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ABSTRACT

A study is made of the probability of collapse of a fail-safe
structure, consisting of a number of barallel members, subjected to a
random load spectrum, In the individual members a fatigue crack is
first initiated and failure of the members occurs due to a heavy load
on the weakened members, Tha probability of element failure is
obtained by a combination of the Probabilities of crack initiation and
of’ meeting a load exceeding the residual strength of the member,

The probability of consecutive element failures is deduced from the
Probability of failure of the individual members, Collapse occurs

when all members are broken, or, in practice, after a critical numbar

of element failures, The brobability of collapse of the assembly during
the whole service life is the sum of the rrobabilities of all the
inspection intervals,

A numerical procedure for caglculating the probability of collapse
has been developed and evalustions have been made for an assembly of
8ix identical, parsllel members, Diagrams of the Irobability of
collapse P versus the service life time T. have been plotted in figs,
3 - 8 for various lengths of regular inspection intervals, sssuming
different vzlues of the crack initiation and strength reduction
Paremeters introduced,

Some preliminary fatigue testing of essemblies with 8ix members

has been carried out in order to study the validity of basic
assumptions in the theoretical investigation,
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1. INTRODUCTION

There seems to be & rather common agreement since a few years ago [1]
thet the probability of a fatal failure during the service life of an aircraft
due to fatigue of the structure should not exceed a very low figure. A value
of around ‘10—5 has heen considered.To ascertain such a,iow probability of
failure for an ordinary safe-life structure will either make it necessary
to carry out a very large number of fatigue tests or to epply an extraordin-
arily high safety factor on the results from a few fatigne tests, For econom-
ical reasons these two ways are only feasible for smaller parts of an aircraft
structure. 4s is algo commonly agreed mosi of the structure must consequently
be designed fail-safe, which means that the structure is so built that a minor
damage, e.g. a crack, will be detected and repaired before it has caused an
appreciable reduction of the ultimate strength of the whole structure. The
crack detection might be effected at special inspections carried out at pre-
determined intervals. It is alszo possible that some rather obvicuas damage,
as a visible partial fallure, will be detected with certainty without any
inspections. The fail-safe properties are thus normally achieved by a com-
bination of design features and inspections. The fact that a structure is
fail-safe does not imply, however, that its service life can be extended in-
definitely. One reason is that the repair rate will be so high when the
various elements of the structure apprecach their mean fatigue lifes, that
the operation of the aircraft can no longer be made profitable. But even
if the economic repair-rate limit has not been reached, the probability of
total failure due to a heavy gust on the weakened structure, which is always
increasing with service time utilized, may exceed the value mentioned above,
if the inspection intervals are not made uneconomically short.

Consequently it is necessary to evaluate the probability of failure of
a fail-safe structure, taking into account the crack initiation, crack develop-
ment and decrease of the residual strength of the cracked siructure as well
as the inspection procedure and the load spectrum. This has been atiempted
in scome earlier publications [2, 3] s Where the fatigue properties from
full-scale testing of whole structures, such as an aircraft wing, have been
assumed to be known. Since full-scale fatigue testing is an éxtremely costly
and time-consuming undertaking there is, so far, very little information
available in the literature. Several laboratories are now carrying out full-
scale testing and the situmation might therefore soon be radically improved

as long as one is only considering mean values of test resuits, while the
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scatter will probably still be a rather unknown quantity, Although the
amount of' testing necessary to assess a low Probability of failure is con-
siderably less for a fail-safe structure, than for & safe-life component,
ore may question if the designer will ever be able to rely entirely on a
pure full-scale approach.

Another way of attacking the fatigue safety problem for a fail-safe
structure would be to divide a large component into a number of small elements,
the fatigue properties of which are rather cheap and easy to determine in a
satisfactory way from & statistical point of view. The interaction between
these elements would then be analyzed mathematically. Some structures con-
sist of a number of discrete elements which are identified without difficulties,
but in most aircraft components the division into elements is not so obvious.
If the number of different elements, which contribute to the risk of fatigue
failure, is very large, the amount of numerical calculations and fatigue
testing necessary might possibly be so immense that the element approach
cannot be effected in practice. This difficulty coul& possibly be overcome
by persuading the designer to build up his components from a large number of
identical elements, which would probably also be useful for the production.

The probability of collapse of structures consisting of smaller members
has been treated earlier disregarding crack Propagation and inspections [4, 54
6, 7] - The aim of this report is to demonstrate how a rather simple built-up
structure can be analyzed with the effects of strength reduction due to crack
propagation and regular inspections taken into account. As an example, is
chosen an asgsembly of six identical, parallel elements subjected to random
gust loads. The numerical calculations are carried on to produce a diagram
of the probability of total failure as a function of service life for various

lengths of inspection intervals.

2, SYMBOLS

ABC coefficients obtained from eq. (6), used for computing load

redistribution factor ¢ .

ab coefficients obtained from eqs. {4) and (5), used for computing

load redistribution factor c¢ .

c o. load redistribution factor, j indicating position of element

congidered
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cgefficient for computing load redistribution factor c j

for load-carrying element coj = 1, for broken element Coj =0

probability of one sequence of element failures during inspec-

tion interval ne. v
distribution function of variable @
frequency function dFQ/dQ

conditional probability of element failure due to a high load

exceeding the residual strength of the wing before a time ¥y
frequency function dG(y)/dy

expected number of times per hour that a load amplitude S,
is exceeded; Hu is number of times the ultimate load is

exceeded

parameter of load spectrum, eq. (7); H = 0.2 chosen for

all numerical calculations

parameter of load spectrum, eq. {(7); h = 20 chosen for all

numerical calculations

generalized parameter h including leoad redistribution,

eg. (13)
number of element failures having occurred , or cracks initiated
position of element

coefficient used in relationships between real service time
and fictitious fatigue service time and fictitious strength
reduction service time; K12 = c? , where J applies 1o the
position of the element that will fail as no. 2, provided

that the first failure has occurred

coefficients computed from coefficient X, eqs. (28) and (29);
the first index 3 implies that the real service time to be

computed is T3’ until the third failure, whereas the index 1
refers to the various parts of T5' k3i being coefficient of

X5 Y3 O Zyy i=1,2, 3

3
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parameter of quasitruncated, normal frequency functionm,
eqs. (45) and (52); ¢ dis obtained from eq. (55)

total number of parallel elements

total number of inspection intervals
ultimate design load factor

probability of collapse of the assembly

probability of collapse of the assembly within inspection

interval vy

probability of crack initiation, eq. (14)
probability of static failure, eq. (9)
frequency of crack initiation, eq. (33)

real service time until failure from beginning of inspection

interval v ; @ is time to crack initiation and Q

38
crack propagation time, egs. (36) - (39)

3b

critical number of element failures

parameter of strength reduction curve, eq. (16}, indicating

the inverse rate of strength reduction

maximum frequency of crack initiation (crack no. i} at the

end of inspection interval v, eqs. (39) and (63)
load level

load amplitude; Sai is amplitude after i failures have

occurred, i = 0 being the original condition
mean load

ultimate load

original static margin

load amplitude, normalized with respect to S, ear (1)



8,4 normalized static margin at the time t after crack initiation,
eq. (16)

T Ti service time until failure, T = Tc + 13 Ti applies to element
failure no. 1

Tc service time until crack initiation

TL limit service time

Tu-? Tu service time until beginning and end of inspection interval v

T050 time to initiation of crack corresponding to median value of
10

log Tc
t service time from crack initiation, crack propagation time
. interval between inspections
inap

uy variable in the convolution of Q5a’ ea. {43)

X fictitious fatigue service time, eg. (15)

¥ fictitious strength reduction service time, eq. (17)

z fictitious service time until failure, eg. (19)

o constant introduced in the relationship between x and TC ’
eq. (15)

B constant introduced in the relationship between y and t ,
eq. (17)

g substitution introduced in the convolution of Q, eq. (59)

n substitution introduced in the convolution of Q, eq. (60)

" parameter of normal frequency function of QBb’ eqs. (54)
and (56)

