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FOREWORD

This report describes results of research performed under Contract No. F33615-86-C-3612
entitled "Nonlinear Flying Qualities," prepared for the Flying Qualities Group of the Control
Dynamics Branch (FIGCB) of the Air Force Wright Aeronautical Laboratories (AFWAL). The
general objective of the program was to develop and evaluate analytical methods which can be
used to calculate Nonlinear Flying Quality Parameters (NLFQP's). The specific objective was to
provide interactive computer-aided analysis tools (based on the nonlinear inversion concept) for
evaluating nonlinear flying qualities of current airplanes and guiding the development of future
airplanes with improved flying qualities.

The research was performed at the Honeywell Systems and Research Center between 30 June
1986 and 30 June 1987. At Honeywell, the research was conducted by Drs. C.A. Harvey and
B.G. Morton, Principal Investigators; Mr. M.R. Elgersma and Ms. G. Hines, Associate
Investigators; and Dr. M.F. Barrett, Program Manager. Dr. G.R. Sell, a professor in the School
of Mathematics of the University of Minnesota, served as a consultant. The AFWAL/FIGCB
technical administration was performed by Mr. C.F. Suchomel, Project Engineer.
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SECTION 1: INTRODUCTION

The usefulness of current flying qualities parameters is limited by their almost complete
dependence on linear analysis. This dependence is based on mathematical tractability and
analysis of a class of small amplitude maneuvers about trim conditions. The limitations of
existing flying quality parameters leave expensive and extensive flight testing as the only
accurate means of assessing flying quality during highly dynamic maneuvers. Inadequacies
found during flight test can lead to extremely costly modifications and redesigns. This
motivated our program aimed at the development of flying quality parameters which take into
account the nonlinearities encountered during current and future combat maneuvers.

We took 2 novel approach to provide interactive and computer-aided analysis tools which
can be used in developing and evaluating nonlinear flying quality parameters (NLFQPs). This
approach is based on a technology called dynamic inversion which we used to generate
maneuvers and analyze flying qualities. To enhance our analytical developments and to
expose the issues concerning NLFQPs to the academic community, Professor George R. Sell
served as a consultant.

Our technical program consisted of: a review of existing techniques, problem formulation,
technical development, validation and illustration. In the problem formulation, the analytical
structure of models was defined along with preliminary definitions of sets of maneuvers and
potential NLFQPs to be examined. The technical approach consisted of analytic, algorithmic,
and software development. Maneuvers were flown in simulation during the validation and
illustration to demonstrate the utility of the technical development.

The concept of dynamic inversion is quite simple. Suppose the aircraft model is defined
by:

x=f(x) +d

where f represents the uncontrolled aircraft dynamics and § is the commanded actuator signal.

~ For a desired aircraft response:

x = L(x) + (pilot command)



dynamic inversion is a contol structure which forces the aircraft to respond as desired.
Dynamic inversion is done as follows:

1) Measure the state x
2) Compute f(x) - L(x)

3) Generate the actuator command signal: § = L(x) - f(x) + (pilot command)

For details, see section 5.1.



SECTION 2: OVERVIEW AND SUMMARY OF REPORT

This report documents the results of our efforts to develop tools that can be used for the
computation of nonlinear flying quality parameters. We have developed many new ideas for
approaching this problem. In the course of our activities, we have found a variety of candidate
nonlinear flying quality parameters and candidate specifications for them. These parameters
are genuinely different from expressions derived from linearized models: we work with the
nonlinear acrodynamic functions themselves and not their derivatives. We believe the candi-
date specifications we have outlined in this report could be applied to current and future Air
Force vehicles to improve their flying qualities. The parameters we have defined here can be
computed directly from preliminary nonlinear aircraft models.

First we give a brief outline of the sections to come, and then follow with a more
detailed outline, Section 3 shows the nonlinear aircraft models we used. Sections 4 and 5
present the theoretical techniques we used while working with the nonlinear models. Most of
these techniques were developed during the course of the program to help us idenfify and
compute the parameters discussed in section 6. Anyone interested in getting to the flying qual-
ities right away can go straight to section 6 and look through sections 3, 4, and 5 as peeded.
Section 7 contains the simulation results. Section 7 is followed by the reference list, and by
the appendices treating trajectories and dynamical properties of maneuvers.

Section 3 is a complete description of these models in the form used. These mthc stan-
dard equations of motion in a form which is not completely general, but general enough to
capture most of the important features of the models commonly in use. Our techniques will
apply to fully general models, but only at the expense of increased analytical complexity. A
description of the application of dynamic inversion to the general models can be found in sec-
tion 3.4 of the technical proposal for this contract (in response to PRDA 86-1 PMRN).

The one special assumption made is that the effect of the m control inputs to the aircraft
" can be represented by a 6-by-m matrix function of the state that multiplies an m dimensional
vector function of the state and the control input signals. This is the situation that arises when,
for example, the controls are described by acrodynamic derivatives such as C,, that are func-

tions of the state.



Section 4 discusses a novel approach to the computation of trim conditions for the
models discussed in section 3. Here we exploit the special form of the equations to reduce the
computations to an algorithm that is simple enough to allow analytic computations. Sections
4.1 and 4.2 explain the basic ideas behind this approach and present the class of models to
which they can be applied. Section 4.3 makes the algorithm explicit for a family of systems
that includes those presented in section 3. Section 4.4 explains the two different ways that we
have implemented these ideas for the solution of aircraft equilibria. Section 4.5 gives the
details of the computations for the aircraft models, using both approaches discussed in section
4.4, Included in section 4.5 is a special treatment for aircraft exhibiting leftright symmetry
and other special features that are often assumed and which simplify the results.

Section § is our analysis of nonlinear aircraft dynamics using partial dynamic inversion.
Section 5.1 is a short summary of the method of partial dynamic inversion and five examples
of inversion approaches that we investigated on this program. Section 5.2 introduces the
theory of complementary dynamics in a general setting, then section 5.3 shows the algorithm
for computing the complementary dynamics for the nonlinear airplane models. The dimension-
less coordinates are introduced here to make it possible to fit the equations into a reasonable
amount of space and to reduce the number of independent parameters appearing in the equa-
tions of motion. Then, for the special cases mentioned before, the special form of the com-
plementary dynamic parameters is derived explicitly. It is shown then that for typical models
in this form, the o,3,8,0 complementary dynamic equations are stable and have unique
equilibria. Even if the uncontrolled aircraft is unstable, the nonlinear inverter stabilizes the air-
craft. Section 5.4 then shows how to transform the general a,p,0,% complementary dynamic
equations into canonical forms, so that Liapunov functions can be applied. Section 5.5 then
demonstrates how the Liapunov functions are constructed, and explains the significance of the
result to aircraft stability.

The theory developed in sections 3, 4, and 5 is central to the discussion of, nonlinear
flying qualities in section 6, but it is not a prerequisite. The reader is warned that the parame- -
ters developed in section 6 are represented in terms of the dimensionless coordinates
developed in section 5.3, and that conversions to account for units in the final answers might
be necessary before meaningful comparisons can be made between different aircraft.

In section 6.1 we introduce the notion of commanded dynamics, then present a list of the
sections from the MIL-F-8785C document that we believe are specifications for commanded

4



dynamics. Then we present some parameters that we call commanded dynamic parameters,
derived from the form of the nonlinear models. These include the basic Q command
effectiveness parameter, the dynamic pitch-control ratio, the minimum lateral-directional com-
mand effectiveness parameter, and the dynamic lateral-directional control ratio vector. In sec-
tion 6.2 we introduce the notion of complementary dynamics, then present a list of the sec-
tions from the MIL-F-8785C document that we believe are specifications for complementary
dynamics. Then we discuss our complementary parameters that were developed in complete
detail in section 5. Specific comparisons are indicated between our complementary dynamic
parameters and the specifications in sections 3.2.1.1 (longitudinal static stability), 3.4.1
(dangerous flight conditions) and 3.4.2 (flight at high angle of attack) of MIL-F-8785C. The
discussions at the end of cases 1 and 2 of section 5.5 should be read in conjunction with sec-
tion 6.2. Section 6.3 is a short but very interesting discussion of lift-to-drag ratios, what they
look like for the F-4, the F-14, and the F-15 aircraft for all angles of attack, and why that has
a bearing on flying quality. Section 6.4 contains some criteria for coordinated flight at high
angle of attack and for sustained high-angle-of-attack maneuvering. In section 6.5 we present
an approach towards defining dynamic flying quality metrics using the coordinated-flight
U,P.Q,R dynamic-inversion controller discussed in section 6.4 (A prototype of this controller
is demonstrated in the simulations of sections 7.2 and 7.3). In section 6.6, some parameters
for measuring the influence of the dynamic aerodynamic coefficients on flying qualities are
given,

Section 7 presents some maneuvers generated by the batch simulation using nonlinear,
partial dynamic inversion controllers. Section 7.1 contains some examples of a roll reversal,
section 7.2 is a barrel roll, and-section 7.3 is a highly-dynamic diving tum. We list the main
developments that arose from analysis of the simulations in the summary section 7.4

There is a list of references, and then the two appendices. The first appendix discusses
the trajectories of vehicles at equilibrium. The second appendix was written by George Sell.
In it, he proves a fundamental lemma for the general theory of dynamic inversion.



SECTION 3 : NONLINEAR MODELS

In this section we describe the aircraft equations of motion. For more details on the nota-
tion and derivation of the aircraft equations of motion, see [E3].

3.1 Notation

Coordinates:

U
V] = velocity vector of the c.g. in body-axis coordinates
W _

v
B] = velocity vector of the c.g. in wind-axis coordinates
o

= (speed, sideslip angle, angle of attack)

speed

M = Mach ber =
ach num speed of sound

[P
Q
R

¥,0,P = Euler angles for heading, elevation, and bank angle (yaw, pitch, roll sequence)

= angular velocity vector in body-axis coordinates

T engine thrust ‘I
3, total aileron angle

8. | = [total elevator angle
o, total rudder angle |



Tabular aero data (from wind tunnel testing):

In general these are nonlinear tabular functions of many variables, e.g. the aero force in the x
direction is given by N,(M.,V,c.B,&,B.P,QRT.5,.5.5,, - --) . In this report, we have only
kept the M,V,a,8,P.Q,R.T.8,.5..5, dependence. Furthermore, we have expanded the functions
in a Taylor series with respect to P,Q,R,T,8,,8..8, and kept only the two lowest order terms in
the Taylor serics. For example,

N,(M,V,0,B,P,QR,T,3,.5..5,) =
YapV28 [C,M,0.B) + C,,(M,0,B) P + C, (M,aB) Q + C, (M aB) R 1+

C,, M,a.B) T + ¥pV?S [C,, M,a.B) §, + C;, (M,a,B) &, + C,, (M,t,B) 5, ] +

higher order terms.

When linear analysis is done, the above types of expressions are expanded further in a Taylor

series with respect to the velocity components too (e.g. M, o, B or U, V, W ) and only the
two lowest order terms kept. In this report, we will be working directly with the nonlinear
functions of M, & , and B instead of expanding them in a Taylor seriesin M, @, B .

C,(M,a,B)
Cy(M,a.B) | = static nonlinear aero force functions in body-axis coordinates.
.Cz(Mia!ﬁ)

CM,a.B)
C.(M,o,B) | = static nonlinear aero moment functions in body axes

| GM,af)

Note: the above nonlinear functions of M, a , and B are the coefficients on the zeroeth order
terms in the Taylor expansion with respect to P,Q,R,T.3,.5..5,

C,M,a.p) G M,af) C, (Mex,B)
C,,(M,a,[3) CYQ(M,a,B) C, M,a,B) [ = dynamic nonlinear aero force functions in body
C,MaB) C, Map) CpMap)



axes

C,Map) C Mop) C Map)
ConyM,,B) C,,,Q(M.a..[i) Cine(M,0,P) | = dynamic nonlinear aero moment functions in body
CMap) C, MaB) Cp(M,p)

axXEes

C MaB) C,Map) C;Map) C,Map]
CMap) Gy, M) G, MaB) C, M) | =
CZT(Msa'tB) Cza.(M!a'ﬂ) Cz..(M9a'B) Cu'(M'a’B)

nonlinear aero coefficients describing forces due to the controls in body axes

CMap) CMap C,Map CMap |
ConM,0B) Crp, M) Crr, M) Cpp, M) | =
LC.,,(M,OLB) Co, MB) G Moy G (M,0B)

nonlinear aero coefficients describing moments due to the controls in body axes

Note: the above nonlinear functions of M, & , and B are the coefficients on the first order
terms in the Taylor expansion with respect to P,Q,R,T,5,.5..5;



Physical parameters:
p = air density

g = gravity

Physical parameters for the aircraft:
m,c,b,S = mass, mean aerodynamic chord, wing span, wing area
Tix -Ixy ="

-l Iy -ly;| = moment of inertia matrix in body axes

L <Ly Iy




3.2 Introduction to the Equations of Motion

Consider a 6DOF nonlinear aircraft model having four control inputs. The equations of
motion are often given in a mixed system of coordinates. There are eight states that the
forces and moments depend on. The rigid-body mechanics are most easily expressed in the
body-axis velocity (U,V,W) and angular rate (P,Q,R) coordinates, and two of the Euler angles:
bank angle and elevation (9,8) . The forces and moments do not depend on the heading
angle, ¥, so it is not included as a state. The result of not including ¥ as a state is that the
equilibria will generally consist of vertical helices instead of just straight lines in inertial space
(see appendix A). The acrodynamics are more casily expressed in terms of wind-axis velocity
(V,B,@) in place of (U,V,W). In order to fit the aircraft model into the framework presented
carlier, a single system of eight states will be used, and the angular rates will be expressed as
derivatives of the Euler angles (@.é,‘-i‘) in place of (P,Q,R). In this mixed coordinate system,
the equations of motion of an aircraft are of the form shown in Figure 3.1.

u j- u_, _L
@ = U0-VV+WW)
;, I v f= sin"(‘é") _.g__;
¢=lan"(-g-)
. w I W __:___'_
Mixed Coordinate T
. d —
a
Aircraft | o F T o [T
Integrator Chains 3 ‘ "
1 0 -sin@
2 I a 0 cord c3B3nd 8 I 8 »
O -sind cosgeosd
R I R ' g

Figure 3.1 Equations of Motion in Mixed Coordinate System
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In the wind-axis and Euler angle coordinates, the state vector is x = (V,0,0,$.8,%,0,8). The
form of the equations of motion in this case are shown in Figure 3.2 ‘ )

Wind-Axis, Euler-Angle
 Afrcraft
Integrator Chains

¥ [Tle.

B Tp;
T P—
3, [
" -

&
et loz.,
™
Sy,
&
|

4-
4

Figure 3.2 Eguations of Motion in Wind-Axis and Euler Angle Coordinate System

it



CrooBial v e oo 33, Equations of Motion,

P oA
P " . LI N

The aircraft equations of motion [E3] may be written in the form

0 = f(x,x) + g(x) h(x,u) (3.3.1)
where P
x is (VBo0.0¥00) , uis |s*
" )

T

fis6x1 ) gis6x4 and hisd4x1

All the tabular aero functions which are denoted by capital C's with subscripts, like C, , Cy,

G, ,etc. are nonlinear functions of (M,a,B) . M is a function of V and air temperature.

The top three rows of (3.3.1) are the rigid-body force equations, while the bottom three rows
of (3.3.1) are the rigid-body momelflt equations. The quantily f(x,x) + g(x) h(x,u) contains the

P U )
expressions |Q | and ‘\;’ “which-are given in terms of the state x by
- Ip]. rl: -0 —-sin(@) S
_ L(% = 10 cos(®P) cos(B)sin(P) | |@ (3.32)
o ":__LO fsii'l(fb) cos(@)cos(@) | | .
(U cos(B)cos(ox) '
Vi =V sin(B) (3.3.3)
W cos(B)sin{ct)
5
The four components of h(x,u) are the forces (divided by mg) produced by the controls 8“
ar

12



[ T ‘

mg
2
YpV- S sin(5, Pb)
mg 2V

2
ﬁ%s sin(3,~a)

2
‘ﬁ%ﬁ sin(5,~B)

(3.3.4)

This form for h is an example of the way that h can depend on x and u in a nonlinear way.
The sin functions were chosen to account for the fact that surface deflections are bounded
even if the surfaces could rotate through a full 2% radians. The shift in the arguments of the
sin functions account for the change in airflow at the surfaces caused by the aircraft’s rolling
motion and angle of attack. The h vector gets premultiplied by the 6 by 4 g(x) matrix, so

all four controls can influence all six degrees of freedom.

The derivative in the rotating accelerating frame of the aircraft (sometimes referred to as the

covariant derivative) of the linear momentum is

100 4 0 R _-Q U ~in(©)
010|—-|-R O P m |V | | - mg {cos(®)sin(D) | .
{001 dt Q -P 0 w 0s(0)cos(d)

The aerodynamic forces with zero control input (divided by mg) are:

oL e Co Co Cuffo 0 0] pp
YapV2s | 17X, 1
el | R A g;g[g]

C. Cy Cay Ca

So the top three rows of f(x,x) are

2% |1 R QU [u [ =sin®)
— {0 ? O|—-|-R 0O P m|V || - mg|cos(@sin(D) | | +
Mg lloo1]* |g -p o w cos(@)cos(®)

13



%Evzs Cx C‘ C C*I b0O P
mg g: 2v S G G g (‘; g [2] . (3.3.5)
Co G Gy

Note that no p dynamics have been included. However, the controller (introduced in sec-
tion 5.1) can be assumed to be using a measured (so varying) value of p in these equations.
This corresponds to treating p as a slowly varying parameter, compared to the rapidly varying
state. A consequence is that the equilibrium helices (see Appendix A) will vary slowly as
altitude is lost.

The forces (divided by mg) produced by the controls give the top three rows of g(x) mult-

plied by h(x,u) : ‘

[ T ]

- ; mg

Cu G, Cu, Cu| |10¥2s o5 B,

mg

CY-: CY:_ Cy;, Cyl, %EVZ S sin(8,~c0)

LCZT Cz;_ Cz;. Cz;, | Y, V S
-—L sin(d -B)

L

The resulting linear momentum equations give the top three rows of 0 = f(x,x) + g(x) h(x,u)

R R Ry
0ft=—1[1101 O0|—-~-|-R 0O P m{V || - mg|cos(®)sin(P) | | +
0 001 w Lcos(B)cos(D)

Cxpqucxa b 0O
YpVs || > p
_ﬁ_ EY+WCY|’CYQCY: 0C0[8]+
z CZp CZQCZl OOb

14



er Cla_ Cxl_ CxJ %Er:z S sin (5‘ 2P‘t;
Cyr G, Gy, Gy, S
chT Cla_ Cla_ CZ\\r

(3.3.6)

The derivative in the rotating accelerating frame of the aircraft (sometimes referred to as the

covariant derivative) of the angular momentum is

00 d 0 R -Q Lx '_Ixy ~lys P
10 @ -R 0 P Ly Ly -l [8]
01 Q -P ¢

O QO =

I, -1y, Ip

The aerodynamic moments with zero control inputs, multiplied by

1boo"‘
— 10 c 0
ME 1o 0 b
are :
C. G C .
o v Co Cuffboo]pp
1pV2S ! ]
_%.é_.cm»»a-‘?CowCmOcO[S]
CannQCn. 00b

So the bottom three rows of f(x,x) are

{ b0O 100 d 0 R -Q Lx Iy —la
-m_g- 0cO 010 i -R 0 P Ly Ly -l
00b 001 Q =P O

_Ixz —Iyz Iu

15
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YapV2S L

C Ca, G |0

The moments produced by the controls, multiplied by

| b0 o]
FOCO
Elo0b

give the bottomn three rows of g(x) multiplied by h(x,u) :

£
- - mg
G G, G G| |fpVis :2  siny- 2o
Cor G, Gy, Cony
e, T, 14pV? S Sin(6,~c0)
Lchr G, G, G, me

2
i&%}g—s sin(3,-f)

So the angular momentum equations, multiplied by

1boo‘l
— 0 c 0
M8 1o 0 b
are .
[0] 1b00"1 100 0 R Q]| Ty Ta
ol="210 ¢ 0 010/~~-|-R 0 P L, I, -I
0 mg d . XY Yy
00b 001 Q -P 0 g -, I
C. C C
C b Gy Colfb oo
1 2 1 P
VS e 1+ Lic ¢ c.|locolloll+
mg 2V P TMg TMa R
G, 00b

C lcl,c,qc,, b 0 o|rp
i~ %“m+2—vc,,,,c,,,ocm_ Oc(}[g] .



