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SECTION I

INTRODUCT ION

High angle-of-attack capability has been shown to signif-
icantly enhance the air combat maneuvering effectiveness of
fighter airplanes. Unfortunately, it had not been possible
to design for such a capability with a modicum of confidence
because there was no criterion available with which to identify
accurately a specific design's susceptibility to depart from
controlled flight during severe rolling maneuvers at high angles
of attack. The study reported in Reference 1 endeavored to
overcome this condition by generating design charts and devel-
oping associated boundaries for identifying departure and un-
coordinated roll-~reversal flight characteristics as a function
of three aerodynamic parameters. These parameters were the
rolling and yawing moment coefficients associated with sideslip

and yawing moment coefficient due to lateral control deflection.

The investigation cited utilized a large angle, six-degree-
of-freedom digital computer program to simulate the motions of
a fighter performing a severe air combat maneuver for different
combinations of the lateral-directional parameters while main-
taining a representative set of longitudinal characteristics.
The present study, a logical extension of that investigation,
determines the extent to which the pitching moment character-

istics, i.e. static stability, pitch damping (Cm } and the

pitch cross-derivative (le l), affect the boundaries de-
g
veloped in Reference 1. The results are presented herein. Be-

cause of the increasing interest in control configured vehicles
which exhibit various levels of static instability at trim, the
static stability study included different levels of trim in-
stability. Fortunately, obtaining desired levels of instability
at trim does not preclude the existence of an inherently stable
airframe in pitch at high angles of attack as was modelled in



the previous and present study.

Since airplanes with relaxed static stability must be
flown in a stability augmentation mode, this study also de-
termined the control characteristics required of a simple
pitch augmentation system to maintain, at different levels of
trim instability, the applicability of the departure boundaries
developed in Reference 1 for an unaugmented statically stable

airplane.

Departure boundaries based on a severe rolling maneuver
at high angles of attack (alphas) are, of course, superfluous
for an airplane that departs during a simple longitudinal
maneuver because of a pitch-up characteristic. Normally such
airplanes are equipped with an angle-of-attack limiting device.
Airframes so equipped deny full use of an inherent air combat
maneuvering capability that may exist at higher alphas due to
favorable lateral-directional characteristics. It was, there-
fore, decided to explore briefly the possibility of allowing
such an airframe to perform rolling maneuvers at high alphas
by employing a high-authority augmentation system instead of

a hard limiter.



SECTION II

TECHNICAL APPROACH

A, INTRODUCTION

The analysis herein is based on large angle, six-degree-
of-freedom computations since the departure and attendant in-
cipient spin motions are large amplitude, coupled motions re-
flecting the influence of gyroscopic and kinematic effects.
The departure phenomenon could not, therefore, be identified
by employing linearized, limited degree~of-freedom equations

of motion.

Earlier studies had determined that several aerodynamic
parameters were important in promoting a spin. A large angle
six-degree-of-freedom analytical study sponsored by Naval Air
Systems Command in 1967 (reported in Reference 2) had identi-
fied adverse vaw due to aileron deflection, dihedral effect
and directional stability to be instrumental in spin develop-
ment. Subsequent analytical and flight test investigations
corroborated these findings. Another large angle, six-degree-
of-freedom analytical study sponsored by the Naval Air Develop-
ment Center in 1977 (Reference 1) demonstrated the role played
by the relative magnitudes of these three aerodynamic param-
eters and their variations with angle of attack in promoting

control-induced departures.

The first phase of the NADC study covered the selection

of C Cn and Cn models to be investigated. High angle-of-

S
a

attack, high Reynolds number data for fighter-type airplanes
were ccllected. All the data fell into broad bands throughout

R‘I

the angle-of-attack range so that it was possible to represent
the aerodynamic characteristics for the spectrum of fighter-

type airplanes with four C three Cn, and three Cn models.

Sa

These lateral-directional aerodynamic models have been utilized

‘er



herein. However, the present study is limited to the adverse
Cn model (Figure A9) which is characteristic of most

8
latéral controls at high angles of attack.

As stated in Section I, one goal of the present effort
was to amplify the results of Reference 1 by determining the
extent to which changing the pitching moment characteristics
would modify the previously developed boundaries. To accom-
plish this, a study was performed for each of the variables

of interest, i.e., Cm ’ Cm| | and static stability/instability
B

levels. Since all these studies were concerned with the previ-
ously developed departure and uncoordinated roll reversal
boundaries, the technical approach reported in Reference 1 was

employed:

0 generate, analytically, airplane maneuvering time
histories for combinations of the lateral-directional

aerodynamic models,
o tabulate and analyze the results,
o construct departure susceptibility design charts, and
o develop departure boundaries from these charts.

The goal of the augmentation control characteristics in-
vestigation was to determine the magnitude of the augmentation
control authorities and rates required to maintain, for differ-
ent levels of trim instability, the applicability of the bound-
aries developed in Reference 1. This investigation also in-
voked the above cited technical approach for different control
characteristics. In addition, the results were cross-plotted
to determine the authority requirements as a function of trim
instability.

Table 1 shows: (a) the range of study variables explored
relative to the pitching moment and augmentation control char-
acteristics investigations, and (b) the matrix of lateral-
directional aerodynamic models investigated for each of these
study variables.



