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TRUNCATION ERRORS IN NATURAL FREQUENCIES

AS COMPUTED BY THE METHOD
OF COMPONENT MODE SYNTHESIS*

Walter C. Hurty**
Jet Propulsion Laboratory
Pasader a, California

The intent of this investigation is to provide a method for esti-
mating the errors in computed natural frequencies of a structure
atiributuble to truncation of the generalized coordinate system. The
study is confined to those mass and stiffness matrix arrangements
associated with a particular method of analysis described elsewhere
(References 1 and 2) as the method of component mode synthesis,
An equation is developed which permits estimates to be made of
these errors. Application to an example shows that the frequency
corrections are not very accurate because of approximations in-
volved in the analysis, Despite this there appears to be good
correlation between the calculated errors and the accuracy of com-
puted modes. Hence, the method appears to be useful in providing
criteria of modal accuracy. Further applications to various struc-
tures are required in order to establish confidence levels for these
criteria,

INTRODUCTION

All methods for the vibration analysis of real structures are approximate methods in the
sense that an actual structure having an infinite number of degrees of freedom is represented
by a model having a finite number. In lumped parameter methods the physical aspect of the
structure is altered in the modeling process by representing it as a finite number of rigid
masses and massless elastic elements, In modal methods the possible virtual displacements of
the structure are limited to those that can be defined by a finite number of displacement
modes. In either case the effect of the approximation is to introduce errors in the computed
natural frequencies and modes of vibration, This paper is concerned with the problem of
estimating errors introduced by use of a particular modal method described as the method of
component mode synthesis (References 1 and 2). '

In this method the properties and modes of the structural system are synthesized from those
of the components of substructures that make up the system. Displacements related to each
component are defined by a set of modal coordinates for which the modes are selected in
three categories: rigid-body modes, constraint modes, and fixed-constraint normal modes.
The term ‘‘rigid~-body mode’ is self-explanatory. Constraint modes are defined as those
produced by relaxing in turn each redundant constraint acting on the component. Fixed-
constraint normal modes are used to define displacements of the component relative fo its
system of constraints. The three categories are designated by use of the letters R, C, and
N, respectively. As described in References 1 and 2, a transformation is derived which
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connects component coordinates and system coordinates. By use of this transformation, mass
and stiffness matrices for the system are constructed from those for the separate components,
Using these system matrices, a matrix equation for the free vibration of an undamped elastic
structure is written. For the purposes of this paper it 18 conveniefit to consider the rigid-body
and constraint modes together as a set of ‘‘basic’’ displacement modes designated by the
letter B . The resulting equation is

MBB i MBN {qg N [KBB i O__] &qgw y
Sl - a1
where: MBB is the mass submatrix assoclated with the basic modes

MNN is the diagonal mass submatrix associated with the fixed-constraint
normal modes

MBN . MNB are mass submatrices related to coupled modes

KBB ) k™ are stiffness submatrices

qg . q: are generalized displacements of the basic and normal modes,
respectively

)\oz ' 5 is an eigenvalue of the system

Wy o is a natural frequency of the system

The number of basic modes is determined by the geometry of the system and, in particular, by
the system of interconnections among the components. The number of fixed-constraint normal
modes is infinite So that the matrices are truncated by sslecting a finite number of them for
the analysis. The truncation errors, which are the subject of this paper, are those related to
the truncation of the mass and stiffness matrices in Equation 1.

