM -M ] (31b)
Agepl Ao 77( | (atAe)
s ™ B1e)
Aa=-p( Aa M =

In practice, the peak value probability distribution and density functions
are usually measured by a counting process. This is equivalent to multiplying
both the numerator and denominator of Eqgs. (31b) and (31c) by a time interval
T. Also, the limit as Aa approaches zero is not taken so that one obtains

estimates of the quantities defined by

7}zT-MaT
Pp(a)= —“—"m-'—;i,—— {32a)
(a) = L‘( I)MT M T] 32h
Ppa— Aa 7}_[T a (atAa) ( )

or
1 |

pp(a) all byow (7}?}'1‘—) [T gla) Aa] (32¢)

To analyze the peak value probability distribution function both the total
expected number of positive peaks and the expected number of positive peaks
exceeding the level & are measured. The difference between these two
values is divided by the total expected number of positive peaks as shown in
Eq. (32a). The operation in Eq. (32b) is implemented by subtracting the

expected number of positive peaks that exceed the level a+Aca from the
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expected number of positive peaks that exceed the level o and dividing this
difference by the product of the total expected number of positive peaks and
the amplitude window width. FEquation {32c) is similarly implemented except
that the expected number of peaks occurring inside the amplitude window
width is measured directly.

For sine waves, the theoretical peak value probability density function
pp(ar) is a delta function at « =ﬁ . For actual analyzers, the peak value
probability density function will be constant over one amplitude window width
centered at o =‘Vr5 . The magnitude of the density function will be equal to
1/Aa since T gla) Ae/RT = 1 for sine waves. (See Figure 9.)

(b) For Narrowband Signals Only

If the data being analyzed is restricted to having a bandwidth that is
small compared to the center frequency of the bandwidth, the peak value
probability distribution and density functions can be measured with simpler

circuitry. In equation form, the restriction is

B B
fc+‘2 - fc- > <<fc (33)
where
B = the bandwidth of the data being analyzed
fc = the center frequency of the above bandwidth

The virtue of the above restriction is that it means that there is one and only
one positive peak, greater than the level o, associated with each crossing of
the level « with positive slope. Thus, the expected number of maxima (or

positive peaks) per unit time can be determined by measuring the expected

number of level crossings with positive slope per unit time, N+ . For very
o
narrowband processes,
+
N =M (34a)
o o
and '
N0 = {34b)
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Hence, the peak value probability distribution function, Qp(a), (the proba-
bility of positive peaks exceeding the level a) can be found for narrowband

processes as follows:

Qp(a') = (35)

zlz
o+ +

Similarly, the peak value probability distribution function, Pp(a), {the proba-

bility of positive peaks below the level &) for marrowband processes is:

N
Pp(a) =1 - F (36)
0

These functions are also usually measured by a counting operation.

N'T
Qp(af) = (37a)
NOT
NIT - N'T
P (a) = —_— (37b)
NOT
where
N+T = the expected number of crossings of the level & with
o o . . e
positive slope in the time interval T
N;T = the expected number of zero crossings with positive slope

in the time interval T

The peak value probability density function for narrowband signals

can be implemented by substituting Eqs. (34a) and (34b) into Eq. (32b}.
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1 1 ¥ +
P& =1xg N NT - Nigtan T (38)

0

Thus, the peak value probability density function of narrowband signals can
be computed by dividing the difference between the expected number of
crossing of the levels @ and (a+Ae) by the product of the analyzer's window
width and the total expected number of zero crossings with positive slope.

By inspection of Eq. (38), it can be seen that any difference between the
expected number of threshold crossing with positive slope at the levels of

¢ and {a+Aa) must be equal to the expected number of positive peaks
occurring in the amplitude window bhetween « and (a+Aa). (The narrow-
band assumption excludes negative peaks for o > 0.)

It should be noted that no assumptions have been made on the shape of
the instantaneous amplitude probability density function. It has only been
assumed that the bandwidth of the data is small compared to the center
frequency of the data so that there is only one positive peak corresponding
to each positive zero crossing. For exarmple, a sine wave meets the above
restriction since it has zero bandwidth. If one were to compute the peak
probability density function of a 100 cps sine wave at @ = 1.35 with an ampli-

tude window width of 0.1 over a 5-second time interval,

+
N1.35 = 100 per second
N+ 0 per se d
(1.35+.1) per secon
.I_
N0 = 1000 per second

From Eq. (38),

(5)(100) - 0

Pp{1:3%) = Gymoo - T 10

When the data being analyzed has a finite bandwidth, the output of this

analyzer will have an error associated with it that is a function of the bandwidth.
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This occurs because the basic assumption of only one positive peak per
positive zero crossing is violated when B £ 0. Evaluation of the magnitude
of this error is quite complicated because it is a function of the instantaneous
amplitude probability density function and the spectral shape of the data.
However, for illustrative purposes, consider the error occurring when the
data signal being analyzed is stationary Gaussian noise with a zero mean

value and a variance of unity. Rearranging Eq. (38),

+ +
N

p_(a) = 1 LI I ﬂEiA_a') (39)