T

: ‘mg
Cp C, C, G| |4pV2s
Cor Cmy Goy Gy )

Y B ) A PO A
Cor G, Cu, Co | | w8

. Pb
sin(8,- —)
2V (3.3.8)

p 2
ApV_S Sin(sr—ﬁ)
mg

L

So

c oy cxprcssion(3.3.5)]
Bx.x) = [expression(3.3.7) (3.3.9)

and

Ci Cuy, Cx, Cx, |
G Gy Gy Gy,
C

. Cu G G
g=|c ¢ ¢ c - (3.3.10)
C'm'r Clﬂa. Cm&_ cm,;t

G Cu, Coy oy,

The 0 =f+ g h equations represent the dynamics while the kinematic equations for the
relationship between the Euler angle rates and the body-axis rates are given by (3.3.2) .
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SECTION 4 : EQUILIBRIUM MANIFOLD

4.1 Introduction

Systems of ordinary differential equations (ODE) with no control inputs typically have a
set of isolated equilibrium points (so that the set of equilibrium points is zero-dimensional) .
If a single control parameter is added, then for each fixed value of the control parameter, there
will be a comresponding set of isolated equilibrium points. The family of equilibrium points
generated in this way forms a one-dimensional set. Similarly, systems with m control parame-
ters will typically have m-dimensional equilibrium sets. When the ODE are not continuous
with respect to the controls or other parameters, the equilibrium set can also be discontinuous.
However, the equilibrium equations used in this report will still remain valid, they just change
value suddenly when the discontinuity is reached. Under fairly general conditions on the
ODEs, the equilibrium set will be a smooth mathematical set called an "m-dimensional mani-
fold.” Although this m-dimensional manifold is often parameterized by the m control inputs
(R1,[YSI],[MKC),[CM], and [G]) it is sometimes easier to choose a different set of coordi-
nates on this manifold. We could choose, for example, some of the state variables from the
ODE, or functions of the state variables. Instead of first fixing the m controls and calculating
the associated equilibrium values of the states, we can fix m of the state variables and solve
for the equilibrium values of the other states and the controls.

For a given set of state variables, the dependence of the ODE on one subset of the state
variables may be more complicated than on the others. For example, the ODE may be tran-
scendental, discontinuous, or even tabular in some of the variables, while only polynomial or
even linear in others. Analytic computations will be simplest if we choose as coordinates on
the equilibrium manifold the m states on which the ODE has the most complicated depen-
dence. This way, for each value of these coordinates, the equilibrium equations can be solved
by relatively simple means. If the equations are algebraic in the remaining variables, we can
solve them using standard techniques [BCLA][PY],[vdW],[W] . In subsection 4.4, we expli-
citly compute the equilibrium manifold for a six-degree-of-freedom aircraft model.
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4.2 Class of Systems

The class of systems described in this section includes the aircraft example shown in Fig-
ure 3.2 which has 8 states, 4 controls, and 6 integrator chains of lengths 1,1, 1, 2,2, and 1 .

Given a system of ordinary differential equations of the form x = F(x,u) , we can rewrite
it as F(x,u) =0 by setting F(x,xu) = F(x,u) —x . We will consider systems with n

states X, k integrator chains (degrees of freedom), and m controls u. The indexed set of ordi-
nary differential equations can be written as (see Figure 4.1)

Fi(Rycpkaey * * * e o) = 0 i=1,..k @.2.1)

xi.j+l = XL] 1= l. veny k J = 1, ey 1

where ¢ +c+ -+ +¢=n
( ¢y through cy are the lengths of the k integrator chains.)
x={x} i=1, ..,k j=1,..,c foreachi
where  x;; isthe j™ integrator output (state) in the i® chain.
u={u} i=1,..m

We assume that F has the necessary properties to ensure existence and unigueness of solu-

tions.

Typically, F(x,x,u) may be written as E(x,u) - x, and in this case the system may be
represented schematically as shown in Figure 4.1,
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Integrator Chains

X4 at I Xy a1 J’ X1 011 'I Xy 2 j’ X0

11

T

X202 I X2 J’ X2,02-1 ]’ X22 I X2,

Xy ok J Xy ek I xh.c_l:-i." *I Xka2 I X1

Figure 4.1 Schematic Representation of Typical System

By definition, equilibria are solutions of equation (4.2.1) for which x is constant. Conse-
quently the equilibrium set is the set of solutions of the following equations in the (x,u) space.

(4.2.2)
F,(0,0, - --,0xu) =0 i=1, .,k

xi’j+1=0 i=l,...,k j=1,....ci""1

This obviously reduces to k equations in the m entries of u and the k nonzero entries of x |
( ;) i =1, .. k) From the Implicit Function Theorem [M], at the regular points, the

20



equilibrium space is (locally) an m-dimensional manifold.

Sometimes, by changing the coordinates of the system, it is possible to simplify computa-
tions. If F is algebraic in k of the elements of (X,h), where (x(x;;,u),h(x; |,u)) is any change
of coordinates on the (x;,u) space, then parameterize the equilibrium set by the other m
entries of (X(x; ;,u),h(x;;,u)). For each value of these m parameters, the equilibriurn computa-
tions reduce to solving k algebraic equations, F, in k unknowns. Solutions can be found by a
number of methods, e.g. repeated resultants, Grobner bases, etc. [BCLA][PY].[vdW], and
[W]. If F is algebraic in more than k of the elements of (X(x, ;,u),h(x;,,u)), solve the alge-
braic system for the k algebraic elements of lowest degree. This reduces the number of calcu-
lations involved in solving the algebraic system. If the system is linear in some of these k
variables, then these can be eliminated by linear algebra, leaving a simpler algebraic system to
solve.

The change of coordinates to (X(x; j,u),h(x; 1,u)) can be essential in getting the system into

algebraic form, and very helpful in reducing the order of the system of algebraic equations.
This will be demonstrated in subsection 4.3 .
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4.3 Equations of the Form F(x,x,u) = f{(x,x) + g(x) h(x,u)

amics

In the previous section we were using state-space systems defined explicitly by

x = F(x,u)

or, by letting

F(x,x,u) = F(x,u) - x
the same system was defined implicitly by

F(x.x,u) = 0. 4.3.1)

This is a system of k equations. We would like to analytically reduce this to a set of k-m
equations in m fewer unknowns. Whether or not we can do this depends on the algebraic
structure of the system of equations. In the rest of this subsection we will be considering a

case for which this reduction is possible. Note that for the aircraft equations of motion k = 6
andm=4,s0k-m=2.

Consider the case where F(x,x,u) has the special form

F(x,x,u) = f(x,x) + g(x) h(x,u) . (4.3.2)

Equation 4.3.1 now takes the form

0 = f(x,x) + g(x)h(x,u) (4.3.3)

where
fis kxl ( column vector )
gis kxm (matrix with k>m)
his mx1 { column vector )
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In this case, the only dependence of F on the m controls, u, enters through th¢ m functions
h(x,x,u). F depends on h in a linear way, so we can eliminate h using lincar algebra. To
climinate h, split the equations into two parts

1 f(x,x) Py g(x)
] [P:z f(x, x)] [Pz g(x)] h(x,u) (4.3.4)

where
P, is any m rows of a k by k identity matrix.
P, is the remaining k-m rows of the k by k identity matrix.

If the g(x) matrix is full rank, it has m independent rows. In this case choose P; to select
out these independent rows so that P, g(x) is invertible, then

h(xx,u) = — (P;gx))"! Pyf(x,x) . (4.3.5)

Plug this expression for h into the 0 = P,f(x,x) + P,g(x) h(x,x,u) equation to get

0 = P,f(x,x) — Pg(x) (P,g(x))~! P f(x,x) . (4.3.6)
Separating out f gives
0= [Pz — Pog(x) (P;g(x))™? Pl] f(x,x) . (4.3.7)
or
0 = gh(x) f(x,x) (4.3.8)
where g+(x) is the following k-m by k matrix :
gh(x) = [P2 - Pog(x) (Pyg(x))! Pl] . 4.3.9)
Note that {g*(x) g(x}] = 0, this is the reason for chosing the "perpendicular” superscript on g,

ie g-. Equation 4,3.8 can be derived directly from equation 4.3.3 by premultiplying equation
4.3.3 with g+(x) .
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Equilibrium

At equilibrium x =0 and the only nonzero entries of x are ( x;; i=1, ..k ). So at
equilibrium, equation 4.3.7 represents k-m equations in k unknowns. Therefore the solution
set is m-dimensional.

Consider the case where f is polynomial in k-m of the nonzero entries of x, and g does
not depend on these k-m variables. Split the nonzero entries of x in to two groups y and z .

Let y = { x;; } where i takes on k-m of the values that correspond to variables in which
f is polynomial.

Let z={x;; } wherei takes on the remaining m values.

The functon f is polynomial in the entries of y. Let p be the number of monomials in
the entries of y on which f depends, ¢.g. if f=1+ 3y, +y,+y,’y,then p=4.

Let ¢ be a column vector containing these p monomials.

In this case

f(0,x) = f(z) § (4.3.10)

where f(z) is a2 k by p matrix of coefficients. See (4.5.9) through (4.5.11) for an aircraft
example.

Since g only depends on z, g* has the form

gH(z) = [Pz - P,g(z) (P,gz))™! P;] (4.3.11)

and Equation 4.3.8 becomes

0= [g-‘-(z) ?(z)]y . (4.3.12)

Equation 4.3.12 is a set of k-m polynomials in the k-m entries of y, with coefficients that
depend on z . For each value of z, this set of polynomials can be solved using repeated resul-
tants or various other methods [BCLA], [PY], [vdW], and [W]. These techniques reduce the
system of k-m polynomials in k-m vanables into a new system of k-m polynomials of the fol-
lowing form.

24



Qe-mY1:¥2 * *° Yeem) =0

Q-m-1Y1Y2 * °* Yieem-1) = 0
Qa(ypy) =0
Qy) =0

The q;(y,) polynomial in one variable can be solved numerically by placing its coefficients
into a companion matrix, then finding the eigenvalues of this companion matrix using
EISPACK [SBDGIKM]. K the q;{y,) polynomial is represented by

Q) =2+ 2y + <0+ +agm? (4.3.13)
then the companion matrix is of the form
. .
0 1 0 0
0 0 1 0
0 0 0
. (4.3.14)
. . . 0
0 0 0 1
e A T e~
| 3 8y a4 3y

The eigenvalues of this matrix will be the roots of the polynomial q; . Each root, y, , of this
polynomial is then plugged back into the q;(y,.y;) polynomial. Since y, is now known,
qa(y;.y2) is now a polynomial in only one unknown, y, . Put the coefficients of the g, poly-
nomial into a companion matrix and soive for y, . Continue this process of back substitution
until all the values of (y|,y2 * * * .¥x_m) 2re solved for.

At this point, y has been determined for a given set of values of z. Since the nonzero
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components of x consist of the entries of y and z, we now have all the entries in x, so we can
solve for the inputs, u, by solving equation 4.3.5

h(x,u) = - (P,;g(x))"! P,f(0,x)

foru.

All the points in the equilibrium space can be calculated by dividing the m-dimensional
set of coordinates, z, into a grid. For each point in this grid, calculate the cormresponding y
and u. An (m-1)-dimensional family of one-dimensional slices of this equilibrium space can
be plotted to visualize the space. ‘

The methods for solving systems of polynomial equations work in principle for any number of
polynomials, they are much simpler, however, when the number of polynomials is small. For
example, a system of two or three polynomials each of degree two or three can be solved
quickly, while a system of four or five polynomials each of degree two or three can take
several minutes of computer time to solve.

So far the methods described are quite general. In the next section, we will be consider-
ing a concrete example. For the aircraft example, k = 6 and m = 4, so we are left with 2
equatons in 6 unknowns. The equations are polynomial in several of the unknowns. Choose
the two (k-m) entries of y from these polynomial type unknowns. Use the remaining four
unknowns ( z ) to parameterize the equilibrium manifold. For each set of values of these four

* parameters, solve the two polynomial equations for the remaining two unknowns ( y).



4.4 Introduction to Aircraft Equilibrium

The kind of equilibrium manifold that we get will depend on what we choose for the states
(outputs of integrators). We will not include ¥ as a state since none of the forces or
moments depend on ¥ . At equilibrium, ¥ can take on any constant value (including zero),
so the equilibrium trajectories will be vertical helices (see Appendix A). Note that straight
line trajectories are just infinitely fat vertical helices with ¥=0. "Steady" maneuvers such
as a 3 g pullup are precluded since the component of gravity is varying greatly during such a
maneuver. It would still be possible to trim about a 3 g pull up if we considered time varying
ODE and trimmed about some nominal trajectory. When we refer to equilibrium in this
report, we will be referring to the vertical helix type of equilibrium.

Equilibrium is attained when the six outputs (V.ﬂ,a,tb,e,‘i‘) all remain constant . If we
specify the constant values for four of the outputs then the equilibrium equations will deter-
mine the corresponding values for the four inputs and the remaining two outputs.

For several choices of sets of four constant outputs, the equations are algebraic in the
remaining variables. This allows us to solve the system of nonlinear equations for the
corresponding inputs and the remaining two outputs. Two cases will be considered.

Case 1: The simplest case occurs for low speed flight (say Mach < .6) where the aero-
dynamic functions are independent of Mach. For instance C,(M,c,B) becomes just C,(c.B) .
In this case the equations are second-order polynomial in V and ¥ | so it is easiest to specify
constant values for the four outputs (B,c,®,0) then solve the system of two second-order
T
polynomials for the remaining two outputs (V,‘i’) and then solve for the inputs g:

5

Case 2: For high-speed flight, when the aerodynamic functions depend on Mach number
(Mach is a function of V and air temperature) the equations are no longer polynomial in V .
However, the equations are still second-order polynomial in ¥ and ‘second-order polynomials
in trigonometric functions of @ and ©. Since trig functions are rationa! functions of complex
exponentials, the equations are rational in ¢® and ¢'®. By multiplying the equations through
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by the common denominator of these rational functions, the equations become fourth-order
polynomial in ¢'® and ¢'®. In this case it is easiest to specify constant values for the four out-

puts (V,B,a,d) then solve a system of two polynomials for the remaining two outputs
T

P é
(¢'®,¥) and then solve for the inputs 5'
&

5,
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4.5 Calculation of Aircraft Equilibrium

At equxllbnum. x = constant; ie. (V,3,0,0,8,%,®,8) = constant. Since ©,® are constant,
©=0 and d = 0, so (3.3.2) becomes

—sin(8) o
L] 0 cos((b) cos(@)sin(P) e = (4.5.1)
0 —sin(®) cos(©®)cos(P) ‘¥
10 —sin®) 10| . L —sin(©)
0 cos(®) cos(®)sin(®) | |0 | = ¥ |cos(O)sin(®)
0 -sin{®) cos(®)cos(®) | (¥ 0s(B)cos(d)

P
This says that [8

. d . . -
is constant so the m operator in the covariant derivative of the angular

v U
momentum can be eliminated. Similarly, [B] is constant, which implies [V] is constant so
o w

the s operator in the covariant derivative of the linear momentum can be eliminated. Also

[cos(B)cos(a)] :
sin({3) .

9)
note that in general (3.3.3) gives us [V] =V
\' 4 cos(P)sin(ox)

Using the expressions for P, Q, and R from equation 4.5.1, the skew symmetric matix in
the covariant derivative expression becomes:

0 R -Qf 0 cos(®)cos(®) —cos(@)sin(d)
-R 0 P |=¥ |—cos(®)os(D) 0 —sin(©)
Q -P O cos(®)sin(P) sin(€) 0

We will use the following names to keep the notation more compact:
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0 cos(@)cos(P) —(:('.us(G)sin((b)1
Egpe = [~cos(B)cos(P) 0 -sin(@)
cos(0)sin(D) sin(®) 0
cos(B)cos(a) —5in(©®)
lgg = sin(B) log = |cos(@)sin(d)
cos(B)sin{ax) 0s5(8)cos(P)
G G
Coyz = |G Cimn = [Cm
C.) C,
Cyy Cry G| G G G
C*M'-' S CYQ G Chﬂﬂm= Cﬂbcl'ﬂqcmn
Co Cop Cay Co Gy Cu
Iu Ixy "'Iu. b0O
o= Ly Ly I, BCB= [0 c 0
T S 000D
2 __m
nom ~ Vsz

Plugging all this into equations (3.3.1), (3.3.5), (3.3.7), (3.3.10), and (3.3.4) gives the
equilibrium expressions for f, g, and h in terms of (V,B,0,'¥,$,0) and the four controls.

The top three rows of f{0,x) become

A\ d
—E‘E@elau + lpe +

vnom

2 .
Vv ¥
[ ] [nyz + -ZVC,WWBCB lope (4.5.2)

while the bottom three rows of £f(0,x) become
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y2
mg

BCB‘IEOOImoIOO +

v | ¥

nom

g(x) is left unchanged since each entry only depends on (M(V),B,0) :
Cor C, Cay, Cxy
Cr G, G G
Cor Cu, Cu G
8= ¢, G, C, G,
Cre Gy, Cry, Cr,
Cor Coy, Cuy, o

and the h(0,x,u) vector becomes
T

mg

V2 i@t ¥sin(©)b
2 a

)

h(0,x,u) =

nom

2

2V

sin(8,~at)

4.5.4)

2
vnorn
2

sin(3~B)

v2

nom

The g=(x) matrix described in equation (4.3.9) requires the selection of P, and P, . The
choice given below is motivated by the desire to make [P, g(x)] invertible for typical aircraft.
Let

100000
000100
Pr=loooo1o0
000001

k)



Using Py, P,, and g(x) we can form
gh(x) = P, — Pog(x)®@ygx)"'P,

(4.5.5)

Note: For aircraft with left/right symmetry, the elevator and thrust only affect the first, third,
and fifth rows of f(x.x) + g(x) h(x,x,u) while the rudder and aileron only affect the second,
forth, and sixth rows of f(x,x) + g(x) h(x,x,u) . The result is that the g(x)} matrix then has the

following simplified form:

G 0 C O]
0 G, 0 G,
C 0 G O

8=10 ¢, 0 ¢
Cpg 0 Cm O
R

(4.5.6)

In this simpler situation, P;g(x) can be inverted explicitly so equation (4.5.5) gives g-(x) as :

r

GG G G
| G, G~ G, G,
g = Cz, Cni~ C2,Cn, : Cx, Czi— Cx,Cz,

0

9
Cyslchr_ CysrC15|

01 0
ercma.- Cxa_cmr focmn." Cxa_CmT

Cle.c"a,— Clstcﬂa_

0

In the further simplifying situation where the thrust is aligned with the x axis (C,. = 0= C,)

and the ailerons only produce a rolling moment (C,, =0 =G, ), we get:
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g_L (x) o Cn . (4.5.8)

If C,, and C, are also neglected, then gt = P, . In general the g(x) matrix can be a full

matrix, and g+(x) can be computed numerically for each value of x used. In the case where
g(x) is computed numerically, it is better to use the singular value decomposition algorithm
(e.g. in LINPACK [DMBS] ) in place of equation (4.5.5) because the SVD algorithm is
numerically more stable and works even when P,g(x) is not invertible.

We now have two equations,

[8] - g-(0f(0%) | (4.59)

in the six unknowns, x = (V, B, ¢, ‘i’, e, o).

Case 1 : (same as in subsection 4.4) The case where the aero functions do not depend on

Mach.
1
; - _ |VVY
Let y=(V¥), §-= vy [ and z = (§,0,0,0) .

Py

In this case f(z) is the following 6 by 4 matrix, where O is a column of three zeros.

C Ciyzom BCB Ege
log —= loe + ——lgg 0,
?( ) V(21'I0l'l'| vzﬂﬂm 2 g
zZ) =
0 Cimn Cimnees BCB , BCB™ . .
3 (12 (i 2] 40
vznom vznom 2 mg " ]

so the equilibrium equations becomne
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1
8] - £ @aceicace M
Y

Choose values for B,a,P,© and solve the above set of two equations for V.. These equa-
tions are second-order polynomials in V and ¥ , of the following form:

0 = p(V,¥) = poo + Pao V2 + Dy V ¥ + ppp 2 (4.5.10)

0=q(V.¥) = qgo+ Qgo V2 +ayy V ¥ + qp 2 (4.5.11)

where

[Poo P20 P11 Poz

oo Q20 Qi1 %2] = gL (B.0.0.8) 1.0 D.6)

The two polynomial equations, (4.5.10) and (4.5.11), can be solved using direct elimination,
or by using resultants. Two polynomial equations (whose leading coefficients are nonzero)
have a solution if and only if their resultant is zero [vdW] . Given two polynomials polyl
and poly2 in several variables, of degree nl and n2 respectively in some particular variable
(say x), their resultant with respect to x is the determinant of the (n14n2) by (nl+n2) mawix
formed as follows. Take the coefficients on powers of x from polyl and put them in the top
row of the matrix starting on the left side. repeat this row n2 times, shifting to the right by
one column for each row. Fill in row n2 + 1 with the coefficient on the powers of x from
poly2. Repeat this row nl times, shifting to the right by one column for each row.

