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Abstract

This paper investigates the possibility of dissipating mechanical energy with piezoelectric
material shunted with passive electrical circuits. The effective mechanical impedance for
the piezoelectric element shunted by an arbitrary circuit is derived. The shunted
piezoelectric is shown to posses frequency dependant stiffness and loss factor which are
dependant on the shunting circuit. The generally shunted model is specialized to two cases:
the case of a resistor alone and that of a resistor and inductor. For resistive shunting, the
material properties have frequency dependance similar to viscoelastic materials but with
much higher stiffness and temperature stability. Shunting with a resistor and inductor
introduces an electrical resonance, which can be optimally tuned to structural resonances in
a manner analogous to a mechanical vibration absorber. Techniques for analyzing systems
which incorporate these shunting cases are presented and applied to a cantilevered beam
experiment. The experimental results for both the resistive and resonant shunting circuits
validate the shunted piezoelectric damping models.

Nomenclature

diagonal matrix of cross sectional areas of piezoelectric bar
generic capacitance

inherent capacitance of the piezoelectric shunted in the i direction
piezoelectric material constant relating voltage in ith direction to strain in jt
direction

vector of electrical displacements (charge/area)

elastic modulus of material

vector of electric fields (volts/meter)

real nondimensional frequency ratio = @/,
vector of external applied currents

modal stiffness

material electromechanical coupling coefficient
generalized electromechanical coupling coefficient
diagonal matrix of lengths of piezoelectric bar
generic inductor :

modal mass

dissipation tuning parameter (RC’,®,)
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generic resistance

Laplace parameter

piezoelectric material compliance matrix at constant field
vector of material strains

vector of material stresses

potential energy of element i

velocity

voltage

static displacement of a system = F/K,
open circuit electrical admittance of the piezoelectric (inherent capacitance)

electrical admittance of the piezoelectric ( sum of shunting admittance in
parallel to the inherent capacitance)

shunting admittance of the piezoelectric (in parallel to inherent capacitance)
generic impedance, mechanical or electrical

effective mechanical impedance of the shunted piezoelectric

electrical impedance of the piezoelectric (shunting impedance in parallel to
the inherent capacitance)

mass ratio (proof mass/system mass)

complex nondimensional frequency = s/,

resonant shunted piezoelectric frequency tuning parameter, ./,
loss factor |

nondimensional resistance (or frequency) = RCsp(o

resonant shunted piezoelectric electrical resonant frequency
natural frequency of a 1-DOF system

piezoelectric

optimal by pole placement criteria
transpose of a vector or matrix
optimal by transfer function criteria

value taken at constant field (short circuit)

value taken at constant electrical displacement (open circuit)
pertaining to resister shunting

pertaining to resonant circuit shunting

value taken at constant strain (clamped)

shunted value

value taken at constant stress (free)

There are many applications where the addition of passive vibration damping to a
structural system can greatly increase the systems performance or stability. The addition of
passive damping can decrease peak vibration amplitudes in structural systems and add
robustness to marginally stable active control systems, Ref [1]. Structural damping can be
increased by several methods the most common being the addition of high loss factor
viscoelastic materials to the structure or the attachment of a mechanical vibration absorber.
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Figure 1: Assumed Geometry for a Typical Piezoelectric Material with the Top and
Bottom Surfaces Electroded

In recent years piezoelectric elements have been used as embedded sensors and
actuators in smart structures by Crawley and deLuis [2] and Hagood [3] and as elements of
active vibration suppression system for cantilevered beams by Hanagud [4] and Hubbard
[5]. They have also been used as actuation components in wave control experiments by
Pines and von Flotow [6]. Within active control systems, the piezoelectrics require
complex amplifiers and associated sensing electronics. These can be eliminated in passive
shunting applications where the only external element is a simple passive electrical circuit.
The shunted piezoelectric itself can also be used as a structural actuator in a control system.

This paper presents a new type of passive damping mechanism for structural
systems which uses piezoelectric materials bonded to the structure. Piezoelectric materials
possess certain properties which make them useful as dampers or control elements for
structures. The first is that they strain when an electrical field is applied across them. This
property makes them well suited as actuators for control systems (where the control signal
is typically an applied voltage. The second is that they produce a voltage under strain.
This property makes them well suited for sensing strain. In general, piezoelectrics have the
ability to efficiently transform mechanical energy to electrical energy and vice-versa. Itis
this transformation ability which makes them useful as structural dampers.

The advantages to this type of passive piezoelectric application were first presented
by Forward [7] & [8] and Edwards and Miyakawa [9] for damping applications on
resonant structures. This paper establishes the derivation and analytical foundation for
analysis of general systems with shunted piezoelectrics. A typical piezoelectric element is
shown in Fig. (1). The fundamental constitutive relations are the relation between strain
and applied field, known as the d constants, and between the charge density and the applied
strain known as the g constants. Another fundamental property is the electromechanical
coupling coefficient, k, which governs the energy transformation properties of a
piezoelectric. The constants are explained in detail in Ref. [10].

In passive energy dissipation applications, the electrodes of the piezoelectric are
shunted with some electrical impedance; hence the term shunted piezoelectrics is used. The
electrical impedance is designed to dissipate the electrical energy which has been converted
from mechanical energy by the piezoelectric. In the following sections, the shunted
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piezoelectric's interaction with external circuits will be modeled, and the benefits that can be
derived by passive circuit shunting of piezoelectrics will be quantified. First, the equivalent
effective impedance of the shunted piezoelectric will be derived. This expression will then
be applied to the cases of resistive and resonant circuit shunting. Expressions for the
system damping will be derived, and parameters will be found which maximize this
damping. An experiment verifies the accuracy of the analysis.

Modelling of Generally Shunted Piezoelectric Material

A general expression for the material constants of a linear piezoelectric can be written from

Ref. [11] as:
HEFE
S1ld )T W

where D is a vector of electrical displacements (charge/area), E is the vector of electrical
field applied to the material (volts/meter), S is the vector of material strains, and T is the
vector of material stresses (force/area).