T parameter of normal distribution of 1Olog Tc , corresponding
to Tc50’ eq. (14)

by paremeter of normal frequency function of é(yi), egs. (45)

and {48)



v number of inspection interval

ol parameter of normal frequency function of Qﬁb’ eqs. (34)
and (57)
o rarameter of normal distribution of 10log TC, standard

deviation, eq. (14)

oy parameter of normal freguency function of é(yi), eqs. (43)
and (51)
d normal distribution function and frequency function, respectively.
Subscripts
c crack
i element failure no. i, or crack no. i
J element with position no.
L limit
0 1 =0, initial state of load distribution
) inspection interval no. U

3. BASIC ASSUMPTIONS

4 simple structure consisting of m varallel members is considered
(Fig. 1). These members, which will be called elements no. 1, 2,..4, in
the following, are assumed to be identical and consist of a rather narrow
sheet of aluminium alloy provided with some sort of notch, e.g. & central
hole. The structure is subjected to a random load spectrum giving originally
a load level S in each element. It is assumed that the probability distri-
bution of service life until crack initiation for an individual element
under the same load spectrum has been determined with 8 high confidence
from separate fatigue testing. It is also assumed that the crack propaga-
tion time from crack initiation to failure under 1 g load and the simultaneous
strength decrease rate is known from such testing, the scatter being rneglected.
After the first crack has appeared, it is either possible that cracks

are initiated in one or seversl of the other elements before the first crack



has propagated so far that the first element failure occurs, or that this
failure takes place without the presence of any other crack. It may also
happen that the propagation of the first crack is slow and that the second
or even a later crack results in the first failure. A cracked elesmeni will
still carry its original share of the total load until the stresses cause
very large plastic strains in parts adjacent to the crack. To simplify the
enalysis it has been presumed that no load redistribution among the members
of the structure takes place until the firat element failure.

An element failure is the result of a comparatively heavy load acting
on an element weakened due to a fatigue crack. The probability of such an
pcourrence is obtained by combining the probabilities of the two events of
crack initiation and a loading exceeding the residual strength. The broken
element can no longer transfer its original lcad. If the magnitude and action
line of the resultant load is kept unaltered,the load levels of the remaining
elements will be changed. It has been assumed that all the parallel elements
are connected with pin-joints in both ends to rigid clamping blocks, which
are congidered infinitely stiff. It is cénsequently easy to calculate the
new loads of the remaining elements. On the basis of experimental results
available, simple relationships regarding the influence of the load level on
the time to crack initiation and on the strength decrease rate, have been
adopted. This makes it possible to analyze also the probability of the con-
secutive failures. The total collapse of the assembly takes place when all
the elements have failed. The probability of such a collapse is thus obtained
as & combination of all the individual failures. In practice &ll the remaining
elements will fail simultanecusiy when & "critical number" of failures has
been reached, the critical number being dependent on both the design of the
structure and the loading.

The structural assembly is inspected at regular intervals. Immediately
after an inspection there is no visible crack present, since all elements with
cracks have been replaced at the inspection. This is supposed to imply also
that no strength decrease has teken place. At the beginning of the inspection
interval no. v the original elements have been subjected to fatigue loading
during Tv—1 hours. This is not true for the new elements, which have re-
placed cracked and failed elements. The replacement effect is neglected,
however, as a first approximation. By adding the probabilities of failure
of the structure for the various intervals v = 1,...,n, the probability of

failure for the whole service life TL is finally cbtained.



4. LOAD SPECTRUM AND LOAD DISTRIBUTICN AMONG THE ELEMENTS

The structure is subjected to a random loading, e.g. gust loads. It may
be assumed for simplicity, in the case of gust loading, that the load has a
constant mean value, the 1-g load, while the amplitude varies from very small
values which occur freguently, to extremely high values which are rare. In the
undamaged structure the resulting mean load in each element is denoted Smo y
the load amplitude Sao and the ultimate load Su

3
o} u mo

is thus the original static margin in 1 g level flight. It is convenient to

normalize the amplitude with respect to SO

S&O = S&O/SO (1)

implying that Spo = 1 gives failure in the undamaged element.
After a number of 1 element failures have occurred the mean load and
the amplitude will be changed by & load redistribution factor ¢

S.=c¢8 S.=c¢8 8. =c¢s8s (2)
mi 0o ai 80 ai a0

For the broken elements ¢ = C. The other elements have normally different

values each, which depend also upon the positions of the broken elements. In
the case of m parsllel elements, under the conditions mentioned in chapter 3
and loaded only in the elastic region, the c-factor of element no. j has been

obtained in Appendix A

¢y = {a + bj)coj (3)
where
nlC - B(m+1)/2]
g8 = (4)
Ale - B(o+1)/2] - BB - A(m+1)/2]
m[B - A(m+1)/2] (5)
-- 5
A6 - B(m+1)/2] - B[B - A(m+1)/2]
coj = 1 for load-carrying element
c . =0 for broken element
cJ



and
m m m

: 2
A = I c, B = Zijc ¢ = ji%c. (6)
=1 =1 %

Table I gives the c-factor for all possible combinations of one and two failed

elements in an assembly of six parallel members.

The lower, frequently occurring, load amplitudes cause the main part
of the fatigue damage which will eventually result in visible cracks and
strength decrease. It is not intended to discuss in this paper how a random
loading of an sircraft structure can be analyzed. Extensive research work is
now going on in this field by means of power spectral techmiques, but the
possibilities of evaluating fatigue properties by such procedures are still
limited [8, 9] . It is proposed only that the various members of the structural
assembly be fatigue tested under either a representative random locad spectrum
or some program loading, or even & constant amplituding loading which may be
shown to be equivalent to the random loading. The small element fatigue testing,
which should not include very high amplitudes occurring less frequently than
some ien times in & normal aircraft service life, is thus assumed to have pro-
vided reliable data of crack initiation and crack propagation.

High amplitudes, usually severe gusts, always give rise to the ultimate
failure of an element weakened by & fatigue crack. The present situation with
regard to statistical data of extreme value gusts does not seem to allow a very
reliable asgsessment of the probability distribution, especially not for new
and future aircraft. It is therefore considered to be fair to choose a simple
exponential relationship which is in agreement with available data for "thunder-
storm" gusts [ﬁO, 11] . The expected number of times H per hour that a load

amplitude 8.0 will be exceeded is expressed as

H= HO exp(-h s

) (7}

aoc

where H0 and h are two parameters. The value of Ho depends to a large
extent on the flight plan and the route. For a modern transport aircraft under
normal conditiong HO = 0.2 may be chosen as a representative average. The
parameter h varies with the design stress level, the relative equivalent air
speed and the relative weight of the aircraft [12] » An ultimate design load
factor n = Su/Smo = 3.75 and a reduced speed of 0.75% VE in rough air yield
approximately a value of h = 20.

There seems to be some dependence hetween the magnitudes of consecutive



gust loads, in that a high lead is usually followed immediately by seversl
high loads. Since this dependence has not been established statistically, it
is neglected in this report, which is unfortunately an unconservative approxima-
tion.
If 8 equals or exceeds the static margin So’ failure will occur. In

ao
normalized loads this condition for failure is written

8 2 s =1 (8)

It is now possible to compute, as an example, the probability of a static failure
of an element which has not suffered any strength decrease due to fatigue. During
2 service time t the probability P (t) is obtained [6, 13]

-H ot
P{t)=1-e " (9)
1*
where Hu can be obtained from eq. {7) introducing a0 = 1. Considering that
H, << 1 eq. (8) can be simplified
Pu(t) =H t=H t exp(-h) (9a)

Introducing the values H0 = 0.2, h =20 and t = 1 hour gives the failure

rate per hour
-10
F=0.2 exp(-20) = 4.1 x 10

The probability of failure during a service life of around 25,000 hours would
thus be 10-5.

In this example, just as in the following treatment the statistical varia-
tion of the ultimate load of the element has been neglected. The influence
of this variation can be taken into account by methods available [6, 7] , but
it is estimated to be less important in comparison with the rather large un-
certainties connected with the gust load spectrum assumed.