The resultant of polynomials (4.5.10) and (4.5.11) (with respect to ¥ with Poxqo; =0 ) is
the determinant of the following matrix whose entries are shifted rows of the coefficients on
the ¥ terms. ( nl + n2 = 4 unless p02 or q02 is zero).



-

pootPoV: PV Poz O
0 pootPoV¥? puiV P2

0 = det =k, V¥ + k, V2 + (4.5.15)
Qootdo¥?  auV g2z O 4 2 ko
0 GoetdzoVZ qpV Qo2 |
ks = (P20Go2920P02)* ~ (P11902911P02)(P20d11—920P11) (4.5.16)

ks = 2 (Ppo02—900P02)(P20902920P02) — (P11902911P02)(Pood11~QooP1)  (4.5.17)

ko = (Poooz—d0oPo2)’ (4.5.18)

The k's depend on the p;’s and gy's so they depend on B0, ®,® . Since no odd order
terms in V appear in the polynomial on the right hand side of equation (4.5.15) , it is of
second-order in V2 so it can be solved using the quadratic formula:

=k t \lkgk; — Akkg)
2k,

V2

(4.5.19)

From (4.5.19) we sec that there are at most two positive real solutions for V. From
numerical evaluation of several aircraft models, we have seen that typically one solution of
(4.5.19) is large and positive while the other is so small that the aerodynamic control surfaces
would not have enough authority to hold the aircraft at that equilibium. The equilibrium
associated with the large speed is typically associated with low ¥ values and corresponds to
reasonable flight regimes, while the low-speed equilibrium is often associated with largc-‘i‘.
spin-type flight.

Use the real positive values of V to find W as follows. First, eliminate ¥2 from the two
polynomials by forming the expression

qo2 (V) - Pm A I
The P2 terms cancel in this expression, leaving
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0 = Qoa(Poo*P20¥ P11 VW) — PealGogHdz0 V2411 V') (4.5.20)

S0

. (QozPooPozdoo) + (Qo2P2o~Pozd20 V2
¥e
(Po2411—Q02P1)V

(4.5.21)

(Note: If qyp and py, are both zero, then there is no ¥2 term to start with.)
Use these values of V and ¥ in f and g to solve for h :

h(0.x,u) = ~[P,g(x)]™! [P,£(0,%)]

T
5
Finally, use this value of h to solve the following equations for 5‘ .
e
5,
| L
o, ms
g b WS Wsin(8)b
N vz = h(O.x.u)
1 -ﬂ—'vz sin(5,-¢t)
v sin(8,~P)
nom .

Case 2 : (See subsection 4.4) When the aero functions depend on Mach number, let
z=(V,B, o, ®),y=(c®¥), and § is the vector of 7 monomials in ¢'® and ¥ on which f
depends: ‘

§ = ranspose( (¢1,1,6'®) ¥ (c7®,¢'8),¥(c"128,1,61%8) )

The two equadons (4.5.9) are second-order polynomials in ¥ , sin(®) , and cos(®) , The
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only © dependence comes from the lgpg and Egg in f(0.x) (see equations 4.5.2 and 4.5.3) .
Substitute for cos(®) and sin(©) using

i0 _ i@ 0, _-i®
c 'c cos(8) = e+
2t 2

sin(@) =
where i = Y(-1) .

This lets us write 13g and Egg in terms of ¢'® and 1@ |

Em = E@ Cie + E@ C_ie lw = 1@ Cie + T@ C-ie
where
0 cos(P) —sin(d) 1]
2 2 E

- |=cos(®) ot § = | Sin(®)

Eo 2 2% lo 2
sin(®) 1 cos(®)

S~ — 0 2

| 2 2i ; X

and the over-bar signifies complex conjugation.

Plug these expressions for lgg and Egq into (4.5.2) and (4.5.3) . The result is

R
Y123
W

~

ll'zifts‘m

f(0.x) = (2) § = [£123(2) . 45(2) , Tg75(D)]

where
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_ v?
lo v? C:yz ly
- nom
fin(2) = o, V2
Cimn 03
Vzm
V= BCB- V \/ BCB , |
?Eolaa + nyz..,._lo 'EEolBa + VT_C‘WT lo
fys(z) = V¢ BCB i, V_ . BCB,
i \& nom vzmm 2
t o 0; 03 0,
678L2) = -1 -1 -1
BCB BCB BCB
Eglmolo (Eolmole + Eolnole) Ecblmolw

Multiply both sides of the equations, 0; = g (2)f(z)§ , by ¢2® to make § €2 polynomial in
¢'® . The resulting two equations are second-order polynomial in ¥ and fourth-order polyno-

mial in ¢® of the form :

0 = po(e'®) + py (') + py(c®)¥?

0 = qo(e'®) + ('O + qp(c'®)P?

where |
. po(cie) - 2
0oe® | = & @ Fin(@ 123 €%
: i
[ﬂ:::e:] = £+(2) Tus®) (45 €29)
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[pz(eie)

qz(eie)] = g (2) T58(2) (Fe7s €22

Form the resultant (with respect to ¥) again

Po P1 P2 O

0 poP1 P2 5
O=deti, q g 0= (Po"P290)" — (P1427P291)(Podi~P19%0)

0 q q Q@

The right hand side will be a 14th-order polynomial in ¢!® of the form :

"
8 3 cclk® (4.5.24)
kw6

where c_, =Ty (so we only need to calculate ¢ through ¢¢ ). The polynomial in (4.5.24) is of
the form (¢28) (12th-order polynomial in ¢® ) . Put the coefficients of this 12th-order poly-
nomial into a companion matrix and find the roots using EISPACK [SBDGIKM]. Keep the

roots that have magnitude equal to 1 (8 is real in these cases). Use these roots to solve for
¥,

. qy(e'®) pol(e™®) ~ py(e'®) qo(e™®)
¥= ) T} i9 Y
pa(e'™) q(e™) = qa(e™®) py(e™)

¥ will be real since the extra factors of ¢'® cancel in numerator and denominator.

Finally, solve for the inputs as in case 1.
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SECTION § : ANALYSIS OF AIRCRAFT DYNAMICS

In this section we analyze the nonlinear aircraft equations using dynamic inversion. Our
goal is to show how dynamic inversion can be used to develop flying quality parameters.
Some candidate parameters arising from the analysis in this section are presented in section 6:
Nonlinear Flying Qualities.

5.1 Partial Dynamic Inversion

The 6 DOF nonlinear aircraft equations of motion are of the form:

x = f(x) + g(x) h(x,u) (5.1.1)
with
X in an n dimensional state space (n=8 for our aircraft model)
u in an m dimensional control space (m=4 for our aircraft model)
f:an nbyl vector depending on x
g:an n by m matrix depending on x
h:an mby 1 vector depending on x and u

Equation 5.1.1 splits into the following form

X -fl(x) . .gl(x) .

*2 fz(x) + gz(x) h{x,u) (5.1.2)

*3 _f3(x) ) 0 4
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where the first k equations represent the dynamics (k=6 for a 6DOF aircraft):

fl(x) g1(x}
—_—] = + | — [h{x,u) (5.1.3)
fz(x) £2(x)

and the last n-k equations represent the kinematics (n-k=2 for our 6DOF aircraft model):
X3 = f3(x) (5.1.49)

We split the dynamic state in equation 5.1.3 into the x; and x, parts to distinguish the
states x; we wish to control directly, from the states x, we choose not to control directly.
When m = k we can control all k of the degrees of freedom. When m <k , we can only
control part of the dynamics, because there are fewer independent degrees of control authority
than degrees of freedom . In equation 5.1.2 we have :

x; in an m-dimensional space

X, in a (k-m)-dimensional space (k2 m)
x; in an (n-k)-dimensional space (n2k)
f,:an mbyl vector depending on x
fy:a k-mbyl vector depending on x
fy:an n-kbyl vector depending on x
.gy:an  mbym matrix depending on x
g2:a4 k-mbym matrix depending on x

In cases where we cannot invert all of the dynamics, we can still do a partial inverse.
The x; dynamics can be inverted as follows. Let v be some function of the pilot’s com-
mands, then given a set of desired dynamics x, = F,(x,v) , put

h(x,u) = [g, ()] %, = £1(x) 1 = (g1 Fy(x,v) = £3(x) ) (5.1.5)

and then solve h(x,u) for u, the signal to the actuators, as a function of x (which we assume
can be measured) and the external input v . Equation 5.1.5 involves the inverse of g (x)

which might only exist in some subset of the state space. In this sense, the analysis is not
global.
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To determine the uncontrolled x, dynamics and the kinematics, substitute the expression
for h(x,u) from 5.1.5 into 5.1.2 to obtain

il = FI(K,V)
Xy = (%) + g(X)[g )] Fy(x,v) — £1(x) ]
X3 = f3(x)

This partial inversion process involves several choices. The first choice made (choice of
x;) determines which dynamic states are controlled directly. The second choice made (
choice of F;(x,v) ) determines the dynamics for those states, Some examples we explored on

this program are shown below.

Example 1 : The U,P,Q,R Inverter
U
P \'4 @
e lo| =] = (3]

Ay 0 0 0
0 % 0 O

A= 10 0 2 0 ||Q~ Qe
0 0 0 Ag|[lR~Rema

where

Pcmd
Qemd
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Example 2 : The U,j, 0,0 Inverter

b )
= g 2= [@] 3= [e]
e
; 1u-v.)
02 O 0 0 0 b
V) =10 0 Lyoy 0 -wd O . %
~ Pemd
LO 0 0 —ceﬂ)g 0 "'(‘Il%‘i Le._emd
where
Ucmd
= chd
d’cmd
e::md
Example 3 : The B,c,®,8 Inverter
G v ®
M= g *z‘[\p] = (3]
e
- [ ]
A3 0 0 0 0 0 |[P-Buma
u—
0 O 0 o o (;"“"
FloD= 10 0 Lowe 0 -3 0 0.5
0 0 0 —Ceﬂ)e 0 —(IJ% e_e:::
" L ' d
where
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Bema
Uema
Dcmd
Bmd

V=

Example 4 : An alternative B,0.,®9,© controller

Given an external command

Bema
Cemd
Demd
Omd

v=

find the associated equilibrium values of Vg .

V. )= —b+Vb?—4ac

where a, b, and ¢ are functions of Bgpg » ®cmd » Pemd + Gemd (S€¢ equation 4.5.19 in the equili-
brium section) .

If there are two positive real equilibrium speeds to choose from, the larger one is chosen.
Next U,,,q is computed ( Uy = Vg €05(0na)cos(Beng) ) - Finally, this U4 , along with
Bemar Demas @nd , Opq are sent to the U,B,D,0 inverter.

Example 5§ : A B,a,y,it controller

Given an external command

Bema
®emd
Yemd
Hemd

Vv =

where 7y is the velocity pitch angle (flight path angle) and p is the velocity roll angle (rol-
ling around the velocity vector). The B,a,y,u controller first performs a change of coordi-
nates from Bond » Oemd + Yemd » Homd 10 Pomd » @emd » Pemd » Ocma » USING the following
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transformations:

—sin(®) cos(a)cos(B) —cos(a)sin(B) —sin(a) —sin(y)
[:os(e)sin(cb) = sin(f) cos(P) 0 cos(y)sin{yL)
0s(@)cos(®)]  |sin(a)cos(B) —sin(csin(B) cos(ar) | FOs(NeOs()

The top row of this equation gives us

© = sin™! [cos(a)cos([})sin(y) + cos(a)sin(B)cos(y)sin(p) + sin(a)cos(‘()cos(u)]

while the ratio of the second and third rows gives us

@ = | -1 —sin(B)sin(y) + cos(B)cos(Y)sin(u) + 0
B ~sin(c)cos(B)sin(y) + sin(a)sin(P)cos(y)sin(L) + cos(e)cos(Y)cos(pL)

These values of Bend » emd » Pomd » Ocma  are then used to find the associated equili-
brium values of Vg .

—btVb2-dac

2 _
(vcmd) - 2a

where a, b, and ¢ are functions of B + %ena Pemd » Ocma (s€€ cquation 4.5.19 in the equili-
brium section) .

If there are two positive real equilibrium speeds to choose from, the larger one is chosen.
Next U,q is computed ( Uy = Vg €OS(Bna)cos(®ema) ) . Finally, this U4 , along with
Bemds Pemar and , Oq are sent to the U,B,P,O inverter .

For an introduction to the partial inversion method, and its application to the 3DOF long-
itudinal axis of an aircraft, see [E1] . A related method of controlling nonlinear systems can
be found in {HSM] .

When using dynamic inversion, the x; vector contains m states which can be controlled
exactly by the m control inputs. We have no direct control over x, and x5 , so we have to
check that they remain stable. This analysis is done in subsections 5.2 through 5.5.
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5.2 Theory of Complementary Dynamics

We will be considering systems with m controls and k chains of integrators (with k > m).
Note that for conventional 6DOF aircraft models, k=6 and m = 4 . When the m controls are
used to control m of the integrator chains, the dynamics of the remaining k-m chains will be
completely determined. We will derive the expression for the dynamics of these remaining
integrator chains.

We are working with state-space systems defined implicitly by equation 2.1 which con-
tained the relation
F(x,x,u) = 0. (5.2.1)

This is a system of k equations. We would like to analytically reduce this to a set of k-m
equations in m fewer unknowns. Whether or not we can do this depends on the algebraic
structure of the system of equations. In the rest of this subsection we will be considering a
case for which this reduction is possible.

Consider the case where F(x,x,u) has the special form
F(x,x,u) = — e(x)x + f(x) + g(x) h(x,u) . (5.2.2)

Equation 5.2.1 now takes the form

e(x)x = f(x) + g(x)h(x,u) {5.2.3)

where
| eis kbyk (square matrix)
fis kbyl { column vector )
gis kbym (matrix with k>m)
his mbyl ( column vector )

In this case, the only dependence of F on the m controls, u, enters through' the m functions

h(x,u). F depends on h in a linear way, so we can eliminate h using linear algebra. To elim-
inate h, split the equations into two parts
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Py e(Ox _ Py f(x) P, g(x)
[Pz c(x)i] = [Pz f(x)] M [[5 g(x)] h(x,u) (5.2.4)

where
P, is any m rows of a2 k by k identity matrix.
P, is the remaining k-m rows of the k by k identity matrix.

If the g(x) matrix is full rank, it has m independent rows. In this case choose P, so that
P,g(x} is invertible, then

h(x,u) = P1g(x))~! Pyle(x)x - f(x)) . (5.2.5)

Plug this expression for h into the  Pye(x)x = P,f(x) + Pyg(x) h(x,u) equation to get

Poe(x)x = Pyf(x) + Pog(x) (P,g(x))™! P(f(x) — e(x)X) . (5.2.6)

Separating out ¢ and f gives

[Pz - Pog(x) (P,g(x))! Pl] e(x)x = [Pz ~ Pog(x) (Pg(x))! Pl] f(x) . (5.27)
or
ghx) e(Ox = gh(x) f(x) (5.2.8)
where g+ is the following k-m by k matrix :
gh(x) = [Pz - Pyg(x) (P1g(x)™! Pl] . (5.2.9)

Note that [g-J-(x)g(x)] =0, so equation 5.2.8 can be derived directly from equation 5.2.3 by
premultiplying equation 5.2.3 with g=(x) .

x is the column vector with elements {x; ;)] i=1, ..,k (see secton 4.2) .

Splitx = ( [x;}) i=1.,k j=1,..ci) intotwo groupsy and z.
Lety=( (xi'j) j=1,..ci) wherei takes on the k-m values
corresponding to the uncontrolled chains.

Letz =( (xi‘j} j=1,..ci) where i takes on the m values

corresponding to the controlled chains.
47



Using this split of x into y and z, e(x)x splits as follows.
e(X)x = €)(y,2)y + ex(y,2)Z (5.2.10)

where
¢,(y,z) isa k by k-m matrix
£,(y,z) is an k by m matrix

Plugging equation 5.2.10 into equation 5.2.8 gives
gh(y.2)e (y.2)y = gH(,2)(f(y.2) - ea(y,2)2) . (5.2.11)

If the k-m by k-m matrix g-(v,2)e,(y,2) is invertible, then from equation 5.2.11 we get
-] .
y= [s*(y,Z)el(y.z)] g (y,2)(Ey.2) - &x(y,2)2) . (5.2.12)

Note: when the k-m by k-m matrix gh(y,z)e,(y,z) is singular or nearly singular, the nonlinear
inverter will produce very large signals which will typically be unacceptable.

If any controller uses the m controls to control the m z-chains to constant values, then 2 =0
and equation 5.2.12 reduces to

. -1
y= [g"'(y,z)el(y.z)] g (v, f(y.2) . (5.2.13)

If f(y,z) is polynomial in the entries of y, then let ¥ be the column vector containing the p
monomials in the entries of y on which f depends. In this case f can be rewritten as

fly,z) =1(z) § (5.2.14)

where f(z) is a k-m by p matrix of coefficients. Equation 5.2.13 now becomes

y= [g"'(y.z)cl(y.z)]-l [g-'-(y.z)'f(z)]y : (5.2.15)

Now consider the special case where g-(y,z) and e,(y,z) do not depend on y.

Let R(z) = [g-'-(z)e,(z)]"l [gi-(z)'f(z)] . (5.2.16)
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Using R, equation 5.2.15 can be written as

y=R@z}§ . (5.2.17)

Equation 5.2.17 is a polynomial ODE in y , for each fixed value of z. The equilibria of these
ODE are given by the solution of the polynomial equations :

0= [g-'-(z)’f(z)]y . (5.2.18)

The entries of the k-m by p matrix R(z) are referred to as the stability parameters since they
determine the stability of the uncontrolled chains of integrators.
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5.3 Aircraft Complementary Dynamics

Introduction

The 6DOF aircraft equations of motion can be written in the form:
e(x)x = f(x) + g(x)h(x,u) (5.3.1)

where x = (V.B.a,&b,é.‘i’.tb,e) .

Equation 5.3.1 can then be put in the form

e, @y + &(y,2)z = {(2)? + g(2) h(y.z,v) (5.3.2)
o
v
where y = (V¥) , 2= (3,0.0.0,00),and §= |
vy
¥ |

Equation 5.3.2 is in the form required for the calculation of the complementary dynamics
discussed in subsection 5.2.

We will derive the expressions for e,(z) , ey(y.z) , f(z) , and g(z) . The equations of
motion of an aircraft are simplest in body-axis coordinates (U,V,W.P,Q,R,®,0) , so we will
start with them , then change coordinates to x = (V.B,a,dl,é.‘i",fb.e) . The reason for chang-
ing to these new coordinates is that the complementary dynamics are simpler then.
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Dimensionless equations of motion in (U,V,W,P.Q.R,®,8) coordinates

In order to make the equations of motion easier to manipulate, we will take various
groups of expressions which appear together and give them a combined name. The most
natural way to do this is to form various dimensionless groups of expressions.

(N.B. : to distinguish dimensionless parameters from physical ones, we could have put tildas
over each dimensionless variable in the remaining part of the report. We decided not to for
notational ease.)

In the following pages, it will be shown how to make the equations of motion presented
in section 3.3 take on the following dimensionless form:

Dimensionless force equations (forces divided by mg) :

U [U
vi=alv
W W

P
+lae + Vszyz + VCyiynm [2] + xyz h(x,u) . (5.3.3)

Dimensionless moment equations (moments divided by {mg d,.,)) :

P p
o [Q =mmo Q
R

P _
+ VClmp + VCinnpen L(g] + By D(X1) . (5.3.9)
Each term in the above equations' is dimensionless. The terms in these two equations
will be described in the next page.

In equations 5.3.3 and 5.3.4 , all variables were made dimensionless using the following

constants:
" / m
Let me = | TA—F’%—

T_hcn define tyom + dyom » 3nd Loy in terms of V., , m, and g , the acceleration due 10
gravity.

