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ABSTRACT

A procedure is outlined for computing the perform-
ance of two-stage, light-gas launchers using hydrogen as
a propellant. A method in general dimensionless terms
is developed by which the launch velocity for this type of
launcher may be computed. The effects of piston weight
and velocity, as well as preheating of the pump tube gas,
are determined. Experimental results using both unheated
and heated hydrogen are compared with theoretical calcula-
tions of velocity.

Since the important physical variables -- piston mass,
velocity, pump tube geometry, initial pump tube pressure,
piston reversal, initial projectile movement, and heat
losses -- are included, a design optimization has been
made, and limits to the launch velocity have been estimated.
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NOMENCLATURE

Cross-section area

Acoustic speed

Specific heat at constant pressure
Specific heat at constant volume
Diameter

Internal energy

Enthalpy

Thermal conductivity at temperature T
Kinetic energy

Length

Mass

Pressure

Velocity relative to the shock
Heat transfer rate

Gas constant

Entropy

Distance

Temperature

Time

Velocity
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Thermodynamic launch velocity (no chambrage, infinite

chamber length)
Volume
Compressibility factor
Ratio of specific heats
Empirical factor
Absolute viscosity

Density
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SUBSCRIPTS

e Chamber

F Final state in pump tube

g Pump tube gas

1 Ideal

I. Launch tube

M Projectile

n Any number

o Standard conditions, T, - 300°K, P, ~ 1 amm

P Piston or pump tube

8 Shock

w Wall

1 Ahead of incident shock

2 Behind incident shock normal shocks
3 Behind first reflected shock

4 Behind first shock reflected from piston face

DIMENSIONAL COORDINATES

Pr A
FAL_
rﬂM aF
Pp AL
my ap

g

t t

=

'll/HF

a/ﬂF

o]

P P/Py

Pr, ap  Initial chamber conditions, corresponding to
final state in pump tube

mMy Projectile mass
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1.0 INTRODUCTION

Helium has been used extensively in light-gas model launcher work
because of its chemical inertness, its ease of handling, and the fact that
its thermodynamic properties are close to ideal. However, experiments
at the Ames Research Center (NASA) and at Arnold Engineering Develop-
ment Center (AEDC) have demonstrated that appreciably higher launch
speeds are attained using hydrogen. The maximum velocity obtained
from a typical 0. 5-in. launcher was 23, 500 ft/sec using helium {Ref. 1);
whereas, 29, 600 ft/sec was reached when hydrogen was the propellant.

The reason for the failure of helium to provide high velocities be-
came apparent in the process of correlation of experimental results with
ideal calculations. For the same maximum pressure, the ideal velocity
is about the same for either propellant; however, the gas temperature
is much higher for helium. An empirical correction derived in Ref. 1
for the effect of high temperatures is shown in Fig. 1 and demonstrates
the relative potential performance of simple launchers consisting of a
chamber and launch tube. The lines marked @ are based on an in-
finitely long chamber having the same bore as the launch tube with a
maximum pressure of 300,000 psi. There is a continuous increase in
launch velocity with chamber temperature. The introduction of the cor-
rection to velocity for temperature leads to maxima of about 21, 000 ft/sec
for helium and 29, 000 for hydrogen {curves (@)). If an infinitely large
diameter chamber is available to supply the launch tube, these velocities
are 26,500 and 37, 000 ft/sec (curves @ ). As a conceivable ultimate in
launch velocity, the pressure might be doubled, the launch tube length
doubled, or the projectile mass halved. The result of each of these
changes would be about a 15~percent increase in velocity with hydrogen.
Actual maximum velocities obtained for a 1/2 caliber plastic projectile
are shown. The velocity attained with helium was very near the peak,
but evidently further heat addition can be used to advantage with hydro-
gen. This fact suggests that preheating of hydrogen before compression
in the pump tube will be effective. This has been accomplished during
the development program, and it was found that a 600°K charge tempera-
ture produced about 10 percent average velocity increase over that ob-
tained with 300°K charge temperature.