It is well known that the accuracy of the computed modes and frequencies resuliing from
any approximate method will be improved, in general, by increasing the number of degrees of
freedom. Therefore, an effective method of estimating the truncation errors associated with
Equation 1 is to increase insuccessive solutions the number of fixed-constraint normal modes
and compare the resulting eigenvalues and eigenmodes. In general, they will approach their
correct values asymptotically as will be seen by plotting them as is done in Figure 1. The
practical drawback to this procedure very often lies in computer limitations. in analyzing
large and complex structures it is often found that the selection of even a limited number of
fixed~constraint normal modes taxes the computer, leaving no further capacity for exploring
the question of accuracy by the above technique. Thus, a procedure for estimating the errors
associated with a given solution without repeating the solution for higher order systems can be
useful. In the following section an equation is developed that permits such an evaluation {o be
made using only the results of a single solution,

ANALYSIS

To begin the development it is supposed that Equation 1 has been solved using a certain
number of fixed-constraint normal modes and that this solution has yielded a set of eigen-
values )\oi and eigenvectors {q:’3 ' q:' } {i =1,2,3;--). The fixed-constraint normal modes

i

in this solution are designated by use of the letter N (upper case). The accuracy of the
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solution canbe improved by including an additional set of normal modes which are distinguished
from the original set by use of the letier n (lower case). Equation 1 is modified sccordingly
and the new equation appears as follows,

MEE | BN | yBn 1B (BB LO ll o X
DR N JRN I, O Y . K .o 9 2. .
et e el I Rl "“T"‘BF“,; Y
M8 1 0 | MM n o 10 | K q

The eigenvalues Xi and eigenvectors {qa, qv, q“}i(i=l,2,3,----)are distinguished from those
which result from Equation 1 by dropping the subscript o. For convenlence Equation 2 is
rewritten in the following manner,

l
Morc: i Mcn ) \ KOO L 0 qo 5
_...._._L_\._._. - = - e -~ P
Mno : Mnn qn o I Kn qﬂ
where 8B 1 ..BN
‘ MO0 -[ " i M J
- Inddeindiaie =S
mBn ] no nB !
Mo '[*6“ M= [u ; o]
B -
q° = _‘!_
QN |
00 [KBB )
K = | —— G ——
o ! kM
Equation 3 is written as two matrix equations,
Moo qo + "on qn _ Koo clo (4)
L clo + ™ qn = %\ K" qn (5)
Equation 5 is solved for q" , giving
|
a" = (k™ - w"™ MO ¢ (6)
This is substituted into Equation 4 to yield
- o v}
(Moo + "on (AK“" _Mnnll “no) qo = MK [} q (7
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Comparing Equation 7 with Equation 1 it is seen that the effect of the added fixed-consggaint
normal modes is to alter the original mass matrix by adding an incremental matrix 5™ ,

where |
S M°°,= M<:'n (M(nn__ Mn") Mno {8)

This incremental matrix may be expanded as follows.

. ~ sMBB | SMBN
SMT = smNE 1 smNN

Bn _ ,
] [M] ICLELINNTL Y
0
i [ MO O™ W™ M1 o ]
0 I 0

From this result it is evident that the foregoing statement may be amended to state the
following: the effect of the added fixed-constraint normal modes is to alter only the original
mass submatrix MB8 by adding an incremental matrix SM8® - where

(9

SHBB - MEln ( )\Knn _ Mnn,-' MnB (10)
Therefore, Equation 7 may be rewritien as follows.
{ uP 4 5w | w” [f ] \ [ K* ! o } {f’_ } o
mNB L NN L M o | KNNj | gN
This equation is expanded into the following two equations,
(mBB+ sMBBy B + MOV ¢ - Ak ¢° (12)
“NB qB + MNN .qN = kNN N {13)
The solutions to Equations 1 and 11 are compared by letting
® = o + Bq 8
aN = q? + &qN (14)
A= X, + 3

Substituting Equation 14 in Equations 12 and 13, expanding, and subtracting out the original
equation, leads to the following pair of equations.

(MPB -A kBB 5qB + MBN sqN - (5a k%P — w7 o8 s
+ (5AkPB_ 3mBB) 34°
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NN
MNB SqB + (M - KNN) SqN =5\ kNN q': + SAKNN SqN (16)

The second terms in the right~hand sides of these two equations are of second order and will
be dropped at this point in the analysis. Into Equation 16 is substituted the following relation-
ship which is derived from Equation 1. :

NN-!' _NB _B

N NN
qo ==~ (M —)\o K ) M qo uz)

The resulting equation is substituted into Equation 15 to yield the following.