+ doom = Voomtnom - a4 Loy = M(dpgm)’
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To make the notation more compact, we will combine the dimensionless chord and

wingspan ( b= wing span , €= mean acrodynamic chord ) with the associated
dnom dnom
aero functions as follows:
C,(a,B) Cu@® G G,@B) |y 0 0
Coyz = [G@B) | GCryzpe = % |Gp(@B) Cyylaf) Cy(aB){[0 ¢ 0
CileP) C,@B) C@B) Clopy |0 0P
b 0 0][ciep)
Clmn =0c 0 Cm(a-oﬁ)
0 0 b]|CGy(ep)

b 0 0]fCe@B) CueP) Cuah)|[p 0 0
Clmnpq. =%|0c O Cm’(ﬂ..l}) CmQ(Q’B) Cm'(asB) 0c
00 bl @B) C@B) Cuap) 000

Note that b and ¢ are themselves dimensionless now, so the above expressions are still dimen-
sionless.

All speeds are divided by V., (eg U= Ex%lsmgd_ ) and the derivatives are taken
nom
. time -
with respect tot=—— . P, Q, and R are angular rates multiplied by t o, . [, . I
om

etc. are moments of inertia divided by L., .

yy *

0 R -Q L -sin(®)
Q=|~R 0 P |, lgg = |cos(O)sin(®)

v Ime= Ly Iy L
- 0s(0)cos(D
Q -P 0 (©)cos(®) Ty Ly L
Cl‘r C‘s‘ Cxu' c!u, b 00 rclr Cla. Cla. chr
gxyz = CYT cy.. CY&_ cy" ’ and glmn = 0 C 0 C‘“T C'“!. Cm‘. C"h'
00D
sz Cza_ Cu. Cu,j Cnr Cl'la. Cm, Cm
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Dimensionless equations of motion in (V,B.a,d),é.‘i-'@.@) coordinates

Change coordinates from (U,V,W) to (V,B,&) using the following formula :

sin(B)
in(a)cos(PB)

(5.3.5)

[c:os(a)cos(B) ]
N .

U
[v] =V,  where lpg=

Differentiating gives

where

cos(a)cos(fl) —cos(a)sin(B) ~-sin{cr) 1 0
L= sin() cos(B) 0 and Ly=0V 0
sin(a)cos(B) -sin(a)sin(B) cos(a) 00

Change coordinates from (P,Q,R,0.®) to ('b.é),‘i’,fb,e) using the following formula :

P @ |
Ql=L, © (5.3.6)
¥
where
1 0 -5in(®)

Ly= {0 cos(®) cos(®)sin(d)
0 —sin(®) cos(G)cos(D)

Differentiating gives

where
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. 0 0 0 _ 00 ~cos(©) ]
L, = |0 —sin(®) cos(@)cos(®) |[®+ [0 0 —sin(@)sin(P) |O (5.3.7)
0 —cos(®) -cos(8)sin(d) 0 0 —sin(®)cos{(P)

The expressions for P, Q, and R can also be put into L to give
Q=00+0,8+ Q¥

where
0 0O 0 —sin(®) —cos(P)
Q=10 0 1], Q= (sin(®d) O 0 ,
0-10 cos(®) 0 0
and
0 cos(@)cos(P) —cos(B)sin(P)
Q, = |—cos(O)cos(P) 0 -sin(O)
cos()sin(P) sin(®) 0

Substituting all this into equations 5.3.3 and 5.3.4 gives the equations of motion in
(V,B,a,d’,é,‘i’,tb,@) coordinates.

Force equations ;

v o
Li Lo |B|=QV lg + lgg + V2Cypp + VCyyppen L2 [O | + 8xyz Nxw) . (5.3.8)
a ¥

Moment equations :
e ¢ ¢ ¢
Imo [L2{© [ + L2 [© | | = QmoL2 [© | + V2Cimn + VCimmeq L2 |© | + Eimn hlx,0) (5.3.9)
‘¥ 4 k3 ¥



Expressions for ¢,(z) , ¢,(y,z) , and 1(2)

Equations 5.3.8 and 5.3.9 can be rewritten as

V, -
LiLy O3 g L ;’,
033 Imola | |@ = f(B,0,©,8,0,0) V2 + g(2)h(y,z,u) (5.3.10)
6 v
¥ ) ¥

To fit f(z) into the space on the page, split it into its first three columns and its last three
columns.

Let f(z) = ffm(z) ?456(2)]

In the expression for f,,4(z) , use the following notation

Let

: . o . P .0

Q4=QI¢+Q28 . Ls-——--l./z 6!, Lﬁzlq S] ’ Lq‘:[q 0

0 0

SO

. ® . .ol .

Q=Q4+Q3‘P . Lz 8 =L5+l¢el{‘ , and sz @ =L6+I.q"y .(5.3.10b)
¥ W |

Substituting equation 5.3.10b into equations 5.3.8 and 5.3.9 gives

N lae Q4lﬁﬁ+clm-ou[‘5 05 (5.3.11)
fln(Z) - _ImoL6+Q4ImoL5 ClmllPQlLS Q4Im0109+ﬂ3lmo[‘5“lmol"? .
and
Coyz Nl1patCrinloe Oy
Tys6(z) = i port e (5.3.12)
Cimn

Cinnmel0e  L3lmolos
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In equation 5.3.10 , g(2) is given by

_ |Exya(Br0)
8@ = [gm(ﬂ.u)]

and an example of what h(y,z,u) can be is given by
Thrust
mg
: Pb
2 - ——
V* sin(d, ZV)
V2 5in(5,—)
L V2 sin(3,—B)

h(y,z,u) =

L

Equation 5.3.10 can be rewritten as

. (1 ]
v
lpg Os v Vi3 0y .B . :
[03 Imoltejl [‘P]+ [03x2 L.oLe g = f(z) 3; + g(z)h(y,z,u) (5.3.13) .
6 Vi
¥
where
—cos{a)sin(B) -sin(c)cos(P) 1 0
L,= cos(B) 0 and Ly= [0 cos(d)
—sin(a)cos(B) cos(a)cos(P) vO —sin(®)
SO

Ipg 05 | VL; Oy
e(z) = 0 Luoles and e)(y.2) =

031&2 Irno]'-'tt

This is now in the form of equation 5.3.2 so we can apply the results of subsection 5.2 .
First multiply equation 5.3.2 by g-(z)
(where g(z) is a 2 by 6 matrix which satisfies g+(z) g(z) =0, see section 4.3 ).

gh(2)e,(2)y + g-@)ey(2)2 = g+ @)y (5.3.14)
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SO

..[ =
y= [g"'(z)cl(z)] g-@E2)¥ - e(y.)2) . - (5315)

Equation 5.3.15 holds in general. When z = 0, equation 5.3.15 reduces to
: S R
y= [g"'(z)ex(z)] gy . (5.3.16)

and the second and third columns of f(z) go to zero, leaving only columns 1, 4, 5, and 6 so
equation 5.3.16 reduces to

1
1 -1 - - - - 2
[\‘{,] - fForo] to[io o to ko ||% ]| - e
\#2
Equation 5.3.17 represents the complementary dynamics. It is a system of 2 quadratic

O.D.E.’s with the following coefficients (where subscripts represent the powers of V and ¥
respectively) :

30 20 a1 3 1 ) ) ) )
[bOO b by boz]= [g-L (z)cl(z)] gJ'(z)[fl(Z) fa(2) f5(2) t},(z)] . (5318

The inverse of gJ-(z)el(z) needed in equation 5.3.18 can be computed as follows. Start by
partitioning the 2 by 6 g'(z) matrix into four parts.

Ba Eb
- 5.3.19
gH(z) [gc gd] ( )

where g, , 8y » £ » and gq are each size 1 by 3 . Using this notation,

Balpa Eblmol
Po '“°°°] (5.3.20)

gH(2)e,(z) = {

gclpa Edlmoloe

Since g-'-(z)el(z) is a 2 by 2 marix, it is trivial to invert.

57



Explicit formulas for special cases

For aircraft whose controls have left/right symmetry, the elevator and thrust only affect
the first, third, and fifth rows of (5.3.1) while the rudder and aileron only affect the second,
forth, and sixth rows of (5.3.1) . The result is that the g(x) matrix then has the following
simplified form:

r -

¢, 0 G, O
0 G, 0 G,
G, 0 G, ©o©
7) = ’ (5.3.21)
8@=10 b, 0 bC,
Cpy 0 cCp, O
0 bC, O bCN'
In this simpler situation, the transpose of (4.5.8) becomes :
- 1
. Cz. Coor— Cz,,C
CxeCrmy Cxa Cm-r
1 0
transpose [g-‘-_(z)] = 0 1
- CuCrum S
1 - (5.3.22)
b C Cm C,.C,,‘
o 1 xSz GGy,
] Cx,rc Cx‘cm_’
1 CYa.Cli,— C)M'Ch_ 0
b C,Cp—- C, G,

or, in case the denominators in 5.3.22 are zero, use
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transéose [gJ-(z)] =

0
b(C[l.C“""' Cl‘tcn‘a)
0

CY;,CN__ CYI.CN,
0

Cy‘lc lll— Cy‘!C I‘.

(Czy e~ C24Coy) |

0

c(CxTC,,,'.— Cx'.Cm‘J
0

Cx, Cz Cx:Cz,
0

In the further simplifying situation where the thrust is along the x axis (G, =0=C,)
and the ailerons only produce a rolling moment (C,, =0 = G, ), Equation 5.3.22 reduces to :

g @2) =

0100 0

G,
0010 - ——

cC

L

Using this g*(z) along with a symmetric aircraft,

(Ly=0=1, , @0 =Ce0) = @0 =0 )

with no dynamic aero coefficients,

( Cxyzoqn = 0 = Cimnpqn )

and flying with no sideslip and wings level

(B=0=0)
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reduces equation 5.3.18 to the following simple form:

"

8 a5 am

by by bz

]= [s-'-(z)el(z)]'lg-’-(z) [1"1(2) f(2) 15(z) T4(2) ].-. (5.3.24)

Ca,
Q-Cma: ‘
cos(8) 1 0 Ch. [cos(®) 0 sin(B))lee
sin(ax) sin(a) ch.. sin(c)
cos(y)——
0 o G, .
I cos(®),,+sin(O)],, )

where y=©-a when ®=0=p . The eight parameters in the above system typically
have the following signs. :

+ -0+

00-0

which resuits in a gloﬁi]iy stable phase portrait in the physical (V> 0 ) halfof the ( V , ¥ )
phase space.

20 20 3)) 4y
boo ba bu b



5.4 Canonical Forms for the Complementary Dynamic Equations

We have seen that the complementary dynamic equations are of the form:

V.Y g0 + asz + auV‘i’ + %z‘i’z
¥ = (54.1)

bog + bagV2 + by V¥ + by, ¥2

These equations describe the dynamical behavior of the aircraft when the control inputs
are used to keep the direction of the velocity vector (a,B) and the attitude (9,0) constant.
Stable equilibrium solutions represent steady-state flight conditions - we are therefore
interested in determining when equations 5.4.1 admit stable equilibria. Furthermore, we would
like to characterize the dynamical behavior of the solutions away from equilibria to describe
the aircraft’s transient behavior. The transient behavior of the model should reflect some of
the flying qualities of the aircraft during precision pointing or tracking tasks. We will show in
the next section how to compute parameters that quantify the transient behavior in terms suit-
able for flying quality evaluadon. Specifically, we will construct Liapunov functions that
describe the stability of the equilibria and provide a bound on the settling time to equilibrium
from a non-equilibriumn condition.

Before constructing the Liapunov functions, we will transform the physical (V ,‘i’) coordi-
nates into a new set of coordinates (x,y) that describe the system more economically. The new
coordinates will be related to the orniginal (V%) coordinates by an invertible linear transfor-
mation. In the new coordinates, the Liapunov functions have an especially simple form that
renders the flow in the phase space easy to visualize.

The coordinate transformation is developed through a computational algorithm based on
manipulation of quadratic forms. Note that equations (5.4.1) can be written:

ag 0 O bo 0 O
1 1
¢=[1V\ii]0a 2ufly \'i'!:[lV\i’]Obzﬂv
) & ’ 0 73 o " (5.4.2)
ayq by
0 = aon 0 = b

In this way the complementary dynamics are defined in terms of the quadratic forms A
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and B represented by the 3x3 matrices above whose entries are simple functions of the
coefficients a;; and by, For convenience of notation, we write the above equations:

V=AVY), Y=B(VY). (5.4.2"

We need to know how the equations above transform when the coordinates of the phase
space undergo a linear transformation. Choose coordinates (x,y) related to the (V,¥) coordi-
nates by an invertible transformation F:

fin fizfix \'
= |. 4.
e alb)- &) =

then
L ] 1 - 1
V= [1 x y]?\ x|, ¥= [1 X y]ﬁ x (5.4.4)
where
. T T
- 10 140 - 10 10
A=[0 F]A[O F].B=[0 F]B[O F]' (5.4.5)
In the convenient notation, V= i(x.y) . Y= ﬁ(x.y). To eliminate V and ‘.i.’, use G =
F—l
; g1 B2 ||V '
t] N ”] [Y _ (5.4.6)
812 B2 | (¥
to find
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t] _ lgu 8:2]‘[i(x.y)] (5.4.7)
v) 812 822 (Bxy)) "

The formula in equation 5.4.7 describes the complementary dynamics in the new set of
coordinates (x,y). Any property of the system 5.4.7 that remains valid under linear transforma-
tions is also a property of the original system 5.4.1, and vice-versa. In particular, the stability
of either of these two systems implies the stability of the other.

The reason for introducing new coordinates is to represent the dynamic equations using
quadratic forms that are as simple as possible. We think of the change of variables as a
transformation (A,B) --> (A,B) used to reduce the number of independent variables required
to represent the quadratic forms. There is another transformation useful for the same purpose;
we discuss it next.

Suppose a system is represented, as in 5.4.7, by equations of the form:

X A(x,y)
_ 5.4.8
L] . [ch] 4D

for some constant 2x2 matrix H. Pick a nonsingular 2x2 matrix K, and define
A=k A+ ki;B , B = ky;A + kyyB. The same equation can then be written

. ;\ , .
[:] = HK! [. (x y)] . (5.4.9)
B(x.y)
Transformations of this type, which do not involve a change of coordinates, may also be used.

We use both types of transformation in deriving canonical forms for the complementary
dynamic equations.

Theorem 5.4-1: Suppose the complementary dynamic equations 5.4.1 admit some real equili-

brium points and are nondegenerate (nondegencrate means that at least one of the two
matrices A and B is rank three, and that any nontrivial linear combination of them is rank at
least two - this is a generic condition). Then there is a set of coordinates (x,y), related to (V,
¥) by a linear transformation, for which the complementary dynamic equations are in one of
the two forms:
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X

Y

r
X

b

S
-u

-x2+y?
~2xy

—xoy2

=2xy

]

3

o

(5.4.10)

(5.4.11)

Proof: Start with A and B represented as in 5.4.2, assume that A is rank three (if A is rank

two, interchange A and B). Congider the matrix S defined by

00 O
S=booA—aooB= 0 $11 S12
0 513 52

(5.4.12)

The matrix S is symmetric and, because the equations are nonsingular, rank 2. We have
assumed that some real equilibria do exist, so the nonzero eigenvalues of S have opposite
signs. Therefore, for any real c, there is a 3x3 matrix F,

1
F, = [0
0

¢ 0O
fo1 fe
fora fox

(5.4.13)



such that

FISE, = (5.4.14)

(=T = =
6o OO
o0 o

Call the matrix on the righthand side of 5.4.]14 B,. Because of the assumed nondegen-
eracy of the equations, F, can be chosen so that

a'm 0 0 1

A' = F:AFC = 0 a’zo "'2— . (5.4.14')

has the property that none of the diagonal entries are 0.

’

a
From the matrix A’ defined in 5.4.14" subtract —215!-B1 to obtain

a.'oo 0 0
Aj=|0 a'% 0 |. | (5.4.15)
0 0 3’02

Now by scaling x and y independently, and by proper choice of ¢, A; and B, can be
transformed simultaneously to

100 00 0
A=ayl0e0f, B=[0 0 -1
00 f 0 -1 0

where ¢ and f are either 1 or -1. Because we have assumed real equilibria, e=-1 or f=-1. The

expression is symmetric in x and y, so only two distinct cases arise. These are realized by
choosing e=-1, and taking f=1 or f=-1.
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In the first case, where f=1], the dynamic equations are reduced to the form of 5.4.10.
This is the case where there are two real equilibrium points: those corresponding to (1,0) and
(-1,0) in the (x,y) coordinates. In the second case, where f=-1, the dynamic equations are
reduced to the form of 5.4.11. This is the case where there are four real equilibria: those
corresponding to (1,03,(0,1),(-1,0), and (0,-1) in the {x,y) coordinates. The proof is complete.

In the original (V,‘i‘) coordinates the complementary dynamic equations were
parametrized by 8 independent variables a; , by. By the transformations shown above, the
number of independent parameters in the equations can be reduced to the 4 entries of a con-
stant matrix H. The H matrix, and the matrix transformation from the (V,‘i’) coordinates to the
(x,y) coordinates, are all that is required for a complete analysis of the complementary
dynamic equations. Expressions for these matrices can be computed from the construction
given in the proof of Theorem 5.4-1.

In the next section we construct Liapunov functions for the two canonical forms of
Theorem 5.4-1.



5.5 The Liapunov Functions

In the last section we showed how the complementary dynamic equations could be
transformed to new coordinates in which fewer parameters are required to specify the system.
One advaniage of these new coordinates is that they make it easy to write down Liapunov
functions for the stable equilibria (when stable equilibria exist). In this section we show how
these Liapunov functions are constructed and explain what they can tell us about flying quali-
ties. In one of the cases discussed below, a Liapunov function is used to show global stability
of the model in the V¥ phase plane. Some of the quantities associated with the construction
could be used to measure flying quality.

We have seen that the complementary dynamic equations in the coordinates (x,y) look

like
. hyy h 2_ 2
t] _ [ 11 12] [1 + ey X ] (5.5.1)
hy; hpp ~2xy _

where the components h;;,hy5,hy1,h05 of the matrix H are, for each set of values «,3,0,0, a
set of constants determined by the nonlinear aircraft model. In the case where there are four
real equilibria in the \A plane the parameter ¢ takes the value -1, while in the case of two
real equilibria e takes the value +1. This representatdon only applies when there do exist real
equilibria. We do not consider the case where there are no real equilibria,

The first step in constructing the Liapunov functions is to take the inner-product of the
above equation with the vector (1 + ey? — x2, -2xy) to find
hy h12] [1 +ey?-x

2 _ o2y _ v o= 2 - %2y 2xv
(1 + ey - x)x = 2xyy = [(1 + ey* ~x9), 21}][ ~2xy

2
. (552)
hyy by ]

The resulting expression on the righthand side of the equation will have a definite sign (except
at equilibria) whenever the symmetric matrix § = —;-(H + HT) is positive or negative definite.

Let us suppose for the moment that S is positive definite. The lefthand side of equation 5.5.2
is in each case an expression easy to represent by the derivative of a simple function. The
level sets of such a function are transverse to the flow and can be used to characterize the sta-
bility of the equilibria.
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Of course, there are matrices H for which the quadratic form above is indefinite. When §
is indefinite, it may be difficult to determine much of value from the functions constructed
below. Still, our experience in working with the F-14 model suggests that, for a wide variety
of flight conditions, the H matrix is definite, so that the analysis below is relevant.

CASE 1: e=+1

In this case there are two real equilibria: one at (1,0) and the other at (-1,0). For this
configuration there are three possibilities for the stability of the equilibria:

case 1 - (1,0) stable and (-1,0) unstable
case 2 - (1,0) unstable and (-1,0) stable
case 3 - (1,0) and {-1,0) saddles.

Our construction will provide a Liapunov function in the first two cases where one of the
equilibria is stable.

Define the complex number z = x + iy, and think of the transformed \AY plane as the
complex z plane. The function

(1~12)
+2)

2
: (5.5.3)

I
F(z) = :

is the one we want to analyze. Except for the values (,1,0c the level sets of this function are
circles in the plane whose centers lie on the real axis. The value ¢ is realized only at the
point z = -1 and O is realized only at z = +1. The 1-level set is the imaginary axis x = 0.

From the geometry of the level sets of the function F, it is clear that the point z = +1 is a
global attractor for the entire z-plane whenever it can be shown that the function F restricted
to the solution curves of the system is decreasing. Then F is a Liapunov function for the flow.
There is an easy condition on S to check that will tell us if F is decreasing:

Lemma 5.5-1: If the matrix S is positive definite, then the function F is a Liapunov function
for the system 5.5.1.

Proof: In terms of x and vy,



- v\? 2
Fix + iy) = L= 2V (5.5.4)

(1 +x)? +y?

and so

~4
(1 + x)? + y)?