If the load level is changed by a factor ¢ according to eq. (2), this
implies that both the amplitude and the mean load will be changed by this factor,

while the static margin is not proportional to the load level. Thus

Su/Smo -¢ n -c¢
8y = (8, - 88, -8 ) =g T e n (10)
w "mo u
Failure occurs when
8§ . 2 8, (11)

ar - 1

10



Eq. (7) can be generalized including a redistribution factor ¢ [32]
H=H exp(-h sai/c) {7a)

Introducing eqs. (10) and (11) into (7a) gives

Hu = H0 exp [—-h(nu-c)/c(nu-ﬂ] (12)
or
H o=H exp(-hi) (12a)
where
h n -¢
hy = = —3 (13)
c G

5. FATIGUE CRACK INITIATION AND REDUCTICON OF ULTIMATE STRENGTH OF THE ELEMENTS

Results from fatigue testing indicate that the probability distribution
of the life in number of cycles or hours is approximately log-normal, although
it may be just as reasonable to assume some other similar distribution, as far
as we know at present. In the first place one should know the moment when a
crack starts to cause a measurable strength decrease in an element. This moment
ig likely to occur slightly before the crack can be detected at an ordinary air-
line inspection. Very little experimental evidence is available. It is thought
to be acéeptable, however, for & structure of 2024 aluminium alloy to assume
that the moment of incipient strength decrease coincides with the moment of de-
tectable crack length, which moment will be called the crack initiation. The

time to crack initiation Tc is now taken to be log-normal, i.e.

. (14)

P_=¢

where uc and G, are the mean value and the standard deviation of 10log Tc.
The mean value varies considerably with stress level, stress concentration and
material. The standard deviation seems to be usually within the region 0.1 - 0.3
[14, 15]. In the following numerical examples TC5O = 1d*c = 50,000 hours and
a, = 0.1 and 0.2 have been chosen as representative values.

The said parameters uc and Uc apply to the original lcad level of
the elements. When the load is increased by a factor c¢ according to eq. (2),

the time to crack initiation is reduced. This fact can also be expressed by

11



the introduction of a fictitious fatigue service time x which is proportional

to a power ¢ of the load redistribution factor o
x="Tc (15)

When varicus load levels are included, the parameter x should replace Tc '
and x is thus assumed to have a log-normal distribution according to eq. (14).
fumerical evaluations of available test results from constant ampliitude testing
seem to indicate that o normally has a vaiue between 2 and 4, with an average
of arcund 3, which has been used in the following calculations.

Many investigationz have recently been devoted to the crack propagation
in metal sheets and stiffened panels both under constant and variable amplitude
loading. A combined analytical and empirical approach may soon result in a
rather reliable and general method of estimating the crack rate £ﬁ6] . If
such a method is supplemented by extensive testing of the residual strength,
especially at short crack lengths, together with theoretical studies [ﬁ?] s
the experimental background for determining the fatigue life of fail-safe struc-
tures would be rather complete. In this analysis the simple assumpiion is made
that the residual static margin of an element decreases linearly with the time
of service t from the initiation of the critical crack. The regidual static

margin, at the time t, in an assembly where no eiement has failed, is denoted

e

"ot

Sye =1 - /R (16)

where R is a parameter of the dimension hours, indicating the inverse rate
of strength reduction. A study of a non-linear strength reduction curve has
revealed that the influence of a realistic deviation from a straight line is
not so important for shorit inspection intervals 53] .

The strength reduction parametsr R is obviously a stochastic variable.
“he scatter in R is less than for the time to crack initiation and further
the crack propagation time is probably rather short in comparison with the whole
service life for the narrow sheet elements under considerstion. The value of
R has therefore been assumed tc be constant in the analysis. In the numerical
evaluations it has been given different values from 3,000 to 15,000 hours.

When the lcad level is changed due to an element failure this will affect
the residual static margin in two ways, partly according to eq. (10) and vartly
because the crack propagation time will be influenced. The latter fact can be

taken into account by introducing, in analogy with eq. (15), a fictitious

12



strength reduction service time ¥y
y=to (17)

The expected number of times per hour of aectual service time a gust load

amplitude exceeds the residual static margin can thus be ekpressed
H = H_ exp [—hi(1 - y/R)} (18)

The value of B should be rather close to that of ¢ according to

test results. It is assumed in the numerical calculation that B = o = 3.

6. CONSECUTIVE FAILURES IN AN ASSEMBLY DURING ONE INSPECTION TNTERVAL

In chapter 5 the fictitious service times x and y were introduced
in egs. (15) and (17) as directly proportional to the crack initiation time
Tc and the crack propagation time t respectively. Now if the factor of pro-
portionality is the ssme in both cases, i.e. o = 5 , it is obviously possilble

to write the relationship between the sums T = Tc +t and z =x+y.
z2=KT (19)

where K is a coefficient depending on the load redistribution factor c .

The following diagram illustrates the relations between the time variables

{assuming o # B).

7
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Considering the consecutive crack initiations and failures of a number
of parallel elements, there are a large number of possible sequences of occur-
rences. The first crack initiation ¢ 1 may either be followed by the first
element failure f 1 or the second crack initiation ¢ 2 . There are three
different sequences in which one can arrive at two failures and fifteen
sequences to three failures, and so on (it is postulated that the sequence of
failures is always in the right order f1, f2, 3, while the order of the creck
initiations may change, e.g. ¢1, ¢2, c3, or c¢2, cl1, c3).

The case of three consecutive failures will now be studied, assuming first
the following sequence e¢1, f1, c2, £2, ¢3, f3, which is also demonstrated in

the diagram below (assuming o = B).

[

;’_Ji

The service time T3 until the third failure can be determined by writing

%= Ty (20)

X, Ty + K (T, - T,) (21)

Ir

14
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where K12 = cj .

The factor cj applies to the position J of the element with the second failure,
provided failure no. 1 has occurred, Further

% = T, + K13(T2 -T,) + K23(T03 - Tz) (22)
where K13 and K25 are constants analogous to K12, j denoting here the
position of the element that will fail as no. 3, provided that only the first,
and both the first snd the second failures, respectively, have taken place. -The

following relations hold for the crack propagation time.

¥, = Ko % (24)
y3 = K2§ t3 (25)

From the six equations (20) - (25) T,, 7, and T5 can now be evaluated

Ty =X, t ¥y =7 (26)
T, =T + t,=x, + % --1—(}{ +y)+
2 c3 2 1 1 K12 1 1
b (gt v = m (- ) vy (27)
12 12 12

3 c3 3
X
1 13
S s B ) .
1+ K, ¥, "X, Ky
+ (xz, + y,)( L K1§—— Y o+ (%, +¥5) g .
2 72 Ky Kyp Kog 3757 Koz
X 'S
1 1 13 1 1% 1
= z,{1 ~ - + Y+ z,( - ) + 2,0 =
1 Kip Koz KypXpg 2V Ky, Ky Ky 5 Koz
= k31 z1 + k32 22 + k53 25 (28)

Since it has been assumed that the change in load distridbution among the members
due to crack initiation is negligible, it follows that if o = B, the same
egs. (26) - (28) will result for the other possible sequences of crack initiations

and failures.

15



The time until the fourth failure T, can be obtained analogously

4
- (1 "1_ 1 . K15 ) 1 . K14 i K15 K24 . K24
47 Bio Kop Kip Koz gy " Kpp Ky Ky, Kpg Ky 7 K5 Ky
AN K15 K K 4)+
21 K K., K K., K
\ 12 12 23 12 734 12 723 54
1 ) 1
+ + 2, =/ =
S\Ky Ty T T,
=Ky Byt k42 Zy + k45 2 + k44 2, {(29)
where K14, K24 and K34 include the c-factors of the element which fails as

no. 4, when the first, the first and the second, and the first, second and third
failures, respectively, have occurred, The following failures 5, Braee M give
similar formulas, although the length of the expressions for the coefficients
k will increase very rapidly.

The criterion for collapse of the whole assembly beiween two inspections

v=1 and v is that all the m elements fail within the inspection interval

T <T,< T, (30)
or

Ta Ty < tinsp (30a)
where

tinsp = Tv - Tu-1 (31)

The probability of total failure within interval no. v may thus be written
P(Tm - IIIU-1 < flnsp)

When the number m of parallel elements is large, it is not necessary
to calculate the time for the higher orders of failure, since the time between
the consecutive failures tend to decrease rather rapidly. There is in practice
a critical number of failures q which involves immediate failure of the whole
assembly. The critical number obviously depends on the magnitude of the mean
load and the load amplitude spectrum applied, Under the assumptions made in
the numerical evaluations it has been found both theoretically and experiment-
ally that q = 2+3 for an assembly of six parallel elements.