[MB8 -xg k%8 - (W™ -, kNN MM 548
{18}
- Sx [KBB +m8N ( NN A, KNN,-' kW (N _)\OKNNY' "NB] q%
- 5M° qf
Returning again to Equation 1 it is seen that it may be expressed in the form
[m®® o, k™ - ™ ™ o kT MY] QB -0 (19)

where the right-hand side represents a null column matrix. The matrix in square brackets
in Equation 19 is symmetrical and is identical to that on the left-hand side of Equation 18,
If the matrix product in Equation 19 is transposed the result is a null row matrix, Therefore,
if Equation 18 is premultiplied by the transposed vector qu , yielding a scalar eguation, its
left~hand side will be identically zero. The resulting scalar equation is put in the form below,

;
® 8 mES qg’
S\ = (20}

U BB BN NN NMyP NN NN - NB
B - - NN B
a [K +M (M Ay K Y kN (M ALKTY M ]qo

This equation permits an estimate to be made of the change in any one of the eigenvalues of
Equation 1 resulting from the use of additional fixed-constraint normal modes beyond those
used in Ecquation 1. These additional modes contribute to the determination of M
according to Equation 10, The S\ resulting from Equation 20 is not exact because of the
second-order terms dropped from Equations 15 and 16. The importance of this point will be
noted in connection with the results of an example to be discussed later.

EaBuation 20 does not lend itself to computation readily as it stands. The reason is that
3MBB depends upon an unknown A ratherthantheknown Ao . Therefore, the expression

for this quantity given in Equation 10 willbe altered by working on the matrix( AKM - M"n) .
This is a diagonal matrix whose ith diagonal element is )\K?" = M;'" . It i8 noted that

807



AFFDL-TR-66-80

where:

th

wp; is the i natural frequency of a component with fixed constraints.

element of the matrix is

nn nn N nn
AK; M, = — 0 M
An: !
’ 4
nn =1
The i'! element of the inverse matrix {)\K - “nn)
is
An. -1 an ="
.A ':m = Hi Mi
k "kni !

Hence, the it'h

Substituting )\o+ 3N  for N the number H; in the above equationisexpressed as follows,

(Aog-Xp ) ghp))

(22)

z s OA + higher order terms in SA

The diagonal matrix H of the elements H; is given below where the higher order terms

are neglected,. I

H = HO - 8)\ Ln

where: .
H = [k—“] ¢ diagonal melrix.
° Ao~ An

An
e = [—
) [( Ao A

] o diagonol motrix.

The quantity & mB8 is expressed as

BB I . nB

5M%% - W°" (H, - BAL) M M

Using the relationship
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the quantity in the denominator on the right side of Equation 20 can be simplified in a similar
manner, The matrix in the square brackets is written as

BB NN N
[k« ™ ¢ W™ W]
where: A
La*s [‘___N_'l o diggonal matrix
(Ag—AN)2S '

When this expression and Equation 24 are inserted into Equation 20 the expression for S\
becomes the following one,

T an”! n8 B
a© M n,m M oa,
Bh= — . = (26)
NN UNB | .Bn B

BB, BN on ' 0B
[P+ L N B L W™ B P

This equation regresents the end point of the analysis. In summary it is noted that the
matrices KB MBN . MN8 and the values A\ are available inasmuch as they were
evaluated in order to wrlte Equation 1 which is solged to ybeld the original set of eigenvalues
and eigenmodes, The additional matrices M™ , " together with the quantities A,
must be evaluated in order to use the equatlon These wﬂl make use of as many addltlonal
fixed-constraint normal modes as will make a significant contribution to §)\ . Having estab-
lished these matrices the 8X for a particular mode is computed by sumply inserting the
Ao and g8 corresponding to that mode. Thus, values of SA can be determined for
each mode of vibration included in the solution to Equation 1, The significance of the 88X\ so
obtained will be discussed following the example of the next secticn,