TABLE 1
LATERAL-DIRECTIONAL AERODYNAMIC MODFELS AND STUDY VARIABLES INVESTIGATED

Static C C C  Stable C_ Neutral |[C_ Unstable Comments
. m m n n n
Margin q 18]
CS& Models
9% -25 Basic A Y A Crrl Study
B B B q
C C C
D D D
-15 A A
B B B
C C C
D D
=10 A A A
B B B
C C C
D D D
-9 A A A
B B B
C C C
D D D
-7 A A A
B B B
C c C
D D D
-5 A A
B B B
C C C
Y D D D Y
Basic | Positive A A A C Study
B B B “la]
C C c
D D D
Zero A A A
B B B
C C C
D D D ]
Negative A A A
B B B
C cC C
Y D D D {'
1% Basic A A A Static Margin
B B B Study (Unaug-
C c C mented)
D D D
-5% A A A
B B B
C C C
D D D
A A A
10% B B B
C C C
D D B




TABLE 1

{Contluded)

Static Control Rate Cn Stable Cn Neutral Cn Unstable Comments
Margin | Buthority| Limit
deg deg/sec
C2 Models
1% 10 10 A A A Control Re-
B B B quirement
cC C c Study (Aug-
D D D mented)
-5% 20 30 A A A
B B B
C c C
D D D
30 30 A A A
B B B
C Cc C
D D D
30 15 A A A
B B B
c C C
y D D D
~-10% 30 30 A A A
B B B
C C cC
D D D
45 45 A A A
B B B
c cC C
D D D
60 60 A A a
B B B
C C C
b D D
60 30 A A a
B B B
c cC cC
D D D
60 45 A
B
C
D
45 30 A
B
C
D Y
-2% A A A Pitch-up Study
B B B {Unaugmented)
C C C
D D D
60 60 A A A {Augmented)
B B B
C C C
D D D




B. AERODYNAMIC MODEL

The longitudinal and lateral force and control character-
istics, as well as the dynamic derivatives presented in the
Appendix, are typical of those associated with many current

fighter airplanes and, except for Cm , Were not varied during

q
this study. The rolling, yawing, and pitching moment charac-
teristics that were varied are discussed in the following

paragraphs.
Rolling Moment Coefficient

The rolling moment coefficient, CQ, was modelled as a
function of alpha and beta as shown in Figure 1. Each of the
four models had the same stable value at zero angle of attack
and became progressively more stable with increasing angle of
attack up to 12 degrees. Above 12 degrees, the models differed.
The magnitude of model B remained at the 12 degree alpha value,
whereas models C and D decreased to their constant high angle-
of-attack levels. Model A, chosen as representative of a
slatted configuration, continued to increase in magnitude up
to an alpha of 30 degrees after which it decreased and re-
turned to the level of model B at 48 degrees alpha.

Yawing Moment Coefficient

The yawing moment coefficient, Cn’ was also modelled as
a function of alpha and beta. As shown in Figure 2, one of the
three models was identically zero. The other two models had
the same constant stable value up to 12 degrees angle of attack,
after which one model continued to be invariant with increas-
ing alpha and the other decreased to an unstable value which

was then held constant above an alpha of 21 degrees.
Pitching Moment Characteristics
The basic Cm model varied in magnitude as a function of

g
angle of attack. To determine the coefficient's influence

on departure susceptibility, six constant (i.e. invariant with



alpha) models having wvalues of -5, -7, -9, -10, -15 and -25

per radian were considered. The basic Cm model and the six

g
constant models are presented in Figure 3.

The basic and the three alternate models investigated

during the CIn study are presented in Figure 4. One model
| €]

had a zero value up to an angle of attack of 20 degrees, It
then became increasingly positive between 20 and 38 degrees
alpha, after which it was held constant. Another model was
identically zero. The third model had a negative value and

was invariant with angle of attack.

As shown in Figure 5, the pitching moment coefficient,

Cm, was modelled as a function of alpha and longitudinal control
deflection. The different pitching moment vs. alpha relation-
ship shown for each stability level studied was the result of

a shift in center of gravity, in the pitch axis only, to pro-

_C_Ig )at trim alpha. An
CL
alternate pitching moment coefficient was also examined brief-

vide the desired static margin ('_
ly. The Cm variation with angle of attack of this model was

typical of a vehicle exhibiting a pitch-up characteristic and
is presented in Figure 6. The functional dependence on side-

slip of the basic Cm model was maintained for the alternate
model.

C. INERTIA PARAMETER MODEL

The mass is distributed along the fuselage reference
axis for fighters to varying degrees. During the NADC study
(Reference 1), three inertia parameter models were considered
which ranged from an airplane whose mass was concentrated
heavily in the fuselage to one in which the mass was distrib-
uted only slightly more in the fuselage than in the wings.
The following inertia parameter model (representing the mean
value for fighters) was chosen for the investigation reported
herein:



-— 2: -
(IX IY}/mb 0.067

(1 -IZ)/mb2= ~-0.012

Y
- 2:
(IZ IX)/mb 0.079

The mass and inertial characteristics used in the equations
of motion were:
I.= 25,000 slug ft?