The method of estimating the performance of a two-stage adiabatic
compression launcher was outlined in detail in Ref. 1 for ideal helium.
The calculation for hydrogen is essentially the same except that the
processes during compression are based on the best available thermo-
dynamic data for the real gas at high pressures. These comprise:

Manuscript released by authors January 1962.
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{a) National Bureau of Standards tables in the temperature range from
300 to 600°K and pressures to about 1000 atm, (b) unpublished data from
Hilsenrath (NBS)} in the regime above 2200°K to 1000 Amagat, which how-
ever does not include covolume effects, and (¢} a computer program
which includes covolume effects but neglects ionization and dissociation
for the region between (a) and (b). Appendix A discusses these data in
detail.

2.0 IDEAL INTERIOR BALLISTICS

The estimation of pressures and velocities in the two-stage launcher
is based on the following simplified models (Fig. 2): (a) the piston has
acquired the velocity, up, as it nears the end of the pump tube, and its
driving pressure is negligible thereafter, (b) the incident shock reflects
from the end of the pump tube leaving a state (3) at rest, {c) the shock
reflects from the piston face leaving the state @ . (d) the piston comes
to rest with the pump tube gas at a final state having the entropy of state
@ and the internal energy of state ® plus the piston kinetic energy,
and (e) the projectile does not move until the final state is attained, after
which its motion is determined from the expansion of an ideal gas with-
out friction in an evacuated bore. Figure 3 shows the effect of final
pressure and temperature on thermodynamic velocity, st. The thermo-
dynamic velocity is determined only by the final state since it is com-
puted for the launch tube supplied from an infinitely long chamber hav-
ing the same bore. The effect of actual chamber geometry (the volume
in the pump tube after compression) is derived from the characteristics
method computations of Ref. 2 for helium. Figure 4 shows the effect
of chamber geometry on ideal launch velocity, uy, in terms of thermo-
dynamic velocity, u; .

The ideal launch velocity is based upon the following simplifications
to the actual situation: (1) there are no heat losses from the propellant,
{2) the projectile remains stationary until the final pressure is reached,
and (3) the piston comes to rest and remains fixed at the final state
posgition. These deviations from the actual case require empirical cor-
rection factors derived from a series of experimental firings in a 0. 5-in,
launcher. The effects are discussed in the following sections.
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3.0 EFFECT OF FINAL TEMPERATURE

In Ref. 1 experimental results from a 0. 5-in. bore launcher oper-
ated with both helium and hydrogen were reported. Final temperatures
ranged from 3, 000 to over 14, 000°K for helium and from 2000 to 3000°K
for hydrogen. A comparison of ideal and measured launch velocity
showed a very striking effect of final temperature on the velocity attained.
The velocity loss was almost linear above a temperature of 2000°K having
a magnitude;

Auw _ _ 3 (fp - 2000) x 10°° T > 2000°K

Uy

In addition to reducing the propelling energy of the driving gas by
heat loss to the wall, high temperatures may cause vaporization of the
wall and therefore contamination of the light gas by a heavy element which
further reduces the launch velocity. Much greater erosion of launch tubes
is evident when helium, rather than hydrogen, is used as a propellant. A
simple comparison of the two gases based on laminar flat plate heat trans-
fer may give some insight intoc the problem of excessive final tempera-
tures. The ratio of heat transfer rates is

. % % % ¥
e [ Mu, Cou \ KHe) (TH, )Z(THe = Tw)
ay, i CDHZ Ky, Ty T, = Tw
If the same heat is added to the two, their temperatures are in the
ratio

C,
f = . He :
THz/ I‘He = ch = .3
2

A typical final temperature for hydrogen is 2500°K; (He temperature = 8300°K)
then, as the walls absorb the heat, the relative heat transfer of the gases
is indicated in the following table:

Ty, K e/ du,
300 1.0
1000 1.34
1500 1,93
2000 3.48

At about 1800°K, the melting temperature of the wall is reached.
Helium will supply about three times as much heat for melting and vapor-
ization as hydrogen. When gas temperatures exceed 6000-8000°K, radia-
tion becomes a large fraction of the heat loss. A comparison of thermo-
dynamic and ideal velocities is shown in Fig. 1. Distinct maxima occur
between 8000 and 10, 000°K.
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4,0 INITIAL PROJECTILE MOTION

Since the projectile is not restrained in the launch tube after the first
shock reflection, its movement before peak pressure is reached would be
expected to impair the launcher's performance. The time interval be-
tween the first shock arrival and maximum pressure will increase with
pump tube length and decrease with piston speed. In addition, the mag-
nitude of the pressure which initially accelerates the projectile increases
with both piston speed and initial pump tube charge pressure, p,. The
experimental firings, previously referred to, gave an empirical correc-
tion to the ideal launch velocity of the following form=*