S,,] -Sl- -Tu- (7]
D E Szz Sz T.| |7,
1 1
D = Dz’E=E2,S=Saa=Sa T=T33=Ta
‘ S S [ T T
D, E, 23 4 23 4
Sw Ss T1a Ts
_Slz_ _Se_ _T12_ _Te_ 2)

The 3 direction is associated with the direction of poling and the material is approximately
isotropic in the other two directions. These direction conventions are shown in Fig. (1).
The matrix which relates the two electrical variables, electrical displacement and electrical
field, contains the dielectric constants for the material. This matrix can be written:

elT 0 0
€=0 & 0
0 0 & 3)

where the superscript, ()T, signifies that the values are measured at constant stress. The
two elastic variables, stress and strain, are related through the compliance matrix of the
piezoceramic, which has the form:

(sfl sg 85 0 0 0 ]
s, s 8. 0 0 O
o st sf sf 0 0 O
0 0 0 s£0 0
0 0 0 0 &0
(0 0 0 0 0 & @
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where the superscript, (), signifies that the values are measured at constant electrical field
(eg. short circuit). Note that due to symmetry the material properties are identical in the 1
and 2 directions.

Finally, there are those terms which couple the mechanical and electrical equations
by virtue of the piezoelectric effect. In the form of the equations given in (1) the coupling
terms are the piezoelectric constants which relate strain to applied field. For piezoelectric
ceramics, the matrix of piezoelectric constants has the form:

0 0 0 0 d o
d=[0 0 0 d, 0 0

d, d, d., 0 0 0 )
The first term in the subscript refers to the electrical axis while the second refers to the
mechanical. Thus d,, refers to the strain developed in the 1 direction in response to a field
in the 3 direction (parallel to the material poling).

In order to allow the use of traditional concepts of electrical admittance and
impedance for the shunting analysis it is necessary to perform a change of variables. If we
use the definitions for voltage and current in Ref. [10]:

L

K=JE-d4 |
o (6a)
'L:ID-dq
A, ' (6b)

and furthermore assume that the field within and electrical displacement on the surface are
uniform for the piezoelectric material, then linear relationships can be defined in the Laplace
domain:

V)=L-E(s),
I(s)=5sA-D (s) (7Ta &b)

where L is a diagonal matrix of the lengths of the piezoelectric bar in the i direction, A is

the diagonal matrix of the areas of surfaces perpendicular to the i direction, and s is the
Laplace parameter.

Taking the Laplace transform of eq. (1) and using eqs. (7a&b) to eliminate E and
D, the general equation for a piezoelectric in terms of the external current input and applied

‘ | —
S

This equation can be further simplified by noting that the upper left partition of the
generalized compliance matrix is diagonal. The elements of this partition have the form:

sAeE L' sAd [v ]
dL”  §* T

Ag 5

L = Ca
i ©
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where C is the capac1tance between the surfaces perpendicular to the i i" direction. Noting
that sC, is the open circuit admittance of the piezoelectric material, eq. (8) can thus be

wntten
[I]|:SC: sAd}:V]
s |7 -1 T |~
dL" s (10)

where Y°(s) is the open circuit admittance of the piezoelectric (the inherent capacitance with
free mechanical boundary conditions). The open circuit admittance relates the voltage
applied across the piezoelectric's electrodes in Fig. (2) to the external current input into the
piezoelectric . The large leakage resistance of the piezoelectric material is treated as infinite
in this analysis but can easily be included as a modifying term.

For shunted piezoelectric applications, a passive electrical circuit is connected
between the surface electrodes as shown in one dimension in Fig. (2). Since the circuit is
placed across the electrodes, it appears in parallel to the inherent piezoelectric capacitance in
that direction. Since admittances in parallel add, the governing constitutive equations for a
shunted piezoelectric material become:

E.

[1]_ Y" sAd IV]
= -1
S dL sF T

Y' =" +Y" (12)

Y’(G) sAd [y
d,L°1 s® T

(11)
with:

The externally applied current, I, is the sum of the currents flowing through the shunting
impedance, the inherent piezoelectric capacitance, and the piezoelectric transformer. The
shunting admittance matrix is assumed diagonal and frequency dependant with the form:

SU

Y 0 0
sy
Y =0 v, 0
SU
0 0 Y, (13)
The top partition of eq. (11) can be solved for the voltage appearing across the electrodes.
V=2"I-Z" sAdT (14)

Where Z* is the electrical impedance matrix and is equal to (YEL) The electrical

impedance matrix is also diagonal. Equation (14) can be substituted into (11) to find an
expression for the strain in terms of stress and input current.

S=[s-dL'Z2"sAd ] +[d L’ Z" (15)

This is a governing equation for a shunted piezoelectric. It gives the strain for a
given applied stress and forcing current. Notice that shunting the piezoelectric does not
preclude use of the shunted element as an actuator in an active control system but rather
modifies the passive characteristics of the actuator. By modifying the passive stiffness of
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Figure 2: Simple Physical Model of a Shunted Piezoelectric and its Network Analog
Showing its Ability to Transform Energy from Mechanical to Electrical
and Vice Versa.

the piezoelectric to include material damping, perfectly colocated damping can be
introduced into the system. This passive damping can be useful in stabilizing controlled
structures in the manner of Ref. [12] in which a mechanical actuator is passively damped.

Of particular importance is the new mechanical compliance term. The shunted
piezoelectric compliance can be defined from (15):

SSU = [SE - dtL_lZELS Ad] (16)

If we note that with constant stress:

Z" (s ) = 0 =short circuit electrical impedance (172)
D T -1 . R . .
Z (s)=(C,s) =open circuit electrical impedance (17b)
and that:
-1 T
equation (16) can be put in the form
_EL -1

SSU =[8E - d‘Z (ET) d] (19)

ICC-7

Confirmed public via DTIC Online 02/18/2015



From ADA309667 Downloaded from Digitized 02/18/2015

where the matrix of nondimensional electrical impedances is defined:

ZEL - ZEI.(Z D )-1 (20)

Finally, since Z™ is diagonal, the electrical contribution to the compliance can simply be
written as a summation over the electrical impedances:

3 3
. - |:8E -X[2"Gaa >]]= [sE - ZZM}
& i=1

i=1 i (21)
where d; denotes the i” row of d and for piezoelectric ceramics the M; have the form:
[0 00 00 07 0 000 0 07
000O0O0 O 0000 O00O
1100000 O 110000 00
M1=-E—T-ooooooM2=';f000dfsoo
1 2 1
00004d, O 0000 00O
000 00 O] L0 0 0 0 0 0] 22a&b)
- 9 .
d31 dSl d31d38 0 O 0
2 2
1 dSl d81 d31d83 O O 0
e N 2
M,= e’ dydy, dyd, dy 000
’l o 0 0 000
0 0 0 000
| 0 0 0 0 0 0 (22c)

