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Abstract

Fluid inertia effects in squeeze film dampers are investigated. An approximate
energy method, based on the assumption that the velocity profiles of the classical
lubrication theory do not change much due to fluid inertia, is used. The kinetic coenergy of
the fluid is calculated and the inertia forces are obtained by Lagrange's equations in
conjunction with Reynolds transport theorem. The governing equations are then solved for
a small circular centered whirl. It is shown that for this case the fluid inertia forces are
equal to the viscous forces in the damper at squeeze Reynolds number equal to 10, and are
larger thereafter. It is also shown that the added mass due to fluid inertia can be as high as
60 times the mass of the journal and thus cannot be neglected in the dynamic analysis of
rotors incorporating squeeze film dampers. Also, it is shown that the classical lubrication
theory is in error with respect to the pressure field and inertia forces, but predicts the
velocity field reasonably accurately, for Reynolds number within the range of usual
application of squeeze film dampers.

GAA-1

Confirmed public via DTIC Online 01/29/2015



From ADA309666 Downloaded from Digitized 01/29/2015

Introduction

Squeeze film dampers (SFDs) are damping devices used in gas turbine engines to
damp the whirling vibration of rotors. Their ability to attenuate the amplitude of engine
vibrations and to decrease the magnitude of the force transmitted to the engine frame makes
them an attractive rotor support. Also, the energy removed in the dampers enhances the
stability of the rotor-bearing system.

SFDs are usually designed based on Reynolds equation of the classical lubrication
theory, which neglects the effects of fluid inertia. Recently, in their experiments on SFDs
Tecza, et. al. 9 showed that fluid inertia may be a significant factor in determining the
dynamic characteristics of SFDs. They encountered a critical speed in their experimental
rig which they did not expect from their rotordynamic analysis. They attributed this critical
to fluid inertia. This has prompted several investigations of the effects of fluid inertia in
SFDs. Tichyl0 provided an explanation for the importance of fluid inertia in SFDs versus

journal bearings. San Andrés and VanceS obtained the steady state response of a rotor
incorporating SFDs, including fluid inertia effects by using an averaged momentum
approximation.5

Perhaps one of the first attempts to study the effects of fluid inertia in
hydrodynamic bearings, is the work of Smith.” Using a unique form of ‘Reynolds
equation, he was able to obtain inertia force coefficients for journal bearings, and his
conclusion was that the effect of fluid inertia in oil film bearings is to introduce an added
mass to the rotor and this may affect the dynamics of the rotor especially for short stiff

rotors on wide bearings. Approximately a decade later Reinhardt and Lund4 used a
perturbation solution for small Reynolds number to obtain the force coefficients of journal
bearings. They showed that fluid inertia introduces rather small corrections to the damping
and stiffness coefficients of journal bearings and they also provided plots of inertia
coefficients versus the eccentricity. They had to solve a set of differential equations
numerically to arrive at these plots. Another notable paper, is the work of Szeri et. al. 8
They used a technique based on averaging the inertia forces across the film, to obtain the
force coefficients in a squeeze film damper. They also had to solve the resulting differential

equations numerically. A recent paper by Ramli et. al.3 compares the results of Smith,
Reinhardt and Lund, and Szeri er. al.; and concludes that they are in good agreement,
especially for short bearings. It is pointed out, however, that Smith's approach has the
advantage of computational simplicity, and leads to fairly simple asymptotic analytical
expressions for very short, and very long bearings. :

Here, we will show that for a SFD whose journal executes a small circular-centered
whirl, the fluid inertia forces are equal to the viscous forces in the damper at squeeze
Reynolds number equal to 10, and are larger thereafter. We will also show that for
Reynolds number in the range of usual application of SFDs, the velocity profiles do not
change much due to fluid inertia. That is, the classical lubrication theory is in error with
respect to the pressure field and inertia forces, but predicts the velocity field reasonably
accurately.

A recently developed model of fluid inertia in SFDs!, is based on the assumption
that the velocity field predicted by the classical lubrication theory is not changed much by
fluid inertia. This permits the kinetic coenergy of the fluid to be calculated, and the inertia
forces to be obtained by Lagrange's equations as applied to an open system. This energy
approximation has the advantage of the applicability to cavitated dampers, since it is
essentially a control volume approach, and consequently can handle the free surfaces that
arise due to cavitation. This model is used in this paper to predict the fluid inertia forces in
SFDs whose journal execute a large amplitude orbit. The damping forces in the SFDs are
obtained by Reynolds equation.
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Squeeze Film Dampers

Figure 1 shows the construction of squeeze film dampers. In a typical application,
the damper consists of an oil film in an annulus surrounding a rolling element bearing
whose outer race is constrained from rotating, usually by a squirrel cage. Thus the
spinning of the rotor does not reach the oil, and only when the rotor whirls does the oil film
act to damp the motion. The squirrel cage serves to center the journal in the sleeve as well
as to keep the outer race of the rolling element bearing from spinning.