X
I,= 135,000 slug ft?
I,= 155,000 slug ft?
.

m= 1025 slugs
D. FLIGHT CONDITION AND MANEUVER

The initial flight condition and maneuver utilized herein
were the same as those used during the NADC investigation. The
airplane was trimmed in a 60-degree bank-angle turn at 35,000
feet and Mach 0.9. A rolling pull-out maneuver was then per-

formed. Control inputs for the maneuver were:

o Full trailing-edge-up longitudinal control deflection

commanded at time equal zero, at 30 degrees per second.

o Full lateral control deflection initiated 1.5 seconds
into the maneuver at a rate of 30 degrees per second

in the direction to unbank the airplane.
¢ Rudder undeflected.

The controls were kept fully deflected for a duration
sufficient to allow the airplane motions to develop, at which
time both the longitudinal and lateral controls were returned
to trim at 30 deg/sec. Nominally, the return of the controls
to zero was initiated at eight seconds into the time history,
which provided at least three oscillations for the alpha trace.



However, as the static margin was made negative, the period of
the angle-of-attack oscillations increased to the point where
less than three peaks occurred prior to eight seconds. To
circumvent this, the time span over which the pilot control
inputs were maintained was extended for some cases by an addi-
tional two seconds, allowing three angle-of-attack peaks to

occur.
E. TIME HISTORY COMPUTATIONS

To evaluate the lateral-directional aerodynamic models,
20-second time histories of the airplane motions were generated
in response to the previously described control inputs. As
mentioned previocusly, these motions were computed using a large
angle, six-degree-of-freedom digital computer program. The pro-
gram used nonlinear tabulated data for the aerodynamics, atmos-
pheric properties {density and speed of sound), and control inputs.
Aerodynamic parameter tables could be programmed as functions
of up to three independent variables (e.g., angle of attack,
sideslip angle and control deflection}. Control deflection
input tables were programmed as a function of time.

The resultant vehicle response to the control inputs was
plotted on a CALCOMP drum plotter. Up to 64 ocutput parameters
could be plotted against time for each computer run. For
this study, the following sixteen parameters were plotted:

pitch angle elevator deflection

bank angle lateral control deflection
yaw angle flight path angle

pitch rate altitude change

roll rate range position

yaw rate dynamic pressure

angle of attack total velocity

sideslip angle total rotation rate

F. PROCEDURES FOR DEVELOPING DESIGN CHARTS AND BOUNDARIES

The NADC study found the following time history parameters

10



to be useful in determining boundaries:
o last alpha peak value prior to lateral control
removal
o approximate second-order damping ratio of alpha
trace
0 peak yaw rate magnitude and sign
o incremental peak bank angle prior to lateral control

removal

These four parameters are presented in design charts for
each computed time history. An airplane's tendency to depart
from controlled flight or experience an uncoordinated roll re-

versal was ascertained by reviewing this information.

Yaw rate alone is not a reliable indicator of departure,
since many combinations of the lateral-directional aero-
dynamic models investigated result in yaw rates that are oppo-
site (unfavorable) to the commanded lateral control displace-
ment, and are accompanied by a roll reversal., Consequently,
the airplane rolls in the same direction in which it yaws and
contrary to command. This roll reversal is not a departure;
it is actually the "safety valve" that precludes departure
and presents a strong signal to the pilot to use his rudder

pedals to coordinate the maneuver,

A significant aspect of departure is that it is a high
angle-of-attack pbenomenon in which inertial and kinematic
coupling generate uncommanded motions. Departure criteria
chosen, in the previous study, to obviate departure were
based on two characteristics of the angle-of-attack time his-

tory trace and were as follows:

1. The last peak of the angle-of-attack trace, prior to
returning the controls to trim, must be less than 50
degrees (i.e. within 15 degrees above the static trim
value of 35 degrees). The choice of the last angle-of-
attack peak prior to removal of controls, the third peak

11



in this instance, was based on examining flight test
time histories over many vears. It was observed that
this peak was indicative of the ensuing motion. The
selection of a specific cutoff alpha value to predict
an ensuing departure for every possible situation is,

of course, impossible (gee Section IIIBL).

2. The approximate damping ratio of the angle-of-attack
trace, calculated by assuming a second-order system,

must be greater than zero.

The bases for these criteria were re-examined for use
in this study. The angle-of-attack time history parameters
presented in the design charts of Reference 1 were employed
to construct boundaries predicated on the last peak alpha be-
ing 40, 50, 60 or 70 degrees and the approximate damping ratio
being .02, 0, or -.04. These plots are presented in Figures 7,
8 and 9 for proverse, neutral and adverse Cn characteristics,

é
a

respectively.

It can be seen that the peak angle-of-attack curves rep-
resenting 60 and 70 degrees generally lie in the region of
negative damping. Negative damping and the successively larger
alpha peaks associated with it is patently undesirable due to
the repeated excursions into the angle-of-attack region where
autorotative rolling and yawing moments due to rotary flow,
which induce spins, may be encountered. The 45 degree peak
curve, conversely, is always indicative of a damped oscillation
and would seem to be overly conservative. The 50 degree cri-
terion therefore appears to be justified in all instances.