The first failure f71 can occur in any one of the m parallel elements

16



with the same probability. The second failure may take place in any of the
remaining m-1 elements, although it 1is most likely that elements adjacent to
the first failure will be fractured next, since they arc more heavily loaded
than the other elements. The further failures will follow, almost incvitably
in the vicinity of the elements already fractured.

In the case of m = 6, there are altogether 6 ® 5 = 30 possible sequences
of two failures and 6 X 5 % 4 sequences of three failures. Table I gives the
load redistribution factors Cj for the remaining elements according to egs.
(3) - (6) after one and two failures. Due to the symmetry of the elements it
is only necessary to show half of the possible combinations. It 1s obvious,
however, that scme of the segquences listed, which cause rather small load con-
centrations, do not contribute sc much to the total probability of collapse,
and may therefore be neglectea. The most important sequences of two failures
are (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), and the corresponding ones on the
other side of th - awxis of symmetry. The numbers within brackets dehote the
gositions of the elements that fzil. The third failures will occur for the said
seguences in the elements with the positions nos. 3,2, 3,1, 2,1, respectively.

Each sequence of failurcs corresponds to a sct of coefficients K12, K13
and K 53 obtained by rising Cj to the third power, and of the resulting co-

efficicnts according to eq. (28). When computing the probability

51’ 52’ 55
of total failure of tho assembly, the contributions of all the important sequences

must ve added teogether.

7. PROCESS OF CONVCLUTICN

Ir. the preceding chapter the service time Tq until the critical number
of element failures has occurred, was expressed as a linear function of the fic-
titious service times x and y until the first and the subsequent crack initia-
tions anc failures, the frequency functions of which times are assumed to be known.
I+ is now possible to write the disiribution function of T as & product of 29

integrals [181 , wnere x and y are positive variables.

Tk 4% Tk g Xq =Ky T g7 Ky %517 %gi 1Y 11

B(T = ) =fpc(kq1 1)d(kq1x1)/g(k ¥yl T4 fpc(kqixi)d(kqixi) x

o
g~1 q-1 qQ g-1
T-kq1x1—kq1y1-...-kqixi T- ; kqixi' kql 5 T- kqixi - ? kqiyi
x k .y, )dlk .y.) - . . k d 2
f gl ;v;)alky,55) f po(k x )al, %) [ el oy )alk, ) (32)
o 0 0
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The frequency function of the fictitious fatigue service time x; until the

crack initiations nos. 1, 2,...y 4,.44, q is log-normal according to eq. (14), i.e.

10 2
1 (Tlogk_ . x -pu)
b (k.. x,) = exp |- a5 7 e (33)

et gl 5 o
kqi xi Uc ST c

Starting from the failure rate expressed in eq. (18) the distribution function
of the fictiticus strength reduction service time Y until the failures nos.

Ty, 244eey 14+02a @ can be obtained as [2]

. by Yy
Gly;) = 1 - exp [Ej- (1 - exp =g ) exp (~h,) (34)

1

and thus the frequency function

d G Yy
g(yi) = E}; = HO exp [- hi(1 -5 ) +
M, by ¥y
+ E;' T - exp—% exp (-hi)] (35)

If egs. (33) and (35) are introduced in the distribution function of eq. (32),
this cammot be integrated in a closed form. In order to meke a numerical csl-
culation practically feasible a number of approximations have therefore to be
introduced.

In ordertv.be able'to study the influence of inspections it is necessary
to investigate each inspection interval separately. It is convenient therefore

to write according to eq. (28), introducing q = 3,

T5 -1 4= k31(x1 + y1) + k52(x2 + y2) +

+ k33(x5 + ys) =T 4= (36)
and
Q3 = Q,3a + QSb (z7)
where
Qﬁa = k31 X, + k32 X, + k53 X5 - T o1 (38)
U5p = K31 4 * Kzp ¥y kg5

First Q3a is convoluted separately. Since 'k31 + k32 + lc53 =1 it is
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possible to rewrite Q

A&
QBa = kyq X+ Ky ¥ + 1:35 X5 - TU_1(k31 + 1«:52 + k33) =
= km(x1 =T+ k32(x2 - Tv-1) +-k35(x5 - Tu-1) (38a)

If the inspection interval t. is not too long compared to the whole service

insp
1ife of the aircraft structure, the frequency function of x can be assumed to

be constant over the whole interval and equal to the maximum value at the end
of the interval T = Tv’ adopting the prineciple that all approximations in-

troduced should, if possible, overestimate the probability of failure

o (x. (39)

cr 1v

) =T

iv
within the limits 7, <x,  <T <T, ,+ rL . Egs. {(20) - (22) give the
- - U
values of Xg9 Xp and x,. To simplify the %nalysis the following conservative

3

assumptions are made

1., When computing Xo the first failure is assumed to have occurred immediately

after the inspection, i.e. T1 = Tu- Consequently the following value of

1!
X5, at the end of the interval v, should be introduced when computing

T, according to eg. {39)

X =T + K12 t

2v v=1 (40)

insp
2. When computing x3 the first and the second failures are assumed to have
occurred at the beginning of the inspection interval TT = T2 = TU 1 and

thus

X}u = 'I‘Um1 + 1{23 tinsp (41)

Further
x, =T + t (42)

The frequency function of

) (43)

u, = kﬁ(xi -7

i v=1

is now riv/kii if u, dis bdetween the limits O and k}i/riv + The distribu-

tion function of Qﬁa is then easily integrated
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3a . U307 Y, .
v —2v . 1 -
Q (Qja) f du, fk du, / T duBH
32 33
o
Ty 2y 73 3
= %, (44)
31 732 733
In the case k31 =0, i,e. U, = 0, the distribution function of Qia
is obtained as
Qﬁa r Q5a‘u2r r,
o 32 o 33 32 733
Ir k31 = k32 = 0 the distribution function ig analogously
T
v
k%B Q}a (44b)

The sum st is then convoluted replacing g(y) of eq. (35) by 2 quasi-
truncated normsl frequency function

a

gly;) = ;%g; exp [—(yi - ui)g/Ecﬂ (45}

1

The three parameters zl, by and O, are determined uniquely in terms of hi '

H0 end R from the requlrnments

1. Both frequency functions, egs. (35) and (45) have the same maximum value

for the same time ¥i (two conditions)

2. Both functions have the same value for yi = 0.

A closer study of the frequency functions reveals that g(y g(yi) as long
as y. g My if the requirements mentioned are satisfied. For ¥y >-Mi the
risk of failure is so big that in practice the inspection interval will never
be allowed to reach such a high value.

The maximam of g(yi) is obtained by differentiating with respect to ¥y
It occeurs at

R e hi
= E; log H R + R (46)

and the natural logarithm of the maximum value is
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e e hi R Ho
108 8(y )y = o8 g = 1+ exe(-hy)

Requirement 1. thus gives

R e i
By =% 08Fg TR
1 O

elog é(ui) = elog Ei - elog oy - elog /2T =
e hi Q
= log | + exp(-hi) -1
1

According to reguirement 2. further

2
My

e e e e
log fi - log g; - log /om - 5 = log H0 - hi

2 o,
i

A combination of egs. (49) and (5C) yields

V[_{e h, RH,
a, = “‘i/ 2| log g ] +h, + h exp(-hi) - 1]

Pinally £, is solved from eq. (49)

h,
i

RH
e e ) e e
log 2, = log 3 + H exp(-hi) - 1+ "log /2m + "log o,

It should be observed that My is not the mean and o5 is not the

standard deviation of the truncated distribution.

The frequency function of k}i ¥ has thus been replaced by a quasi-

trmeated normal frequency function

E
g(k51y ) = k c‘/ﬁ_' exp[:(k51 i~ 31“1) /2k31 1]
3

The frequency function of ij b k5 y igs then known [18] to have a

(47)

(48)

(49)

(50)

(51}

(52)

(53)

slightly lower value than the foliow1ng nermal freguency function {(Appendix B)

2 2 2
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where

2
4= il Bi (55)
2
b= g2 Bgg by g : (56)
2 2 2
0= 351 B3y 95 4 (57)

The distribution function of Q5 according to eq. (37), can now obtained
by convolution of Q}a and QBb employing eqs. (44) and (54).