.g.t.p(x +iy) = (1 + y? = xHx - 2xyy) . (5.5.5)

At every point other than z = -1 the sign of this expression is opposite to that of the quantities
in equation 5.5.2. But if S is positive definite, the sign of the quantities in 5.5.2 is positive
(except at z = +1 where the expressions vanish). It follows that at every point other than an
equilibrium value, the trajectories of the solutions to the differential equations are such that F
is decreasing along them. Then (1,0) is a globally stable equilibrium, while (-1,0) is a source.
The proof is complete.

Observe that the open half-plane x>0 coincides with the set of values (x,y) for which
IFi<1. In the case where H is positive definite, we can compute a bound on the rate at which
the trajectories starting in this half-plane converge to the equilibrium.

Lemma 5.5-2: Suppose S is positivc-deﬁnité, and that Fy, the value of F at a state (xq,yq) at
time t=0, is smaller than 1. Let A, (S) denote the smaller eigenvalue of S. Then for
(x(t),y(t}) along the solution trajectory:

F(t) < Fpe a2 (5.5.6)
Proof: By the hypothesis on S

dp. ~Ahnin(S)(1 + x2 + y?)? 5.57)
dt (1 + x)2 + y?? -

< =4 ,in(S)F

because, for all (x,y),
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poll=xi+y? (5.5.8)
(1 +x)?+y?

(1+ x2 + yz)2
(1 +x)? + y»)?

It follows that F is approaching 0, its value at the equilibrium point (1,0), at least as fast as
the solution to the bounding equation

EdT? = 4\ S)F (5.5.9)

But the solution for this equation in F satisfying the initial condition F(0) = Fy is exactly the
righthand side of 5.5.6. The proof is complete.

In the case where S is negative definite, the same function F is used to show that (-1,0}
is globally stable, while (1,0) is the source. In either case, the eigenvalue A, of S having the
smaller magnitude gives some quantitative estimate of how stable the stable equilibrium is. If
1A min| is close to zero, for example, the system will be slower to converge than if it is large.
Also, it is more likely when IA;,! is small that a small perturbation to one or more of the
aircraft model parameters could produce instability in a nominally-stable case. In general,
when that smallest magnitude eigenvalue of S is close to 0, the pilot will have to wait for a
while before the aircraft settles into a steady-state condition when he commands a constant
turn at a fixed ©—@ attitude. This parameter should also affect the quality of the ride during
more dynamic maneuvers.

When the unique physical (V > 0) equilibrium is stable, the analysis of this case has a
simple interpretation. To reach a desired trim condition, the pilot need only get the angles
a,B,0,0 to the correct values and wait. If his speed is too slow, his speed will increase to the
proper value. If too fast, it will slow down. Likewise, the heading rate ¥ will find its equili-
brium value and stay there. The stability of the unique equilibrium insures that, if the angles
are right, the vehicle will naturally take care of the rest.

" CASE 2: e=-1

In this case there are four real cquilibﬁa: (1,0),(0,1),(-1,0),(0,-1). By a general result of
Kukles and Casanova (see [KC] or theorem 7 of [Cop]) two of these are saddles, one is a
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sink, and the last one is a source. The sink and source must be opposite each other (i.e. nega-
tives of each other) so there are four distinct possibilities: any one of these four points could

be the unique attractor. We consider only the case where (1,0) is the attractor, so that (-1,0) is

the source and the points (0,1) and (0,-1) are saddles. The other three cases can be converted
into this one by a suitable linear ransformation, so there is no need to analyze the other cases
separately.

The function we consider for this sitvation is the polynomiat

Fix,y) = x(1 - y? - —31-x2) . (5.5.10)

Lemma 5.5-2: If the matrix S is positive definite, then the function F is a Liapunov function
for the system 5.5.1.

Proof: It is easy to see that

%F(x,y) = (1 - x% - yHx% - 2xyy . (5.5.11)

Comparing the righthand side of this expression with the quantities in equadon 5.5.2, we find
that it is positive (except at the equilibria) whenever S is positive definite. So F is an increas-
ing function along the solution curves for 5.5.1. The proof is complete.

To see what this means, consider the O-level set for the function F. The O-level set is the
union of the y-axis (x=0) and the ellipse C defined by 1 ~ y* - %xz = (. The two saddles

(0,1) and (0,-1) lie in this set (they are in fact the points of intersection of the line and the
ellipse), while the two other equilibria are contained in the region bounded by the ellipse.
The point (1,0) is a local maximum for the function F, and the point (-1,0) is a local
minimum.

If the matrix S is positive definite, then the function F increases along the solution curves
of the differential equation. Therefore, any point inside the region bounded by the y-axis and
the right half of the ellipse C will be moved along a trajectory that stays inside that region
and approaches the point (1,0). The region bounded by the y-axis and the right half of C is a
domain of attraction for the point (1,0). The mirror image region in the left half-plane is a
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region of repulsion for unstable point (-1,0).

The saddles at (0,1) and (0,-1) make the global properties of the flow unstable. If the air-
craft state gets into the unstable flow region of one of these saddles, however, the pilot will
have to change his aircraft’s o,f,0,9 values or fall into an unstable spin or speed condition.
The «.,B.0,® values that give rise to these saddles represent potentially hazardous conditions,
while the region bounded by the O-level set in the right half-plane defines the region where it
is safe to fly.

There are two physical equilibria in this case, at most one of them is stable. Even if there is
a stable one, the simple strategy of setting the angles a,p,8,® to the proper values and wait-
ing will not always work. If the pilot has just completed a maneuver that has left his V and ¥
states in a bad spot (too near the unstable equilibrium) and then attempts to keep the angles
fixed at the correct values for the stable equilibrium, he could find himself in a divergent
speed condition or an unstable spin. If his initial V and ¥ are in a good spot (near enough to
the stable equilibrium), on the other hand, he will be fine. Trying to end maneuvers at equili-
bria like these could be a hazardous undertaking.



SECTION 6: NONLINEAR FLYING QUALITIES

In previous sections we discussed nonlinear models of aircraft, the trim set, and the tech-
nique of dynamic inversion. These three topics are basic to our understanding of nonlinear
flying qualities, which we discuss in this section.

We begin with a discussion of two idealized types of parameters: commanded-dynamic
parameters and complementary-dynamic parameters. Both sets of functions are computed
directly from the nonlinear aircraft models and they quantify important physical properties of
the vehicle's behavior during flight. The commanded-dynamic parameters measure the maneu-
verability and controllability of the aircraft in the three angle-rate degrees of freedom (P,Q,R).
The commanded-dynamic parameters are discussed in subsection 6.1 below.

Subsecton 6.2 covers the complementary-dynamic parameters. Complementary-dynamic
parameters can be used to construct Liapunov functions for stability analysis of dynamic
inversion controllers. The best results we have so far are for the ,B,0,9 inversion, for which
we have derived explicit time and space bounds for the nonlinear dynamic trajectory of the
vehicle moving towards a trim condition.

Besides these two types of idealized parameters, we have found several criteria for super-
maneuverable vehicles flying along trajectorics where aerodynamic forces and inertial terms
simultaneously play an important role. We have two main results here

1) a simple aerodynamic criterion for smoothness of the acrodynamic loading during rapid o
variation

2) control design criteria for coordinated flight during highly-dynamic, simultaneous roll-
pitch-yaw maneuvers.

These two results are discussed in subsections 6.3 and 6.4

The last two topics of this section are two ideas that were under development at the end
of our program. The first is a flying-quality metric for nonlinear aircraft models that could be

73



evaluated using the coordinated-flight U,P,Q,R dynamic-inversion controller discussed in sec-
tion 6.4. The second concerns the stability and controllability of the aircraft during maneuvers
involving extreme angular rates. The parameters defined in this section quantify the effect of
the dynamic derivatives on the rotational energy and angular momenturn of the vehicle.

Many of the ideas below were inspired by analysis of maneuvers like those described in
section 7, which follows this one. The maneuvers we have looked at were generated by the
batch version of our flight simulation program using various dynamic inversion strategies.

6.1 Commanded Dynamic Parameters

Commanded dynamic parameters quantify the pilot’s direct command authority over the
state of the aircraft by use of controls. Examples of parameters from the MIL-F-8785C
specifications of this sort are (by section number):

3221 Short-period response

3222 Control feel and stability in maneuvering flight at constant speed
3.23.3.1 Longitudinal control in catapult takeoff

3.234 Longitudinal control in landing

3.3.2.6 Turn coordination

3.3.4.(all) Roll control effectiveness

335 Directional control characteristics

3.3.7 Lateral-directional control in crosswinds

338 Lateral-directional control in dives

339 Lateral-directional control with asymmetric thrust
34213 Stall prevention and recovery

All these criteria concern command response -- the response of the vehicle in degrees of free-
dom that the pilot is intentionally changing through direct control. In contrast, there are cri-
teria concerning the response of the aircraft in degrees of freedom that the pilot is not trying
to change during the course of a maneuver (¢.g. 3.2.1.1.2 Pitch control force variations during
rapid speed changes). .
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In an effort to identify useful new flying quality parameters, we defined some functions
of the aircraft state and the nonlinear aircraft model that quantify fundamental limitations on
dynamic-maneuver command responses. These functions quantify the command authority
available to the pilot to control vehicle dynamics during maneuvers. Below are some exam-
ples of these functions applied to the (P,Q,R) command-response. Dimensionless coordinates
are used throughout this section (see section 5.3 for the conventions).

Pitch-rate Control

The primary pitch-rate effector in a basic aircraft is the elevator. In dimensionless coordinates
(assuming symmetric aircraft, no dynamic derivatives, and a simplified elevator model):

;ny = (R? - P, + RP(I, - I,) + VIC, + V’C,,.‘.sin(se - a) (6.1.1)

The derivative of Q has an inertial term, an aerodynamic term, and a control term depending
on the elevator. A parameter which measures the basic Q command effectiveness is

ViC,,

Nge = i (6.1.2)

.

This parameter must be sufficiently large at low speed to assure adequate control of the pitch
~axis for take-off, landing, and near-stall maneuvers.

- Another potentially useful function is the dynamic pitch-control ratio, defined as:

. - |(R? - PO, + RP(L,, - L) + ViC, |
Qe ™ | 2 }
| viC,, | |

(6.1.3)

This function measures the ratio of the uncommanded portion of Q to the magnitude of the
elevator authority. In a region of the state space where this ratio is too large, the pilot will
. have trouble maintaining attitude control. For example, if the ratio is bigger than 1, the pilot’
cannot even control the sign of Q Some degradation of pitch control during high-a or rolling
maneuvers is expected, Ve quantifies the extent of degradation.

If R and P are 0, Vge Teduces to the ratio of Cp, to Cm‘.. In this case, the parameter is a
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function of o alone (assuming coordinated flight) -- it could be used to determine if the vehi-
cle has adequate clevator authority for a desired pullup maneuver.

Roll-rate and Yaw-rate Control

For a symmetric aircraft, the P and R degrees of freedom are most naturally analyzed
together. The basic nonlinear equations look like:

- 2.(s _ PO
s Ia|[p] Jo » Iy O :)xz P - o) . C, G, ||Visind- 53
) 7 UV e, Cu, Gy || Vsin3—B)

In coordinated flight (B = 0), symmetry causes the aerodynamic functions C, and C, to
vanish, resulting in a simplification of the righthand side. When the angular velocity vector
(P,Q,R) is small, roll/yaw command authority is approximated by the matrix:

I ~Iu]" G, G 615

Mpiar = V2 l_ Cr,, Cn,

e T

The size of the minimum singular value G, (Myp, ) is @ bound on the angular-rate authority

available in some direction in this two-degree-of-freedom subspace. The singular vectors
(input and output) associated with this singular value should be considered as well. The func-
tion Gpin(Mpg,) depends on the speed, a and B, and the vehicle model. The larger it is, the

better the pilot can control P and R independently. It can be thought of as a lateral-
directional version of the parameter Mse defined earlier.

For more dynamic but still coordinated maneuvers, the ratio v,  is defined to be the

vector:
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-1
’ Cl._ Cl" 0 R -Q Le 0 -Igjfp e
Vl"lin‘-‘"{,'g' Co, Cn| [Q -P O 0 I, 0 ]|Q (6.1.6)

-1, 0 I, |R

The two entries in this vector represent the size of the aileron and rudder settings required to
match the inertial 1 and n components of the torque. At states where these values are large,
the pilot must use large rudder and aileron commands to maintain or reduce the sizes of P and
R. Where these values are too large, the spin condition might be beyond the pilot’s control.

The parameters Tz and vpe  can be defined for uncoordinated flight as well. All that

is required is to include the acrodynamic terms in vpg_.
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6.2 Complementary Dynamic Parameters

We define complementary dynamics to be those dynamics of the vehicle associated with
states which the pilot is not controlling directly. Depending on the pilot’s task, the states
associated with the complementary dynamics may vary. We consider the following MIL-F-
8785C specifications (listed by their MIL-F-8785C section numbers) to be associated with
complementary dynamic phenomena:

3.2.1.(all) Longitudinal static stability
32213 Residual oscillations

3.22.2 Control feel and stability in maneuvering flight at constant speed
3.3.1.¢alD Lateral-directional mode characteristics

3321 Lateral-directional response to atmospheric disturbances
3351 Directional control with speed change

3393 Transient effects

3.4.2.1.2 Stall characteristics

3.42.2 Post-stall gyrations and spins

34221 Departure from controlled flight

343 Cross-axis coupling in roll maneuvers

3.44 Control harmony

3.4.5 Buffet

3.4.11 Direct force controls

3.55.1 Failure transients

363 Transients and trim changes

All these specifications concemn the response of the aircraft to effects other than those directly
commanded by the pilot. Included are transient response (in degrees of freedom other than
those commanded), disturbance and failure response, dynamic cross-coupling, and stability
and damping of dynamical modes.

We have identified some parameters based on the nonlinear models that describe one
type of complementary dynamic behavior, we call them complementary dynamic parameters.
Our approach makes use of the nonlinear inversion method discussed in section 5.
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In the basic example where the pilot has four control inputs to work with, he will be able
to command independently only four degrees of freedom, leaving two degrees of freedom
constrained by their relation to the others, The motion of the aircraft in those two remaining
degrees of freedom is determined by the equations of motion and the pilot’s command inputs,
but the control the pilot has in those two dimensions is indirect - a side-effect of the direct
control exerted in the other four dimensions. The dynamic behavior of the aircraft in the four
dimensions where the pilot has control is (within the limits of control effectiveness and
neglecting disturbances) determined by the control inputs, so the pilot can directly influence
dynamics there. Once the pilot’s choice is made, the dynamics in the other two dimensions
are completely determined by the aerodynamic and physical properties of the aircraft. These
residual or indirectly controlled dynamics will vary from one aircraft to another in a way that
can be computed from the nonlinear models. From these dynamics, flying quality parameters
can be computed.

To compute these parameters, we make assumptions about the strategy chosen by the
pilot to control the aircraft. For illustration, suppose the pilot uses his four controls to keep
the direction of his velocity vector (a and ) and the direction of the gravity vector (6 and ¢)
fixed. This strategy might be used by the pilot to execute a steady tum. As was shown in
section 5.3, the complementary dynamics for V and ¥ are given by the equations:

V = ag + 2 V2 + a) V¥ + g, ¥? (6.2.1)

¥ = byy + bygV? + by, V¥ + bpp¥?

The stability of these complementary dynamic equations should be highly correlated with
the ride quality during the steady turn. If the system is very stable, the ride should feel very
steady (good flying qualities for tracking purposes, for example), but if it is only marginally
stable the ride quality may feel unsteady or even oscillatory. In the worst case, if the system
is unstable, the aircraft might experience a divergent speed condition (compare with MIL-F-
8785C section 3.2.1.1) or an unstable spin condition (compare with MIL-F-8785C sections
3.4.1 and 3.4.2). Analysis of the stability of this system was performed in subsection 5.5 of
the previous section. We derived Liapunov functions to describe the transient dynamics for
Vand ¥, and we computed a bound on the settling time from a non-equilibrium condition.
In one of the two cases analyzed in that subsection (corresponding, perhaps, to a very extreme
turn or a turn at high o), we found that the stability of the turn might depend on the values of
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V and ¥ as the turn is started. The functions and parameters of that section, and other param-
eters computed in a similar fashion, seem very important in assessing how well aircraft enter
and execute tumns.

By fixing other combinations of states (or some four-dimensional subspace of the state

space), other sets of analytic equations can be obtained. From these equations, other comple-
mentary dynamic parameters can be computed.
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6.3 : Lift to Drag Ratios of Aircraft with Smooth Lift Curves

Many books on acrodynamics give estimates for the lift and drag of a wing (or aircraft with
zero contro] deflection). These estimates are typically of the form

Cy = f;(AR,@0) 6.3.1)
(CL?
o-Cn,= £0g (6.3.2)

where AR is the aspect ratio of the wing (or aircraft) .

Taking the ratio of the equations 6.3.1 and 6.3.2 gives

= 6.3.3
C, £ (AR) ©.3.3)
If the lift were linear in o , then we would get |
Cy =f;(AR,a) = Cy (a-op) | (6.3.4)
and equation 6.3.3 would be linear in ¢
fi(AR,a) Cp (o)
ARG _ (6.3.5)

f(AR) ~  f)(AR)

For lift curves that are not linear in a , we would still expect equation 6.3.3 to be fairly linear
in a for small a.

For several aircraft with smooth lift curves (no stall discontinuities) such as the F-4, F-14 and
F-15, we have examined the low speed lift and drag curves measured during wind tunne! tests
and found that the expression on the left-hand side of equation 6.3.3 was very nearly deter-
mined by the following simple and interesting form :
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Cp-C
-—P—C—-&=tan(a-oto) (OSasg- radians ) (6.3.6)
L

This formula appears in "USAF Datcom Methods Handbook for Double Delta Wings" .
The point of giving it hear is to show how well it fits the F-4, F-14, and F-15 data for angles
of attack ranging from 0 to beyond 90 degrees.

In (6.3.6), g is defined to be the angle of attack at which the drag is minimum. Note that
tan(c — (1) is nearly linear in & — &g , over a fairly large range of o — oy .

For the F-4 and F-15, AR is approximately 2.9 , while on the F-14 (which had wing sweep
set at 22° ) AR was approximately 7.3; yet equation 6.3.6 still holds. This indicates that
even though the numerator and denominator in equation 6.3.3 may each depend on AR , their
ratio does not depend on AR for these aircraft.

An interesting interpretation of equation 6.3.6 can be made when a change of coordinates is
made from wind axes to body axes.

Let & =a -0y ;then
Cx| _ cos(f) —sin(®@) | |Cp |
[Cz] T [sin(&) cos(&) ] [CL] (6.3.7)

SO

Cx = —cos(®)Cp + sin(@)Cy, = —os(&)(Cp ~ Cp,) + sin(@)Cy, — cos(&)Cp,  (6.3.8)

Plugging 6.3.6 into 6.3.8 gives

Cx = —Cp, cos(&) (6.3.9)
If equation 6.3.6 were exact then
ICx| < Cp, (OSaS% radians ) (6.3.10)
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For the F-4, F-14, and F-15 data shown in figures 6.1, 6.2, and 6.3 at the end of this subsec-
tion, Cp, is around .02 and

ICxi $3Cp, (0SasZ radians) (6.3.11)

Since Cp, is so small, the error in the Cp and C data from which Cx was calculated
may account for much of the discrepancy between (6.3.10) and (6.3.11) .

Equation 6.3.11 shows us that at low speed there is much less acrodynamic force in the x
direction than in the z direction ( V2 C, is small at any angle of attack ). Consequently, the
only significant force the pilot feels in the x direction is due to the throttle. This is true no
matter how rapidly o is varying. Therefore, it would seem that aircraft with small magnitude
C, have better flying qualities during rapid o maneuvers than those with C, of large variation.
Note also from the plots that C, decreases (it is negative) almost monotonically with « , for

0sas< ) radians . This may be of some use in using n, at the percussion point to “meas-

ure” o (using a lookup table for C, ).

The F-15 data (at O sideslip) came from the tests conducted on a 13-percent scale model of
the F-15 S/MTD configuration in the NASA-Langley 30x60 ft low-speed wind tunnel, Test
No. 489 , run 216, no canard , configuration 85.000 , between 10 July and 27 July 198S.

The F-4 data (at O sideslip) and the F-14 data (at 22° wing sweep, sideslip = 0° and 20%
were taken from [MMT]J].