P Aa N+ N+

0 0

From Reference 4, Equation 13,
Ny )
% _ 40
REST) (#0)
0

Equation (40) requires only that the random process being analyzed and its
derivative be statistically independent as is the case for the Gaussian distri-
bution assumed in this example. By substituting Eq. (40) into Eq. {39), one

obtains
1

Pp(a) =(f;} o(0) [P(oz) - p(a+Aaf)] (41a)

Notice that Fq.(41a} is completely independent of bandwidth. This means
that one would obtain the same peak probability density function for any
Gaussian process analyzed on this type of a machine. Obviously, this is not
desirable. To estimate the magnitude of this error as a function of the band-
width of the signal, a few calculations follow. Equation (4la} can be re-

written as
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(a) = [—=) (1) (e @’ Ce (ataa)’ 1
pP “\p(0)) \ A *P 2 *P 1~ 2 V_Z_n'

{41b)
because for a Gaussian process with zero mean value,

2
pla) = —— exp | {2

(42}

Equation (41b) becomes

2
{1 1 -(a)

if one takes the limit as Ar approaches zero. Equation {(43) is essentially

Eq. (41b) rewritten to remove the error due to a finite amplitude aperature
width so that the error in the analyzer due to the data bandwidth can be
examined separately. Notice that Eq. (43} has the form of a true Rayleigh
probability density function.

The true peak probability density function for a Gaussian signal, from

Reference 4, is

K
p _(a) =
P 2m
where
Kl =
KZ

277( = the total number of positive and negative peaks per
unit time
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O

2
()= [ e
2 2w a/K

2

When one has a process with zero bandwidth, the total number of zero

crossgings becomes equal to the total number of peaks. Hence,

??’7=1

and Eq. (36) becomes
-(a)°
Pp(ﬂ') = (a) exp ,:—-—-——2 :] (45)

which is identical to Eq. (43) except for the scale factor. Thus, it can be
seen this analyzer operates properly on Gaussian signals as long as the
bandwidth of the signal is infinitesimally small.

If one has a signal with a spectral density, G(f), such that

G(f)

constant ; f < f < {

a b

=0 elsewhere

{white noise passed through an ideal bandpass filter), then from Reference 2,

"
(%3]
h
w
|

(47)

r
]
(Y
B
|
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By letting

fc = —13—2—3— + fa , (center frequency of the band}
and fb - fa
K = N (ratio of the bandwidth to its
fc center frequency)

one can combine Eqgs. (46) and (47) and use the binomial expansion on them

to obtain
2
N, 1 +(%
= = T (48)
2
oL g, K
z " 780

which is an expression for the ratio of the total number of zero crossings per
unit time to the total number of peaks per unit time for white noise passed
through an ideal bandpass filter., Note that Eq. (48) is written as a function
of the fractional bandwidth (K).

If one substitutes Eq. (48) into Eq. (44), one can determine what the
true peak probability density function should be and how it varies with the
fractional bandwidth. One should have the entire peak density function plotted
at different fractional bandwidths to thoroughly study the effects of bandwidth,
but for simplicity in calculation, the effect of bandwidth will be considered at
only one point, & = 0. Table 1 shows the true value of the peak probability
density function of a white Gaussian signal that has been passed through an

ideal bandpass filter as a function of the fractional bandwidth of the filter,

Since from Eq. (43), the output of an analyzer using this narrowband
approximation should always be zero at o=0 for any truly Gaussian process,
and since the full scale setting of such analyzers are generally equal to a

density of 1.0, the values in the righthand column of Table 1 can be converted
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to percentage of full scale errors due to finite bandwidth simply by multiply-
ing these values by 100. Thus, it can be seen from Table 1 that a 5% of full
scale error occurs at o = 0 when this type of analyzer is nsed to compute the
peak density function of a white Gaussian signal whose bandwidth is equal to
20% of its center frequency. It should be emphasized that those error values
only apply at @ = 0 for the special case analyzed. Other o values and other
spectral density shapes should result in —entirely different error values. In
fact, practical bandpass filters are quite likely to yield greater errors at

a = 0 because the frequency components above f=f are not completely

b
removed as is the case for the ideal filter. Hence, more peaks per zero
crossing are possible which reduces the NO/Z?)?, ratio and increases the

error for a given fractional bandwidth.

Fractional Peak Probability Density
Bandwidth at a=0
(K) pp(O)
0 0.0
.01 . 0023
.02 . 0046
.05 L0116
.10 . 0230
.20 . 0456
.30 . 0785
. 40 . 0887
.50 .1088
.60 .1269
.70 -, 1440
. 80 . 1597
. 90 .1739
1.00 . 1868
2.00 . 2659

Table 1. Peak Probability Density of White Gaussian Noise at a= 0 as a
Function of the Fractional Bandwidth of an Ideal Bandpass Filter.
(Also, the Fractional Error in the Peak Probability Density

Function at o = 0 for a Narrowband Analyzer with p(x) =1.0)

F.s.
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In addition, some analyzers compute the peak value probability
density function for narrowband signals implementing the equation formed

from substituting Eq. (34b) into Eq. (32c).