% = - 7.4 (AS/EL)J
I

where As/4; is the fraction of the launch tube traversed in the interval
of time between the first and second shock arrivals at the end of the pump
tube, assuming constant piston speed. The derivation of this distance

follows: _—Projectile

<Y ——————

The diagram indicates the shock speeds, us,, us,, and us,: the incident,
first reflected, and second reflected shocks. The time interval, At,
between arrival of the incident and second reflected shocks is:

Lof1 - 22 )1 -2 ! !
p ug, g, g, ~ up + Uy,

!p up
At a4 f"\t (T)

The distance moved, As, is then determined from the dimensionless time-
distance relationship (Ref. 1)

m, a? P_A
Asg = M 3 £ 3 "L At
P, AL t my, a;

fo= 5 (t) {Ref. 2)

t

At

)

or

where

*Recent experiments have led to a revision in this correction factor.

A correction of the form % = - 0.92 x 107" (F) is suggested.
I L
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In dimensionless terms,

As my, &, B\ fa, zf PiAL Ep fa,\ [P, ¢ u,
£p - L AL Ea P_a ;l_ v ™ a’ “;;_ P, At :

This relation is shown in Fig. 5 for y = 1.4, which is considered ad-
equately accurate for the moderate pressures and temperatures of condi-
tion (3). The influences of piston speed, pump tube length, and initial
pump tube pressure are clearly evident.

5.0 PISTON REVERSAL

1] m A . a
A piston reversal parameter of the form ﬁ) was derived in
M “~p

Ref. 1, which provided a correlation based on a rather limited number
of firings with light pistons or heavy projectiles. The form of the cor-
rection was tentatively found to be

Ao _ 04
oy (mp Aq )2
mu Ae my A1,
The physical significance of the parameter (m: Ap) is obviously the rela-

tive initial accelerations of piston and projectile. For practical high veloc-
ity launcher configurations, this correction is usually small (less than
2 percent).

It should be emphasized that the empirical corrections discussed above
are not large for high velocity firings when hydrogen is used. The maxi-
mum value of the total correction was between four and eight percent for
the rounds cited in the section, "'Experimental Results,' when the launch
velocity exceeded 25, 000 ft/sec. Therefore, a high degree of exactitude
in computing these values is not considered necessary.

6.0 EFFECT OF FINAL VOLUME IN THE PUMP TUBE

The difference between thermodynamic velocity (based on the final
state and calculated for a launch tube having no chambrage and infinite
chamber length) and the ideal velocity {which incorporates the final geom-
etry of the pump tube gas) is important in proportioning launcher config-
urations of the two-stage type. In Ref. 2, characteristics method calcula-
tions were presented for helium (y - L.66) for several chambrage (Ap/A;)
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values and chamber lengths (see also Refs. 4, 5, and 6). These are sum-
marized in Fig. 4 in the form of the ratio of ideal velocity/thermodynamic
velocity for various chamber volume/launch tube volume ratios for con-
stant dimensionless projectile travel values (), It is assumed that the
effects of chambrage and chamber length practically compensate when
chamber volume is fixed. Therefore, the curves labeled A /A; = 4 are
used in computing ideal velocity.

The validity of Fig. 4 for hydrogen has not been demonstrated rigor-
ously. However, Figs. 6 and 7 lend support to the reasonableness of the
assumption. The effect of chambrage for infinitely long chambers is
practically independent of ¥ as shown in Fig. 6. Figure 7 shows that the
distance moved by the projectile when it is overtaken by the first reflected
characteristic is also only slightly affected by y.

7.0 PERFORMANCE CALCULATION

The thermodynamic properties for hydrogen were obtained as dis-
cussed in Appendix A and used to calculate the normal shock relationships
(Fig. B-2) using the method outlined in Appendix B. The launch velocity
is determined as follows:

1. Piston Speed

For an existing launcher, the piston speed may be determined
empirically by firing the first stage alone, using a diaphragm
at the end of the pump tube to retain the charge pressure. The
estimation of piston speed for a M,-0,-lle combustion driver was
treated in Refs. 1 and 3. Figure 8 shows dimensionless piston

. L Pc Ay sp* = s
speed, up/a., as a function of §, § =(W) and P, = (P,/P.).
Seventy-five and 100-percent combustion curves are shown.
This also gives a reasonably accurate estimate of piston speed
for a driver in which a powder charge compresses helium.
When the piston speed for the combustion driver is to be com-
puted for an experimental firing in which the chamber pressure
is measured, a correction to ¥ and acoustic speed resulting
from less than 100-percent combustion must be introduced
{Ref. 3).