3
Q
Q. - W
31 b
ksp Ky f ) ECYO(‘E—G_) Wz (58)

Q. -
where -:;?(—zp—ﬁ——) is the frequency function of ]
With the substitutions

V= (q5 - u)/o (59)
-u/o (60)

eq. (58) can be brought under the following form (Appendix C)

3b

H

[}

fr
F, (Q;) = 1y 2y Tv ;(?9'5*'5?}) F(F) -
3757 6 kg ksz 35 | [

B00] + (92 4 2)P (8) + (322 + 329:4.-%2-2)?(14.)} (61)

The notations @(2%) and §(x) have been introduced for the normal distribution
functions of ¥ and x , while #(¥#) and ¥(u) are the frequency functions
of the same variables.

Introducing the length of the inspection interval ty nsp in eq. (61) will
thus give the Probability of total failure during the 1nspect10n interval under

consideration with the assumed sequence of element failures.
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8. PROCEDURE FOR NUMERICAL CALCULATIONS

As a result of the analysis in chapter 7, a procedure for calculating the
probability of failure of the assembly has been established including the following

steps.

a. Analyse the pessible sequences of failures and determine the critical number
of failures q by studying the c-factors obtained from egs. (3) - (6). In
the case of six elements (see table I) qs3 and the essential sequences of
failing elements are (numbers within brackets denote the positions of the

failing elements)
(1, 2, 3} (1,3 2) (21, 3)
(2, 3, 1) (3,1, 2) (3, 2 1)

and the corresponding ones on the other side of the axis of symmetry.

b. Compute for each essential sequence of failures the coefficients k which

define the relationship between the fictitious and the real service time.

For ¢ = 3
1 1 X13 :

kg = 1 - f:; - R;; + X, K23 (62a)
I M 5 (62)
327 Ky Kyp Koy
K, = —— (62¢)
55~ K,

where X = cjﬁ.

The indices 12 and 13 of K refer to cj-values of the elements which are
going to fail as nos. 2 and 3 respectively, after failure mo. 1 has taken
place. The index 23 analogously means that a Cj should apply to the

element failing no. 3 after two elements have failed.

C. Compute for the essential sequences the frequency of crack initiations nos.

1, 2, 3 (i) at the end of the inspection interval v, ie. T=17 = T o +t

1 ( (1Olog X, - ug{ﬂ
J

insp

(63)

r, =p(x; ) =———="75=6xp -
iv ¢ iv xiu CE Jen C2



where and ¢ are constants, assumed to be known for the elements under
o C

consideration, and

Xgp = T, ¥ tinsp (64a)
You = Too v Ky by (640)
XBU = Tv-1 * K23 tinsp (64c)

Compute for the said essentizl sequences h. according to eq. (13)
h - .
h, = — . 2 i (13a)
i c. n
J
where h is a gust load parameter and n, the ultimate design load factor.

The cj-factor should apply to the element failing as no. 2 after the first

failure, i 1, and to failing element no. 3 for 1 = 2. Compute further

R e hi
by *qo log g +R (48)
i 0
V/ [é hi RHO
o, = p,i/ 2 logﬁH— +hy 4 exp(—hi) - ‘1] (51)
o i
and RH
elog £ = Elog‘?% + E_g exp(—hi) -1+ elog|/2n + elog 9 (52)
i

H0 is the other gust load parameter while R is the strength reduction

parameter. Finally for q = 3 obtain-

bomhig Ky 4wy gy 4y kg (56)

g = dng k§1 + 012 k§2 + 022 k§3 {57a)

L= 2 Ay b, (55)
If the length of the inspection interval is tinsp service hours the

following parameters should be computed

17

(t - /o (59a)

insp

n = -ufo (60)

]

Read in a Gaussian probability table
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@ (F) = T}{’ exp(—ﬂ'g/2)
D
F(2F) = % eXp(-—"\'}E/z)cL-G-

and also @{n) , @n) o

Compute the probability of failure of the assembly during one inspection

interval v , assuming e certain sequence of element failures.

3
g fr r T
v "2v " 3vu
Fu(tinsp) T fk,, k., k {(7}3* 37) [@('ﬁ')'ﬂ“):[ +
31 732 733
+ (192 + 2)P(F) + (-37}2 + 3%n - W -2)?’(;4)} (61a)
Eg. (61a) is not valid for the rather unrealistic cases k31 = 0, k52 =0
or k31 = k52 = 0. Compare eqs. (44), (44a) and (44b).

Make the corresponding computations for all other important sequences of
element failures. The sum of the contributions of all sequences gives the

probability of failure of the assembly during the inspection interval v .

P = T F, (65)
Yoanl Sequences

Repeat the procedure for all the other inspection intervals 1,...n. Add

the coniributions of the inspection intervals
n
P = ¢ P (66)

It should be observed that % and x depend on the length of the inspec-

tion interval only and not on the number ¢ of the interwval.

Numerical evaluations have been carried out on an electronic computer, using

the procedure outlined above, for an assembly of six identical, parallel elements.

The following parameters were chosen

Crack initiations T 50,000 hours

c 50
O' = 0.1 a.n.d 012
¢
Strength reduction: R = 3,000, 6,000, 10,000, 15,000 hours
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Heavy gust spectrum: Ho = 0,2
h =20
Inspection intervals: tinsp = 1,000, 2,000, 3,000, 4,000, 5,000,
6,000, 7,000, 8,000, 10,000 hours
Ultimate design load _
factor Oy = 5-75

The computations of the probability of failure have been proceeded until a maximum
limit service life TL of the aircraft of 50,000 hours. The results are presented
in figs. 3 - 9, the first six of which give the probability of total failure P
versus TL for various lengths of inspection intervals, assuming different values
of the standard deviation o, and the strength reduction parameter R. Fig. 9
shows the influence of a variation of R for one length of the inspection interval

t. = 4,000 hours and o = 0.1, at a limit service time T, = 30,000 hours.
insp c L

9. _ PRELIMINARY THESTING

The theoretical treatment of an assembly of parallel members needs experi-
mental support. A reliable proof that the method advanced gives adequate distribu-
tion functions of the service time to collapse, would require a very extensive
fatigue testing program. Such a program is being considered. So far, some preli-
minary testing has just been finished. Although the results have not yet been
analyzed in detail, a brief account will be given.

Tne test specimens which had a centrel, circular hole as a notch (fig. 2),
were manufactured from a sheet of 2024~T3 aluminium alloy (Swedish Specification
3526-38) with the dimensions 1000 x 3000 x 1.5 mm. The total number of specimens
was around 200, from which 24 assemblies with six in each were chosen by a random
procedure. Further 24 test pieces were selected for single-specimen testing. The
fatigue testing of the assemblies was carried out in a 6 tons Schenck horizontal
pulsator and the testing of the single specimens in a 2 tons FFA resonance machine,
both at a speed of 2,000 - 3,000 c/min. Due to lack of equipment for random load
testing a constant amplitude loading was applied. The fluctuating tension load
had a mean of 300 kg and an amplitude of 150 kg per sheet specimen. Since the
net area of the specimen section is 30 mm2, the stress cycle was thus 10 + 5 kg/mm2
{14,200 % 7,100 psi) as long as no redistribution of the loading had taken place
in the assemblies.

The maximam error of the load amplitude in the Schenck machine is believed
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to be + 15 kg, i.e. less than 2 per cent of the total amplitude 900 kg, while

the 2 tons machine gives an error of less than + 5 kg. The load distribution

in the assembly was checked by strain-gauge measurements on each element. The
loads in the elements were originally adjusted by means of turning the excentric
bolts, which formed the pin-joints at one end. The adjustment proved to be rather
laboricus due to the interaction between the members of the gtatically indeter-
minate assembly. No element, however, was sllowed to have an amplitude differing
more than + 5 kg from the mean amplitude of the six specimens, The load distribu-
tjon was fairly constant among the elements until the first element failure had
occurred, when a load redistribution tock place. In most of the assemblies tested
this was in good agreement with the loads computed mccording to Appendix A. The
generation and propagation of oracks was watched by means of a magnifying-glass.