This report cited reference [Ang] for wind tunnel data for the F-4 and several references con-
taining selected data for the F-14 from wind tunnel tests conducted during 15 March - 16
April, 1971, in the NASA Ames Research Center 12 ft pressure tunnel and during August,
1971, in the NASA Langley Research Center 30x60 ft (full scale) tunnel.
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6.4 Highty Dynamic Phenomena

For a conventionally configured aircraft at medium to high speed, the largest forces that
can act are aerodynamic. Even the most powerful aircraft have thrust-to-weight ratios only
slightly greater than 1, while maneuvers reaching levels close to 10 g for short periods of time
are not uncommon. For coordinated flight, these high-g maneuvers are achieved by entering
high-angle-of-attack regions where the aerodynamic lift and drag forces are smrongest. One
example of this type of maneuver is the diving-turn maneuver shown later in section 7.3.

The largest force during this diving-turn maneuver is the 8-g normal acceleration encoun-
tered during the start of the dive. In less than 3 seconds, alpha rises from close to zero to
nearly 1.1 radians. The vehicle decelerates rapidly, despite the fact that it is diving at full
throttle, because the drag term is so large. The elevator is saturated at 1 radian deflection (our
assumed saturation value) to maximize the pitch-rate during this period - the high pitch-rate
begins while the roll-rate is still large from the initial banking phase. The large pitch-rate
increases alpha rapidly while the airspeed is still near 500 ft/second, large lift and larger drag
forces are the result.

An important feature of this high-g diving maneuver is the dominance of the quadratic
inertial terms in the nonlinear state equations. That is, the angular rates P, QQ, and R become
so large in magnitude that the state derivatives are heavily influenced by the product terms
PQ, QR, PW, etc. A pnmary effect of these large angular rates can be seen in the basic
lateral velocity equation:

V = -RU + PW + cos(8)sin(¢) + V2C,(0,B) + direct rudder acceleration  (6.4.1)

This simple mode! (no dynamic derivatives, only rudder direct forces) illustrates the point. If a
maneuver involves turn-coordination at high roll rate, the magnitudes of the terms -RU and
PW become comparable with the gravity term, and much greater than the direct rudder force.
In our sample maneuver, the roll rate P reaches a value greater than two radians/second and
the pitch rate exceeds 1 radian/second in the early part of the maneuver. The maneuver begins
at at a speed of roughly 500 ft/second (size 2 in the dimensionless units of equation 6.4.1) and
at an altitude of about 5000 ft (near sea level, but at least 2700 fi). The inertial acceleration
N, experienced by the pilot is the negative of the sum [Vsz(a,B) + direct rudder force], and
this is a small term because the turn is coordinated. The gravity term never gets any larger
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than 1, while each of the terms -RU and PW get bigger than 1.

To keep B small, the yaw-rate R must vary in such a way as to keep V small. The con-
troller used to generate the diving turn allowed arbitrary commanded P, and chose R to
satisfy:

R = [PW + cos(8)sin(¢) + Vle(a,B) + direct rudder acceleration}/U (6.4.2)

The control strategy based on the dynamic inversion for U,P,Q,R with R chosen to keep B
small is called coordinated-flight U,P,Q,R inversion. This controller was used to execute the
diving-turn maneuver of section 7.3, it seems a very promising approach for supermaneuver-
able vehicle control. If the lateral-directional control authority is adequate to generate the
necessary P and R values independently, it should work for very extreme combined roll-
pitch-yaw maneuvers.

For this control approach to work in practice, the allowed bandwidth of the roll-rate com-
mands must be limited to a region where the rudder is able to generate enough R to track the
right-hand side of equation 6.4.2. As a part of this restriction, consideration must be given to

o because P is multiplied by —‘g— = tan(a). The factor tan(c) implies that at large angles of

attack the ratio of the bandwidths must be smaller than at low « for coordinated rolls.

el
Equation 6.4.2 can be used to quantify that requirement: for acceptable high-alpha roll-rate
response, the bandwidths wg{a) and wp(e) should be related by an inequality of the type:

wg(a) > Kap(a)tan(o) (6.4.3)

for some constant K which is (presumably) larger than 1. This inequality can be viewed as a
design requirement for acceptable flying qualities at high « (better flying qualities being asso-
ciated with larger values of K), or it can be taken as a rule for determining the maximum
allowable bandwidth of P as a function of o and the bandwidth of R. Alternatively, it can be
viewed as a requirement on rudder size needed to provide coordinated flight at high «. The
parameter Vp, - defined in section 6.1 must also be considered to determine the achievable

performance for this control approach.
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Along the same lines, it is possible to derive criteria for dynamic control of o in terms of
Q control. During coordinated flight, P and R do not contribute directly to &, but Q does.
Assuming V = 0:

& = Q + [Ucos(O)cos(¢) + Wsin(8) — UN, + WN,}/V? (6.4.4)

Consider a maneuver that requires keeping a large for an extended period of time. From
6.1.1, it is clear that if P and R are kept small, the sign of Q is determined by the sign of C
at values of a where 1C, | > IC,, | . If G is negative with a large magnitude in the desired

o range, then Q will be decreasing rapidly so long as o is kept large. Once Q becomes
sufficiently small, the sign of & in equation 6.4.4 becomes negative and the desired large o
condition is lost. From this analysis, we can see one of the advantages of a thrust-vectoring
capability. When the factor C,, dominates Cm‘. for values of @ in a desired range, thrust vec-

toring can maintain Q so long as V? is small enough. In such a situation, it is possible to
maintain a large a condition for extended periods of time without generating P and R (i.e.,
turning) to keep Q in a compatible range.
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6.5 Dynamic Flying Quality Metrics

One approach to evaluating flying qualities, given a nonlinear aircraft model, is to use a
metric on the space of maneuvers. This idea has been proposed by others, we have chosen not
to develop such an approach during this contract. A metric approach could be carried out
based on ideas developed during this contract; one way to do this is described briefly below.

Begin by choosing a (small) number of equilibrium conditions for the aircraft model.
Dynamic maneuvers begin at various equilibrium conditions; the equilibrium points chosen
should be representative of flight conditions where dynamic maneuvers usually start. We
could describe the set of points chosen by their equilibrium values of «,B,©, and @ (these
coordinates are the easiest to use with our equilibrium computing program). For each point
we then compute the fixed values of V,¥, and the actuator inputs. To reduce the number of
cases considered, we could start with coordinated conditions where B = 0.

Next, for each flight condition, pick a set of dynamic command profiles for U, P, and Q
as a function of time. Many different sets of profiles can be specified here - the idea is to
define a representative sampling of dynamic responses for as many different maneuvers as
possible. The aircraft model will be evaluated with respect to this set of candidate maneuvers,
so it would be a good idea to include profiles that are characteristic of maneuvers actually
used during flight.

Each U,P,Q profile chosen will then be used as input to the U,P,Q,R dynamic inverter.
The R command needed by the controller will be generated internally to provide coordinated
flight while the simulation tries to fly the trajectory defined by the specified U,P,Q functions.
For each maneuver, the model will be evaluated according to a collection of norms chosen to
reflect the quality of the response.

For example, for each command profile, we would find the average error in the com-
manded U, P, and Q responses along the trajectory; as well as the maximum error for each of
these variables. Also important is the determination of the extent of control saturation (both
position and rate limits) during the flight. These measures of U, P, and Q errors for each
maneuver would form a criterion for evaluation of the attitude-rate response, a quantity
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important in dynamic tracking or pursuit tasks. By taking the average value of these errors
over a representative sample of maneuvers, the evaluator finds an overall sense of the quality
of response.

The physical factors about the vehicle reflected by the attitude-rate response errors are
things like the mass and moment propertics, span and chord, aerodynamic moment coefficients
C.Cp,Cy» and the actuator position and rate limitations. The aerodynamic force terms
GGy, C, will probably not be very important for this criterion. It might work out better to fix
the throttle setting at a predetermined value for the entire maneuver so that power cycling
uncharacteristic of actual maneuvers will not occur. In that case, only the profiles for P and Q
need to be specified for each run. It is probably a good idea to classify the responses accord-
ing to whether or not some saturation occurred during the simulation, and to quantify the ten-
dency to saturate in an average sense. Some evaluation should also be made of the severity of
the effects of saturation (i.e. whether instability results).

Another factor to consider is the attitude response during the maneuver, as well as the
final equilibrium positon and time to settle at the end of the maneuver. For simplicity, we
might suppose that the commanded values of P and Q go to O at the end. Some (presumably)
short time thereafter the vehicle should show some tendency to settle at a new equilibrium,
which can be considered the starting point of a subsequent maneuver not yet determiined. The
length of the path through the attitude space, and the location of and time to settle at the final
equilibrium point are all quantties that can be measured and averaged over the maneuver
space. The time to settle at the end of a maneuver is a quantity similar in nature to our
complementary-dynamic parameters that we developed during this program.

Finally, we would look at the inertial accelerations during the maneuver to assess the
environmental stress experienced by the pilot during the maneuver. The values of N,, Ny, N,
would be computed along each trajectory and compared with acceptable ranges. In the basic
nonlinear model, the formulas for these inertial accelerations felt by the pilot are:

N, = -(VIC,(Q.B) + throttle acceleration) (6.5.1)
N, = —(Vzcy(a,ﬁ) + rudder acceleration)

N, = «(V2C,(a,B) + elevator acceleration)
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It would also be worthwhile to compute the acceleration time derivatives, or jerk components,
during each maneuver. The jerk components quantify the smoothness of the ride in a way that
allows comparison among various models. The jerk components can be computed using impli-
cit differentiation along the trajectory: for example, the x-component of the jerk J, is:

X

T 9C, I.3) + d(throttle acccleration)) (6.5.2)

ap dt

I =

. 0Cx .
= ~(2VVC,(o,B) + V¥ 30 &t

with similar expressions for J, and J,. Some overall average of the expression JZ + J2 + J2
for the different command profiles might provide a criterion for smoothness of ride during
dynamic maneuvers. Note that the jerk components depend explicitly on the partial derivatives
of the aerodynamic force functions - these derivatives could be estimated numerically from
interpolated table data.
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6.6 Stability and Controllability of Rotational Energy, Angular Momentum, Angular Rate

One idea that arose near the end of the program was to identify quantities based on non-
linear aircraft models that characterize the stability and controllability of the rotational energy,
angular momentum, and rotation rate of the vehicle during flight. In this section we show how
such quantities can be derived and show some examples. As a corollary of this analysis we
derive formulas, defined in terms of aerodynamic functions and the moment tensor, which
quantify the stability of the rotational dynamics for bounded speed.

Using the nonlinear equations that include dynamic derivatives, we have:

P
V= lﬁra[1®6 + Vzcxyz + VCyypgr {Q [ + Bxyh(x,0)] (6.6.1)
R
Q| = 170190 [Q | + VZCimn + YCimpgr [Q | + &imahCx0) - (6.6.2)
R R R

These analytic expressions for the derivatives of V, P, Q, and R involve coefficients that
depend in a complicated way on the states a,3,8,¢; but their dependence on V, P, Q, and R is
only quadratic. There are V? terms in the control input (g...h(x,u)) expressions associated
with the surface effectors, if we identified this dependence explicitly in the equations the form
would remain quadratic. From physical considerations the V2 terms in equation 6.6.1 represent
drag effects that dominate V whenever V is large (relative to P, Q, and R). These equations
are similar to the ones we encountered in the analysis of the complementary dynamic parame-
ters, only in this case there are no assumptions made about any of the states being kept fixed.
We expect they can be analyzed thoroughly to obtain a global stability result, but for now we
do not attempt a complete analysis.

Let us suppose that the speed V is bounded, and consider equation 6.6.2. First, observe
that the dot product of the vector [2P,2Q,2R] with both sides of equation 6.6.2 provides an
expression for the time derivative of P + Q2 + Rz, the square of the rate of the angular
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speed. The right-hand side is then a cubic function of the variables P, Q, and R with
coefficients depending on the speed V, the states ,B,0,0, and the control inputs. We have not
worked much with this expression because the other functions below seemed more tractable.
Sdll, it might be worth looking at to determine the effectiveness of the control inputs to con-
trol the angular speed directly.

Simpler to analyze and (perhaps) more useful is control of the rotational energy about the
center of mass. The time derivative of the rotational energy is obtained by taking the dot pro-
duct of both sides of equation 6.6.2 with the vector [P,Q,R] after first multiplying by the iner-
tia matrix I, The resulting expression on the righthand side is now simply a quadratic
expression because [P,Q,R] € = 0. The equation becomes:

P
4 [Rotational Energy] = -([P,Q.RIL,, [Q 1] (6.6.3)
dt de 2 R
P
= [P,Q.R][VCMPQR Q + Vzcm + gmh(x,u)] .
R
P
The expression we want to consider is the quadratic term [P,Q,R] ChmeR Q| that appears
R

on the righthand side. For bounded V, this quadratic term will dominate the rotational energy
derivative when the angular rate vector [P,QR] is large. If the 3x3 matrix

SimnPQR = %(CMPQR + CgmeR) is negative definite for all values « and B, the rotational

rate must stay bounded. Physically, this matrix represents an angular drag term - its dominant
effect on the rotational energy at high angular rate conditions suggests it may be highly corre-
lated with flying qualities for extremely dynamic maneuvers. The sizes of the eigenvalues and
the directions of the corresponding eigenvectors in the P,Q,R space are reasonable candidate
flying quality parameters.

The total angular momentum squared is another function of the angular velocity vector
that can be analyzed to quantify angular stability and control authority during flight. Proceed-
ing as before, we compute
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P

4 241 2
& [Angular Momentum] & [ 5 [P,Q.R]Lz, 2 ] (6.6.4)
P
= [P,QRIVInoCrrmmpar [Q | + Y noCirmn + InoBimah(x:u)] .
R

In this case, the cubic P,Q,R term vanishes because the matrix L,,QI,, is antisymmetric. Now
it is the matrix

1
AlmnPQR = E(ImoclmnPQR + ClnporImo) (6.6.5)

that must be negative-definite to insure stability. The eigenvalues of this matrix and the
corresponding eigenvectors, computed as a function of o and 3, might also be correlated with
flying qualities.

We do not know which function of the angular velocity, if any, is the most important to
a pilot during highly dynamic maneuvers. The relation between the sizes of the matrices
SimnPQr and Aypnpor and the sizes of the different torque-generation control effectors could
have a large impact on the vehicle's flyability in terms of the angular rate controllability.
Parameters based on all three functions discussed above have a clear physical significance and
could be relevant to flying qualities. Also, there may be a correspondence between these
parameters and the onset of uncontrolled spin conditions that are sometimes associated with
high-angle-of-attack maneuvers.

We must use caution when interpreting the results of this subsection. We do not know
how large the rotational rates must be for the dynamic derivative terms to dominate. The
maximum rotational rates predicted by the bound on rotational energy from the above equa-
tions may exceed the realm where our basic nonlinear model is valid. We have assumed a flat
earth, constant air density, and very simple expressions for the aerodynamic functions. We do
know, however, that nonlinear models like these are used in practice, and that they give rea-
sonable results when applied to specific regions of flight. Within the realm where these equa-
tions accurately mode! the aircraft dynamics, we expect the parameters above will be worth
looking at. If we have a better model, the three angular velocity functions discussed here still
have a fundamental physical significance that might be correlated with flying qualities.
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SECTION 7: THE MANEUVERS

In this section we present some simulated maneuvers using a subset of the F-14 model
found in [MMTJ]. These simulations motivated some of the mathematical expressions that we
associated with candidate flying quality parameters in earlier sections. More importantly, they
provide a detailed account of the model behavior under carefully controlled conditions. We
can, in general, investigate and demonstrate dynamic flight characteristics associated with vari-
ous levels of flying quality through simulations like these.

Our approach has been based on analysis of the nonlinear aircraft equations, to character-
ize the dynamic behavior of aircraft during flight. At the start, we began with an idea
(dynamic inversion) about how aircraft could be made to fly; we tried out the idea by using it
to command simulated maneuvers. By analyzing the results of the simulations, we were able
to identify features of the nonlinear equations that could have a significant influence on an
aircraft’s dynamic behavior during flight. Some of the things we learned are mentioned in the
presentation below, others we have already discussed in our earlier section on the candidate
parameters.

Our analysis of the maneuvers given here is not so complete as we would like - there
remain several questions about the results that should be investigated further. We will point
out the unsettled questions as we go.

The three different types of maneuvers discussed here were generated by our batch ver-
sion of the nonlinear simulation. The first type is a roll reversal - where the aircraft banks first
to the right, stabilizes bank angle, then banks back to the left. The second type is a barrel
roll. The third type is a highly-dynamic diving turn chosen because of its extreme dynamic
behavior.
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7.1 Rolt Reversal

Three versions of the roll reversal maneuver are presented. All three were generated by a
dynamic inversion controller tracking open-loop command profiles for «,8,v,u. The structure
of this controller is described in example S of subsection 5.1. The primary goal was to fly the
maneuver while keeping the flight-path angle y fixed at zero. The three different versions
involved three different criteria for the normal acceleration N,

The easiest way to fly the mancuver is to pick a desired y trajectory and then command y
=0, B =0, and « to be what it has to be in order to keep the speed nearly constant. The plots
in Figure 7.1 through Figure 7.8 show the results for this maneuver. We call this maneuver
UNLOADEDREVERSAL. To generate UNLOADEDREVERSAL, we chose a desired pt com-
mand profile:

For 0 <t < 5 seconds commanded u = 0.0

" For 5 <t < 6 seconds commanded p = —’;— sin(n(t — 5.0)/2.0)

For 6 <t < 8 seconds commanded p = —7;-
For 8 <t < 10 seconds commanded p = % (1 ~ 2sin¥(n(t - 8.0)/4.0))
For 10 < t < 12 seconds commanded |1 = -—Tjt-

The commanded values for P and ¥y were fixed at O throughout. To derive the command

profile for a, we used the approximation (good when ¥ is constant at 0 and the direct control-
surface force terms are small):

¥ = V2Cicos(u) — 1 | | a.1.1)

Note that variables in the dimensionless units of section 5.3 are used here.

We wanted to keep y constant at 0, and we chose to keep V near a nominal dimension-
less speed of 2.2 (roughly 560 feet per second) throughout, so we needed to find an o
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command profile (note that P is assumed 0) to solve:
Cp(@) = 1/((2.2)? cos(commanded p)) (7.1.2)
For small , the lift coefficient is closely approximated by the relation:
Cp(a) = 590 + 0.09 (7.1.3)
Therefore, we defined the commanded o according to:
commanded a = (-0.09 + 1/((2.2)? cos(commanded p))/5.9 (7.14)

It was not essential that we could approximate the lift curve by a linear function of a, any
invertible nonlinear function would have worked just as well. If a wider range of o were
involved in the maneuver, we would have used a more accurate, nonlinear approximarion.
Plots of the commanded « and p profiles, with the simulated responses, can be found in Fig-
ure 7.3. )

First consider the four plots in Figure 7.1. Each plot shows the graphs of three of the
states as functions of time during the maneuver. The name of the maneuver and the states
plotted appears at the top of each plot. The way to read these charts having more than one
state function plotted on a single graph is as follows: the first-named variable at the top of the
graph is represented by the continuous line, the second-named variable is represented by the
short-dashed line, and the third-named variable is represented by the long-dashed line. In
some cases, one of the three variables plotted remains much smaller in magnitude than the
others, so that it appears that only two graphs have been drawn. For example, in the plot for
U, V, and W in Figure 7.1 the graph of V is so small that it is difficult to tell that it is there.
Some care is required to read these plots correctly. In some of these plots there are rapid tran-
sients during the first 2 seconds - they are associated with mismatches of initial conditions at
the start of the simulation and should be ignored.

There are few features worth noting in Figure 7.1. The components U and V remain
nearly constant during the maneuver while W, though small, increases by a factor of 2 or 3
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from beginning to end. The behavior of W is driven by the & response, which can be seen in
Figure 7.3. The P,Q,R plot shows that a 2-radian/second peak in P and very little Q and R are
required to produce the 60 degree bank in one second. The stabilization into the banked-turn

requires roughly -;— second. The @ response is crisp, with little overshoot, and @ stays nearly

fixed. ¥ moves from 0 to roughly 15 degrees with the bank to the right, then back to 0 again
after the reverse back to the left. In inertial position coordinates, the path of the vehicle moves
to the right about 500 feet during the maneuver from t=5 seconds to t=12 seconds, and is
about to start heading back again when the simulation ends.