*The piston travel, s,, may be taken as 0.9 f 10 give a
reasonable velocity.
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Shock Compression

The compressibility factor, 7, is read from a plot similar

to Fig. A-35. The acoustic velocity,a, = vy RT,%, , is then
calculated to obtain the piston Mach number. The states of
the pump tube gas after the incident shock is reflected from
the end of the pump tube (state 3) and after the reflection from
the piston (state 4) are given in Figs. B-2a and b.

Final State

The simplified model shown in Fig. 2 is used as the basis

for graphically finding the final conditions in the pump tube.

Since from Fig. A-3 it can be seen that the internal energy

of the gas is practically dependent only on temperature, F:./RT,

and F,/RT, can be read from Fig. A-6. FE,/RT, is then added to
KE my uw? T, 7,

the kinetic energy of the piston, S AT, 2P AL 1, T at the

entropy of state (4) and the final conditions read from Fig. A-3.
A more convenient working plot has been developed by plotting
E/RT, vs P in psi for lines of constant S/R (Fig. A-7). The

TF‘/Tl
PF/P1

final volume ratio, Vg/V, = ( ) Zg/7, ., is then calculated.

Thermodynamic Velocity

This velocity assumes no chambrage (A;, = A,) and an infinite
chamber length. A dimensionless launch tube length,

Pp Ag 4,

] = 2

M , is calculated and the thermodynamic velocity,

w, read from Fig. 3.
Ideal Velocity

The ideal velocity includes the effect of chamber geometry by
calculating the ratio of final pump tube volume to launch tube

Ap 4
volume, Vfg/Vy, = VF/V, x A‘;—Ep , and using this and 5 to
L

read a value of u/u; from Fig. 4.
Launch Velocity

The ideal launch velocity is then corrected for the effects of
final temperature, piston reversal, and initial projectile mo-
tion using the empirical corrections derived in Ref. 1 and
discussed in the previous section, The initial projectile
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A, 2
motion is first found by computing the quantity, P, L°p

) ]
my (a,)

and using Fig. o to get As/f,, which is then converted to
As/f, . The empirical correction,

uL/“I =1 - [7,4 ('\S/EL)J + ‘-“I-np.—iLT + 3 x lOHS(TF -— 2000)] 3
(“‘M An)

then gives the desired launch velocity, u; .

8.0 0.5.CALIBER COMBUSTION LAUNCHER PERFORMANCE

In order to investigate the performance of a two-stage launcher, using
hydrogen as the pump tube gas, a gun was assembled as shown schemat-
ically in Fig. 2. It comprised a combustion driven, 40-mm pump tube
10. 5 ft long and a 10-ft, 0. 5-in. launch tube. Theoretical calculations of
this launcher's performance were carried out for a 1-gram projectile and
an 86-gram piston, assuming 100 percent combustion giving a chamber
pressure of 20,000 pgi. The pump tube charge pressure, P,, was varied
for initial temperatures of 300°K and 600°K, and theoretical launch veloc-
ities were calculated as outlined in the preceding section.

Figure 9 indicates that for a given charge pressure, P,, the final
pressure, Pp, is almost independent of the initial temperature, T,. At
3 x 109 psi final pressure, raising the initial temperature from 300 to
600°K gives an increase in launch velocity of about 2500 ft/sec.

The empirical corrections are shown in Fig. 10. As the pump tube
charge pressure, P,, increases, the final temperature decreases because
of the decreasing compression ratio. Conversely, the initial projectile
motion increases with P, because the pressure, P,, after shock reflection
increases. Increasing initial temperature raises the final temperature
and lowers the reflected shock pressure, P,, and therefore the initial
motion.