The material propertiies of the test specimens were determined on three

coupons taken from various parts of the sheet. The following mean values were

ohtained.
0p.p = 3149 kg/m® (45,400 psi)
o, = 44.3kg/m’ (63,000 psi)
E = 7300 kg/m2 (10.4 x 10° psi)

The test results from the single specimens are shown in table 1I, ordered
with the shortest fatigue life (to failure) first and then increasing number of
cycles. Below the table the logarithmic mean values and standard deviations have
been calculated for the crack detection and failure. The test values have also
been plotted on a Gaussian probability paper in fig. 10, computing the probability
by P =M/(N + 1), where M is the fatigue life order number and N = 24 the
total number of specimens tested. Straight lines obtained from the calculated
values of table II have also been drawn to show the fit of the lognormal distribu-
tion. The mean of 1Olog Tc corresponds to a life to crack detection of 240,000
cycles. The fatigue life to failure has its logarithmic mean at 300,000 cycles.
The standard deviaticn of 10log Tc is about 0.09 and of 1Olog T slightly less,
0.075. The number of cycles bet;een crack initiation and failure is thus on the
average about 60,000 with some tendency to increase with increasing number of

cycles to crack initiation. Since failure always occurs when the residual static

margin is
Sot = 5/(44,3 - 10) = 0.146

the aversge of R may be obtained from eg. (16)
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60,000/R
R

1 - 0.146 = 0.854
70,000 cyclses.

[}

Instead of assuming a constant value of R, a better approximation would probably
be to introduce a linear variation of R with the number of eycles to crack
initiation. It should be noted, however, that fig. 10 does not give corresponding
test points together, from crack initiation and failure of the same test specimen.

Table III gives the test results from the assemblies, which have not been
ordered after the length of their fatigue livea. Assembly no. 24 has been omitted
from the table since the loading had obviously not been within the limits stated
above. As the crack which was first detected, did not cause the first element failure
more than in about half of the assemblies, the detection of the critiecal crack has
alsc been recorded. In assembly no, 23 two elements with the positions 3 and 4
(symmetrical) failed at the same time, whereas the collapse of the assembly took
place 4,000 cycles later. 1In all the other assemblies total failure occurred at
the same time as the second element failure, i,e. the critical number of failures
was normally g = 2. The number of cycles between the firat element failure and
the collapse of the assembly was in most cases only a few rer cent of the total
number of cycles to collapse.

Fig. 11 shows the test results from the assemblies plotted on a Gaussian
probability paper. If the number of cycles to the first (or critical) crack and
to failure have lognormal distributions

10
log Tc = B

1-8
%
and analogously for T1, the distribution functions for the assemblies are, for

the first crack

6
10
log Tc -,

1 - 1~ 8

a
c

and analogously for the number of cycles to the first element failure. These

distribution curves, which are not lognormal, are also presented in fig. 11.

They seem to be in fairly good agreement with the experimental points. A statistic-

al sz-test gave the result that there is no significant deviation of the experi-

mental values from the distribution calculated from the single-specimen test results.
The distribution function of the life length until collapse of the agssembly

can be calculated using, in principle, the numerical procedure described above,

if the load spectrum is substituted by a constant load amplitude. It should not
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be necessary to go further than to element failure no. 2. 8ince no inspections
have been performed and the inspection interval thus includes the whole life
length, some approximations will have to be modified. This analysis and the

comparison with test results has not yet been completed.

10. DISCUSSION

The theoretical study presented above should be regarded as a preliminary
attempt to treat in detail the gafety problem of a built-up fail-safe structure.
Only a very simple assembly consisting of six parallel elements has been consider-
ed. The fact that the numerical procedure given in chapter 8, is gtill far from
simple, does not lock too promiging for the future development of the method to
suit complex structures. It seems to be possible, however, to make a more gereral
treatment of the problem, which would reduce the numerical work and make it prac-
tically feasible to evaluate also aircraft structural components of quite reslis-
tic appearance. The results obtained in this report are of importance mainly
because they prove that the probability of collapse of a fail-safe structure con-
sisting of parallel elements can actually be calculated taking into account rather
detailed conditions regarding service and structural behaviour. The diagrams of
figs. 3 - 9 also show the influence of a variation of some parameters, such as
the inspection interval and the strength reduction parameter.

Regarding the basic gssumptions a number of simplifications have been
introduced, although the aim was to treat the problem under rather realistic

conditions. The most important of these gimplifications are:

1. Linear strength reduction with time.

2. Constant value of strength reduction parameter R.

3. No variation of imitial ultimate strength and static margin, and
thus according to point 2, no variation of residual strength at
any time t after crack initiation.

4. Detection of cracks only at regular inspections.

5. Effect of replacement of cracked or fractured elements on crack

initiation neglected.

Simplification ne. 1 has been studied in an earlier report [3], where
it was concluded that the actual strength reduction curve should preferably be
used, if it is known from experimental or theoretical investigations. 1In the
numerical calculations, when carried out on an electronic computer, a non-linear
strength reduction does not involve too much additional work or complications.

The linear relationship, assumed in this report, is thought to be realistic for
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some structural elements and the results obtained should be valid for all sorts
of elements when the inspection interval is shorter than some 20 per cent of the
strength reduction parameter R.

Points nos. 2 and 3 are connected with each other. The scatter of the ini-
tisl ultimate strength of an element made of structural steel or aluminium alloys
seems to be rather well established, the coefficient of variation ranging from
0.015 to 0.05 [19]. The residual strength or static margin at a certain service
time, or number of cycles, after the crack initiation is obviously also subjected
to some variation, which cannot yet be assessed from available test data. Instead
of considering scatter of the residual strength, one can alsoc treat the crack
propagation time from initiation until complete fracture as a stochastic variable.
This would mean that the strength reduction parameter R is also a variable and not
a constant as was assumed in this analysis. There seems to be a tendency in the
test results, presented in chapter 9, towards a longer crack propagation time for
elements with longer time to crack initiation, implying that introduction of some
relaticnship between R and 'I'c might be necessary. The influence of a variation
of the static margin, e.g. by varying the parameter R, which will, no doubt, com-
plicate the analysis considerably, has not yet been studied.

Larger cracks and element failures can often be detected also between the
particular inspections, where all fatigue-sensitive areas of the structure are
scrutinized taking it apart or using the technical equipment necessary to find
small cracks in hidden positions. This fact can be taken into account by intro-
ducing in the analysis one more type of inspection in which it is assumed that
all cracks involving a certain rather large strength reduction, are discovered.
Such simplified inspections, which could be rather frequent, possibly daily, may
reduce the probability of collapse considerably. It should be kept in mind, how-
ever, that an inspection procedure must have a reliability very close to 100 per
cent. Such inspections are expensive, even if they only aim at finding rather
extensive fatigue damage. It is not obvious. therefore, that the operator will
find it economical to undertake the frequent inspections. If cracks or failures
are found only occasionally, the favourable effect can hardly be estimated.

Those elements which have a detectable crack or are fractured at the in-
spections, are supposed to be replaced by virgin elements. During the earlier
part of the service life of the assembly very few cracks occur and it is conse-
quently a good approximation to assume that all elements have the same fatigue age
as the assembly. A4t the limit service life some 10 per cent of the elements may

have been replaced, on the average, in a normgl design. The replacement effect
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can probably still be neglected without serlous errors. Only when the probability
of crack initiation in the elements is high, 0.9 or even more, it is obvious that
the actual ages of the elements must be taken into account. This can easily be
done in the numerical calculations. The replacement effect was not included in
this analysis, since the aim has been to obtain as simple formulas as possible.
The probability of failure computed is thus somewhat too high for long service
lives,

Tn the mathematical treatment of the convolution problem the freguency fune-
tions of the time until crack initiation, as well as the time from crack initiaticn
to element failure, have been replaced by other functions which simplify the inte-
grations. It has thus been assumed a step function for the frequency of erack ini-
tiation, the function being constant within each inspection interval and equal to
the actusl value at the end of the interval. This approximation should be quite
acceptable for short inspection intervals, whereas it is probably too much on the
safe side when the whole service life consists of only a few inspection intervals.
It is possible, of course, to refine the approximation by subdividing the inspec~
tion intervals into shorter steps. This will cause an increase of the volume of
the rumerical calculations, which is not so serious, since exactly the same program
can be followed.