S?ueezc Film Squirrel Cage
B Eﬂ (+]
Bearing g a4t T

R\\&?{WC—J

Z

Figure 1 Construction of squeeze film dampers

Figure 2 shows a SFD, and the coordinate systems used. The film thickness h at
any given location is given by

h=c-ecos® 1)
where ¢ is the clearance, e is the eccentricity of the journal and 6 is measured from the
positive r-axis of the whirling coordinate system (r, t, z). The z-axis is perpendicular to the
plane of the paper. Also shown in Figure 2, the stationary coordinate system (X, y, z) and
the angle @ which is measured from the positive x-axis, and 0 = ¢ — y. For a steady

circular whirl y = ®t, where @ is the whirling frequency of the journal and t is time. The
flow in the damper is described with respect to the stationary coordinate system XY, 7Z)
shown in Figure 2.
. In SEDs the ratio of the clearance c to the radius R is of the order of 103, such that
the effects of curvature can be neglected, and we can use the stationary cartezian X Y,2)
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Figure 2 Coordinate frames

coordinate system shown in Figure 2, (with the Z-axis perpendicular to the plane of the
paper), to describe the flow. To an observer in this coordinate system, because ¢/R is
small, it appears as if the damper is unwrapped, as shown in Figure 3. The upper surface
in Figure 3 represents the journal, while the lower surface represents the bearing. The
motion of the journal, i.e. the upper surface in Figure 3, results in the motion of the fluid in
the clearance between the two surfaces. Due to the motion of the journal, the upper surface
in Figure 3 travels in a wave-like fashion, and also changes its shape if the journal is
moving radially. It should be noted that since the flow in the damper is cyclic, i.e. the

conditions at ¢ = 0 are the same as those at ¢ = 2, then the model of Figure 3 is repeated
every 2t R in the X-direction.

Figure 3 Unwrapped squeeze film damper

The damping forces in SFDs are obtained by the solution of Reynolds equation for

fluid lubrication. There are two mathematical approximations to Reynolds equation, that
have physical significance, namely the short bearing approximation and the long bearing
approximation. In the short bearing approximation to Reynolds equation, which is justified
itp the damper is short in the axial direction, the flow in the damper is axial rather than
circumferential, and thus the axial pressure gradient is much larger than the circumferential
pressure gradient. On the other hand, in the long bearing approximation to Reynolds
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equation, which is justified if the damper is long in the axial direction, the flow in the
damper is circumferential, and thus the circumferential pressure gradient is much larger
than the axial pressure ient. In practice, if the damper is tightly sealed, then the flow is
circumferential even if the dampers are physically short. In this case, the long bearing
approximation would describe the conditions in the damper better than the short bearing
approximation.

Integrating the pressure obtained by the solution of Reynolds equation, we obtain
the damping forces in SFDs, which take the form

Fre=—Cr€-CueV | ?)
Fm=—Cué—Cne\il (3)
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Figure 4 Damping coefficients (nondimensional) vs €
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where Frc and Fic are the radial and tangential damping forces, respectively, and € and e
are the radial and tangential velocities, respectively. The damping coefficients Cyy, Cyt, Cir
and Cp are in general nonlinear functions of the position and velocity of the journal in the
damper. Figure 4 shows a plot of the damping coefficients Cyr, Cyt, Cir and Cpg versus the

eccentricity ratio €, which is defined as the ratio e/c, for a cavitated damper using the n-film
theory and nearly circular-centered whirl. It can be seen from Figure 4 that the damping
coefficients for the short and long bearing approximations are nonlinear functions of the
position of the journal in the damper. In fact, the damping coefficients increase as the
eccentricity increases, and this, in one sense, is a desirable characteristic, since the damper
provides more damping as the amplitude of the whirl increases which is obviously
beneficial. Perhaps, this is why squeeze film dampers are such effective damping devices.
On the other hand, it is precisely this nonlinear characteristic that results in the nonlinear
behavior of the rotor-bearing system (jump resonance, subharmonic motion, ... etc.).
Note that, in Figure 4, the damping coefficients Crt and Cyr are equal for the short bearing.

Fluid Inertia Forces in SFDs

To calculate the fluid inertia forces in the damper for a general orbit, it would be
nearly impossible to solve the governing equations analytically, except in very special
cases. Thus we have to resort to an approximate method to estimate the fluid inertia forces
in the damper. We are going to use the energy method developed by El-Shafeil, which
relies on the assumption that the velocity profiles in the damper can be approximated by the
solution of the classical lubrication theory, which will be shown to be a valid assumption in
the next section. This permits the kinetic coenergy of the fluid to be calculated, and the
inertia forces to be obtained by Lagrange's equations as applied to an open system.