Figure 11 shows the effect of varying the piston driving pressure
while holding the final pressure at 300, 000 psi. Increasing chamber
pressure requires that the initial pressure be increased also. Since this
reduces the compression ratio, the final temperature and therefore the
thermodynamic velocity, uw, decreases with increasing chamber pressure.
On the other hand, the final volume increases so that the ideal velocity,

u;, tends to become larger. In the 300°K case a maximum is reached
at about 40, 000 psi chamber pressure, whereas the heated charge case
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still shows an increasing velocity at 45, 000 psi. The corrected launch
velocity, uj, follows the same trends as the ideal velocity. Approxi-
mately a thousand ft/sec increase in launch velocity can be obtained by
raising chamber pressure from 20, 000 psi to the optimum level or the
maximum of about 50, 000 psi.

9.0 EXPERIMENTAL RESULTS

The two-stage launcher performance was calculated in the previous
section, and a number of rounds were fired at various chamber pres-
sures with several piston weights. An external electric heater provided
heated hydrogen to the pump tube. Table 1 summarizes the firing results,
and shows the correlation between calculated and experimental launch
velocities. Since the chamber diaphragm burst pressure could not be
determined exactly, an excess of chamber charge pressure and a slight-
ly higher than the nominal burst pressure were chosen to result in a
piston speed close to the nominal value for 100-percent combustion. Up
to Round 227, the nominal chamber pressure was 20,000 psi to corre-
spond to Fig. 9. In the later rounds (228-248) chamber pressure and
pump tube charge pressure were increased to obtain larger final vol-
umes (Fig. 11). The firings cover a period during which development of
the launcher proceeded parallel to derivation of the performance com-
putation method. The latter depended upon assembling good hydrogen
thermodynamic data. It was only for the last 25 rounds that the present
form of these data was available, Several causes of poor launch velocity
were observed: (1) when pistons were too short they sometimes failed to
seal high pressures ~-- Rounds 198-208, (2) the substitution of a lower
density Lexan for pistons resulted in greater breakup and occasionally
low velocities -- Rounds 214-235, (3) blowout of a transducer in the
high pressure section -- Rounds 155, 157, 240, and 242, and (4) appar-
ent failure to attain piston velocity as a result of protective blowout
discs in the heater system -- Rounds 202-211 (check valves were in-
stalled at the pump tube after 211). Some of the scatter in the data with
the heater resulted from the difficulty in setting the highly transient pres-
sure and temperature during these firings.

The measurement of velocity was made with a Beckman-Whitley
Model 192 framing camera to better than one percent accuracy except
as noted. In these cases where the camera failed, velocity was obtained
from two shadowgraph stations 45 ft apart, radiation detectors, or break
wires with as much as two or three percent variation. Chamber pres-
sure was measured by Norwood pressure transducers to approximately
+1000 psi.
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Figure 12 shows the comparison of measured with calculated launch
velocities. These were within five or six percent except for rounds where
the difficulties noted above led to low experimental velocities and in four
rounds that were excessively high. There are two possible explanations
for these rounds. The uncertainties in pump tube charge pressure, cham-
ber pressure, and thermodynamic data combined to lead to a low calcu-
lated velocity. Or the calculation is pessimistic in using ideal gas char-
acteristics for the isentropic expansion behind the projectile, During the
expansion from the equilibrium state after compression in the pump tube
to the rarefied state when high projectile velocities are attained, the com-
pressibility factor, Z, is 5 to 20 percent greater than unity (Fig. A-5).
Here the acoustic speed and therefore the propelling force would be larger
than given by the ideal gas assumption.

One of the purposes of the experimental program was to verify the
effectiveness of preheating the propellant to obtain higher velocity at the
same pressure. Theoretical estimates (Fig. 9) showed about 2500 ft/sec
would result from doubling the initial temperature at an upper pressure
limit of 3 x 10° psi. Figure 12 shows that approximately this improve-
ment in velocity was obtained. There is considerable scatter in the data
because final pressure was not maintained at the above level because of
the difficulty of exercising close control over chamber pressure and the
desire to avoid exceeding the high pressure section structural strength
limit.

The launcher tested was not an optimum geometrical configuration.
The calculations showed that the small diameter of the pump tube re-
sulted in insufficient final volume for the launch tube. The ratio of ideal
to thermodynamic velocity was only slightly greater than one instead of
1.1 to 1. 12, which would result if the final volume were increased from
ten percent to 40 percent of the launch tube volume. If the diameter of
the pump tube doubled, the launch velocity could be increased more than
ten percent.