For the neutral Cn model, the zero damping criterion

Ga
is seen to be essentially redundant while for the other two
Cn models it is generally less conservative than the bound-

Ga

12



ary based on 50 degrees alpha. Consequently, as shown in
Figure 10, the boundaries based on the previous Reference 1
criteria and those based on the single 50-degree alpha peak
criterion are effectively superimposed for the proverse and
adverse Cn models and with an insignificant boundary shift

¢
a

realized for neutral Cn . Hence, the departure boundaries
8

in this study are based 2nly on the peak angle-of-attack cri-
terion. The boundaries were developed therefore from cross-
plots of the design chart angle-of-attack peak information
and represent interpolations between or extrapolations from

the actual Cn /C2 levels of the models. The validity of this
B B

procedure is discussed in Section V.

It should be noted that the boundaries are only intended
to predict an airplane's susceptibility to depart from con-
trolled flight or to encounter roll reversal during an un-
coordinated maneuver. They do not indicate whether or not a
spin occurs, since they are based solely on transient aircraft
motions. A spin, on the other hand, is defined in terms of
quasi-steady aircraft motions that, as shown in Reference 3,
require the modelling of rotary aerodynamics, which is not the

case here.

Although the approximate angle-of-attack damping ratio
is unnecessary for departure boundary definition and the
trace does not truly reflect a simple second-order system
during large angle, coupled, six-degree-cof-freedom motion,
it does give an insight into the status of the motion in most
instances and is therefore included in the design charts. If,
upen examining the design charts, a damping ratio appears to
fall out of place, it is because the measurement of an approx-
imate damping ratio was very difficult in that particular

case.
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G. AUGMENTATION SYSTEM

The purpose of the augmentation study was to determine
if a simple pitch-axis augmentation loop could provide improved
departure resistance, during a high angle-of-attack rolling
maneuver, for an airframe exhibiting static trim instability.
If such were the case, the control authorities and rates re-
guired to maintain the applicability of the boundaries de-
veloped in Reference 1 were to be determined for different
levels of trim instability.

To accomplish these goals, a simple angle-of-attack feed-
back loop (see Figure 11) was modelled in the computer program.
Its purpose was to artificially provide the same stability
level at trim as the unaugmented 9% static margin airplane,
regardless of the actual airframe static margin. The feed-
back gain, a function of the difference in trim stability be-
tween the actual and desired pitching moment characteristics,

was derived as follows:

Cm = C + Cm o +C (8§ - ka} + . . . {1}
m., o mGe e

where k represents the feedback gain, Rearranging,

cC =¢C + (C - kC
m m m

Ja + C S+ . .. (2)
m o " 5 m, e

e 6e
where the effective C of the augmented airframe is C - kC .
m, m, me
e
If this effective Cm is eguated to the desired Cm . then
o o

k = (Cm - C Yy /C (3)

m .
o o desired mﬁe

Since the desired C is that of the nine-percent static margin
o
airplane, the difference between the actual and desired Ch

is the increment due to the center of gravity shift, ACG'CL .
o

Therefore,

k = ACG'CL /Cm . (4)

o Ge
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The augmentation control authority and rate limits inves-
tigated for different levels of trim instability are presented
in Table 1.

H. PRESENTATION OF RESULTS

For each study in the pitching moment characteristics

investigation (i.e. Cm ; Cm , static margin), four design

q | 8]
charts and the resulting departure and uncoordinated roll re-
versal boundaries are presented. Except for the uncoordinated
roll reversal boundaries, the same information is presented

for the augmentation control characteristics investigation.

The design charts are presented on four separate pages,
one for each of the four time history parameters. Each page
contains three plots: one each for the unstable, neutral and
stable Cn models investigated. Each plot, in turn, presents
the value of the time history parameter as a function of the
Cy models for constant values of the study variable. To facil-
itate interpretation, the Cg models are spaced along the

abscissa according to the value of their post-stall CR slopes
B
(taken between R=0 and B=10 degrees), with each model indicated

by symbols according to the key. Because CR model A did not

attain a constant value above 15 degrees angle of attack,as the

other models did, its CQ slope at the average angle of attack

B
attained by the time histories using this model, 40 degrees,

was used., Also, the C, value for model D (Figure l) was zero

2
at B=10 degrees, therefore the Cy slope for this model was
B

based on the value at the average B peak realized during

this study, approximately 15 degrees.

The design charts are followed by the departure and un-
coordinated roll reversal boundaries. The abscissa of these

plots is again C The Cn models are spaced along the ordinate

g -
B
according to the value of their Cn slopes (taken between B£=0

B
and B=10 degrees) above 21 degrees angle of attack.
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SECTION III

PITCHING MOMENT CHARACTERISTICS INVESTIGATION

A. DESIGN CHARTS

Figures 12, 13 and 15 present the design charts derived for
the Cm ' Cm and static margin studies, respectively. The
basic girplLEL results from Reference 1 for the adverse Cn6

a
model (Figure 10} are also included in each figure for comparison.
The results for the basic airplane and the significance of the
pitching moment characteristics on these results are discussed

below.