i 1
p_la) = - (T gla) &a‘) (49)
P Aa N;T

The results are very similar to those obtained by implementing Eq. (38),

but more sophisticated circuitry is required,

4.1.6 Joint Instantaneous Amplitude Probability Density Function

The joint probability functions measure the probability of multiplie
events occurring simultanecusly. The joint probability density function of
the instantaneous amplitudes of two harmonically related sine waves is quite
interesting. The density function becomes an infinitely thin shell whose locus
in the (o, B) plane becomes the Lissajous pattern associated with the two
sine waves., To illustrate this, the locus of the joint probability density func-
tion for a fundamental and a third harmonic shifted in phase 45° will be

computed.
x(t) = VZ o cos (wt)
y(t) =V2 cry cos (3wt + % )

(o-x = UY , at least after normalizing in the analyzer)

The time histories of these two functions are shown in Figure 12 for one
cycle of the fundamental. When the amplitude window is set at some value
a of the function x(t), it can be seen from Figure 12 that there are only
one or two values of the height B, (y, /cy), of the amplitude window in the

function y(t) which will permit the joint density function to be other than zero.
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For example, when

= ,500 , then P =;X—— must equal -.707
x Yy

For example, if

@=.500 and B=.600

there is no possibility of =x(t} being in the interval (.500+ A} while f is in
the interval {.6 + A}, where A is a small amplitude increment, so the joint
probability density function is zero. Expressed in another way, it can be
said that harmonically related sine waves are not independent random
variables because their joint probability density is not equal to the product of

their individual density functions.

pla, B) # pla) p(B) (50)

which is a necessary condition for independence. The joint density function

for dependent variables is

Pla, B) = pla) p(B | ) (51)

where

p(p | e} = the conditional density function, or the density function
of P given that o has occurred

In the above example, the conditional density function has nonzero values only
along the locus in the (a, f) plane, as shown in Figure 13. In fact, in the

above example pla|B) = .5, exceptat o/ V2= +0.5 where p([3| +0.5) = 1.0

and la/ V2 | >1.0 where p(ﬂla) =0,
Now consider the case where the frequency of one sine wave is not an

integer multiple of the frequency of the other sine wave, but both sine waves
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have frequencies which are integer multiples of a common frequency (a
fundamental that is not present). The joint density function in each ampli-
tude window width should be computed over exactly one period of the
periodicity that would result if the two sine waves were summed. (In actual
practice one could not compute over exactly one period, so the computation
should be over several hundred periods to minimize the error due to not
having an exactly integer multiple of periods.) The period of the sum of two
sine waves is equal to the reciprocal of the highest common factor in the

ratio of two frequencies. For example, let

x{t} = sin Z'rrflt

y{(t) = 8in 21'rf2t

Arbitrarily select f1 < fz . Let fl = 1000 and f2 = 1200, Then

2 1200

f 1000
1

The highest common factor is 200.

(1200/200) _ 6

(1000/200) ~ 5
and the duration of the periodicity is 1/200 = 5 milliseconds. Note that there
will be 5 cycles of fl and 6 cycles of fz in each period. As a second
example, let fl = 1000 and fz = 1001, Then the highest common factor is

one, so it takes one second for the wave shape to repeat exactly. Note that

there will be 1000 cycles of f. and 1001 cycles of f, in each period.

1 2

For every cycle of fl there are two values of f corresponding to each
value of @, {see Figure 14 for an example), that result in nonzero joint
density functions. Thus, the joint density function of two sine waves can have
a very complicated locus in the {@, B) plane, but the two sine waves will be

dependent functions because
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p(Bla) # p(B)

{The case where the ratio lefl is an irrational number is an exception

because it would result in a nonperiodic process.)

4,1.7 Joint Instantaneous Amplitude Probability Distribution Functions

The joint cumulative distribution function of instantaneous amplitudes

measures the probability that the process x(t) is between -0 and « simul-

taneously with the process y(t) being between -oo and §.

Pla, B) = P (-co < xt) < a, @< y(t) < {3)
Analogously to the joint density function
Ple, B) = P(a)P(B | @)

where P(B|a) is the conditional distribution function of B given that «

has occurred. In the special case where x(t) and y({t) are independent

random wvariables

P(a, p) = Pla) = P(p)
Also,

B e
Pla, B) = j j plu, v) du dv
-0 -

As an illustration of a simple sinusoidal joint cumulative distribution
function, consider the case where the joint distribution is computed for two

identical (same frequency and same phase angle) cosine waves

x(t) = y(t) = '\/E g cos wt
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The time history for one period is shown in Figure 15. From Eq. (53},

Ple, p) = Pla) P} )

From Eq. (23),

Ple) :% sin-l(‘\/_a_) +—g- : -'\/,-2..( a < +V2
2
=0 ; -Ve> a
= 1 . +tY2 < @

It can be seen from Figure 16 that the

conditional probability

Ppley =1 ; PB=a
=0 elsewhere
Thus,
- <a <
) 1 - ﬁ @ +'\[§ and
P(a, B) = —| sin + > |
T 2 a=p
=1 ; a> +V2 and e=p
=0 elsewhere

Next solve the same example for the joint distribution by finding the

joint density function and integrating.