For a short damper, the axial velocity profile predicted by the classical lubrication
theory is given by

W=T F-—-l-l-z-J(e\'ysine+écos6) @

while for a long damper the circumferential velocity profile predicted by the classical
lubrication theory is given by

u=SR X—Y—z sin@é—cosBey+ e\if] )
h {(h 42 (2+€%)
and thus the kinetic coenergy of the fluid in the damper, which is defined by
L
1 92 ez 2,.2, 2
T* == L P @ +v'+w)RdOdY dZ ©6)

where p is the density of the fluid, R is the radius of the damper and L is its length. Thus
the kinetic coenergy of the fluid in the damper can be calculated as

T* = 2 0y 624 5 mg (V) + my S e M
where my, my and my; represent the inertia coefficients of the damper. For a cavitated

damper we are also going to assume the n-film theory2, while for an uncavitated damper

we will have a full film, i.e. a 2x-film.

The inertia forces in the damper can be obtained by Lagrange's equations, but since
the damper is an open system (because of the fluid being squeezed out axially), Reynolds
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transport theorem! must be used in conjunction with Lagrange's equations. Thus the radial
and tangential inertia forces become

Fi,r = Fri + Rﬂ 3
and F; =F;+Ry &)

where F; is the radial inertia force and F;; is the tangential inertia force, Ryj and Ry are
the inertia forces due to the flux of the fluid particles across the control surface, in the r-
and t- lc)lirections, respectively, and Fy; and Fy; are obtained by Lagrange's equations and are
given by

d ( JT* JT*
Fﬁ=—a(——ae_ )+¥ (10)
% L 3
w re-S(T) T an

The flux terms Ry and Ry are given by

* .
R,i=—'[ * yen dS+£ o 2V°1) 45
s de 5 de

] [
Rg=-~ [ L ven d3+l_[t*a(vn)ds
c csa\i’ c (> ] i

where t* is the kinetic coenergy per unit volume, V is the velocity of the fluid with respect
to the control surface S, n is the outward normal vector on the control surface. On

calculating the above equations, for a 2x-film, with the journal executing a circular
centered whirl, we get for the radial and tangential forces (including the damping forccszlz)

F=meVy’ ~CeeV

F,=—m ey’ -Cye (13)
where for a short damper the coefficients are given by
m, = ERL _2_1_5[ by (21-17¢€) ]
0c g2 (1_62 )1/2
RL> «
Cu= .

S (1-¢2)P
while for a long damper the coefficients are given by
m =12 pR3L{ 4n 6_(10-:-:2)(1—32)"2”
10 ¢ | (2+€) (2+€%)
uRL 2%4x
G (2+€2)(1-%)P
where W is the viscosity of the fluid. For a 2n-film, the coefficients m; and C are zero for
both the long and short dampers. The above inertia coefficients are plotted in Figure 5 for a

2n-film, for the short damper and for the long damper.

Cy=
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This model of fluid inertia was used by El-Shafeil:2 to determine the unbalance
response of Jeffcott rotors incorporating squeeze film dampers. Cavitated dampers were

considered and the %-film theory was used. The results presented in the above mentioned
references indicate that, in general, the effects of fluid inertia on the dynamics of the rotor
are beneficial. Fluid inertia resulted in the decrease of the possibility of the jump resonance
for the short damper, and resulted in better attenuation of the amplitude response at the
critical speed. However, fluid inertia introduced an additional critical speed for the Jeffcott
rotor, and this resulted in the decrease of the range of good vibration isolation for the
dampers. Also, it was found that in general the long dampers are better at attenuating the
amplitude response of the engine, while the short dampers are better at attenuating the
magnitude of the force transmitted to the engine frame. .

Radial Inertia Coefficient - Short Bearing
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Figure 5 Inertia coefficients (nondimensional) vs &
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Small Circular Centered Whirl

For a small circular centered whirl, that is with ¢ << ¢, the convective acceleration
terms in the Navier-Stokes equations can be neglected, and the governing equations for the
flow in the damper become

du_ 10p  dh

H&'——FK+VF (14)
%%=0 (15)
aw _ 13p 3w
E AR | (16)
and Ou  ov oIw amn

X + g + 7 0
where Vv is the kinematic viscosity of the fluid, u is the velocity of the fluid in the X-
direction, v is the velocity of the fluid in the Y-direction, w is the velocity of the fluid in the
Z-direction, and p is the pressure. Furthermore, the boundary conditions on the upper
surface of Figure 3, can be satisfied on the average. Thus the boundary conditions that
equations (14-17) have to satisfy are