Design data for the basic airplane show that for a stable
Cn model the angle-of-attack time history traces are damped and
the angle of attack approaches its trim value of approximately
35 degrees regardless of the CE model. For neutral or unstable
yawing moment models, the rolling moment becomes significant
in determining whether the alpha time history is convergent or
divergent. If Cn is unstable above the stall, as 1s the case
for most airplanes, a fairly high level of dihedral effect is
required to prevent the airplane from diverging in angle of
attack during an uncoordinated rolling maneuver at high alphas.

The direction that the basic airplane rolls and yaws in
response to the control inputs also depends strongly upon the
Cn characteristics. For a stable yawing moment, the basic air-
plane will roll in the direction commanded accompanied by a
coordinating yaw rate, whereas it tends to yaw in the opposite
direction for an unstable yawing moment inducing roll reversal.

These design charts show that a stable yawing moment char-
acteristic is the most effective parameter governing departure
prevention. It also tends to prevent roll reversal during an
uncoordinated rolling maneuver at high alphas. A designer's

recourse when confronted with a configuration directionally

16



unstable over some alpha range might be to insure a high level
of dihedral effect {(lateral stability). For this combination
of aerodynamic characteristics, departures are eliminated at
the expense of inducing roll reversals during uncoordinated
maneuvers. This constitutes a trade-off between a safety-of-
flight condition (departure) and a flight characteristic that
might be regarded as annoying (i.e. requiring the use of rudder

pedals).

1. Cm Study
g
It is shown in Figures 12a and b that Ch has no signif-

icant influence on the angle of attack time history for Cm
g
levels more negative than -9 rad~!, A Ch magnitude below =10

d
results in consistently larger angle of attack peaks for neutral
and stable Cn models accompanied, for a stable Cn’ by essentially
zero damping of the angle~of-attack time history. Figures 1l2c¢

and d show that Cm has generally no significant influence on
g
the peak vaw rate or bank angle experienced during this maneuver.

2, C Study
m
8]

Figure l3a presents the angle-of-attack peak design chart

for the le | study. For a stable yvawing moment, le | has
B B

virtually no effect on the peak angle of attack experienced.

For neutral or unstable Cn's, the zero Cm' closely approx-
B
imates the results for the basic model, while a positive Cm[ |
B

results in lower peak values and conversely for the negative
model. These latter effects become significant at a low value

of CE . Figures 13c and d show that, except for an unstable
B

Cn model and the neutral Cn model with low C C does not

Y;B m|B|

significantly affect the magnitudes of the peak yaw rate or

incremental bank angle experienced.
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3. Static Margin Study

Figure 14 shows the effect produced on the pitching moment
coefficient when the airplane's center of gravity is shifted
aft: as the static margin decreases and becomes negative, with
full nose-up control, the trim angle of attack increases, while

the slope of the curve, Cm » decreases. The peak angle-of-
o
attack design chart, Figure l1l5a, shows that, indeed, as the

static margin is decreased the last angle-of-attack peak in-
creases. For the nine percent static margin cases, the approx-
imate damping ratics shown in Figure 15b are positive (stable;
and negative {unstable) for the stable and unstable Cn models,
respectively. These values then become less and more stable,
respectively, for the stable and unstable Cn medels when the
static margin is reduced. That is, the stable damping ratio
for stable Cn models decreases, while a stable increment is
added to the unstable damping ratio for the unstable Cn model.

Figures 15 ¢ and d present the peak yaw rate and incremental
bank angle design charts. Decreasing the static margin generally
tends to decrease the magnitude of the positive yaw rates ex-
perienced for unstable Cn models, but tends to produce slightly
less negative or more positive yaw rates for a stable Cn. The
incremental peak bank angle experienced becomes less negative
for a stable Cn model and more positive (except at the lowest

CR } for an unstable Cn model as the static margin is decreased.
B

B. DEPARTURE BOUNDARY

Departure boundaries developed using the peak angle-of-

attack criterion (Section IIF) for the Cm , C and static

m
q 18]
margin studies are presented in Figures 16, 17 and 18, respec~

tively,with the boundary for the basic (nine percent static
margin) airplane. The departure boundary for the basic airplane

shows that for large stable values of C fairly large unstable

o8
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Cn values can be tolerated without departure susceptibility.
B

For low levels of CR , more stable (or at least less unstable)

B
Cn values would be required for a configuration to remain
B
departure resistant. For an airplane which exhibits positive

Cn . the influence of C2 becomes unimportant except for a

S B

configuration with virtually no dihedral effect (lateral sta-
bility}.

The influence of each of the study variables on the basic

departure boundary is discussed below:

1. c,  Study
d
The design charts showed that Cm level did not influence

a
the angle-of-attack peak levels except for Cm magnitudes less

than -10 rad~!. Consequently, as expected, only the least neg-

ative Cm models produced any significant change to the depar-

ture boundary of the basic airplane (see Figure 16). However,
the dashed portions of the boundaries for the -5 and -7 rad~!