It can be concluded that the method of calculation provides a good
estimate of performance of this type of launch system. The empirical
corrections are from four to eight percent for the higher velocities. It
appears that all the important physical variables have been considered.
The effect of preheating the propellant can be realized as a method of
improving performance without an increase in maximum pressure.

10
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10.0 GENERAL LAUNCHER PERFORMANCE

Since a method of estimating the launch velocity has been developed
which appears to include the important physical variables, it is reason-
able to investigate the effects of geometry on performance. The effects
of varying launcher geometry can be studied by fixing the launch tube
and projectile, then varying the pump tube geometry. A 200-caliber
launch tube is selected for a 1-caliber length plastic projectile (sp. gr.1. 2)
to represent a reasonable figure for launching aerodynamic models.

Pump tube lengths from 0.5 to 2, 0 times the launch tube length and diam-
eters from 2.5 to 10 times that of the launch tube are considered. A mini-
mum weight piston is chosen as 1-caliber length plastic which conforms to
experience as a lower limit for structural integrity. The final pressure is
taken as 300, 000 psi to be within reasonable design practice.

The calculation procedure used for finding the launch velocity here is
the same as that discussed earlier, with the exception that now the final
pressure in the pump tube is fixed. (Pp = 300,000 psi) and the initial
conditions are found. Examination of the dimensionless kinetic energy

5 u,’? (T1 Tg) 2, .
term, _ KB :(JL) (A Me ) ( /M) ) shows that piston speed, u,,

mg RTO 2 D gp Pl

and the piston mass per unit pump tube volume are sufficient to deter-
mine the final state if the initial temperature is fixed.

The results of these calculations are shown in Figs. 13, 14, 15,
and 186.

For the minimum mass piston (m, = ppApdy) therefore:
my, 1.2

pfp £p
)
when

Pp = 1.2 gm/ece
High length-diameter ratio and low piston speeds lead to high final tem-
peratures and thermodynamic velocity. This combination tends toward
low final volume after compression, however, tending to reduce the
ideal launch velocity.

The empirical corrections are affected in the following manner.
With large length/diameter ratios or low piston velocity the final tempera-
ture correction increases. The initial projectile motion increases with
pump tube length, with a decrease in piston speed (Fig. 5), and with de-
creasing £p/dp o P, (Fig. 13). The piston reversal effect becomes
smaller as the ratio of pump tube to launch tube diameter increases.

11
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These interacting effects on launch velocity are more clearly shown
in Fig. 17. Figure 17a shows the thermodynamic velocity which in-
creases with length/diameter ratio of the pump tube and decreases with
piston speed. The ranges of the variables were chosen to give near maxi-
mum actual launch velocity. In Fig. 17b the ideal velocity shows a re-
versal of the trends observed in Fig. 17a resulting from the variation of
volume left in the pump tube. An exception is the case of the pump tube
10 times the diameter of the launch tube in which the final volume is so
large that further increase is ineffective. The ideal velocity decreases
with increasing length after reaching a peak because of the effect of
£,/d, on final volume. '

The corrected launch velocity generally follows the trends of the
ideal velocity (Fig. 17c). The piston reversal affects the small diam-
eter pump by about 6 percent and becomes negligible for the largest
diameter. The initial projectile motion increases with pump tube length
and piston speed because the latter requires higher charge pressure, P,,
and therefore a higher first reflected shock overpressure. Final tem-~
perature corrections increase with pump tube length and decrease with
diameter, as may be seen in Fig. 14. The overall result of the correc-
tions is to reduce the spread resulting from piston speed. This is par-
ticularly evident for the pump tube which is 5 launch tube diameters,
where the initial projectile motion effect causes the 7000-ft/sec piston
speed curve to fall below the other two. The upper limits in piston speed
are compatible with driving pressures of a practical level and the pump
tube length/diameter ratios.

The following conclusions may be drawn from Fig. 17c:

1. The launch velocity varies only slightly over a wide
range of pump tube lengths.

2. For pump tubes having diameters less than 5 launch
tube calibers, increasing piston speed has the effect
of increasing launch velocity appreciably.

3. There is only about a 6-percent increase in velocity
when the pump tube diameter is increased from 5 to 10
launch tube diameters.