These equations constitute a general expression for the compliance matrix of a
piezoelectric element with arbitrary electrode placement or elastic boundary conditions.
Several things are apparent from eq. (21). First, electroding and shunting the piezoelectric
element in the directions perpendicular to the poling direction (3) of the piezoelectric can
only effect the shear terms of the compliance. Secondly, shunting the piezoelectric in the 3
direction modifies all of the non-shear terms of the compliance matrix. Finally, the
electrical shunting circuit's ability to modify the piezoelectric material properties depends on
both the material piezoelectric constants and the nondimensional electrical impedance.

ialization niaxial Loadin
Equation (21) simplifies greatly when the piezoelectric element is loaded uniaxially
with either a normal or shear stress and only one pair of electrodes are present providing an
external electric field with components in only one direction. These common modes of
operation can be described:
Longitudinal Case: Force and field in the 3 direction
Transverse Case:  Force in 1 or 2 direction; Field in 3 direction

Shear Case: Force in 4 or 5 direction (shear); Field in 2 or 1 direction respectively
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With uniaxial loading in the j direction, only a single term from the compliance matrix
contributes to the material strain energy. By examining that term the energy dissipation

properties of the shunted piezoelectric can be examined. For loading in the j" direction and
the field in the i direction the term in the compliance matrix is:

2

_ d,)
s§”=s§—Z.EL(M.)..=s§—fL :,
J J i i°y b i €

g 23)

where the subscripts denote the row and column of the respective matrix.

At this point it is convenient to introduce the piezoelectric property known as the
electromechanical coupling coefficient. It is defined as the ratio of the peak energy stored
in the capacitor to the peak energy stored in the material strain (under uniaxial loading and
sinusoidal motion) with the piezoelectric electrodes open. Physically, its square represents
the percentage of mechanical strain energy which is converted into electrical energy and
vice-versa. For the 3 cases of piezoelectric operation considered, the electromechanical
coupling coefficients are defined in Ref. [10]:

d

. R | R
Shear: k = —= k,,
35581
31
Transverse: k, = == k.,
sll 3
L . . 9. _ daa
ongitudinal: k= T
saa 83 24
or in the notation used before for force in the j* direction and field in the i" direction:
d.
v
*oT oA
b (25)

Substituting eq. (25) into (23) we obtain:
sU _ E 2 EL]
s = sﬁ[l - k,v.Z'.

b

(26)

From eq. (26) we can see that the compliance of the shunted piezoelectric is related
to the short circuit compliance of the piezoelectric material modified by a nondimensional
term which depends on the electrical shunting circuit and the material's electromechanical
coupling coefficient. From eq. (26) the relation between the short circuit and open circuit
compliance of the piezoelectric can be derived by noting that in the open circuit case

Z =1 (27)
and thus eq. (26) reduces to:

(28)
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which is in agreement with the relation given in Ref. [10] for the cases considered.

Equation (28) gives the change in mechanical properties of the piezoceramic as the
electrical boundary conditions are changed (from short circuit to open circuit). An
analogous relation can be derived for the change in the piezoelectric inherent capacitance as
the mechanical boundary conditions are changed. For uniaxial field and loading (only the
boundary conditions in the loading direction are varied) this relation is also dependant on
the electromechanical coupling coefficient.

S T 2
Cu = Cl" [1 ki'f ] (29)
This equation will be used for nondimensionalizations in the coming sections.

Equation (28) can be used with (26) to derive a nondimensional expression for the
mechanical impedance of the shunted piezoelectric. For uniaxial loading in the j* direction,
the mechanical impedance of the piezoelectric can be expressed as a function of the Laplace
parameter, s, as:

A,

z, 6)=—7

855458 (30)

Now using eq. (30) and (26) to define the impedance of the shunted piezoelectric and eq.

(28) to nondimensionalize, the final expression for the nondimensionalized mechanical
impedance of the shunted piezoelectric can be derived:

sU 2
_ME Z.. 1— k
Z, (s)= Z”D = 2 __;L

where the functional dependance of the mechanical and electrical impedances is written
explicitly; and the nondimensional mechanical impedance is defined as the ratio of the
shunted mechanical impedance to the open circuit impedance.

li hunted Piezoelectri

ME
The nondimensional mechanical impedance, Z , can be complex and frequency
dependant since it depends on the complex, frequency dependant electrical impedance. If
we note that the impedance is primarily a stiffness, then we can represent the impedance as
a complex modulus, as is typically done in material damping. This is especially useful if
the shunting impedance is not resonant.

ME
Z, ()= E (o Y1+ in(@)] 32)
where E is the ratio of shunted stiffness to open circuit stiffness of the piezoelectric and 1
is the material loss factor. This reduction leads to frequency-dependent equations for the
.complex modulus of the shunted piezoelectric. Comparing eq. (32) to eq. (31) gives the
frequency dependant equivalent material properties for an arbitrarily shunted piezoelectric.

Im{Z HE (s )}
n(w)= T
Loss Factor: Re{ Z (s )} (33a)
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ME
Modulus: E(w)=Re{Z ()} (33b)

These equations, as well as (31), can be applied to arbitrary shunting conditions for
parameter optimization of the material loss factor at a critical frequency.

To find the total system loss factor, the expression for the effective impedance of
the shunted piezoelectric, eq. (31) can be used along with the impedances of the other
damping devices in the frequency domain system analysis described in Ref. [13]. In
general, just as for viscoelastic materials, the relation between the high loss factor of a
structural component and the loss factor of the total structure can be represented as an
average of the system component loss factors weighted by the fraction of strain energy in
the respective elements, Ref. [14]

TOT i=1
Tl - n
U,
i=1 (34

where U; is the peak strain energy in the i" element of the structure. Techniques for
improving structural damping typically employ the damping material (shunted piezoelectrics
or viscoelastics) in areas of high strain energy to take advantage of this weighting. The
stiffness and loss factor of damping materials are typically frequency dependant. The high
stiffness (63 GPa) of the shunted piezoelectric gives them advantages over viscoelastic
materials (circa 1 MPa) since for a given strain they can store many times the strain energy
of the viscoelastic and thus contribute to higher system loss factors. The piezoelectric
material properties are also relatively temperature independent below their Curie
temperature (temperature at which they lose their piezoelectric properties) Ref. [11]. For

commonly available piezoelectrics this is typically in the range of several hundred °C.