Cm models appear incongruous in that for increasing direction-

q
al stability (Cn becoming more positive) a corresponding in-
B
crease in dihedral effect is required to provide departure re-

sistance. The shape of this portion of the departure boundary
occurs since the alpha peak criterion value of 50 degrees is

exceeded for these Cm values at stable Cn 's., Examination

B

of the rest of the time history parameters indicates that,
though the angle-of-attack criterion is viclated, in most in-
stances there is no roll reversal in this region and the yaw
rates experienced are generally low. This situation was
verified by computing additional time histories for cases in
the region above the dashed boundaries. The dashed portion

of the boundary therefore does not identify the motion of con-
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cern in which the existence or direction of yawing motion is
contrary to what had been anticipated, and the motion occurs
so quickly that the airplane is in an incipient spin phase

before a pilot could take corrective action. What is really
experienced is a larger angle-of-attack excursion than would
be expected. The region above the dashed boundary therefore
identifies a controllable pitch excursion motion rather than
an uncontrollable departure, and is an instance in which the
use of a specific cutoff alpha value did not predict depar-

ture as defined herein (see also Section IIF}.

For the higher Cm levels characteristic of some current

d
airplane configurations, Cm is insignificant in promoting or

g
preventing departure resistance; consequently, the basic depar-

ture boundary may be directly applied. For unaugmented air-

frames having Cm magnitudes lower than -10 rad~!, the basic

boundary would be unconservative. However, such airplanes do

exhibit very high effective levels of Cm when their pitch

q
dampers are engaged.

2. C Study
el

Figure 17 presents the departure boundaries for the Cm|3|
study. It can be seen that Cm|3| has an appreciable effect on
the CnB levels required for departure resistance at low values
of CQB' A positive level of Cm|B| is seen to be favorable;

a negative one unfavorable. Generally, airplane configura-
tions to date are represented by the basic model, i.e. slight-
ly negative at the low angles of attack, then becoming positive
for higher angles of attack. Only academic curiocsity prompted
the investigation of a large negative value at high angles of
attack. Consequently, the basic departure boundary can be
applied to similar configurations having various realistic

Cm] | characteristics (although the boundary may be slightly
B

conservative in some instances).,
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3. Unaugmented Static Margin Study

The departure boundaries for the basic nine percent static

margin airplane, as discussed in Section IIF, were based on

the value of the last angle-of-attack peak, prior to control
removal, being less than 15 degrees above the static trim
value. This criterion was applied to the unaugmented static
margin study, despite the increases in the static trim alpha
value with decreasing static margin, as shown in Figure 14.
Figure 18 presents the departure boundaries for each of the

static margins investigated.

In going from a positive to a negative static margin, the
combinations of CnB/CRB for which there is departure resistance
are decreased appreciably. The departure boundary, however,
is only slightly influenced by the static margin when stable.
For the reasons discussed in Section IIIBl, departure is not
realized in the region above the dashed portion of the bound-

aries. As was done for the Cm study, additional cases were

9
investigated above the dashed boundary. In all instances, a
controllable pitch excursion, no roll reversal and generally

low yaw rates were experienced.
C. UNCOORDINATED ROLL REVERSAL BOUNDARY

Examination of the design charts shows that for a large
group of the cases studied the airplane rolled in a direction
opposite to that commanded. The initial motion was in the
commanded direction, to varying degrees; then, as the side-
slip angle increased, the motion reversed and the airplane
rolled in the opposite direction. Using the bank angle in-
formation contained in the design charts, uncoordinated roll
reversal boundaries can be generated in the same manner as
was done for the departure boundaries. The uncoordinated roll
reversal boundaries from Reference 1 are reproduced in Figure
19 for adverse, neutral and proverse Cn . As discussed in

(Sa
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Section IIF and IIIA, these boundaries are not departure
boundaries. Also shown on this figqure are lateral control

departure parameter (LCDP= 0) boundaries (Reference 4):

LCDP= Cn - C 2 =0, As can be seen, the LCDP boundaries

B B T
closely approximate the uncoordinated roll reversal boundaries.
The LCDP parameter appears to be a convenient and accurate tool

for predicting uncoordinated roll reversal but not departure.

Figures 20, 21 and 22 present the uncoordinated roll re-
versal boundaries for the Cm ’ Cm and static margin studies,
q | 8]

respectively, with the basic curve also shown for comparison.

The influence of C_ , Cm| or static margin on the uncoordinated
g Bl

roll reversal boundary is slight. Since this boundary is evident-

ly independent of the pitching moment characteristics, the basic

boundary of Reference 1 may be applied to all airplane config-

urations.
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SECTION IV

AUGMENTATION CONTROL CHARACTERISTICS INVESTIGATION

A, BASIC Cm CURVE (NO PITCH-UP)

Elevator deflections commanded by the augmentation system
as a function of angle of attack can be calculated by using
the expression for the feedback gain presented in Equation (4),
Section IIG. The elevator deflection required to simulate the
nine percent static margin pitching moment curve can be gen-
erated from the pitching moment curves presented in Figures 5
and 14. Figure 23 presents plots of the steady-state deflection
commanded by the augmentation system and the deflection required
to statically match the nine percent static margin pitching
moment curve at zero sideslip for airplanes with static margins
of 1, -5, and -10 percent and pilot inputs of zero and =30
degrees. The augmentation commanded deflection is shown to
exceed the required deflection curves for all angles of attack

greater than six degrees.