It appears that reasonable configurations of this type of launcher are
limited to from 25, 000 to 27,000 ft/sec in launching a 1-caliber plastic
prujectile from a 200-caliber launch tube with unheated hydrogen. As
mentioned in the section discussing experimental results, this may be
a few percent conservative because of non-ideal isentropic expansion
behind the projectile. '

12
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An estimate of maximum velocity for the lightest practical projectile
(1/2 caliber long) and a launch tube of 300 calibers may be easily made
by scaling the above figures by the amount the ideal velocity would be in-
creased. The dimensionless launch tube length (s) would be increased
by 3 and the ratio of final volume in the pump tube to volume of the launch
tube decreased by 2/3. This would yield a maximum corresponding to
Fig. 17c of about 32, 000 ft/sec compared to 27,000 ft/sec. Slightly
higher velocities will result from increasing final pressure, but it is dif-
ficult to determine structural limits for the projectile or launcher much
above the levels used here,

The only appreciable gain in launch velocity appears to result from
preheating the charge in the pump tube as has been discussed. The
empirical correction for final temperature indicates that temperatures
up to about 10, 000°K would result in increasing launch velocity (Fig. 1).
As a first approximation, the thermodynamic velocity might be taken as
a measure of this effect. If 25,300 ft/sec is taken to correspond to the
more reasonable pump tube length of 1.5 times launch tube length and
5 times its diameter, this maximum amount of heating would produce a
velocity of 31,000 ft/sec. The initial temperature would be around
4000°K for the hydrogen in the pump tube. This is a formidable problem
in equipment design whose solution is not yet evident.

11.0 CONCLUSIONS

1. The performance is estimated for two-stage, light-gas,
model launchers which utilize an adiabatic compressor in
which kinetic energy stored in the piston provides the work
of compression.

2. Experimental results indicate that the important physical
variables have been included in the proper manner. A
moderate amount of preheating of the propellant has been
successfully used to increase launch velocity.

3. A systematic study of the effect of varying launcher
geometry shows that the 1limit launch velocity for this type
of launcher will not greatly exceed the 30, 000-32, 000-ft/sec
level presently accomplished for unheated hydrogen.

4. The most promising method of raising launch velocity to the
30, 000 to 40, 000-ft/sec range is by preheating the propellant
in the pump tube.

13
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APPENDIX A
THERMODYNAMIC PROPERTIES OF HYDROGEN

In order to compute launch velocities, using hydrogen as the pump
tube gas, the thermodynamic properties of the gas must be known
throughout the range of gun operating conditions. Since only a limited
amount of data was available (Refs. 7, 8, and 9) in the range of tempera-
tures from 300 to 3000°K and pressures to 20, 000 atm, a computer pro-
gram was developed to bridge the gap between the two sets of data, and
thus permit extrapolation of these data to higher pressures.

With the data prepared by Woolley, Hilsenrath, et al (Refs. 7, 8,
and 9) and the empirical relationship#*

7 1,000 + A P

where
log A=aT + b

values of A were calculated and plotted against temperature. This plot
provided the constants:

a = —8347 x 107" and b = -2.9729
With the compressibility factor (7) determined as a function of T and

P, it was then possible to compute the enthalpy, entropy, and internal
energy using relationships from Bridgman's tables as follows:

(28) = v -1 (50),

where
V= ”;T Al
and
(5%), = ¥[7 -7 (3%), ]
then
CORARR SERRRCN
- - (3)

*Suggested by Dr. M. Grabau of the Hypervelocity Branch, VKF.
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Therefore
2
(38) - - 5 (%),
where

Z

(3),

(%),

at constant T

I

1 + [log™" (aT + B)IP =1 + [exp[2.30259 (aT + b)| P

it

2.30259 alP exp (230259 (a T + b) 1]

— 2.30259 a RT? exp [2.30259 (aT + b) ]

Il

dH = | -~ 2.30259 aRT? exp[2.30259(aT + b}1}d P

P
I =1Mo + J, ~ 230250 aRT? |exp [ 230259 (aT + b)1}dP
L]

H  H,
RT RT

~ 2.30259 a T{exp[2.30259(aT + b)]} (P ~ Pg)