spolication: _Resistive Shunti

A resistor can shunt the piezoelectric electrodes as shown in Fig. (3). In this
shunting geometry, the resistor is placed in parallel with the inherent capacitance of the
piezoelectric. The resistor provides a means of energy dissipation on the electrical side and
thus should increase the total piezoelectric loss factor above the loss factor for the short or
open circuited piezoelectric. Its exact effect on the stiffness and dissipation properties of
the piezoelectric can be modelled by applying eq. (31). For the case of a resistor across the

piezoelectric electrodes, the total nondimensional electrical impedance in the i" direction is:

z (s)=R (352)

_EL Z.EL(S ) R,-C;S
(s)= l1) = T
Z (s) RiCpis +1

(35b)

Eq. (35b) can be substituted into Eq. (31) to give an expression for the nondimensional
mechanical impedance of a resistive shunted piezoelectric.
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Figure 3: Resister Shunted Piezoelectric Schematic
2
-k
RES .
Z J (s )=1- 1—”
tip, (362)
where py is the nondimensional frequency,
8 (4]
p,=RC  w=-——
k kT ph w d (36b)

and C,’ was defined in eq. (29).
Matezials P :

Since there are no internal resonances, it is convenient to use (33a & b) to express
(36a) as a frequency dependent material stiffness and loss factor. The resistor can be
thought of as changing the material properties of the piezoelectric into those of a lossy
-material similar to a viscoelastic in behavior. Using (33a & b) to solve for

nondimensionalized expressions for 1 and E gives:
2

Y
my (@)= p'z -
(1- ki.)+ pf (373)
2
El.i.m(w)=1¥ v
! 1+ g (37b)

These relations have been plotted versus p, the nondimensional frequency (or the
nondimensional resistance) in Fig. (4) for typical values of the longitudinal and transverse
coupling coefficients. These curves are similar to the equivalent material curves for a
standard linear solid. As illustrated in the graphs, for a given resistance the stiffness of the
piezoelectric changes from its short-circuit value at low frequencies to its open-circuit value
at high frequencies. The frequency of this transition is determined by the shunting
resistance. The material also exhibits a maximum loss factor at this transition point. The
value of this maximum loss factor can be found to be:
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kii
i z
2'\/1"’“# (38a)

RES
nmar-

at a nondimensional frequency of:

S 2
p;=RC 0= /l—kﬁ. (38b)

Thus by appropriate choice of resistor, the peak of the loss factor curve can be
moved to the desired frequency.

It is worthwhile to draw a comparison between resistively shunted piezoelectrics
and viscoelastic materials. The form of the frequency dependence of the viscoelastic can be
seen in Ref. [14] for typical damping materials. For common viscoelastic materials, the
peak loss factor occurs in a narrow frequency and temperature range where the viscoelastic
is in transition from its rubbery state to its glassy state. This placement is directly
analogous to the peak loss factor of the piezoelectric occurring at the transition from short
circuit to open circuit stiffness.

It should be noted that the loss factor curve takes the same form as the standard
relaxation curve for material damping, but can lead to material loss factors as high as 8.2%
in the transverse case and 42.5% in the longitudinal or shear cases for commonly available
piezoelectric ceramic materials. This compares favorably to the results obtained in Ref. [9]
for the effective material loss factor for a resistive shunted piezoelectric ceramic.

While these loss factor levels are not as high as those for viscoelastics, the
piezoelectric material (typically a ceramic) has higher stiffness than most viscoelastic
materials and thus stores more strain energy for a given strain. The piezoelectric ceramic
material properties also have the advantage of being relatively stable with temperature over
their operating range. Since their main constituant is lead, however, their density is 8 times
that of water. In all, the net effect is that in most structural cases shunted piezoelectrics will
provide higher total structural damping levels per unit mass with higher temperature
stability. These results for the resistive shunted piezoelectrics have been validated
experimentally and will be presented in a later section.

Systems Perspective for Determining Resistive Shunted Piezoelectric Effectiveness

Since the stiffness of the piezoelectric material is frequency dependant, maximizing
the loss factor of the piezoelectric material does not necessarily maximize the loss factor of
the total structural system of which the piezoelectric is a part. As shown by eq. (34) the
total damping of the system consists of the component damping weighted by the strain
energy fraction in that component. This strain energy fraction is frequency dependant for
shunted piezoelectrics since the piezoelectric stiffness varies with frequency. In order to
accurately model the system modal damping as a function of frequency or shunting
parameters (such as resistance), this frequency dependant stiffness must be carried through
the calculations. .

Another method of obtaining the system modal damping which yields significant
insight into the problem is to represent a single mode of the system as a simple 1-DOF
system with a piezoelectric component in parallel to the system stiffness as shown in Fig.
(5). The mass and stiffness in the simple system can represent the modal mass and
stiffness of a multi-DOF system. In this case the modal stiffness of the piezoelectric should
also be used. The modal velocity of the piezoelectric system can be expressed in the
Laplace domain as:
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Resistor Shunted Piezoelectric Material Properties: Longitudinal Case
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Figure 4: Effective Material Properties of a Resistively Shunted Piezoelectric in the
Longitudinal (Upper) or Transverse (Lower) Cases
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K Modal Stiffness
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Figure 5: 1-DOF System with Shunted Piezoelectric Element in Parallel with the
System Modal Mass

F(s)

Ms +—I§—+Z;Es(s)

vis)=
(39

Where Ms is the impedance associated with the modal mass; K/sis the impedance
associated with the modal stiffness; and Z*"(s) is the impedance associated with the
resonant shunted piezoelectric's contribution to the modal mass. After reduction and
nondimensionalization an expression for the position transfer function of such a mechanical
system with a shunted piezoelectric in parallel with the base system stiffness and a force
acting on the mass can be found from eq. (39):

x ry +1
—o =

X ry + ¥ + r(1+ K;)'y +1

(40)

where x™" is used for F/K,, and K, is the sum of the base system modal stiffness and the
piezoelectric open circuit modal stiffness. The nondimensionalization is defined relative to
the mechanical system's natural frequency with the piezoelectric open circuited.