From Eq. (51),

pla, B) = pla)p(B | )

Likewise, from Eq. (21)

pla)
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From Figure 13, it can be seen that when the amplitude window in process
x(t) is set at a, that the amplitude window in process y(t) must be set at
P = @ for the joint probability density function to be anything but zero.

When B = @, the conditional density function has the form

PB|a)= &(B - a) (56)

where &(p - @) = the Dirac delta function and has a value of zero except
when $ = @, and then has infinite amplitude, zero width,
but a finite area of unity.

Therefore,
1
pla, B) = s(p-a ; -Vz <e<+V2
2 2
m - (57)
= 0 elsewhere

Because the analyzer does not have an infinitesimally small amplitude
window width, the measured joint density function will have both a finite
width and a finite amplitude, not the zero width and infinite amplitude of the
theoretical density function. The total volume enclosed by the surface of the
joint probability density function must equal one. {The probability of x(t)
and y(t) occurring simultaneously is one when computed over all possible

values of @ and B].

The necessary scale factor to account for the finite window width is
obtained in the following way. The equation for p{@, ), the joint density of
two sine waves has been shown to be

. &8{p - a) ) -ﬁ,gag_{-\[?

pla,B) = \/2 - o

0 s Io:|>'\/?
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Now assume one is to estimate p(e,p) in the rectangle bounded by the interval

One now integrates pf{ae,p) over these limits and divides by AeaAPp to obtain

an estimate p{a,p), namely

a+{Aa/2) BHAPB/2)

1 1 1
(a, B} = J f p (—————-— 8(p - @) dp da

at{Aef2)

1

1 f (—1— —1 __\ de (58)
AaAp e-(Aa/2) 17) r"'—‘z ) az

1 Ao Ao
AaAp P(‘”_Z'")'P("z—)

where P{a) is the one-dimensional distribution function of a sinusoid. One

now notes that the term in brackets on the right side of Eq. (58) is approxi-

mately p(a) (the densitv function) when divided bv A @. In equation form,

ple,B) = A;Aﬁ P'[@J' ézﬁ'!) ' P(“’ i.kz—a}

‘ Ao Aa
_ 1 P+ T)' Poa-~—
T AB Aa
1
= Ap ple) (59)

The term P[(o: ¥ (Aa/Z}) - P@ - (Aa/ZD] Ao  is approximately p{e) and is
the estimate obtained when measuring the one-dimensional density function
of a sine wave.

One can see that p(ea,B) integrates approximately to a volume of unity
as should be the case. Thus, by noting that the coordinate system may be

rotated so that the integration is performed along the o axis instead of a 459

line, the integration is
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1 AB/2 1 AB/2
f f pla, B) 4 de f f 'EIE pla) df da
-1 ~Ap/2 -1 2-Ap/2

1

j pleyde =2 1.0
-1

This is only an approximate result since a portion of the region is neglected.
. o.. . .

The region along the 45" line is rotated to form the region in the left part

of the sketch below, but the region actually integrated over is indicated in

the right half of the sketch. For small Ae, this error is not important,

A
— __‘X/
™
rd
d ~
5 N
\\
~ 1,7

In the actual operation of some analyzers, complete scaling is not
accounted for. Consider the above example where identical sine waves are
fed into the two inputs of the joint density function analyzer. If the ¢ and B
amplitude levels are not set equal, there will be no output. However, if the
amplitude levels are set equal, the output will be the same as the ordinary
first-order probability density function for these analyzers. When the magni-
tude of the function x(t) passes into the amplitude window around o, a gate
is opened and pulses from an internal clock are fed out of the first section
of the analyzer and into one side of an AND gate in the second section of

the analyzer. Simultaneously, the magnitude of y(t) passes into the
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the amplitude window around  and opens the AND gate in the second section
of the analyzer so the pulses from the first section of the analyzer pass into
an averaging circuit. When the magnitudes of x{t) and y{t) pass out of the
amplitude windows, the pulses are gated off. Hence, it can be seen that in
this case the second section of the analyzer does not influence the results when
@ = p so that the output is identical to the first-order density function. It is
quite important that this scale factor be remembered and accounted for in the

final data presentation.

4.1.8 Extreme Value Distribution Function

The distribution of extreme values mode of analysis is useful for
measuring the probability that the maximum magnitude obtained in n
independent samples of a random process will be less than some specific
amplitude value. In almost all ordinary random processes, as the number
of these samples is increased, the probability of finding at least one sample
whose magnitude exceeds some specific amplitude also increases. Hence,
the probability that none of the samples will exceed this specific amplitude
decreases as the number of independent samples increases,

In Reference 5, it is shown that
n
H (z) = [P(z)] (60)

where

Hn(z) = the distribution of extreme values

n = the number of independent samples (It should be noted that

independence of the samples is required for the above
equation to be applicable.)

P(z) = the cumulative distribution function of the instantaneous
amplitudes of the random process

z = a specific amplitude value
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The cumulative distribution function for a sine wave is, from Eq. (23)

P(a):%[sin-l(a)i-%] ; -'\ﬁiom +V2
V2
= 0 ;e < -ﬁ
= 1 poa > +ﬁ
Let z = @¢. Then the distribution of extreme values for n samples is

[}

L)} o = 3}  VZcas +VE

= 0 ;z<--\/? (61)
= 1 ;z.>+'\/?