Imposition of an augmentation authority limit would of
course determine the angle of attack range over which it would
be possible for the augmentation system to meet or exceed the
required control deflections shown in Figure 23, Figure 24
presents the effective static pitching moment curves at each of
the reduced static margins for various augmentation authorities.
The nine percent static margin curve is also shown. An in-
dication of the augmentation authority required to simulate the
nine percent static margin pitching moment, for a specific
alpha range, can be determined from these curves.

1. Design Charts

Figures 25, 26 and 27 present the design charts for 1,
-5 and -10 percent static margins, respectively, showing the

effect of various augmentation authority limits on selected
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time history parameters. As would be expected from examination
of the effective pitching moment curves (Figure 24), an in-
crease in the augmentation authority limit decreases the last

angle-of-attack peak prior to returning the controls to zero.

Large augmentation authorities can appreciably influence
the peak vaw rates and incremental bank angles experienced, as

can be seen in parts ¢ and d of Figures 26 and 27.
2. Departure Boundaries

Since the augmentation study's aim was to determine the
control characteristics needed to maintain the applicability
of the previously developed (Reference 1) departure bound-
aries, the departure criterion used for the original static
margin, i.e. a 50 degree angle-of-attack peak wvalue, was used
to construct departure boundaries for each of the control
authorities simulated at the various static margins. Figures
28, 29 and 30 present these boundaries for 1, -5 and -10 per-
cent static margins, respectively. Figure 28 shows that for
a one percent static margin, a zero augmentation authority
is insufficient, but a ten degree authority virtually dupli-
cates the nine percent boundary. For a -5 percent static
margin {(Figure 29}, 20 degrees authority is insufficient, while
30 degrees results in a great improvement over the nine percent
airframe. Figure 30 shows that at -10 percent static margin,
both 45 and 60 degree augmentation authorities produce a
large favorable shift in the departure boundaries, whereas a

30 degree authority is ineffective.

The results of the previous three figures were cross-
plotted to determine the augmentation contreol authority re-
guired, at each static margin, to maintain the validity of
the nine percent airframe departure boundary. The results
are shown in Figure 31. It must be noted that these results
are dependent upon the Cm vs. alpha and longitudinal control
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deflection characteristic above stall, as well as the pitch
inertia, IY’ assumed for this study. These dependencies should
be investigated to assess their effects on the required augmen-
tation control authority before the results of Figure 31 may be
applied to other airplanes with different longitudinal character-

istics.

The augmentation rate limits assumed for the results
shown in Figures 28 through 31 were equal to the authority
limits; i.e. the full augmentation authority was available with-
in one second. Time and computer resource limitations precluded
an exhaustive analysis of the effects of lowered rate limits.
As shown in Table 1, several different rate limits were never-
theless examined for selected cases. The results indicate that
if this limit were set too low, severe rate limiting of the
longitudinal control deflection trace would occur with a decid-

edly unfavorable impact on departure resistance.
B. ALTERNATE Cm CURVE (PITCH-UP CASE)

The alternate pitching moment curve, shown in Figure 6,
has a pitch-up characteristic at 40 to 60 degrees angle of
attack. For the control inputs assumed during this investiga-
tion, the unaugmented airframe would always reach angles of
attack of 64 degrees or greater. A large stability augmenta-
tion control authority of 60 degrees was investigated with
this alternate pitching moment curve. However, as shown in
Figure 32, only a slightly increased nose-down pitching moment
capability above 28 degrees angle of attack was realized in
going from a 30 to 60 degree control augmentation authority due
to the decrease in control effectiveness evident in Figure 6.
If the higher control effectiveness of the original Cm curves
shown in Figure 5 had been retained, a control authority of

40° rather than 60° would have been investigated.
1. Design Charts

Figure 33 presents the design chart information for the

alternate pitching moment model with a 60 degree augmenta-
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tion authority limit. For the unstable Cn model, all but the
highest dihedral effect model show very large peak alphas. For
the neutral and stable Cn models, angle-of - -attack peaks less
than 40 degrees (below the pitch-~up region) are realized for
all CL models. The angle of attack trace for the unstable

Cn model is so rapidly divergent that it was impossible to
measure damping ratios. For the neutral and stable Cn's, the
damping ratios are very large for the high dihedral effect

models and diminish rapidly as Cﬂ approaches zero.

B

The peak yaw rate and incremental bank angle plots (33c
and d) show trends similar to those of the basic pitching
moment model, except that for the neutral Cn model, the air-

plane rolls and yaws as commanded, instead of oppositely.
2. Departure Boundary

The departure boundary for the augmented airframe with
the alternate pitching moment model, presented in Figure 34,
is based on the criterion used for the basic (nine percent
static margin) airframe: an angle of attack peak of 50 degrees.
The 60 degree authority limit is generally sufficient to match
or exceed the departure boundary of the unaugmented basic air-

plane.
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SECTION V

VERIFICATION OF BOUNDARIES

As cited in Section IIF, the departure boundaries are
based on cross-plots of the design chart angle-of-attack peak
information and represent interpolations between or extrap-

olations from the models' actual Cn /Cg levels. Since this
3 g

procedure might cause concern regarding the constructed bound-
ary's accuracy, 1t merited investigation, because this study
demonstrated the developed departure and uncoordinated roll re-
versal boundaries' general applicability to longitudinally
stable fighter configurations. Hence, a considerable number

of additional time histories were generated for Cn /C2 combi-

nations in the wvicinity of the departure boundaries prgsented

in Figure 10 for the proverse, neutral and adverse Cn5 models.,
a

These finalized departure boundaries, presented in Figure 35,

were compared to the boundaries derived using Reference 1 design

chart information.