The replacement of the exponential frequency function of the time to element
failure by a gquasitruncated normsl freguency function is permissible only between
zero and the maximum of the functions. This implies that the procedure proposed
is not quite generally applicable, which has caused same trouble in the numerical
calculations carried out so far. The errors introduced have not yet been investi-
gated for all values of the parameters chosen in the calculations, and some of the
results where the accuracy is guestionable have been omitted from the diagrams in
figs. 3 - 8. It might prove to be more advantageocus to use instead of the normal
frequency function a Fourier series or some simple power geries. The choice of
replacement function should preferably be guided by the gupply of suitable standard
programs for the electronic computer utilized in the numerical evaluations.

The results of the computations performed, are shown in figs. 3 - 9. The
first three of these diagrams give the probability of total failure P of the
assembly versus service life time TL until 50,000 hours for various lengths of
inspection intervals, assuming the strength reduction parameter R to be 6,000,
10,000 zand 15,000 hours respectively. All three diagrams have the same standard
deviation for the logarithm {base 10) of the time to crack initiation, g, = 0.1.
The next three diagrams, figs. 6 - 8, are analogous, the only difference being that

the standard deviation is twice as big, o, = 0.2. Fig. 9 gives the variation of P
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with R for one length of inspection interval t nsp = 4,000 hours and a limit

service time TL = 30,000 hours, using the smaller standard deviation 0 = 0.1.

The other three gust load and crack initiation Parameters, employed in the analysis,
have the same values in sll diagrams. The probabilities of total fallure are ex-
tremely small at short service times, where the curveg are very steep. This is
expecislly irue for the small standard deviation in figs. 3 - 5. When approaching
the logarithmic mean of the crack initiation, T = 50,000 hours, the curves are much
flatter and the influence of a variation of the standard deviation is less pronounced.
It is obvious that inspections form an effective means of reducing the probability,
The inspection intervels should be considerably shorter than the strength reduction
barameter R, however, to give an adequate safety level for a limit service time of
some 30,000 hours. The influence of a varistion of the parameter R is considerable,
which can be studied by comparing mutually the diagrams in figs. 3 - 5 and also
those in figs. 6 - g, respectively, or directly in fig. 9. It is thus important

to determine rather accurately the crack propagation time and the similtaneous
strength reduction.

The preliminary testing with constant amplitude loading has not yet been
analyzed in detail, using the numerical Procedurs. It can be observed from the
results that the time from the first element failure until total collapse of the
assembly is rather short compared to the whole life time. This wight imply that
a close study of the following failures nos. 2, % ... is not worth while. ‘Since
the testing has neither included inspections, nor random variable amplitude loading,
general conclusions carmot be drawn at present. It is believed, however, that
further theoretical and experimental investigations, carried out in close connec-

tion, will result in g simplified, although more adequate procedure.

32



REFERENCES

1.

5.

6.

Tnternational Civil Aviation Organization, Airworthiness Committee. Agenda
Ttem 2: Structures, 2.2 Fatigue strength. Digcussion Paper Wo. 105,
27/7/59. Third Meeting, Stockholm, July 1959.

Lundberg, B.K.0. and Eggwertz, S. A statistical method for fail-safe
design with respect to aircraft fatigue. Advances in Aeronautical Sciences,
Vol. 4, Proceedings of the Second International Congress in the Aeronautical

Sciences in Zirich, London 1962, p. 721 - 748.

Eggwertz, S. Inspection periods determined from data of crack development
and strength reduction of an sircraft structure using statistic analysis.
FFA Technical Note No. HU-910:1, June 1961; to be published in the Proceed-
ings of the ICAF-AGARD Fatigue Symposium in Paris 1961.

Lundberg, IB. Fatigue life of airplane structures. The 18th Wright Brothers
Lecture, J. Aero. Sci., Vol. 22, No. 6, June 1955, p. 349 - 413. Published
also by The Aeronautical Research Institute of Sweden as FFA Report 60, 1955.

Lundberg, B. A statistical method for fail-safe fatigue design. FFA
Technical Note No. HE-850, June 1959.

Freudenthal, A.M, Safety, reliability and structural design. Journal of
the Structural Division, Proceedings of the American Society of Civil
Engineers, ST3, March 1961,

Preudenthal, A.M. Fatigue sensitivity and reliability of mechanical
systems, especially aircraft structures. WADD Technical Report 61-53,
July 1961,

Schijve, J. The analysis of random load-time histories with relation to
fatigue tests and life calculations. Nationaal Luchtvaartlaboratorium,
Amsterdam, Report MP. 207, May 19613 to be published in the Proceedings
of the ICAFP-AGARD Fatigue Symposium in Paris 1961.

Schijve, J. The estimation of the fatigue performance of aircraft struc-
tures. Nationaal Luchtvaartlaboratorium, Amsterdam, Report MP. 212,

June 1962; presented at the Fourth Pacific Area National Meeting of the
American Society for Testing and Materials, Los Angeles, Cct. 1962.

33



10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

Copp, M.R. and Coleman, T.IL, Influence of flight plan on loag historieg
and riding comfort of transport airplanes. Report of the Third Air Naviga-
tion Conference, Montreal, Sept.- Oct. 1956, ICAQ Doc. 7730, Addendun,

Ferrari, R.M., Milligan, I.8., Rice, M.R, and Weston, ML.R. Some considera-
tions relating to the safety of "fail-safe" wing structures, Proceedings
of the ICAF-AGARD Symposium on full-scale fatigue testing of aireraft stpye-
tures in Amsterdanm 1959, London 1961,

Lundberg, B, and Eggwertz, S. The relationship between load spectra ang
fatigue life. Proceedings of the International Conference on fatigue in
aircraft structures in New York 1956, p. 255 . 277, New York 1956.  Publisheq
also by The Aeronautical Research Institute or Sweden as FFA Report 67, 1956,

Coleman, J,J. Reliability of aircraft in resisting chance failures, Operg-
tional Research 1959, Sept.- Oct., p. 639 - 645,

Butler, J.P. Fatigue scatter ang a statistical approach to fatigue life
prediction, Proceedings of Syrposium on fatigue of aircraft structures,
WADC TR 59 - 507, August 1959,

Payne, 4.0, Determination of the fatigue resistance of aircraft wings by
full-scale testing. Proceedings of the ICAP-AGARD Symposium on full-scale
fatigue testing of aircraft structures in Amsterdam 1959, Londan 1961,

Sehi jve, J. Fatigue crack propagation in light alloy sheet material ang
structures. Advances in Aeronautical Sciences, Vol. 3, Proceedings of the
Second International Congress in the Aeronautical Sciences in Ziirich, London
1962, p. 387 - 408.

Kuhn, P.  Notch effects on fatigue and statie strength. NASA Langley
Research Center, USA, Presented at the ICAF-ACARD Symposium on Aeronantical
Fatigue in Rome 1963,

Cramér, H, Mathematical methods of statistics, Uppsala 1945,

Bouton, I. Fundamental aspects of structural reliability, Aerospace
Engineering 1962, June, p. 66,

34



Table 1. Load redistribution factors cj computed from

eqs. (3) - (6) for six parallel elements.

Failed ; Load factor ¢. in element no.
elements — Rl i --m7v~““-~J-;f~--"~77r~—-' B
in order . 1 2 l.._nﬁ,Juim_ffq b 3 o 6
Lo - 180 . 1.50 | 1.20 | 0.90 ~ 0.60
o2 1.54 - - - 1.30 1.18 i 1.0 . 0.93
3 S 129 0 1.25 E - 1,19 | 1.15 0 1.12
b, 2 - 1 3.30 2.10 0.90 | -0.30 |
SRS R 2,66 i - 165 | 1.1 | 0.60 |
1,4 - 2.10 | 1.80 - 1.20 0.90 |
s |- 1.0 | 1.63 | 146 - 1 i
1,6 | - 1.50  1.50 © 1.50 1.50 =
n ; ! E !
! 2, 1 ! - - % 3.30 | 2.10 | 0.90 f -0.30 %
2, 3 224 ' - 0 - i 150 | 129 .07 |
2, 4 178 - - | 1.58 I A -
2,5 | 1.50 - L 1.50 | 1.50 - 50
2, 6 i T - | 1.46 | 1.65 | 1.0 E -
t i
o3, [ o 266 - 1.63 | 1.11 | 0.60
3, 2 ' 2.24 T 1.50 1.29 . 1.07 |
5,4 7 o1us0 | 150 - - 1.50 ' 1.50
3,5 L o1.27 1.37 | - 1.58 - 1.78
3, 6 E 0.90 | 1.20 i - 1.80 | 2.10 % -
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Table 1T,

increasing number of cycles to failure.