Hn(Z)

As an example, consider the probability that the maximum amplitude in n

samples is less than a =1 for {a)n = 2 samples, {(b) n = 10 samples,

and (c), n = 100 samples.

{a) Hz(l) (1 l:sin-l(—l—-) dr—g- :
™ .\/-2-
= ,563
(b) Hlo(l) = ,056
-14
(c) H (1) = 32 %10
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As might be expected, the probability of finding n samples, none of whose
amplitudes exceed the specified value, decreases rapidly as n, the number of
samples, is increased. Figure 17 plots the extreme value distribution
function of a sine wave for several values of n.

It does not appear practical to perform this type of an analysis on
analog equipment for a large number of samples because the accuracy required
in the underlying distribution function becomes inordinately high. To illustrate
this, consider the percent error resulting in the extreme value due to an

error in the underlying distribution function.

' n n
o + 220]" . [oco]

% error = - [100] (62)
[roo]
where
P{x) = the instantaneous amplitude distribution function
A = the percent error in measuring P(x)

Rewritten, the above equation is

» \® n
% error = 100 (1 *TEE - (1)

From the binomial expansaion

o 2 n
A = A n(n-l) A ) .._L
[1 t 150 L¥n1e0 *7a 100/ * * * \To0

~ A nk
‘vl+n100 ,where-l—a-a‘(l

Therefore
% error &£ n\ ; where nA < 100 (63)
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Where n A > 100, the remaining terms in the expansion cannot be neglected
(assuming that the % error is equal to nX is optimistic -- the real error is
much greater).

The probability density of extreme values hn(z) is simply the derivative

of the distribution function

h (2) = d[H(zﬂ
n

dz
_ [pe]
dz (64)
n-1
ES -

a[P()]*! plx)

4.1.9 Extreme Value Density Function

The extreme value density function of a sine wave is

' n-1
o= n( (2) sm-l(%)% E) A= Viss ez

= 0 ; elsewhere

The relation of the extreme value density function to the extreme value distri-
bution function is analogous to the relation of the instantaneous amplitude
density function to the instantaneous amplitude distribution function. The
extreme value density function measure 1/Az times the probability that the
maximum amplitude observed in n samples will fall within the interval

z+ Az where Agz is a small amplitude increment

h (z) = lim L (probability that the maximum value of n samples
n Az0 Az

occurs in the interval z+ Az)
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In Figure 18, the extreme value density function of a sine wave is plotted for
several values of n. Notice how increasing the number of samples increases

the density near the positive peak of the sine wave.

4,2 EVALUATION TESTS - SINUSOIDAL INPUTS

It is assumed that the analyzer will have successfully passed all of the
tests in Section 3 before the following tests are performed so that no more
than normal caution need be exercised in the selection of such things as signal
amplitude, signal frequency, scan rate, etc. It is further assumed that the
sinusoidal signal generator used to perform these tests will have been examined
and found to have met all of the requirements of Section 2, and that the anaiyzer
has been calibrated per the manufacturer's recommendations.

In the following paragraphs a list of test conditions are presented along

with the corresponding theoretical values in either graphic or tabular form.

4,2, 1 Instantaneous Amplitude Probability Density Function

Apply a full scale sine wave to the input of the analyzer. Set the fre-
quency of the sine wave near to the middle of the rated frequency range of the
analyzer. In usage, the next step would normally be to select a time constant
that satisfies uncertainty error requirements. However, there are none of
these errors associated with a sine wave. Hence, the time constant is chesen
to satisfy the requirements of Eq. (12b), that averaging be performed over a
large number of cycles of the sine wave. Next, the scan rate is selected by
using the smoothing error criterion in Eq. (7b), if the analyzer uses RC
averaging. If the analyzer uses true integration, the scan rate is completely
determined by Eq. (12b).

The following example is to illustrate how these test conditions are
selected. First assume that the analyzer has a frequency range of 1 cps to 3 ke.
Next assume that the analyzer uses RC smoothing and that a 1% error from a

nonintegral number of cycles and a 1% smoothing error are permissible. The
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required averaging time is:

() ) ) (3 - v
RC = (f) (1 “\2000 1 = 7o B¢ < . 025 sec.

For 1% smoothing error, EtE ~b

t = {5) (.025) = . 125 sec. {per window)

Now if the amplitude window has a width of 0. l¢ and is swept from -3¢ to

+ 37, the total can time is
TS = {.125) (6/.1) = 7.5 seconds

If the analyzer has discrete settings instead of continuously variable settings
for the time constant and/or the scan time, use the next longer setting. How-
ever, if the time constant is increased over the minimum permissible, the
scan time must also be increased proportionately. Assume in the above
example that the shortest time constant setfting in the analyzer is 0.1 seconds.
This position would be selected, but then the scan time becomes 0.5 seconds/
window or 30 seconds for a scan between -3 and +30.