K + K‘f
E J
W, = [——
M (41a)
Y= LE = nondimensional frequency
@, (41b)
r= RiCjiwf =p|  =electrical damping ratio
@ =] (41c)
The generalized electromechanical coupling coefficient, Kj;, is defined:
E 2 2
K- K, k _z k,
i K +KE | 1-k2]  1-k
i i i 42)
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where K is the ratio of piezoelectric short circuit modal stiffness to the total system modal
stiffness. The generalized coupling coefficient reflects the fact that the piezoelectric is in
parallel with some other stiffness, and thus a smaller fraction of the system strain energy is
converted to electrical energy. It is proportional to the fraction of the system modal strain
energy which is converted into electrical energy by the open circuit piezoelectric. As such,
itis a direct measurement of a shunted piezoelectric's influence on a system.

The modal damping ratio can now be found exactly by solving for the roots of the
cubic equation in the denominator of eq. (40), or approximately using commonly available
root solvers. The exact technique was used to calculate the modal damping of the
cantilevered beam test article.

\pplication: R { Circuit Shunti

Another case of interest is to create a resonant circuit by shunting the inherent
capacitance of the piezoelectric with a resistor and inductor in series forming a LRC circuit
for Z®. This circuit is shown in Fig. (6). This resonant electrical circuit can be tuned in
the vicinity of a mode of the underlying mechanical system and thereby greatly increase the
attainable modal damping ratio, in an effect similar to the classical proof-mass damper
(PMD) or resonant vibration absorber.

With an inductor and a resistor in parallel with the piezoelectric's inherent
capacitance, the total electrical impedance can be written:

z (s)=Ls +R, (43a)

T, T
EL LiCn.s +RiCF.s

Zi (S)= T T
L'_Cm.s2 + R,-C,,,.S +1

(43b)

were L, is the shunting inductance and R, is the shunting resistance. This circuit is clearly
resonant with some damping due to the resistance, R,. Equation (43b) can be substituted
into eq. (31) and the results nondimensionalized to obtain the nondimensional mechanical
impedance of a resonant shunted piezoelectric:

Z.I.esp(s)=1—kf( 5 J
’ ‘ ’};+ 527"}' + 52 (44a)

where the nondimensionalizations are defined relative to some arbitrary normalization
frequency, w,

w=—21 = electrical resonant frequency

€ s
v LCy (44b)

o, ) . . .
S = @ = nond1mensxona1 tuning ratio (44c)

and y and r are defined in egs. (41b & ¢) réspectively.

Equation (44) is an expression of the effective mechanical impedance of a
piezoelectric element shunted by a resonant circuit. The key parameters of (44) are the
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Figure 6: Resonant Shunted Piezoelectric Schematic

frequency tuning parameter, 3, and the damping parameter, r. These parameters are
directly analogous to the ones used in classical proof mass damper nondimensionalization,

Ref. [15]. The & parameter reflects the frequency to which the electrical circuit is tuned,
while the r parameter is an expression for the damping in the shunting circuit.

Materials Perspective

There are several ways to determine the parameters of eq. (44) which maximize
energy dissipation. One of these involves treating the resonant shunted piezoelectric as a
material with frequency dependant properties, in a fashion analogous to the resistive
shunting case. The expression for the effective impedance of the piezoelectric can be put
into a complex modulus form such as (33). This leads to complicated frequency-dependant
expressions for the material stiffness and loss factor.

2,02 g
Ej’iasp(w)=1_k:[ 2 6(52 gz) 2]
(6 —g) +(6rg) (45a)
) k,8(5rg)
n; (@)= 242 2 2 2 2 2
& - ) +(8"rg) - k55 - g @sh)

where E'*¢ and n""€ are the effective material properties of the resonant shunted

piezoelectric, and g is the real form of ¥y, (). These expressions can be seen plotted in
Fig. (7) for common values of the parameters. They can be useful in system modelling if
the values of the parameters are already known. Both the effective material stiffness and

the damping vary nonlinearly with frequency and tuning parameter values, & and r. This
makes an optimization for energy dissipation difficult. The actual energy dissipated is

dependant on both E and 1 and can be calculated for the total system using eq. (34).
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Resonant Shunted Piezoelectric Material Properties
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Figure 7: Effective Material Properties of a Piezoelectric Ceramic Operating
Transversely and Shunted by a Resonant LRC Circuit.

ms P ive for Determining Resonant Shunted Piezoelectric's Effectiven

The problems associated with the parameter optimization can be greatly alleviated
by observing certain key similarities between a system containing a resonant shunted
piezoelectrics (RSP) and a system containing

a proof mass damper (PMD). As illustrated in Fig. (8), the similarities in system
topologies suggest that the method for obtaining the optimum parameters for the PMD can
be applied to the RSP. The derivation for optimal tuning and damping of the electrical
circuit parallels the technique for determining the optimal tuning and damping ratio of a
PMD as outlined in Ref. [15].

These two systems can be thought of as complementary since the proof mass
damper appears as a point impedance in system modeling and thus damps out only the
available kinetic energy. On the other hand, shunted piezoelectrics are modeled as multi-
port impedances which derive their dissipation from the relative motion of two system
nodes. Thus they can be thought of as dissipating structural strain energy. This difference
will reflect on the optimum placement of the actual dampers.

Following the techniques of modeling the 1-DOF system presented in the section on
resister shunting, the modal deformation rate of the piezoelectric system with resonant
shunted piezoelectrics can be expressed in the Laplace domain as:

F(s)

vis)=
Ms+-Is£+ZfP(s)

(46)

Where Ms, K/s are modal quantities, and Z**"(s) is the modal impedance associated with
the resonant shunted piezoelectric. After reduction and nondimensionalization, an
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Mechanical Model Impedance Model
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Figure 8: Comparison of Resonant Damper Topologies between an RSP Damped
System (A) and a PMD Damped System (B)

expression for the position transfer function of a mechanical system with a RSP in parallel
with the base system stiffness and a force acting on the mass can be found from (46):

x (62+ y’) + 82r7

T (1+ 1/2)(52 + P+ azry) + K:‘(f + 82r'y) )

where the nondimensionalization is the same as that used in eq. (44). The mechanical
system's short circuit natural frequency (defined in eq. 41a) is substituted for the
normalization frequency used in (44) and the generalized electromechanical coupling
coefficient, Kj;, is defined in eq. (42).

For the tuned PMD, the transfer function expression equivalent to eq. (47) is:

% (62+ y*) + 627'7
2T (14 P)(8 + 7+ 8ry) + B(5° 7 + 8r7) 48)
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with the k;; used in the nondimensionalization set equal to zero and B equal to the damper
mass ratio as described in Ref. [15]. By comparing the form of these two equations, (47)
and (48), it is evident that the generalized electromechanical coupling coefficient for the

tuned piezoelectric case, Kijz, serves the same function as the mass ratio, B, in the PMD
system.