Figure 7.2 shows plots of the changes in the inertial position coordinates Y and Z, and of
the Euler-angle coordinates © and ¥ drawn to appropriate scale. Worth special note is the
CHANGE IN ALTITUDE plot, where it is shown that the altitude varies by less than 2 feet
during the entire time. Keeping in mind that the maneuver did not begin until t=5 seconds
(the initdal condition transient was a factor at the start), we can see that the altitude was held
very nearly constant while the manecuver was performed.

Figure 7.3 shows the comparisons between the open-loop command profiles for o,f,y,u
and the values of these functions during the simulation. After the initial condition transients,
all four simulated responses stay within a milliradian of their commanded values. This was a
very successful maneuver.

Figure 7.4 shows the simulated values of the inertial accelerations, the aerodynamic force

functions, o and B, and the speed. Ny remains very close to 0, N, changes by about —;— g, and

N, follows a benign path between 1 and 2 g. The speed changes by less than 2 percent.

Figure 7.5 shows the control input behavior during the maneuver. Disregarding the initial
transients, these profiles seem fairly reasonable. The aileron does most of the work in a pair
of doublets (peak aileron deflection of 50 degrees) during the two rolling periods (we have
assurmed 1-radian ranges for each of the surfaces - we would have assumed moge effective
surfaces and performed the same maneuvers with smaller size commands if we had less sur-
face position range. We will deal with saturation phenomena soon, but not for the aileron).
The elevator and rudder commands move only slightly, about 5 degrees. The surface com-
mand rates look reasonable, there probably should be a plot of (approximate} surface rate
activity in a more detailed version of this simulation. The throttle moves up to a setting of
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0.5 g during the initial loading, then moves back to a slower setting when the banked tum is
established. During the reversal it moves down to 0.0, then back to 0.4 g during the loading in
the opposite direction. The variation of ¢ during the maneuver changes the drag (see Figure
7.4), so some thrust activity is required if speed is to be kept nearly constant. Also, the thrust
command was varied by the controller to generate small corrections to the speed necessary
because of the direct force contributions of the surfaces, which we neglected when we gen-
crated the command profile for a. The controller also had to compensate for the fact that the
a-command profile was generated by an approximation to the lift curve. The magnitude and
rate of the throttle activity during this maneuver might be considered too large - if so, a
different command profile for o,3,y,u could be chosen or a different inverter used for control-
ling the aircraft. The throttle was simply doing what it had to do to allow tracking of the
o,B,v,it command profiles in Figure 7.3.

Figures 7.6 and 7.7 depict the eight parameters ay,b;; associated with the complementary
dynamics. From them, we computed that at each time during the maneuver there was a unique
physical equilibrium value in the complementary \AZ phase-plane. Two of the plots in Figure
7.8 show the two eigenvalues at that equilibrium (both are always real for this maneuver -
note that the equilibrium is always stable), and the other two plots compare the simulated
values of ¥ and V2 with the equilibrium values. The eigenvalues could be used, as discussed
in section 5.5, to compute a settling time for the V¥ functions to their equilibrium values
once the states ,3,0,d have stabilized. We have not performed this computation yet, but it
would not be difficult (we have not coded-up the algorithm on the computer yet). During the
transients ¥ moves away from the equilibrium values by a significant factor (about 100 per-
cent error), but then moves back to equilibdum very quickly when rolling stops. V2, on the
other hand, tracks the equilibrium value very closely (after the initial transient).

For this first maneuver, the o,B,y,i dynamic inverter looks remarkably good.

The second maneuver differed from the first only in the goals for the normal acceleration
during the reversal. We called it LOADEDREVERSAL. The objective was to keep N, 2 2
after the first 60 degree bank. Again, we chose to use the a,f,y,i controller. The command
profiles for B and u remained the same as in the unloaded case, we changed the command
profiles for o and ¥. Our new o command profile was the same as the old one until t=8
seconds, when the reversal began. To keep N, above 2 g during the reversal, we chose to
keep the o command constant at (-0.09 + 2/((2.2)? ))/5.9 (compare with Figure 7.4) after 1=8
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until the end of the simulation. The ¥ command was not easy to choose: we would have liked
to keep ¥ = 0 throughout, but it is not physically possible to keep both B and y at O while
requiring that N, be at least 2 g during the reversal. So, we decided to ask for a small amount
of vy increase throughout the reversal, the plot for the command profile is shown in Figure
7.1%.

The plots for U,V.W and P,Q,R for LOADEDREVERSAL are similar to those for
UNLOADEDREVERSAL, except for the value of W during the reversal (note: they are plot-
ted on different timescales). The Euler-angle plots and inertial position plots are notably
different, however. As is shown in Figure 7.10, the LOADEDREVERSAL involves an
increase in altitude at a rate of about 30 feet/second (as compared with O in Figure 7.2) and a
final value of O that is 4 times as large. Figure 7.11 shows that o was the main problem for
this maneuver (all the other variables tracked their commands fairly well). The plots in Figure
7.12 show that N, did remain at least 2 g after the initial bank - the intersting plot is the
speed change.

The cause of the ramp deceleration can be seen in Figure 7.13, where it is shown that the
throttle tumed off while the reversal was in progress. The reason for the throttle shut down is
revealed in Figure 7.16. Note the plot showing the actual speed squared as compared with the
equilibrium speed squared at the corresponding o,3,0,4 points along the trajectory. The prob-
lem here is that the ¢,3,8,¢ states are very difficult to control independently near a = 0. The
throttle saturated trying to make the vehicle slow to its equilibrium speed, but there was not
nearly enough command authority to reduce the speed.

We conclude that the o,p,y,L controller was not a good choice for commanding
LOADEDREVERSAL -- the failure was not due to the vehicle or its flying qualities. It is
worth pointing out that the o,,6,¢ controller was stable at every point along the maneuver, as
is shown by the plots of the eigenvalues (always negative) in Figure 7.16. This is a case
where there is a unique physical equilibrium at every time, but control saturation prevented
the inversion from working as it should.

One might wonder if we tried to bring ¥ back down to O after the reversal was com-
pleted. The answer is that we did try - the results are shown in Figures 7.17 through 7.24.
Note the extreme droop in N, as soon as the command for y decreased. We did try to accom-
modate a decrease in Yy by increasing @, as can be seen in the plot for @ and MUCMD in
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Figure 7.19 but it did not work. The controller was simply not conditioned well enough for
this kind of maneuver.
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7.2 BARRELROLL

The maneuver BARRELROLL was the first trajectory generated by the coordinated-flight
U,P,Q,R inversion controller described in section 6. The simulation data for this maneuver are
shown in Figures 7.25 through 7.32. We chose the command profiles for U, P, and Q shown
in Figure 7.27. The strange shapes of the command profiles for P and Q after t=12 seconds is
a consequence of the strategy used to finish the maneuver: at that time the P and Q commands
were used to drive @ to 360 degrees and © back to its equilibrium value at t=3 seconds. The
commanded R was computed using feedback, approximately by the formula in equation 6.4.2;
the term associated with the direct side force due to rudder was neglected. The bandwidth
chosen for R was only one-tenth the bandwidth chosen for P in this maneuver. In fact, this
was the maneuver which led to the bandwidth parameters discussed in section 6.4,

The simulated responses for U,V,W,P,QR,d,08,¥ x,y,z are shown in Figure 7.25. Note
the visible V component that arises during the roll in the U,V,W plot. The other components
of the speed are as we would expect. Outside of the (small) overshoots in the angle-variables,
the other plots in Figure 7.25 are what a barrelroll should look like.

The plots in Figure 7.26 show the change in altitude, the change in crossrange, ©, and ¥
as a function of time. The other relevant data in Figure 7.29 show that the speed remained
nearly constant (as it was supposed to do), and that the accelerations were all tolerable. The
rather large P that arose did cause a transient N, of about 0.1 g in magnitude. That could have
been avoided by asking for a higher bandwidth R control (relative to P).

For this type of maneuver, we would like to investigate the theoretical implications of
equation 6.4.2 more thoroughly in the future.
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Figure 7.27 Commands and Command Responses During BARRELROLL
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7.3 DIVINGTURN

Figures 7.33 through 7.38 depict the maneuver DIVINGTURN, which we chose because
of its dynamic complexity. A groundtrace of the maneuver in inertial x-y coordinates is shown
in Figure 7.33; it is a right-turn (positive y is to the right) that starts at roughly x=2000 feet,
y=0; moves out along the positive x axis and then turns back and heads into the negative x
halfspace. The change in altitude is shown in Figure 7.34.

The plots of the vehicle states are shown in Figure 7.35. Note that U drops rapidly
between t=4 seconds and t=7 seconds -- a change of more than 300 feet per second in 3
seconds. At first, we might suspect that the pilot experiences some very unpleasant accelera-
tions in the longitudinal axis, but a glance at the N, plot in Figure 7.36 shows that N, is
almost ruler flat at -1.2 g during the turn, except for a small bump between 6 and 8 seconds.
Our sign convention is chosen so that negative N, represents a force pushing the pilot back
into his seat. That is much better than being pulled out of the seat at 3 g , the situation easiest
to imagine when the average value of Uis -3 g. It was this maneuver that alerted us to the
result discussed in section 6.3, that the acrodynamic data for the F-14 has the property that the
aerodynamic force vector is almost exactly aligned with the z-direction of the aircraft at large
a. The value of N, shown on the plot is almost constant at -1.2 g because the throttle is
saturated at full power, +1.2 g, throughout the turn. In fact, the bump between 1=6 seconds
and t=8 seconds arose because o exceeded the largest recorded datapoint at 50 degrees during
that time, and we were using the table values for a = 50 degrees.

A description of the maneuver is as follows: the pilot begins by banking the aircraft a lit-
tle over 90 degrees, then (while still rolling) he pulls back hard on the stick. All the while the
throttle is set at full power. The elevator saturates at its maximum value for three seconds, but
Q quickly turns negative because the inertial terms dominate (sec the software user’s manual,
a separate document prepared under this contract). As Q drops, o decreases as well (note: P
is O during the time when Q drops off, see equation 6.4.4, and the discussion after) until P
once again is commanded to be nonzero, generating (with R) some extra Q to make Q
increase again starting at t=8 seconds. The pitch angle, however, decreases steadily to
approximately -60 degrees until time t=12 seconds. Then the new Q command and the
reverse bank command at time t=12 seconds brings the nose of aircraft back up and the wings
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back to level. Finally, by about t=20 seconds, the aircraft is level again and moving at the
desired speed.

Conclusions

From the three types of maneuvers flown in simulation using the dynamic inversion
method, we were led to several of the candidate nonlinear flying quality parameters discussed
in section 6, and we were forced to a new and improved dynamic inversion concept. One
parameter provided an analytic relationship between the bandwidths of the dynamic P and R
responses with & restrictions on coordinated flight, another allowed us to understand the effect
of the aerodynamic force vector on the accelerations experienced by the pilot. The first
maneuver told us little about the aircraft, but it did point out the need for the development of
the controller that we used to discover the two important relations just mentioned. Other ideas
discussed in section 6 for nonlinear flying qualities also came out of analysis of these simu-
lated maneuvers. We believe the dynamic inversion method and the simulated maneuvers are
a very useful tool for developing flying quality parameters.
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APPENDIX A

TRAJECTORIES IN INERTIAL SPACE

The equilibrium velocities will give trajectories in inertial space which are vertical helices.
One way to show this is as follows.

The state is x = (V,B,a,d),é,‘i’,(b,e) . At equilibrium, the state is constant so two of the
Euler angles, @ and © , are constant while the third Euler angle, ¥ , is given by

¥(t) = ¥(0) + Ve,

The transformation matrix between body axis coordinates and earth fixed coordinates is given
by the orthogonal matrix Lygg = Ly Lg Ly where:

cos(W(t)) —sin(¥()) O
Ly = [sin(¥ (1) cos(¥(1) O
0 0 1

-cos(e) 0 sin(@))T
Le = O l 0
~sin(@) 0 cos(©) |

r

1 0 0
Ly = {0 cos(®) —sin(d)
[0 sin(®) cos(P) |

U U _
The velocity vector is given by [V in body axis coordinates, and [V] =V lgg
w W

where 1, is the following unit vector

cos(B)cos(a)
1 Ba = sin(B) .
cos(B)sin(a)

So in earth fixed coordinates, the equilibrium value of the velocity vector is given by
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a cosC¥ (1) - b sin(¥(1))
Lyea [V lﬂa] =V |a sin(¥(t)) -: b cos(¥(t)) (A.1)

a
-

where

The right-hand side of equation A.l is usually written as

cos(Y)cos(¥()-¥ )
V |cos()sin(P(t)~¥ ) (A.2)
-sin(Y)

where the flight path angle, v, is given by

¥ = —sin"}(c) = cos™! [qa2 + b2]

and
. -b
¥, =sin! |—=—1 .
v [ Va2 + b2 ]
Note: ¥, = aircraft heading - velocity vector heading.

Integrating (A.2) gives the trajectory in the earth reference frame.

xm] [xO sin¥©-¥y) | [ sinCEO-¥,)
Y0 |- [Y0 | = Y0 | cosewin-w,) | - [<oscr0-¥m || . a3
zo] 2®] ¥ || ~anm ¥ 0

This defines a vertical helix of radius %cos(y) .
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APPENDIX B

DYNAMICAL PROPERTIES OF FLIGHT MANUEVERS
GEORGE R. SELL*

0. Introduction. In this report we show that the study of the dynamical properties
of flight manuevers is governed by the theory of time-varying differential equations. The
stability properties of the solutions of these squations are determined by the corresponding
properties of the limiting equations, see Sell {1967b) and Sacker and Sell (1977). For most
flight manuevers these limiting equations are either autonomous, or periodic in time. In
these cases, there is a rich literature for describing the stability properties. A brief outline
of the basic theory of limiting equations is included

One of the first objectives is to study the dynamical properties of flight manuevers in
the vicinity of the equilibrium manifold. The Stable Manuever Theorem, which we present
here, addresses this issue. This theorem states that if one begins a flight manuever near a
strongly stable equilibrium point, and if the manuever input is close to a nominal input,
then the aircraft remains near the equilibrium manifold.

The report contains six sections: 1. Dynamic Inversion, 2. The Equilibrium Manifold,
3. Flight Manuevers, 4. Limiting Equations, 5. Applications to Flight Manuevers, and 6.
Open Problems.

1. Dynamic Inversion. Many of the dynamical properties of flight manuevers can
be understood by studying a model of the dynamics in terms of an ordinary differential
equation with a control parameter. Typically onc has a control-theoretic problem of the
form

(1) w' = W(w,u)

where u € R" and w € R"*™. We assume that u is restricted to lie in a fixed open

bounded set £} in R". Our objective is to describe a control strategy whereby (1) takes on
8 desired form, say
v’ = D{w),

where D(w) is a desired vector field on R"*™. In order to accomplish this we need to solve
@) W(w,u) = D(w)

for u. If the Jacobian matrix D,W{w,u} is nonsingular and if D(w) assumes values in the
range W(w,R) = {(W(w,u) : u € R}, then one can find a continuous solution u = u(w) of

(2).

*Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesots
55455
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Since the state variable w has higher dimension than the control parameter u, the sbove
strategy can only be successful if some restrictions are imposed on the desired function
D{(w). This means that some of the variables of (1) are controllable while othera are not.
In order to better understand this, let us look at a special, but rather important, case.

Let us write w = (z,y)7 where € R® and y € R™.! Then (1) takes on the form

) { =: = f(3,4,u)
: y' = g(z,y,u).
for some functions f and g. The strategy is to seek to control the z-variable according to
the desired equation
z' = D(z,y).

In order to do this, we need to determine a control strategy u by solving f(z,y,u) = D(z,y)
for u. As before this leads to a continuous solution v = U(z,y) whenever the Jacobian
matrix D, f is nonsingular and D(z,y) € f(z,y,). The y-variables are not controllable
directly by this strategy. Instead y = y(t) must be a solution of the equation

y' = g(z,y,U(z,y)}).
By combining this we see that (3) takes on the form

(4) ' =D(z,y), v =gz, y,U(z,v))

This process of solving for u is referred to as dynamic inversion.

The dynamical properties of uncontrollable variables y are determined by (4). It is
these properties which will decide whether a given control strategy is desirable, and we
expect that the same properties will oftentimes determine the flying qualities of an aircraft
and a collection of flight manuevers. We will illustrate this in a moment, after we define
the Equilibrium Manifold for (1).

2. The Equilibrium Manifold. In order to simplify our treatment a bit, we will
assume a special form of (1) which is given by :

(5) w' = F(v) + G(w)H(w,u),
where the functions F,G and H are smooth functions with

FiR™™  R™+™
G :R**™ = L(R",R"*™)
H:R™™ x R* = R"

More generally one could introduce local coordinates w = (2, )7 and restrict # to lie on some given
manifold M in R**™. The function D is then a desired vector field on A, and y denotes the normal
coordinales to Af.
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aud L{R",R"*"™) denotes the space of linear mappings from R" into R"*™. In other
words, for each w € R"*™ and u € R", F(w) is & (n + m) x 1 column vector, H(w,u) is
a 1 x 1 column vector, and G(w) is a (n +m) x n matrix.?

Let 2 denote the subset of R"*™ wherc the rank of the Jacobian matrix D, G(w) is
n, and assume that { is a nonempty open set R*. This permits one to introduce local
coordinates w = (z,y)7 so that (5) takes on the equivalent form

(6) {=' = fi(2,v) + 0:(z,0) H (=, v, u)
V' = fa(z,¥) + g2(z, ¥)H(z, y, u).

where g, is an n x n matrix, and g; is an 2 xn matrix. We assume that the local coordinates
have been chosen so that g, is invertible.? Here 2 denotes the controllable vuriables and y
the uncontrollable variables. Next we d‘eﬁne a manifold M, for (6) as

Mo = {(z,y) € R™™ : fi(z,y) + 01(z,¥)H(z,y,u) = 0}.

The manifold M, is invariant for (6), and on M, one has

(7) H(z,y,4) = —g7 (2,9} /1(2,¥).
By inserting (7) into (6) we obtain

(8) v = K(z,y)

where

K(xl U) = fQ(:: U) - gz(‘oy)gl-‘(xt y)fl(:i y)

and z = constant. On the invariant manifold M, equation (6) reduces to

=0
©) { v = K(z,¥) = fa(z,¥) - 92(z, )97 (z, ¥) fu(z, p)-

By fixing H o that (7) holds, the controllable variable z is held constant. The function
H may change with time, but this only reflects the adjustment in H caused by the time
variation of the uncontrollable variable y, which is a solution of (8).

The Eguilibrium Set for (6) is definded as the set

E = {(z,y) € My : fr(z,y) + 92z, ¥)H =0},

3We will concentrate our attention on the specisl model equation (8). The general dynamical theory
we describe here is not dependent on the fact that the control in (S) enters as a linear factor H.The only
role that the special form (5) plays in this report is to simplify some of the algebraic considerations which
arise below. : ‘

3This ia possible because of the rank condition on the Jacobian matrix D, G.
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Figure 1. The Equilibrium Manifold near a point zo.

where H is given by (7). Notice that (z,y) € E if and only if (z,y) € Mg and
(10) K(z,y) = fa(z,y) = 92(z,1)97 (2. 0) s (2,v) = 0.

If the Jacobian matrix D, K is nonsingular, then one can solve (10) locally for y = e(z)
where e¢(z) is continuous in z.* It is possible that for a given r, equation (10) may have
_several solutions y = ¢(z), see Figure 1.

The Equilibrium Manifold is a subset of the equilibrium set and is defined by

M = {{z,y) € E: D ,K(z,y) is nonsingular}.

For each (zg,y0) € M there is a neighborhood U of z5 and a C'-function e : U — R™
such that (z,e(z)) € M for z € U and e(zs) = yo. This means that in the vicinity of
every point on the equilibriuzn manifold M, the equilibrium set E agrees with A/, and E is
locally a smooth manifold. The behavior of E near points (z,y) € E where D K(z,y) is
singular, can be very complicated. These singular points, which can be bifurcation points,
will not be analyzed in this report.

Since the equilbrium points for (6) are generally not isolated, it is not possible for them
to be asymptotically stable in the full dynamics (6). However it is possible that equilibrium
points of the y- equation (8) are asymptotically stable. Because of the importance of this
fact, we introduce the following stability concept: We shall say that at point (zo,yo) is
strongly stable if (2o, o) is 8n equilibrium point for (6), and y, is asymptotically stable
for equation (8).

Assume for the moment that for each z € R", equation (8) has an isolated equilibrium
point ¢(z) and that ¢(z) varies continuously in z. Assume further that over some interval of
time J the controller u(?) is chosen so as to maintain a given value for z and that y = ¢(2)
for t € I. (Since z and y are constant on I, it follows from (7) that H is constant as well.)