Perform the test and compare the results obtained to the theoretical
curve in Figure 4. The maximum difference between the two should not be
greater than the rated error of the analyzer as long as full scale on the
analyzer output is not exceeded. The theoretical density function of a sine
exceeds 1.0 when 1. 378 < [al 5_'\/‘2. If the full scale analyzer output corre-
sponds to a density of 1.0, then the accuracy should not be measured beyond
one~half of an amplitude window of the above values. For example, if the

analyzer window width is 0. lo, ignore readings when 1,328 < |ar | < 1. 464.
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4, 2,2 Instantaneous Amplitude Probability Distribution Functions

Repeat the test conditions of Section 4.2.1. Compute and record the
cumulative distribution function for instantaneous amplitudes. Compare the
measured results to the theoretical curve in Figure 5. The maximum differ-
ence should not exceed the advertised error of the analyzer.

Next compute and record the negative cumulative distribution function
for instantaneous amplitudes and compare the results to Figure 6. Again,

the maximum difference should not exceed the advertised error of the analyzer.

4.2.3 Expected Number of Threshold Crossings per Unit Time

In this mode of analysis, the theoretical output should be zero when the
level of the amplitude window (actually only a threshold in this case) is below
-'\/-2._ or above +'\/Z The average crossing rate should be constant when the
amplitude window is between the above two values. The magnitude of the
average total level crossing rate is proportional to the ratio of the input fre-
quency to the calibration frequency used to set the full scale output. The
magnitude of the averape level crossings with only positive or only negative
slope is equal to one-half the magnitude of the average total (both slopes)
level crossing rate.

Because there are so many combinations of input and analyzer settings
possible in this analysis mode, quite a few tests must be made. Choose
several frequencies to span the entire rated frequency range(s). The use of
an electronic counter is recommended for accurate setting of the input
frequencies. Measure total, positive and negative crossing rates for each
frequency. Measure the output and compare to the theoretical voltage deter-
mined from the following equation.

f.
WA2) s VZse < V2

f'F. S

out (eF. s.

1]
1

(66)

; elsewhere
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where

ep g = the full scale ocutput voltage
fin = the frequency of the input signal
Jr'F. S. = the frequency of the full scale calibration signal

The maximum difference between the measured and theoretical voltage should
not exceed the accuracy rating of the analyzer. Use the guidelines of Section

4.2.1 to determine the proper time constants and scan times.

4.2.4 Expected Number of Maxima per Unit Time

Apply a number of sine waves to cover the entire frequency range of
the analyzer. Select the averaging times and the scan times by the method
described in Section 4. 2. 1. For each frequency compute the expected number
of maxima per unit time in a narrow amplitude window, g(a) da, the expected
number of maxima per unit time in excess of a given level, Ma- , and the total
expected number of maxima per unit time, 7?2 . Compare the g(o) de results
to the theoretical curve in Figure 8, and the Ma results to the theoretical
curve in Figure 9. The magnitude of these curves and the value of m should
be proportional to the frequency of the input signal. The theoretical relation
is expressed in Eq. (66). Compare the theoretical and measured results.
Any difference should be no greater than the advertised error figure for the

analyzer.

4.2.5 Peak Value Probability Functions

Repeat the test conditions of Section 4. 2. 1 and compute the peak value
probability distribution function Qp(oz), the peak value distribution functiocn,
Pp(a), and the peak value probability density function pp(a). Compare the
results to Figures 10, lland 8, respectively. Any difference between the
measured and theoretical values should not exceed the accuracy allowance of

the analyzer.
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4,2.6 Joint Instantaneous Amplitude Probability Density Function

Apply the sine wave used in Section 4.2. 1 to the A input of the analyzer.
Also, connect the A input in parallel with the B input. Connect the threshold
level inputs of both analyzers together electrically. This will cause the analyzer
to scan along the line a = p in the af plane. As discussed in Section 4. 1.1,
the joint density for the above input exists only along this line. Set the time
constant and scan time equal to the values used in Section 4. 2. 1. Scan the
threshold levels over the desired amplitude range and record the joint proba-
bility density output. Compare the output from the analyzer to Figure 4. The
output should fall within the rated analyzer accuracy of the theoretical curve.
As discussed in Section 4. 2. 1, the analyzer output will exceed full scale
between approximately -1. 460 to -1.33¢ and between + 1. 330 to +1. 460 and
should be ignored. {This assumes that the full scale density = 1.0.)

4,2.7 Joint Instantaneous Amplitude Probability Distribution Functions

Repeat the test described in Section 4, 2. 6 except compute the joint
distribution function instead of the joint density function. Record the output
of the analyzer and compare with the theoretical results in Figure 5. (Note
that this is identical to the first-order distribution function.) The maximum
difference between the measured and the theoretical joint distribution function

should be within the rated accuracy of the analyzer.

4, 2.8 Extreme Value Distribution Function

Repeat the test conditions of Section 4. 2. 1 and compute the extreme
value distribution for n = 2, 10 and 100. Compare the results to the theoretical
curves plotted in Figure 17. The maximum difference should be no greater than

the advertised accuracy of the analyzer.