Figures 35a and b show that the interpolation and extrap-
olation procedure incurred only minute shifts in the departure

boundaries so constructed for the proverse and neutral Cn

§

a
models, respectively. A more pronounced shift in the finalized
boundary was realized for the adverse Cn model (Figure 35c).

S
a

The finalized boundary in this instance is somewhat more con-

servative than the originally constructed boundary.

The uncoordinated roll-reversal boundaries were assumed
to be valid for the following reasons and were not further

investigated:

o no extrapolations were required in constructing these bound-
aries.

o whereas the departure boundaries are highly dependent on CR ’

B

this is not the case for the uncoordinated roll reversal

boundaries.
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SECTION VI

CONCLUDING REMARKS

Design charts and departure and unccoordinated roll re-
versal boundaries were generated as functions of character-

istic € and C, models for wvarious levels of C_ , C and
" * Mg M|

static stability/instability for an adverse Cn model. The

§
a

results indicate that:

o the developed departure boundary is applicable to fighter
configurations which are statically stable.

0 the departure boundary would be non-~conservative for unaug-

mented airframes with low Cm Oor unusual le character-
q B|
istics (c, magnitudes less negative than -10 rad™! or

gq
large negative Cm values at high angles of attack}.

18l

o unaugmented airframes which are statically unstable in pitch
impose more stringent requirements on the Cn /Cg combina-

B 7B

ations to avoid departure susceptibility.

o for stable or unstable static margins, a simple angle-of-
attack feedback augmentation system using a reasonable
control authority can markedly improve departure resistance.
However, if a pitch-up characteristic is associated with an
unstable static margin, a very large augmentation authority
could be required.

o the uncoordinated roll reversal boundary is not pronouncedly
influenced by any of the aerodynamic parameters investi-
gated and may be applied to any fighter configuration.

o the LCDP parameter appears to be a convenient and accurate
tool for predicting uncoordinated roll reversal but not

departure.

It is strongly anticipated that the departure and uncoor-

dinated roll reversal boundaries for proverse and neutral
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Cn 's would also be valid for a large range of pitching moment

5a

characteristics. Consequently, the basic boundaries derived
in Reference 1 were verified and, where necessary, modified
for the three Cnd models considered during that investigation.

a
Figure 36a, b and ¢ present composite plots of the departure
and uncoordinated roll reversal boundaries for each of thé
proverse, neutral and adverse Cnﬁ models, respectively.

a

From these plots, it can be seen that there are four distinct

regions defining the airplane responses:

1. The region labelled no departure, lying above both the
departure and uncoordinated roll reversal boundaries,

indicates that for Cn /C2

g B
no high angle-of-attack excursions are experienced and

combinations in this region,

the airplane rolls and yaws as commanded.

2. The region labelled no departure - uncoordinated roll
reversal, which lies between the two boundaries, indicates
that the airplane is not departure susceptible in this
region, but that without a coordinating rudder input, the
airplane will roll and yaw opposite to command.

3. The region labelled departure indicates that the airplane
will be departure susceptible in this region.

4. The final regicon, which extends along the left side of the
figures until the two boundaries cross (i.e. above the un-
coordinated roll reversal boundary and below the departure
boundary), represents a high angle-of-attack excursion
region. The airplane would roll as commanded, accompanied

normally by only small vyaw rates, but would be likely to

experience higher angles of attack than would be anticipated.
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Figure 30. Influence of augmentation authority on departure boundaries
for a -10% static margin airplane having adverse c,
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APPENDIX

The aerodynamic parameters which were not varied during
the present study are presented herein. The normal, axial,
and side-force coefficients were programmed as functions of
angle of attack, sideslip angle and longitudinal control de-
flection as shown in Figures Al through A6. The lateral control
derivatives were programmed as functions of angle of attack and
lateral and longitudinal control deflections. The longitudinal
control deflection functional dependence results from the fact
that many current fighter configurations utilize differential
elevator deflection for lateral control. The C26 model is

a

shown in Figures A7 and A8, the Cn models in Figure A9 and the
8
a

C model in Figures Al0 and All. The dynamic derivatives,

a

C2 ’ Cn ' CR and Cn , are shown in Figures Al2 through Al5;

P P r r

each is a function of angle of attack and represents character-

igtic values for fighter type airplanes,

The familiar six~degree-of-freedom differential equations
representing the linear and angular accelerations of a moving
body axis system having its origin at the airplane center of
mass, as shown in Appendix & of Reference 3, were used to
generate the computer time histories for the study reported
herein. The aircraft geometric characteristics used in this

study are:

= 400 ft*?
€ = 10 ft
b = 40 ft

The maximum control deflections used during the study are:

elevator £30°

lateral control  12° per panel
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