Two techniques for determining the "optimal” tuning criteria will be presented. The
first technique parallels the min-max criteria (presented in Ref. [15] for PMDs) for
minimizing the maximum of the system transfer function by appropriate choice of the RSP
parameters. This technique will be referred to as transfer function optimization, and the
optimal parameters will bear the subscript, (). The second technique will depend on pole
placement techniques to choose system pole locations which maximize the magnitude of the
real part of the system roots. The optimal parameters using this technique will bear the
subscript, ()pp, to signify pole placement.

At this point the optimal tuning parameters using the transfer function technique can
be found by duplicating the argument for the PMD [15]. The first step in this process is to
find the magnitudes of the transfer functions which correspond to r = zero and r = infinity
respectively. From eq. (47) forr = 0:

5| 5-¢ |

ST = 2 2
X 1_ 2 6 - 2 "'K 2
1= T a-ene- - Kig .
and for r = infinity
S| 1]
25T - 2, 2
vl |arK)-g (49b)

These two transfer functions can be equated and a quadratic expression found for the
intersection points, called the S and T points in the PMD analysis. This expression is

- 611 )+ 145 (2 )=

From the quadratic formula, the sum of the roots of this equation can be found to be

(50)

B 2 2
g;+g:=—X=(1+Kﬁ)+5 (51)

Equation (49b) can be solved for the magnitudes at the S and T points. This gives another
expression for the sum of the two roots.

g +g =2(1+K,) (52)

Equating (51) and (52) leads to an expression for the tuning parameter which equalizes the
magnitudes of the S and T points. This is the optimum tuning parameter.

opt 2
6” = ,/1+ Ki. (53)
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Figure 9: Transfer Function for a Single DOF System Containing a RSP at Various
Values of the Damping Parameter,r

Once the optimal tuning has been found using the transfer function criteria, there are
several methods for determining the "optimal” damping in the electrical circuit. One
method entails setting the amplitude of the system transfer function at a chosen frequency to
the amplitude of the transfer function at the invariant frequencies, the S and T points. A
particularly convenient (though not technically optimal) frequency corresponds to the

electrical tuning at g = 8. The amplitude of the S and T points can be found by first solving
equation (50) for the S and T frequencies. The roots of (50) are:

K(1+K:
PRy L(CL. -

This expression can be substituted into (53) to yield the amplitude at SorT:

2
K1+ K

s,T

(55) -
Evaluating the system transfer function, eq. (47), at g = 8 and setting this amplitude equal

to (55) gives an equation that can be solved for a simple expression for the "optimal" circuit
damping:

K.
¥
1+Kf

'}

t
rT'”;"w =+/2

(56)
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The subscript, ()1, signifies that this expression was derived from transfer function
considerations. The effect of various circuit resistor values at optimal tuning is shown in
Fig. (9). As can be seen, the system sensitivities to damping parameter variations are
essentially identical to the PMD sensitivities. As the damping parameter is increased, the
two distinct system modes coalesce into a single mode which converges to the system
response with open circuit piezoelectrics as the damping parameter approaches infinity.

Optimal Tuning by Pole Pl Techni

The second technique for determining the "optimal" tuning parameters is based on
s-plane methods described in Ref. [12] for PMDs and outlined in Ref. [9] for
piezoelectrics. The s-plane diagram in Fig. (10) shows the root locus for the poles of the

shunted piezoelectric system as the damping parameter, r, is varied. Just as in the PMD
case, as the damping parameter is increased the distinct poles can coalesce into double

complex conjugate pairs only if a special value of the frequency tuning parameter, 3, is
chossen. This point of coalescence is the point of leftmost excursion in the s-plane. The
pole placement method of optimization involves finding the values of the frequency tuning

parameter, 8, and the damping parameter, r, which give that point on the s-plane. The
poles of the system are found from the denominator of €q. (47). Assuming the coalesced
poles are located at the coordinates, s = a + ib, a - ib, a series of equations for a and b
can be found by equating corresponding terms of the characteristic polynomial found in the
denominator of eq. (47).

§r =-4a (57a)
2 2
(1+ &)+ K2=6a2+2b (57b)
2 2 2
6r(1+K;)=-4a@*+b) (57c)
6 - a2+ bz (57d)

These equation can be solved for the parameters, r and 5, to give the value which results in
the coalesced poles:

(58a)

(58b)

The subscript, ()p,, has been used to signify that the expressions were derived from pole-
placement considerations. The transfer function corresponding to optimal tuning and this
value of r is shown in Fig. (9). This method tends to give higher steady state responses
than the first method presented.

As a practical point the various damper tuning criteria are indistinguishable in all but
the most sensitive experimental setups. The ratios given for optimal tuning and electrical
damping can now be used to add maximum damping to targeted structural modes. Use of a
tuned circuit can increase the structural mode damping several orders of magnitude above

simple resistive shunting at the cost of reduced damper bandwidth.

ICC-22

Confirmed public via DTIC Online 02/18/2015
|



From ADA309667 Downloaded from Digitized 02/18/2015

1.1
L K -0
1.08 |-
[
1.08 - X = Location of Poles for TF optimality
: 8o =101 Ty =020
1.04 -
g -
& j.02 |
& C S
z RS PO i -
g eanermeee '\
— 98 :: ........................ .
o6 [- O = Location of Poles for PP optimality ‘- RN
L =1.02 -
- Popeee Topnre ™ 028 B,
94 el
.92 i L i l i 1 L l 1 1 L l /] i g l Ll i l [l i 1 l ' i L l 1 1 L l 1 1 L.
-18 -.168 -.14 -.12 -1 =-08 -.08 -.04 -02 O
REAL PART

Figure 10: Root Locus for a RSP Damped System at 2 Values of § as a Function of
the Damping Parameter, r, Showing the Pole Locations for the Pole
Placement (O) and Transfer Function (X) Optimal Tunings

S ¢ Analvtical Predicti

For resistive shunted piczoelectrics, the stiffness and loss factor of the
piezoelectrics were found to vary with frequency. The loss factor exhibited a maximum at
a frequency determined by the shunting resistance and the electromechanical coupling
coefficient of the piezoelectric. For common piezoelectric materials this loss factor can be
as high as 42.5% for the longitudinal and shear loading cases, and 8% for the transverse
loading case. This high loss factor, along with the high stiffness and temperature stability
of piezoelectric ceramics, makes them an attractive alternative to viscoelastic materials.