4,2.9 Extreme Value Density Function

Repeat the above test for n = 2 and n = 10, except compute the extreme
value density instead of distribution. Compare the results to the theoretical
curves plotted in Figure 18. The maximum difference should not exceed the

quoted accuracy of the analyzer.
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4,3 EVALUATION TESTS - TRIANGULAR WAVE INPUTS

The following set of tests are given to provide a further evaluation of
the performance of this analyzer. While all of the basic analysis modes are
checked relatively thoroughly, as far as discrete inputs go, with the sine
wave tests in Section 4. 2, the tests below provide a measure of the effects
of the shape of the density function on the analyzer's performance. The
triangular wave is a particularly attractive input to use because it has a
uniform density function {see the discussion in Section 3). As with the sine
wave tests, it is assumed that both the analyzer and signal generator have
passed all of the tests of Section 2 before either is used for the following

tests.

4. 3.1 Instantaneous Amplitude Probability Density Function

Apply a full scale triangular wave at a frequency near the center of
the frequency range of the analyzer. Set the averaging time and the scan
period by the method described in Section 4. 2. 1. Scan over the appropriate
amplitude range and record the output of the analyzer. Compare the output
to the theoretical curve in Figure 2. The maximum difference should be

within the rated accuracy of the analyzer.

4, 3.2 Instantaneous Amplitude Probability Distribution Functions

Repeat the tests in the above section except compute the distribution
functions (both positive and negative) instead of the density function. Compare
the measured positive distribution function to Figure 19 and the measured
negative distribution function to Figure 20. The maximum difference between
the measured results and the theoretical curves should be no greater than the

advertised error figure for the analyzer.

4, 3.3 Expected Number of Threshold Crossings per Unit Time

Repeat the test conditions of Section 4. 2. 3 except apply a triangular

wave instead of a sine wave. Record the outputs and compare these to the
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theoretical curve in Figure 21. The theoretical magnitude as a function of
frequency can be from Eg, (66). The measured results should be within the

advertised error tolerance of the theoretical values shown on the curve.

4, 3.4 Expected Number of Maxima per Unit Time

Repeat the test conditions of Section 4. 2. 4 except apply a triangular
wave instead of a sine wave. Compute the expected number of maxima per
unit time in a narrow amplitude window; in excessof a specified level; and
total. In the first case, the output of the analyzer should be zero except at
a = '\/-; The theoretical curve is shown in Figure 22. The theoretical
curve for the expected number of maxima per unit time in excess of a speci-
fied level is constant from -oo up to a = ﬁ The magnitude of this function
and the total expected number of maxima per unit time are proportional to
the frequency of the applied signal as described in Eq. (66}). Compute the
expected number of maxima per unit time in excess of a specified level and
compare to Figure 23. Compute the total expected number of maxima per

unit time and compare to theoretical calculations from Eq. (66).

4,3.5 Peak Value Probability Density Function

Repeat the test conditions of Section 4. 3. 4 and compute the peak value
probability density function. The density function is zero except at a = v—;
The theoretical peak density function for a triangular wave is shown in
Figure 22.

Also compute the negative and positive peak value probability distribution

functions and compare to Figures 24 and 25.

4.3.6 Joint Instantaneous Amplitude Probability Density Function

Apply a full scale triangular wave in parallel to both inputs of the
analyzer. Connect the threshold level inputs of both channels together
electrically, so that the joint density is analyzed along the line x = y in the

xy plane. (As with the sine wave test, the density will be zero when x # y.)
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Select the frequency of the test signal and analyzer operating conditions as
described in Section 4. 2. 1. Record the cutput and compare to the theoretical

curve in Figure 2.

4. 3.7 Joint Instantaneous Amplitude Probability Distribution Function

Repeat the test described in Section 4. 3.6, except compute the joint
distribution function instead of the joint density function. Record the cutput
of the analyzer and compare it with the theoretical results in Figure 19.

{(Note that this is identical with the first-order distribution function. )

4. 3.8 Extreme Value Distribution Function

Repeat the test described in Section 4. 3. 1 except compute the extreme
value distribution function for n = 2,10 and 100. Compare the results to the

theoretical curves in Figure 26.

4. 3.9 Extreme Value Density Function

Repeat the test described in Section 4. 3. 1 except compute the extreme
value density function for n = 2 and n = 10. Compare the results to the

theoretical curve in Figure 27.
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5. TESTS WITH RANDOM INPUTS

Rather than going into great detail on the results that would be
expected from the analysis of certain theoretical types of random signals,
only to have the actual results differ from the theoretical results by a wide
margin due to imperfections in the ncise generator or statistical uncertainty
fluctuations, a completely empirical approach is recommended. For each
of the three different types of random input test signals, it is recommended
that the test signal be recorded on magnetic tape. This tape should then be
used as the input to the statistical analyzer for the evaluation test. The
same tape {and time portion) that is used for the evaluation test should
be digitized and all of the statistical properties measured during the
evaluation test should also be computed on the digital computer. The results
from the digital computer analysis will serve as an accurate description of

the test signal and its appropriate statistical parameters.

The results from the actual evaluation test can be compared to the
results from the digital computer analysis to determine the accuracy of

the statistical analyzer with random input signals.