EXAMPLE

Equation 26 RHas been applied to a structure which is essentially a plane frame, the con-
figuration of which is shown by the drawing in Figure 2, The structure is described in more
detail in Reference 3 where the results of a vibration analysis using the Component Mode
Method are given. The frame was intended originally as a conceptual representation of a three-
tank launch vehicle sysiem. The components are uniform beams instead of the more realistic
fuel tanks and connecting structures but this in no way alters the essential features of the
analysis. The obvious asymmetry was introduced deliberately to avoid the simplicity of
symmetric and antisymmetric modes of vibration, In obtaining the results to be inciuded in
this paper the base of the central element of the structure is fixed and only vibrations in the
piane of the structure are considered. The eight members or components that comprise the
system are numbered in Figure 2. These members are considered to be axially rigid so that
the modes of vibration involve beam deflections only. This is not an essential restriction on
the analysis but is done only to simplify it

The structure has eight basic modes which are shown in Figure 3, Three of these can be
related to translations; two of which are vertical translations of members 3 and 4. The third
.3 a lateral translation of the top of the frame, The remaining five are identified with rotations
of the five free-frame junctions.
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The fixed-constraint normal modes relate to beam vibration modes of the eight members,
For all members, except member two, these are fixed-fixed heam modes. For member two
they are fixed-free, or cantilever, beam modes.

Eigenvalue problems were formulated and solved for 16, 24, 32 and 40 degrees of freedom.
The first of these cases involves the firstfixed-constraint mode of sach cf the eight members
in addition to the eight basic modes, The second case includes the first iwo fixed-constraint
modes of each member and so on.

The eigenvalues, A

or )«“‘ , for all of the members through the first four modes are
listed in Table 1.

N

All of the eigenvalues and eigenmodes that resulted from these analyses are not listed in
this paper but the more significant results are discussed later. The eigenvalues are plotted
in Figure 1 for several significant modes in order to show how they approach their asymptotic
values as the number of degrees of freedom is increased,

Equation 26 is applied to two generalproblems. In the first one the A, and g8 are taken
from the 16-degree-of-freedom case and the additional fixed~constraint normal modes include
all those up to the 40-degree-of-freedom case. The results are included in Table II where
valuesof Ao, 8N , Xg+8X,and \,, arelistedfor the first twelve modes. A,, means
the true eigenvalues found by direct solution of the 40-degree-of-freedom eigenvalue problem.

In the second problem the A, and qB are taken from the 24~degree-of-freedom case.
Again, the extrapolation is to 40 ?legrees 0? freedom. The results for the first eighteen modes
are listed in Table ITL

RESULTS AND CONCLUSIONS

It is evident from an examination of Tables IT and ITI that the values of SA  when added to the
corresponding )‘o do not necessarily give a betier approximation to the true eigenvalues.
For many of the values listed A, is a better approximation to the A for the 40-degree-of-
freedom case thanis Ao + O\, Thisisclearly true for those cases in which 3 A is negative,
The emergence of negative values from the analysis is unexpected since, for all modes, the
eigenvalues progressively increase as the number of degrees of freedom is increased as
shown by the curves in Figure 1, However, a careful study of the numerator in Equation 26
shows that it is quite possible to obtain negative quantities; first, through the matrix Ho
where negative terms are obtained If Ag < )\N and second, through the negative elements in
the mass coupling matrices M®" and M"® " Therefore, it is concluded that the approxi-
mations introduced into Equation 26 through the neglect of second order ferms not only may
lead to appreciable errors in 8 X but may lead also to negative values, Furthermore, it is
observed that some values of 8\ are so small, particularly in the lower modes, that round
off errors in tihe computations could lead to a change of sign.