The shunted piezoelectric materials can be modeled within a structural system in
two principal ways. They can be modelled as having a frequency dependant complex
modulus and incorporated in the same manner as viscoelastic materials. Alternatively, their
internal dynamics can be modelled using mechanical impedance and assembled into a
system impedance model for dynamic analysis.

For resonant shunted piezoelectrics, the parameters of the resonant circuit can be
tuned to a structural mode so as to minimize the maximum response of the mode in a
fashion analogous to proof mass damper tuning. The effectiveness of the RSP damper at
optimal tuning is dependant on the generalized electromechanical coupling coefficient which
is a measure of the percentage of total system modal strain energy actually converted into
electrical energy by the piezoelectric. For typical structures where the piezoelectric contains
only a small fraction of the structural strain energy, the electrical resonance should be tuned
very close to the structural resonance. The optimal damping in the electrical resonance is
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also almost linearly dependant on the coupling coefficient in this case. Two sets of tuning
criteria are derived, depending on minimizing the magnitude of the transfer function, or
minimizing the real part of the system poles.

Descrintion of Experiment

Experiments were conducted to test the validity of the analytical formulae for
shunted piezoelectrics. The tests were designed to investigate the properties of the resistive
and resonant shunted piezoelectrics.

Dynamic tests were preformed on a cantilevered beam test article with surface
bonded piezoceramics and geometry as shown in Fig. (11). The cantilevered beam was
11.53" long, 1.0" wide, and 1/8" thick. Two sets of surface mounted piezoceramics were
bonded to the beam. The pair closest to the base was shunted while the pair furthest from
the base served to drive the beam. The shunted pair was located 97 mills from the base and
extended 2.44", The piezoceramic pairs were separated by 1".

The driving and shunted pairs consisted of 10 mil thick G-1195 piezoceramic sheets
manufactures by Piezoelectric Products, Inc. The pairs were poled through their thickness
and actuated lengthwise, so that they were operating in the transverse mode. For both
pairs, the piezoceramics were attached to the top and bottom surfaces of the beam and
wired as shown in Fig. (11), so as to produce a moment on the beam if a voltage were
applied as described in Ref. [2]. The piezoceramics are attached to the beam with a very
thin layer of conducting epoxy. The beam is grounded and the positive electrodes are
attached to the exterior electroded surfaces of the piezoceramic pairs. This produces
opposite fields in the top and bottom piezoceramics (which are poled in the same direction),
and thus causes the top piezoceramic of a pair to contract as the bottom expands, producing
a moment on the beam. Likewise for the shunted pair, a voltage appears across the shunt if
the beam is bent. The material properties of the piezoceramics are presented in Table (1). A
Erll%ll'e detailed discussion of modeling of surface bonded piezoceramics is presented in Ref.

In the shunting experiments, either a resister or a resister and inductor are placed
across the piezoelectric electrodes at Z™(s), as shown in Fig. (11). An uncorrelated,
pseudo-random voltage is then applied as an input at the positive terminal to excite the beam
in the vicinity of its first bending mode at 33 Hz. The white noise excitation signal is
produced by a Textronix 2630 data collection system and amplified by a Crown DC-300A
audio amplifier. The strain response of the beam is measured at a point 2.74" above the
base a shown in Fig. (11). The amplified strain signal is collected by the Tectronix 2630
and a transfer function from input voltage to strain is computed.

In the resistive shunting experiments the shunting resistor is varied over a range of
1/10 to 10 times the theoretical optimum value for maximizing dissipation. Using eq. (38b)
the optimum shunting resistance was found to be 28,680 ohms. For each resistance the

damping and frequency of the first beam bending mode are identified using a 4" order

—1able 1: Piezoelectric Properties of Shunted Piezoceramics

Coupling Coefficient k,;, = 0.35
Elastic Modulus (free) E', =  63Gpa
Dielectric Constant e, = 1700¢°
Capacitance (clamped) c, = 0.156 pfarad
Curie Temperature = 360°C
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Figure 11: Cantilevered Beam Test Article with Position and Arrangement of Shunted
and Driving Piezoceramic Pairs

Recursive Lattice Least Squares (RLLS) algorithm from Ref. [17] applied to the time
domain data from which the transfer functions are derived.

For the resonant shunting experiments, a resistor and inductor in series are placed
across the piezoelectric leads and the resistor and inductor are tuned to the first beam
bending mode, in accordance with egs. (53) and (56). The transfer function from input
current to strain is then measured and compared to the theoretical response for a 1-DOF
system derived in eq. (47). The resistance is further varied in the range of the optimal
value to validate the behavior of the resonant shunted piezoelectric system in response to
parameter changes.

Di . { Result

The experimental first mode damping for the resister shunting case is shown
compared to the analytical predictions in Fig. (12). In this figure, the experimental poles
were identified from the random time domain response using the recursive lattice least
squares algorithm mentioned previously. The identified damping ratio has been normalized
by subtracting off the inherent damping of the beam with the piezoelectrics shorted. The
curve thus represents only the damping increase afforded by the shunting process. This is
called the experimental added damping.

The two analytical curves were obtained by solving for the roots of the denominator

of eq. (40) exactly. The damping ratio was then found from the root location. The upper
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Cantilevered Beam First Mode Added Damping vs. Shunting Resistance
803
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Figure 12: Comparison of Experimental and Analytical First Mode Damping Increase
as a Function of the Shunting Resistance

analytical curve reflects the value of the generalized electromechanical coupling coefficient
- obtained for the shunted piezoceramic pair when a 5 mode Raleigh-Ritz analysis is used to

calculate the ratio of strain energy in the piezoelectric to that in the structure, K . For this
curve the values of the piezoelectric material properties supplied by the manufacturer were
used.

The first five bending modes of a uniform cantilevered beam were used in the 5
mode Ritz model which predicted a first resonant frequency of 35.65 Hz for shorted
piezoelectrics and a generalized coupling coefficient, K,;» of 0.169. In this analysis, the
piezoelectrics were assumed to be perfectly bonded. Details of this type of analysis for
bonded or embedded piezoelectrics are presented in Ref. [16]. Since the actual beam had a
first natural frequency of 33.36 Hz and the Ritz model accurately represents the system
mass, it can be concluded that the Ritz model contains about 14% error in the modal
stiffness of the beam. This error will effect the predicted piezoelectric performance. It can
be partially accounted for by the finite thickness bond layers of the shunted and driven
piezoceramic pairs. The Ritz model thus overestimates the amount of strain energy in the
piezoceramic and thus the performance of the resistive shunting.