Three different test signals are recommended. These are,
(a) broadband Gaussian noise, (b) narrowband Gaussian noise, and (c¢) clipped
Gaussian noise. For the first set of tests, connect the output of a Gaussian
random noise generator to a bandpass filter. Set the low cutoff frequency
and the high cutoff frequency so that most of the operating frequency range
of the analyzer is covered. Next record the output of the filter on magnetic
tape. Adjust the sensitivity of the tape recorder so that the input voltage
that represents the maximum amplitude level of interest is equal to the full
scale deviation of the FM carrier. For example, if the tape recorder is
adjusted to give a full scale deviation of 40% with a DC input of 1.5 volts,
then the rms input voltage would be 1.5/6 =, 250 volts rms if 6¢ peaks are

to be analyzed. Cut a sample record from this tape. This sample should
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then be used to provide the test input for all analysis modes except the joint
analyses. This same sample should also be digitally analyzed. Set the
averaging time constant equal to the duration of the sample record. Adjust
the scan period as previously described. Scan over the amplitude range of
interest and perform all but the joint probability computations. These

computations are

instantaneous amplitude probability density function
instantaneous amplitude probability distribution function

negative instantaneous amplitude probability distribution function
peak value probability density function

peak value probability distribution function

negative peak value probability distribution function

expected number of maxima per unit time in a narrow
amplitude interval function

expected number of maxima per unit time above a given level function
total expected number of maxima per unit time function

expected number of total threshold crossings per unit time function
expected number of positive threshold crossings per unit time function
expected number of negative threshold crossings per unit time function
extreme value distribution function

extreme value density function

For the narrowband Gaussian random noise input, connect the output
of a Gaussian noise generator to a bandpass filter. Set the bandwidth of the
filter to be about 1/20 of the center frequency of the filter. Select the center
frequency so that the upper 3 db point of the filter is just slightly below the
upper operating frequency of the analyzer. Connect the output of this bandpass
filter to the input of a magnetic tape recorder. Adjust the recording sensi-

tivity so that the maximum voltage amplitude of interest (on the output of the
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filter) repregents full scale input to the FM carrier. Record the above
signal and then cut a sample from the recording. Digitize this sample and
analyze it with a digital computer. In addition, use the statistical analyzer
to perform the analyses listed Previously on this sample.

For the evaluation tests with a clipped Gaussian random noise input,
connect the output of a Gaussian noise generator to a bandpass filter. Set
the lower cutoff frequency and the upper cutoff frequency as in the first
random test. Connect the output of the bandpass filter to a relatively '""hard'
clipping nonlinear circuit, Adjust the clipping level relative to the output
voltage of the bandpass filter so that clipping occurs at 1.0¢ or just slightly
higher, Connect the output of the clipper to the input of the tape recorder
and adjust the sensitivity so that full scale carrier deviations of the tape
recorder is equal to 1.0 (or 1.0+)o. Record this clipped signal and select
a sample for analysis. Analyze this sample with the statistical analyzer
and the digital computer. Perform the same analyses as listed above for
the broadband and narrowband Gaussian signals.

Only one test of each of the joint probability functions is recommended
because a large amount of time is required for these analyses. To perform
these tests, two Gaussian noise generators and two bandpass filters will be
required. Adjust the filters so that they have identical passband {(gain
factor and phase factor) characteristics. The upper frequency should
be kept below 200 cps if possible to minimize the interchannel time dis-
placement errors in the recording process. Set the low frequency cutoff as
low as is consistent with satisfactory analyzer and/or random noise
generator operation. Connect the outputs of the filters to adjacent tape

tracks on the same head stack and record at the highest speed available to

minimize the phase errors from interchannel time delay errors in the
recording process. (Prior to performing this test the static phase shift

between the two data channels should be adjusted to be within 1° of each
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other as measured at the output of the tape recorder.) This phase tolerance
should be maintained at least between the 3db frequencies. Set the full

scale sensitivity of the tape recorder as described in the preceding para-
graphs and record the two signals. Cut a sample record from the tape

and analyze this same sample on both the digital computer and the statistical
analyzer. Perform both joint probability density and joint probability

distribution analyses on this sample.
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6. STABILITY TEST

This is a simple test that is designed to measure the time variation
(drift) in the sensitivity of the statistical analyzer. From the results of
this test, a minimum time between recalibration of the analyzer can be
established. (Calibration is used here in the sense of a daily, or more
frequent, set up or adjustment of the analyzer.)

After the analyzer has been properly adjusted according to the manu-
facturer's instructions, including any warm-up time, apply a half of full
scale midfrequency range triangular wave plus a half of full scale DC
voltage. Compute and record the instantaneous amplitude probability
density function and the mean value. Also record the time when the
computation started.

Twenty minutes after the first test is started, repeat the above test.
Caution must be exercised that the same DC and triangular voltage levels
are applied and that no changes are made in any of the analyzer settings
{including the normalization controls).

Repeat this test every twenty minutes over a continuous eight-hour
period., The error in the long term average reading should be plotted as
a function of time. Likewise, the maximum error in the density function
should be plotted as a function of time. (Care must be taken in this step.
If any anomalies occur in the density function, their causes should be
carefully ascertained before deciding whether or not to accept them as a

stability error.)
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