Despite the conclusion expressed in the foregoing paragraph, it appears that Equation 26
can provide a useful criterion for judging the accuracy of eigenmodes and eigenvalues. In
order to clarify this point Table IV is shown in which eigenvalues A, and eigenmodes q8
are listed for several of the critical modes using the 16- and 24-degree-of-freedom results.
These are compared with results from the 40~degree-of-freedom case. To supply a criterion

3 A

of merit for each mode the corresponding number |
, 15 included. In this table several modeskc'are given beginning with mode No, 7.

A
Ao

| , the absolute value of the ratio
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It is necessary to clarify the reasons for the selection of the particular modes included in
Table IV. Inorder todothis Table V is shown in which all of the comparable mode numbers for
the 16~-, 24~, 32-, and 40~degree-of-freedom cases are listed. For example, the modes bearing
the number 7 are basically the same mode for all cases, On the other hand mode 13 in the
16~-degree-of~freedom case is comparable to mode 15 in the 24-degree~of-freedom case, mode
16 in the 32-degree~of-freedom case, and mode 17 in the 40-degree~-of-freedom case. This
mode is identified as 13~15-16~17, Foreach case the modes are listed in the order of descend-
ing eigenvalues Ao . In the table, modesare typified as G or L rodes; these are ‘‘general’’
or ‘‘localized’’ modes, respectively. A large number of localized modes exist in which the
predominant modal amplitudes are localized in a single member which vibrates at a frequency
very near to its own fixed-constraint natural frequency. The members that vibrate in this
manner are the relatively flexible beams 5, 6, 7 and 8 which are loosely coupled to stiffer
adjacent members. The components of the vectors 48 aresmallin these modes. The general
modes are those in which the amplitudes of the basic coordinates predominate, These are the
modes selected for study.

Returning to Table IV the number | % I is seentohave a correlation with mode accuracy.

In mode 7 the eigenvectors are very adcurate from an engineering point of view for both the
16~ and the 24-degree-of-freedom cases, improving in the latter case. The values 0.37 x 10~2

and 0.37 x 1073 for |-8A_| indicate this progressive improvement, In mode 10-11-11 the

vector for the 16-degree-of-freedom case is poor and that for 24 degrees of freedom is quite
accurate. The values 1.465 and 0,61 x 10~2 indicate the relative accuracies of these modes,
Similar comparisons may be made for the other modes tabulated.

A
Ao
with very accurate modes, Those of order 10~1indicate borderline cases, while higher values
indicate poor modes, Mode 12 in the 24-degree-of-freedom case is an exception inasmuch as
the number 0,19 would seem to indicate a somewhat inaccurate mode whereas the comparison

with the 40-degree-of-freedom case shows it to be a rather good one.

This example indicates that values of of order 1072 or smaller are associated

Experience indicates that the method of component mode synthesis produces very accurate
lower modes and very inaccurate higher modes with a rather abrupt transition between the
two groups. In a sense this is a fortunate characteristic of the method because the number

_8%— then changes abruptly from very small values to very large ones in this transition
[

so that there are relatively few doubtful modes.

To conclude it appears that the method developed in this paper can result in a criterion
which may be used to distinguish, with reasonable engineering accuracy, between accurate
and inaccurate modes. More work should be done on the example treated in the paper and the
method should be extended to other examples in order to further test the validity of these
conclusions,
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TABLE 1V