Again from Bridgman's tables

g8y _ _ RT ¢4d7y _ _RZ
(5%), - - (7)), - %
as before
(ﬁ) = 2.30250 a P exp [2.30259 (a T + b)]
aT /),
then
dsy _ _~mT - RZ
(BP)T - =5 {2.30250 a P exp [2.30259(aT + b) 11} 5
at constant T
8 = {—2.3026 aRT exp[2.3026 (aT + b) 1 - i‘-}%}dp
P
S =5, +fp {.., 2.3026 aRT exp[2.3026(aT + b)] - R—PZ'}dP

o

P P
5 . 5 ~ Je. T
R~ R +fPo 2.3026 a T| exp [2.3026 (aT + b)1{dP fPo v

P P
A _ ! + Pexp{2.3026(aT +b)]
fp Pdp_fp P CIP

[}

P P
=LD%+L exp [2.3026 (a T + b)1dP

L1
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therefore

S~ S0 930259 aT(P - P,) exp( 230259 (aT + b)1 = In->
R R Py

~ (P = Pg) exp [2.30259(a T + b)]

e _‘;ﬁ - (230259 aT + 1}(P = Po) exp[2.30259(aT + b} 1 - I -

The internal energy (E) was calculated using the relationship
E/RT = II/RT - 7
and the density from the equation
P = P/7ZRT

In these calculations where an initial value for the density was selected,
the pressure was calculated by means of the equation

P - PRT
1 —APRT

The calculation procedure was then programmed for the IBM 7070 for
selected values of initial pressure and temperature and also for values of
initial densities and temperatures.

Figure A-1 shows the approximate ranges of the available data and
present calculations. These computed values were then used to fair the
region between the NBS data. Good agreement was obtained with NBS
data in the 300 to 600°K range and also from 2200 to 3000°K. The com-
puted values were used to a maximum pressure of 1000 atm, at which
point the divergence from NBS data approached ten percent.

Reference 10 covers the range of density from 0.1 to 1000 Amagats
and temperatures from 300 to 1200°K. Good agreement is obtained within
the limits shown with the exception of the low temperature, high pressure
region where Bjork's neglect of the co-volume effects causes a divergence.

With these data to fill the gap between the two sets of NBS data, it
was possible to construct a Mollier Diagram (Fig. A-2). These results
were then extrapolated to 100, 000 atm to cover the operating range of
interest for light-gas gun propellants. Figure A-3 gives internal energy,
and Fig, A-4 shows the variation of acoustic velocity{a = yyRTZ ) deduced
from the preceding data.
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Fig. A-1 Limits of Applicability of the Empirical Equation
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Fig. A-5 Compressibility Factor
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APPENDIX B
NORMAL SHOCK RELATIONS

The normal shock relations for hydrogen, treated as a real gas, are
not available. Therefore, the graphical method outlined by Stollery and
Maull {Ref. 11) was used to compute them.

By applying the energy, momentum and continuity equations to a
stationary normal shock, we have:

H, + 1/2 q = H, + 1/2 g
3 1
P, + py q, =P, +p; qu

Pr 9, = P31 qa

The conditions across a moving shock may be found by superposition
of velocities:

{4

q. = ug ug = Shock speed

1

qs = u-s — up UP Piston speed

H, - H, = 1/2 u,° (—z:j—g;)

13,2 _ P.l - upz (PP2_£1>
21— P

Which, in a general form for any further shock reflections, are:

. +
Hy o1 = By = 1/2 up Pot1 * Pa
Pot1 = Pa

upz P_n+1 P
Pny1 = Py

With the calculated piston velocity and the initial conditions in the
pump tube, the initial shoeck Mach number can be found. With the shock
Mach number and initial conditions determined, several values of p, are
selected, and the corresponding values of H, and P, are calculated and
plotted on the Mollier diagram. The point where the P, vs p, curve
intersects the H, vs p, curve is the value of P, and H, behind the first
shock. These values are then used as the initial conditions and the values
behind the next shock computed.

Therefore

P - P,

n+ 1
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This method was tried using the Mollier diagram constructed from
NBS and computed data. The intersections were difficult to resolve on
this plot, and therefore the data were replotted in the form shown below

which proved to be superior in practice (Fig. B-1).

P,
P
Po
H
RT
o
H;
P

{psi)

Fig. B-1 Enthelpy-Pressure Diagrem

This plot gave better intersections and was easier to use than the standard
Mollier diagram. The calculations were carried out for three shock pas-

sages (Figs. B-2a and b).
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Fig. B-2 Normal Shock Relationships
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