An alternative approach is to obtain the generalized coupling coefficient by a simple
experiment. If it is noted that for a mode of a structure the frequency changes as the
stiffness of the piezoelectric changes from its short circuit to open circuit value:

E

KP

K + KF K 1- &
of = 2% and o = [ —— ¢
n M n M (59)

then a simple expression for the generalized coupling coefficient for a piezoelectric bonded
to a structure can be obtained from the frequency change in these two cases:
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o (@) ~(af)

K, —

(o) (60)
The lower analytical curve was obtained by experimentally measuring the first natural
frequency of the beam with the shunted pair open or shorted and applying eq. (60) to
obtain the generalized electromechanical coupling coefficient. The value obtained was
0.157. This value was then used in the denominator of Eq. (40) and the resulting roots
found. As can be seen in Fig. (12), this method exhibits much better agreement with the
experimentally determined added damping.

The conclusion of this analysis is that the resistive shunting piezoelectric effect is
accurately modelled using the equations presented in this paper, and that the main source of
error is in the mechanical models of a piezoelectric bonded to a structure. The experimental
curve exhibits the form of the analytical predictions and agrees well with theory once the
generalized coupling coefficient has been accurately obtained. For this particular specimen
the amount of damping added is not large, because the piezoelectrics store only a small
portion of the strain energy and are operating transversely.

The beam transfer functions from applied voltage to strain guage with optimally
tuned resonant shunted piezoelectrics are shown compared to the same transfer functions
for the beam with shorted or open circuit piezoelectrics in Fig. (13). The change in natural
frequency from the shorted to the open circuit piezoelectrics is clear from this figure. The
optimal shunting parameter values were calculated from the transfer function criteria (eq. 53
and 56) using the value of the generalized coupling coefficient found from eq. (60). These
corresponded to a 142.4 Henry inductor and a 6640 ohm shunting resister. The large
inductor was necessary to produce a low electrical resonant frequency.

The resonant shunted piezoelectric pair was found to produce a 35 db drop in peak
vibration amplitude from the shorted or open circuit case. This large amplitude reduction is
in good agreement with the analytical curves for a 1-DOF system obtained from eq. (47).
The experimentally determined natural frequency and base damping of the beam with
shorted piezoelectrics were used in the analytical curves as well as the coupling coefficient
found by eq. (60). The 1-DOF system curves agrees well in the vicinity of the resonance
but fails (as expected) to capture the multiple mode nature of the beam. For this reason the
rolloff amplitudes are not identical.

The variation in the beam response as the shunting resister is varied away from the
optimal value is presented in Fig. (14) and shown to exhibit tendencies precisely as
predicted by the analytical model. This close agreement validates the resonant shunted
piezoelectric model. As predicted, the system exhibits two distinct modes when the resister
is below its optimal value. As the resistance is increased these modes coalesce into a single
mode which converges to the beam response with open circuit piezoelectrics.
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Figure 13: First Mode Transfer Functions for Cantilevered Beam with Resonant
Shunted Piezoelectric Compared to Beam with Shorted or Open Circuit
Piezoelectrics: Experimental (Top) and Analytical (Bottom)
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A) Experimental First Mode Transfer Functions with Resonant Shunted Piezoelectrics at
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Figure 14: First Mode RSP Dissipation Parameter Variation from r = 0.133 (widely
space modes) to r = infinity (open circuit piezoelectrics): Experimental

(Top) and Analytical (Bottom)
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Conclusions

A new type of structural damping mechanism has been presented based on
piezoelectric materials shunted by passive electrical circuits. A model for general shunting
of these materials subject ot arbitrary eleastic boundary conditions was developed to
determine the 6x6 material compliance matrix when the material is shunted. This model
was found to simplify in the case of uniaxial loading and electrical field with the
introduction of the material electromechanical coupling coefficient.

The uniaxial equations were then applied to the cases of resistive and resonant
circuit shunting. In the resistor shunting case, the optimal shunting resistance for
maximizing the piezoelectric material loss factor at a given frequency was determined. The
material loss factor was found to be as high as 42% in the longitudinal loading case for
commonly available piezoceramics. The high loss factor, together with the high stiffness
(63 Gpa) and temperature stability, makes resister shunted piezoelectrics an attractive
alternative to viscoelastic materials in structural damping applications.

The problem of determining the global system damping was discussed in the
context of the frequency dependant material properties of the piezoceramic, and two
techniques were suggested. The shunted piezoelectric elements can be incorporated into the
structural stiffness model via a complex modulus representation (like for viscoelastic
materials), or analyzed as complex impedances and included in a complex system model
(like for electrical systems). Both modelling methods yield identical results. For systems
analysis, the energy transfer from the mechanical to electrical parts (and therefore the
effectiveness of the shunted piezoelectric) is governed by the generalized electromechanical
coupling coefficient which serves as measure of effectiveness. The square of this
coefficient represents the ratio of modal strain energy which is converted into electrical
energy by the piezoelectric.

Resonant circuit shunting of piezoelectrics was also modelled and shown to exhibit
behavior very similar to the well known mechanical tuned vibration absorber. The analogy
with the mechanical damper suggested a method of tuning the resonant shunting circuit to a
structural mode to optimally damp it. Tuning criteria were developed for the shunting
circuit which either minimized the peak amplitude of the system transfer function or placed
the poles as far right as possible in the s-plane. The resonant shunting can have large
effects on the mode to which it is tuned while the resistor shunting has a larger bandwidth.

Experiments were conducted on a cantilevered beam which validated the shunted
piezoelectric models. The models developed were able to accurately predict the influence of
the shunted piezoelectrics on the cantilevered beam damping in both the resistive and
resonant shunting cases. In both cases, the models also correctly predicted the optimal
tuning parameters and effect of variations away from the optimal parameters.

Great benefits for base system energy dissipation can be attained by shunting the
electrodes of the piezoelectric material with appropriate passive circuits. The passive
shunting introduces damping at the piezoelectric but does not preclude the use of shunted
piezoelectrics as actuators in structural active control applications. The analytical models of
the shunted piezoelectric, as well as the experimental verification of these models, provides
a solid groundwork for future structural damping applications of shunted piezoelectric
materials.
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