Test results from single specimens, ordered with

" order Creck  Failure Order Crack Failure
nunber ke ke number: ke ke
1 137.0 215.6 | 13 265.5 308.9
2 184.5 2213, 14 o 2rnT 324.7
3 193.0 256.0 15 i 2868 326.3
4 204.8 245.1 | 16 215.6 330.5
5 193.0 254.4 17 227.0 537.6
6 241.4 264.7 18 259.0 338.4 :
7 214.2 2671 19 246.0 339.5 |
8 236.6 275.6 | 20 257.5 341.0
9 198.0 280.0 21 512.0 1 3527
é 10 228.9 285.2 22 338.9 | 374.5
BT - 264.0 288.7 23 307.3 389.0
i 12 i 279.7 306.9 24 290.0 402.5
First crack: mean B, = 5.379, Tc50 = 239,000
stand. dev. o, = 0.089
Failurcs mean Y108 T = 5.477, Ty = 300,000
stand. dev. Uiolog L= 0:075
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Teble IIT.

Test results from assemblies with six elements.

Assembly i
No. l

10
11
12
13
14
15

16 :

17
18
19
20
21

22

23

First

crack

ke

S 171.8

1715

180.0

$218.3
‘ 205.9
g 256.7
161.7

195.3

p 248.%

188.9

147.0

' 167.3

178.6

L 201.0

170.5
163.0
146.1
151.9
226,6
160.0
173.6
203.8

178.2

Critical crack

N N

[0

BN

I

" First failure i Total
ke pos.! ke Ffaiﬁﬁre
171.8 2 % 217. 221.3
192.3 5 220. 231.%
180.0 4 228, 256.0
218.3 1 250.9 . 251.9
205.9 3 234. g 252.9
256.7 4 293. 5 303.9
161.7 4 212, ? 222.7
209.1 5 257, i 268.7
é 254.1 % 6 E 317. 328.7
. 188.9 R 214.7
1 193.4 } 1 ‘ 218. 223%.6
% 242.2 ‘ 5 !%9 264.7
| 178.6 E 5 é 236, 243.2
201.0 | 4 | 236. 253.9
- 187.2 4| 2. 252.1
; 165.0 4 235, 237.8
é 156.1 1 | 229. 233,4
é 151,9 6 | 221. 226.6
% 235.1 3 270. 274.4
i 160.0 4 221, 235.4
i 173.6 2 | 292. 301.6
| 246.0 3 | 283. 285.5
160.5 3,4 | 235. 239.7
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Asgembly of six parallel elements connected by pin-joints

to rigid anchorage blocks in both ends.

Fig. 1.
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APPENDIX A

LOAD DISTRIBUTION IN ASSEMBLY WITH BROKEN MEMBERS

In the analysis of the load distribution among the m parallel, identical
members of the assembly it is assumed that the members are connected by pin-joints

to rigid blocks in each end. The leading, mS

7

which has a magnitude m S, is acting on
the blocks. The action line is gymmetrical

with respect to and paraliel with the axes

of the members and remains so irrespective
of the small rotations of the blocks due
to failure of one or more members. The

load on each member is thus 8§ before any

element failure has occurred. After failure
s load redistribution takes place. In a
member with the position number j the load

is denoted cj S, cj being the load re-

distribution factor. It is further assumed
that the elongations of all the members are

proportiocnal to their loading, i.e. the

7 J

members are always within the elastic region.

The assumptions of rigid anchorage blocks and elastic behaviour of the
members will obviously result in a linear variation of the leoad with the position
j of the member.

oy = {a + bj) 03 (4 1)

where coj = 0, if member no. j has failed, and coj = 1, if it still carries
the load corresponding to the elongation of the member. The constants a and b

can be determined by two equilibrium equations.
The resultant force in the axial direction is still

m m
s{azc.+szc.-]=ms (4 2)

The moment of the member forces with respect to the resultant force is equal

to zero
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eqs. (A2) and (43) yield

nfc - B(m+1)/2]

a =

m[B - A(m+1)/2]

afc - B(m)/2] - B(B - A(m+1)/2]

50

o AlC - B(m+1)/2J - B[B - A(m+1)/2]

(4 3)

(4 4)

(4 5)

(4 6)



APPENDIX B

DISCUSSION OF QUASITRUNCATED NORMAL FREQUENCY FUNCTION

INTRODUCED IN EG.(45)

Every frequency funciion f(x) must satisfy the condition

+&=

ff(x)dx=1 (B 1)

-

This is the case with the ordinary normal distribution

(y, - u,)°
[y - ey ]dyi

4o

/ 1 exp j- ———7 — (B 2)
Jooy Jon i 2 oy
.- L

H
e

The guasitrunceted normal frequency functions é of egs. (45) and (53) include,

however, a factor Li which has the effect that

+co

JECRARE G AR (5 3)

-

To overcome this difficulty a constant B is defined by

E
FEICRALCRARE ( 4)
-]

A truncated function E is introduced

é (ksi yi) =g (kEi yi) for k}i yi § E

= >
g(k3i yi) 0 for kﬁ y; 7 E

Since g is a true frequency function, a convolution of QBb using &

will give a true frequency function, which is obviously smaller than the frequency

function obtained when utilizing g (0 = g sg)

+© +o
f g (k5 vq) alksy vy) fé (kgp ¥,) B (G5, = K3y ¥ -
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+c2

+®©

$
-0 - - )
4@ 2
1 (kpy ¥ - keo )
= JLO 21 £2 (/‘—JT exp |- ~-21 g 31 2 d(k31 yo) X
Y, ¥y 0y /om 2 kg, o
- 2
1 Koy ¥a = koo py)
bt — exp .22 32 ] alk,, v.) x
k.. o, /2n 2 K>, g° 52 71
D 32 71 32 M
+® 2
! Sy = K5, = K3y - Kgguo)
X —/—-_— exp |- 55 d(k55 yg) =
Y kg 0, /om 2 k5,0,
1
= 4 4. 2 X
o 71 72 7
L2 2 2 2 2 2
Non \/k31 o + k32 o, + k33 a,
2
) (G kg g Ky ey - Kgg ) (8 5)
exp 2 2 2 2 2

2
2(k31 o, + k32 o, + k35 o,

The last two membra of eq. (B5) follow from the definition of g and from the
theorem that the sum of independent normally distributed variables is a normally

distributed variable.



APPENDIX C

DEDUCTION OF DISTRIBUTION FUNCTICN OF @

According to eq. (58) the convolution procedure gives the follewing

integral for the distribution function of the time %o the third failure Q3

Loxy ( e\

_ _ 31
F%(%)-ék vy f(@t3 05 2o, (c 1)

where is the frequency function of Q.. .
3b

Since

5
>
(Q5 - Q}b) = [-(Qab - 5.].) + (Q,5 - u.)} =

-(Qg, - w)’ + 3(Agy, - w)? (a5 - w) -

3(agy - W) - w7+ (@5 = w7 (c 2)

introduction of the following subatitutions

= (g - u)/o (c 3)
n oo w/o (c 4)
v = (Q - u)/o (@ 5)
E;%’E -° (¢ 8)
gives
Fa, (%) Z; ?2’ ;f ) P[P + 3 3 # o av

Now the folilowing integration formulae are used

\jP'VBQQ(v) dv

Jrvzf(v)dv

1}

- e (v) - 2p(v) + (¢ 1)

- vep(v) + @(v) + C, (c 8)
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Septny av - - 900y c, (c 9)
S - g 4 ¢, (¢ 10)

After rearrangement of the terms the distribution function ig finally

written

(8 - R {08 5 [t -

= 8]+ (B2 4 2) PO 4 (- 382 4 3 - W2 2)6p(n)} (c 11)
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