4An srgument for showing the existencs of a solution e(z) is given below as a part of the proof of the
Stable Manuever Theorem.
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Next we ask, what would happen if a small disturbance is introduced into this system?
Clearly this will be strongly influenced by the stability properties of the equilibrium point
e(z). If the linearization of the vector field at e(z) gives rise to an eigenvalue with positive
reul part, then one can éxpect an abrupt change in the response. Oune would like (9) to
have strong stability properties and to be free of destabilizing bifurcations. We shall look
into this further in Section 5.

For equation (6) it is convenient to separate the problem of controllability into two
parts. Since u enters this problem through the function H only, one can think of H itself
as a controller. For example, the aircraft pilot may select a specific value Hy for H at a
given time ¢, then the onboard computer would solve the equation

(11) H(I,y,t&)’Ho

for u to drive the rudder, thrust, etc. The solvability of the last equation for u depends, of
course, on the Implicit Function Theorem, and usually requires the Jacobian matrix D, H
to be nonsingular. We emphasize that the dynamical properties we are studying here are
independent of whether or not (11) is solvable for u.

So far we have been tacitly assuming that any point in the (z,y)-space is attainable
via a flight manuever. This is by no means the case. Furthermore, the coordinates for the
problem need not be Euclidean coordinates. Angular variables are natural in many cases.
What this means is that one should consider the original problem, either (1) ro (5), to be
given on a prescribed subset A of some manifold M. We shall refer to A as the gttainable
set.8

In applications developed by others on this project, one has n = 4,m = 2, and conse-
quently (8) represents an ordinary differential equation in the plane R?. Tke equilibrium
manifold M in this case has dimenson 4.

3. Flight Manuevers. We define a flight manuever to be the response of an
aircraft to a time-varying controller on some time interval I. For the model equation
(12) { ' = filz.¥) + au(=, W H

V' = fa(z,y) + ga(z, ) H

where H = H(t) = H(z,y,u,t) is now a time-varying input, » flight manuever is a solution
(z(t),y(t)) of (12), for t € I = (a,b). The function H is referred to as the manuever
input. We will assume that the inputs H(t) are piece-wise continuous functions of ¢ on I.
Furthermore, we restrict our attention to inputs H(t) for which the response (z(t),y(t))
remains in the attainable set A.

$Eventhough we shall continue to write our equations in Lerms of Euclidean coordinates, this is really
not essential for our Lheory. 153



There are two manuevers which are of speciul interest for flight control. The first of
these is & basic manuever on an interval I. This manuever occurs when there exists
Za: Ve such that

H(t) = —g7 (20, y()Ni(za (1)) tET,

where y(t) is the solution of (8) with y(a) = y,. In a basic manuever the quantity z, is
referred to as the base state of the aircraft. For a basic manuever the system (12) reduces
to the system (9). These manuevers are quite common for aircraft motion. They occur,
for example, when the aircraft is ascending (or descending) with a fixed angle of attack,
or when the aircraft is tumning with the controls held fixed.

The second manuever, which we call an advanced manuever, occurs whea H(t) is
continuous at t = a,b and one has

H(t) = =gy (z(), y(D A (=(t)w(1))  t=ab,

where (z(t), y(t)) is a solution of (12) on J. Advanced manuevers occur, for example, during
a barrel roll, or when the pilot is changing the thrust vector. Any aircraft trip, from takeoff
to landing, is a sequence of basic manuevers intersperaed with advanced manuevers.

There is a convenient way to distinguish between basic and (non-basic) manuevers.
Assume that the manuever input H satisfies

(13) H(t) = ~g7 ' (z(t) .y fi(z() (1)), te€L

It then follows that the z-equation reduces to z’ = 0, or z(t) = z,, a constant, for t € I.
In other words a manuever is a basic manuever if and only if (13) is satisfied. The extent
to which H(t) deviates from satisfying (13) is a measure of the strength of 2 manuever.
We can quantify this by defining the norm, or strength, of a manuever N(H) by

N(H)= sup {IH(t) + o7 () WOV Ala(8). u() : t € I,

Notice that one has N(H) = 0 if and only if H is the input for a basic manuever. In the
Stable Manuever Theorem, which we give below, we show that if a manuever begins near
a strongly stable equilibrium point on the equilibrium manifold M and if N(H) is amall,
then the aircraft remains near the strongly stable equilibrium points on M throughout the
entire manuever.

An advanced manuever can be viewed as trajectory which changes the base state of an
sircraft from z, to z3. The point to emphasize is that the full equations (12) are needed
to describe the dynamical behavior of an aircraft during an advanced manuever. However
at time t = a, b these equations reduce to (9). Since an advanced manuever ends with (9)
being satisfied at t = b, it follows that the equations (12) are asymptotically autonomous.
We shall present next s brief review of limiting equations and asymptotically autonomous

equations in the next section.
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4. Limiting Equations. We Legin with a nonlinear time-varying differential equa-
tion z' = f(z,t), where f € C(RN x R,R") and C(RN x R,RN) denotes the space of
continuous functions from RY x R to R¥. In order to simplify the discussion we will
sssume that all functions f(z,t) considered iu this section are Lipechitz continuous iu z,

and that every solution of 2’ = f(z,¢) is defined for all t € R.*
For f € C(RN x R,R") we define the translation f, by fr(2,t) = f(z,t + 7). The
mapping :
o(f, )=/,
defines s flow on C(RN x R, RN). I we let ¢(z, f,t) denote the solution of ' = f(z,t)
satisfying ¢(z, f,0) = 2, then

f(’i fir) = (d(=, ], r)'fr)

is a (skew-product) low on RN x C(RN x R,RV).
In the flow o on C(R¥ x R, RV) we define the hull” of f by

H(f)y=Cl{f,:7 €R)

and the positive hull by
H*(f)=Cl {f,:7 20}.

The w-limit set of a function f € C(RN x R, R¥) is given by
Qf) = N HY{f:).

The limiting equations for f € C(RN xR, RV) is defined as the collection of all equations
z' = g(z,t) with g € §2(f). The following theorem gives a useful sufficient condition for the
collection of limiting equations to be nonempty and compact. The proof of this theorem
is given in Sell (1967ab) and is based on the Ascoli-Arzela Theorem.

LiMITING EQUATION THEOREM. Let f € C(RN x R,RN) be such that for every
compact set K C RV there is a constant k > 0 and a function § = §(¢) with the following
two properties:

(1) f(z,t) is Lipschitz continuous in z, uniformly in t, i.e. |f(z,t) - f(y.t)| € k|z - y|

forallz,y€ K,t € R.
(2) f(=,t) is uniformly continuous on K x R, i.e. |f(z,8) - f(y,t)| S eforallz,y €
K,s,t € R with |z — y| < 8(¢) and |t — 5] < §(¢).

¢The assumptions on the Lipschitz continuity of f and the global existence of solutions of 2’ = f(2,1)
can be dropped. See Sell (1967ab,1973), Miller and Sell (1970) and Sacker and Sell (1877) for details.
TThe closure operstion Cl used here is the closure in the topology of uniform convegence on compact

subsets of RN x R.
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Then Q(f) is a nonempty, canpact, connccted subset of C(RY x R,R"). Furthermore
every g € §}(f) satisfies the Lipschitz condition (1) above.

The main advautage of the limiting equations in that one can awe the studad theory
of w-limit sets to describe the behavior of wolutions of the originul differential equation
z' = f(z,1) aa t — oo. In pariticular, let f € C(RN x R,RV) and let ¢(z, f,t) be n
solution of 2' = f(z,t) that stays in a given compact set K C RN for ¢ 2 0. Assume
further that f satisfies the hypotheses of the Limiting Equation Theorem. Then the
motiun x(z, f,) remains in compact set in RN x C(RN x R, RV). Furthermore for every
sequence T, — 0o there is a subsequence, which we denote again by T,, and a point
(v.9) € RY x C(RN x R,R¥) such that

¢z, fira) —y
fra—9
¢(z, fit + 1a) = (v, 9, 1)

where the last limit is uniform on compact subsets of R.

There are two special situations concerning limiting equations, which arise in the theory
of flight manuevers. We say that a function f € C(RN x R, RV) is asymptotically
autonomous if f satisfies the hypotheses of the Limiting Equation Theorem and if the w-
limit set of f consists of one point, say 3(f} = {g}. Since the w-limit set is invariant under
the flow ¢ on C(RN x R, RN), it follows that g, = ¢ for all 7 € R, i.e. g is autonomous
(independent of time). Similarly a function f € C(RN x R,RN) is asymptotically
periodic if f satisfies the hypotheses of the Limiting Equation Theorem and if Q(f)
consists of a single periodic orbit. In this case g € Q(f) is periodic in .

Let 2' = f(z,t) be an asymptotically autonomous differential equation with limiting
equation z' = g(z). Let x4 be an asymptotically stable equilibrium point for 2’ = g(x).
Then one can show that there is a neighborhood U of x4 such that for all z; € U the
solution ¢(z,, f,t) of ' = f(z,t) satisfies ¢(z,, f,t) — 2, a8 t — 0o, see Markus (1956).
In other words, the solutions of z' = f(z,t) beginning in U are stable, as a matter of
fact, they are asymptotically stable. The stablility properties of asymptotically periodic
equations are similar, see LaSalle (1962) and Sell (1966).

In this report we shall restrict our study to flight manuevers which are asymptotically
autonomous. Eventhough it may appear that all flight manuevers are asymptotically
autonomous, this need not be the case. For example, if one wishes to study the effects of
small random disturbances (i.e. noise) on the aircraft, then one may need the full theory
of limiting equations. The references cited below offer a good introduction to this theory.

For applications to the study of the dynamical properties of flight manuevers, one
should note that the limiting behavior of a function f may be assumed in finite time, In
particular if f € C(R"N x R, RV) has the property that there is an autonomous function
g € C(RY x R,RV) and a time T such that f(z,t) = g(z) for all t > T, then f is
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asymptotically autonomous and 2(f) = {g}. Similasly if f € C(RM x R, R"™) has the
property that there is a time-periodic function ¢ € C(R™ x R, RV ) and a time T such that
f(z,t) = g(z,t) for all t > T, then f in naymptotically periodic and

Qf)={y9-:0<r < P)

where P is a time-period of g, see Sell (1967ab).

5. Applications to Flight Manuevers. During an advanced manuever on an in-
terval I = (a,b) the equations of motion are given by

(12) {='=f1(=.v)+9:(=,y)H
v' = fi(z,y) + g2(z,p) H.

The motion begins at (z,,y,) at time ¢ = a and ends at (z4,y;) at time ¢t = b. Equation
(12) is an asymptotically autonomous system with the limiting equation given by

z'=0
®) { v = K(z4,v) = fa(zay) = g2(z0. )97 (20, ¥) f1(za, y).

As a matter of fact (12) reduces to (9) for t > b. Clearly the location of y;, the value of y
at time t = b, can play a significant role on the dynamics of the manuever. Let us look at
a few examples. )

Example 1: Assume that y, lies in the basin of attraction of an asymptotically stable
equilibrium point e(z;) of y' = K(z4,y). In this case, y(2) is attracted towards e(z,) for
t > b If yy is close enough to £(z,), then the transient behavior will be short-lived, and for
all practical purposes, one would have y(t) ~ e(z;) after some short time interval. (This
situation is quite common and very likely is the outcome of most flight manuevers.) On
the other hand, if y, is far away from e(x;), then the transient behavior will persist for a
long time, and the aircraft could be under the influence of the transient part of y(t) when
the next advanced manuever commences. For example, if y; is close to the boundary of the
basin of attraction, then one would expect that the dynamical behavior of the boundary
set will have greater influence on the aircraft than that of the equilibrium point e(z,;).

Example 2: Assume that y, does not lie in the basin of attraction of any asymptotically
stable equilibriumn point. For instance, y) may lie on a periodic orbit, or in an unstable or
chaotic portion of the y-space. This could have very serious consequences for the aircraft.
One would not want to implement such a manuever without detailed knowledge of the
underlying dynamical properties of (9).

Because of the considerations raised in the last two paragraphs, one of the goals in
the study of the dynamics of flight maneuevers is to understand the dynamical properties
of y' = K(z4,y) in every fiber A(z,), where A(z) is defined to be those y for which

157



(z,y) € A. The set A(z) is simply the fiber of the attainable set A over the point z.
Because of our assumption that every input H(t) yield an attainable response, one must
have y(t) € A(z(1)), for all t € I. One would like to show that A(z3) has ndditional
dynamical properties. For example, onc may want to show that if an advanced manuever
ends in & position (z4,3s), then the trajectory y(t) of y’ = K(24,y) with y(b) = y, remains
in A(z)) forall 22> 3.

While the overall dynamical properties of flight manuevers can be very complicated,
there is one practical situation which is amenable to analysis. In this case we consider
an advanced manuever which begins at a point (z,,y,) which is close to the equilibrium
manifold M. This means that y, is close to some equilibrium state e(z,) of ¢’ = K(z4,¥).
We assume that ¢(z,) is asymptotically stable and that the manuever input H(t) is close
to the nominal value —g; ' (z(t), ¥(t)) f1(z(t),¥(t)), i.e. the norm N(H) is small. We will
show that the terminal value (x,,ys) is close to the equilibrium manifold M and that y, is
close to an asymptotically stable equilibrium point e{z;) of y' = K(z4,y). More precisely
we will prove the following

STABLE MANUEVER THEOREM. Let (2,,¢(z,)) be a strongly stable equilibrium point
on the equilibrium manifold M, i.e. e(z,) is an asymptotically stable equilibrium point for
v' = K(z,,y). Then there exists positive constants x,c;,¢3,¢c3 and ¢q such that for any
¢,0 < ¢ < ¢, the following holds: Let H(t) be the input for any manuever on any interval
I = (a,b) where the following canditions are satisfied:

(1) The manuever begins at (z,,y.) where ly, — ¢(z.)| £ cje.

(2) One has |z{t) = z,| S zefora <t £ b

(3) One has [H(t) + g7 (2(t), () f1(z(t), y(t) S N(H) Scae fora < t < b,

Then for each v € I there exists a strongly stable equilibrium point (z(7),e(z(7))) of (12)
such that |y(r) ~ e(z(r))| S e forallr € I.

Before proving this result one should note that we do not assume anything concerning
the length of the time interval I = (a,b). The interval length can be large. The constants
K,c3,¢2,c3 and ¢g are independent of the interval I. As a result, this theorem does apply
to any sequences of basic and advanced manuevers which satisfy (2) and (3).

Proof of Stable Manuever Theorem. There is no loss in generality in assuming that
(z4,¢(z,)) = (0,0). (Indeed if this were not the case, then the change of variables

T—xT4+2,
y—y+e(z,)

would result in a new system of differential equations with the desired property.) Asa
result one has K(0,0) = 0 and the matrix A = D ,K(0,0) is stable. The latter means that
there exist X} > 0 and A > 0 such that

(14) leA| € Kie™™, t>0
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Next define
At) = H(t) + g7 (z(t), y(tN 1(z(t). w(2)), tel

Then (12) reduces to

{ 2'(t) = g (z(t), y(1))A(1),
v'(t) = K(z(t), y(t)) + ga(z(t), ¥(t))A(2).

Furthermore, for ¢ € I one has |A(t)| < N(H), the norm of the manuever.

Our first step is to show that there exists a continuous solution y = e(z(t)) of the

equation
K(z(t),y) =0, tel

This is, in fact, a consequence of the Implicit Function Theorem. Since we also need an
estimate of the size of e(z(t)) we will present the details here. Define B(z,y) by

B(z,y) =y - A7 K(z,y).
Then D,B(0,0) = 0. Next fix ap > 0 and b > 0 so that

(15) DBz S 3. el S a0l < bo.

Let My, M;, M3, M be constants so that

|B(z,0) — B(0,0)| < M,|z|,
|Dy K~} (z,y)D: K(z,y)| € Mj,
l9:(z,y)| £ M;,

lga(z, ¥)l < My,

for |z] € ao, ly| < bo. By making ag smaller, if necessary, we can assume that 2M;a4 < b,.
Because of (15) the mapping y —+ B(z,y) is a strict contraction, and consequently the
equation y = B(z,y) bas a fixed point y = ¢(z) for |z| < €o. Furthermore y = &(z) is
also a solution of K(z,y) = 0, and e(z) is a C'-function of z which satisfies the following
estimates: With y = ¢(z) = B(z,y) and 0 = B(0,0) one has

(16)

le(z)| = |B(z,y) — B(0,0) + B(z,0) — B(=z,0)]
< IB(zly) - B(:r., O)I + lB(I.O) - B(ol o)l

1
< 3le(e)l + Ml
Hence |e(z)| < 2M,|z] € 2M; a4 < by. Consequently for z = z(t) one has

le(=())] £ 2M,|z(t)| < 2Micae
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provided € < ¢ < -:—f- Furthermore one has
d '
Zre(z(t)) = Daela(t)2'(1
= Dee(z(t))gi((2), v(t))A(2).
If one differentiates e(z) = e(z) — A~ K (z, e(z)) with respect to z, one obtains
- D K(z,e(2))De(z) = —D K(z,¢(z))
and consequently from (16)
[Dee(z)] € |DyK =" (z,¢(2)) D, K(z,e(z))| £ Ma.

Next we define z(t) = y(t) — e(z(t)), and for the remainder of the proof we let z =
2(t),z = z(t),y = y(t) and e = e(z(t)). Then

- (17) ' = Az - L(z,3),
where L is given‘by

L(:,Z) = K(zly) - Az + 92(:1 y)A -¢
= K(z,y) — Az + ga(z,y)A — D.e(z(t))g1(z, y)A.

Now fix n so that

» -} 1
where K, and A are given by (14). Next choose a;,5;,0 < a; € 20,0 < b, < 5 so that
(19) ID,K(z,y) —D,K(0,0JI <7

for |z| € a;,ly| < b;. Since K(z,e(z)) = K(0,0) = 0 we obtain the following from the
Taylor expansion:

K(z,y)~ Az = K(z,y) ~ K(z,¢(z)) - Az
1
= K(0,0) + (/o D,K(z,e+ Gz)dﬂ) z— Az
= (/l[D,K(:,e +6z) - D,K(0.0)]da) 2.
0
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Assume that eg satisfies

. ag b;
< —— ).
o S min (c,'dM.)

If |z| € o we have || < 2M ¢, and therefore if |z| < % we have |e + 82| € b,. From (19)
we get

(20) IK(z,y) ~ Az] < n)z|

for |z| € €, |y| < b;. From (16) we obtain

(21) lg2(z, )| £ MyN(H) £ Myese

[D:e(z)g1(z,¥)A| £ MaMN(H) < MaMcse.

Now (20) and (21) imply that

(22) |L(z,2)] < nlz| + Mse

for [z2] € ¢ £ €,|2]| £ -’.;.l-, where My = Mjscs + M3 M c;. By the Variation of Constants
Formula, the solution of {17) is given by

2(1) = e, + /'c‘“""')L(:c(.s), z(s))ds.

This means that z(t) is a fixed point of the operator

F(z)(t) = A%z, ¢ /'c"{""L(:(s),z(a))ds.

Assume that |z{s)| < -’5*- for s € I. Then by using (14) and (22) we have

[F(2)(t)] € Kye~ =)z, [ + / ' e M=) Mye + nlz(s)|)ds

¢
< Kye M 2 | + Ky MsA™e(1 = e~ "N 4 K1n / e~ 2=} 2(s)|ds.

Since |z, = |ya = €(24)] € €1€ < c160 We get

) t
IP(e)(t)] € Mae + Kun j €=21=)|2(s)|ds
< Mge + Kyn2 V2|

where My = Kycy + KyMsA™! and |jz] = sup {|2(s)] : s € I}. Since |\z]| < % it follows
from (18) that |F(z)(t)] € Meeo + &. In order to assure that [F(z)(t)| < & we require ¢

to satisfy .
. a0 & b b
< — .
€ S mn (63'4M1'4M¢‘2C])
Since z(t) = F(z)(t) it follows from (18) and (23} that |2(t)] £ 2Mee whenever ¢ < ¢,
which completes the proof.

(23)
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8. Open Problems. There are a number of unresolved mathematical questions which
deserve study in the future. These are the following:

(1) Describe the dynamical properties of flight manuevers in the vicinity of bifurcation
points on the equilibrium set E.

(2) Analyze the effect of small random disturbances on the dynamics of flight manuev-
ers.

(3) Determine what effect control saturation has on the dynamics of ait:cra.ft motion.

(4) Describe the dynamical behavior of specific flight manuevers with inputs H with
large norm N(H).
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