COMPARTSON OF MODES

D.O.F. 16 24 40
MODE NO. 7 7 7
g, +.00287 .00324 00321
s +,00023 " L.00060 .00057
9 -. 52524 -.51918 -.51875
?‘,_ +1,67437 1.65799 1.65685
?; +1,76997 1.81293 1.81341
?‘ : ~2,96549 -2,91038 -2,90910
3-; +1.3451 1.30987 1.30998
Z 7 +2.52851 2.56615 2.56597
Ao .007752 007777 .007780
{6A/A,1 .003728 .0003766
D.0.F, 16 24 Lo
MODE NO. 10 11 11
.ﬁ . .001306 -.00250 -.001516
2; .001518 -.00288 ~.001906
ja -.35578 .03621 L036705
) -1.01173 -. 46122 -. 46107
g; 747475 6.17288 6.16907
(9 6.67297 6.27754 6.27528
47 -7.01332 -6.14875 -6.14099
%f 7.80957 6.06620 6.05723
. 001796 002658 002662
[0/ A 0| 1.u6s 006111
—
D.0.F. 16 24 L
MODE NO. 11, 12 i3
?, -.00340 -.00065 .00063
% -.00253 .00011 .00138
?; —~. 73961 -. 7597& -. 75267
?e -, 97624 -1.32521 -1.32263
ﬂ; -7.61991 -1,80925 ~1.73934,
3‘ -8.,83026 ~3.06402 -2,98507
?,, 8.36817 2.63315 2.68793
;y 6. 54993 ~.62956 ~.70532
Ae .001379 .001541 001546
[$A/A 0 3.16 1904
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TABLE IV (Cont,)
COMPARISON OF MODES

D.O.F. 16 24 TIJ'=

MODE NO. 13 15 17
?, .00095 00180 00188
Gz -.00055 -.00289 -.00293
7; L2496 40418 +33650
?(4 01765 -.07385 -.0621)
f-"' ~9.99031 -4, 88114 -6,68466
; 5.62477 5.06781 2.65511
5 2.83647 3.38714 1.29971
P 11.86812 5.278L0 6.98300

4. .000355 .0005812 .0005889

[84/M1 05142

D.O.F. 16 24 40
MCDE NO, 14 17 18
g, 00314 -.00006 00137
ﬁ‘ .00306 .00128 .00078
y .32670 -.20524 .27918
v L0L48L ~7.73480 -.23594
?; 17.71465 2.17839 7.90101
. 21,9420 L94535 11,27086
7 20.21166 1.41851 10.14683
/, -16.36834 -2.25961 =7.54563

Ao .0002736 0003482 0005111

[54/4,1 07534

D.O.F. T 16 2l W0 |
MODE NO. 15 18 20
5, -.00129 00331 -,00050
?z ~.00175 .00318 00091
j}; -.03785 .19184 -.23985
Ty | -18.66878 1,50445 -7.86021
P -.01539 18.94000 ~.28916
1 -24330 19.82006 ~1.63468
” - 14071 19.14806 ~1,22981
-.15165 ~18.48168 .20332

A, 0001659 0002721 0003478

|$2/A,] 11.67
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TABLE V
COMPARISON CF MODE NUMBERS

DEGREES OF FREEDOM

TYFPE 7 24, 32 40
G 1 1 1 1
G 2 2 2 2
G 3 3 3 3
L 4 4 4 i
G 5 5 5 5
G 6 6 & 6
G 7 7 7 7
L 8 a8 8
L g 9 9 9
L 9 10 10 10
G 10 11 11 11
L 12 12
G 11 12 13 13
L 12 13 14 14
L 14 15 15
L 16
G 13 15 16 17
G 14 17 17 18
L 16 18 19
G 15 18 19 20
L 20 21
G 16 19 21 22
G 21 22 23
G 22 25 24
L 23 25
L 20 24 26
L 27
ol 23 26 28
L 29
G 24 27 30
G 29 31
G 30 32
1L 28 33
G 31 34
G 32 35
L 36
G 37
G 38
G 39
G 40
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T T
15-18-19-20
" 14-17-17-18
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9-(0-10-10 .
8-9-9-9
>
6
4 5
3
2 e
| |
\/,
| |
16 24 32 40

DEGREES OF FREEDOM

Figure 1. Eigenvalues Plotted Against Degrees of Freedom
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Figure 2, Frame Structure Treated in Example
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