At y=0 u=0 v=0 w=0
(18)
At y=c u=U v=V w=0

where, for a circular whirl U and V are given by
U=Real {e wei®)
V=Real {iewe®}
where i = (-1)1/2 and o = V is the frequency of the whirl. In this case 6 = ¢ — @t which

suggests that the upper surface of Figure 3, travels like a wave, and thus we should seck a
solution in the form

u="Ugei® v=Vp e?e w=Wpel® p=Pge® (19)

where Up, Vo and Wy are functions of Y and Z, while Py is a function of Z only.
Substituting (19) into (14), we get
2 .
d U . .
LI p@ U, = i

dy? K KR
which can be solved for Ug using the boundary conditions (18), thus, neglecting terms of
O(c/R), we get

U Py [sinh(s(Y—c))—sinh(sY)+ sinh(sc)] (20)
0" pwR sinh (sc)

Py

where

1 Re .
s=-é- 7(1—1)

and Re = p o c2/u is the squeeze Reynolds number. Substituting (19) into (16), we get
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EWo ipoy 1d%
a? B VR dZ
which can be solved for Wy using the boundary conditions (18), thus

W e i dPo[sinh(s(Y—c))—sinh(sY)+sinh(sc)] 1)
""" Pw dZ sinh (sc)

Substituting (19), (20) and (21) into the continuity equation, equation (17), we get
No_ i (&R 1, [sinh(s(Y—c))-sinh(sY)+sinh(sc) ]
A  pw iz Rr? 0 sinh (sc)

The above equation can be integrated over Y and using the boundary condition Vo =0 at

Y=0, we get

_ i dZPo lP [cosh(s(Y—c))—cosh(sY)+sYsinh(sc)+l—cosh(sc)
Vo=so| 3P ssinh (sc) ]

The other boundary condition that V has to satisfy, namely, at Y=c the velocity V=i e o,
gives us
Py 1 _pe(oz[ scsinh (sc) ]
az2 RrR* Y ¢ 2 -2 cosh ( sc ) + sc sinh ('sc)
which is a differential equation that the pressure Pg has to satisfy together with the
boundary conditions

Po=0 at Z=%1/2
and on solving (22) we get

22)

2
pem2R2[ scsinh(sc) ] COSh(T)_l
c 3~ 2 cosh (50 ) + 5c sinh (50) (L) (23)
cosh )
where D = 2R is the diameter of the damper. Equation (23) is a finite length solution for
the pressure Py in a squeeze film damper whose journal executes a small circular-centered
whirl, which is valid for all Re (in the laminar regime).
If we substitute the pressure from equation (23) into equations (20) and (21) we

will get the velocity profiles in the damper. If we take the limit as L/D — 0, i.e. the short

damper case, the axial velocity profiles, for Z=1/4, R=1.25in.,,c =8 milsand 6 =1
rad, are shown in Figure 6 for various Re. Plotted on the same figure is the velocity profile
obtained by the classical lubrication theory for a short damper. SFDs usually operate at
Reynolds number of the order of 20, and it can be seen from Figure 6 that the velocity
profiles of short SFDs do not change much due to fluid inertia, in the range of usual
application of SFDs.

If we take the limit of the velocity profiles as L/D — oo, i.e. the long damper case,
the circumferential velocity profiles, for the same data as Figure 6, are shown in Figure 7
for various Re. Also plotted on the Figure 7 is the velocity profile obtained by the classical
lubrication theory for a long damper. Although the velocity profiles of the long dampers
are more sensitive to Re than those of the short damper, yet it may be concluded that also
for the long dampers, in the range of usual application of SFDs, the velocity profiles do not
change much due to fluid inertia.

Po=
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- The pressure in the damper is given by 57
cosh ( - )

252 .
_ pew'R scsinh(sc) ] D/ _ i0
p=Real [ c 2 —2 cosh (sc )+ sc sinh (sc ) (L) 1le
cosh )

(24)
The pressure in equation (24) depends on Re only through the terms inside the first square
bracket, namely

f(R)_[ pew’R’ scsinh (sc) ] 25)
)= c 2 -2 cosh (sc )+ sc sinh (sc)
If we take the limit as Re — 0 of equation (25) we get
, 2
lin f(Re)= ——N RO "°‘°(°+R°) (26)
Re—0

1 —
3 10

Figure 8 shows a plot of the real and imaginary parts of f(Re) versus Re as predicted from
equation (25). Also plotted on Figure 8 are the real and imaginary parts of the limit of f(Re)

Pressure Dependence on Re
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Figure 8 Nondimensional pressure vs. Re

as Re — 0, equation (26), from which it is clear that equation (26) is a good approximation
of equation (25) for Re up to about 50. If we make an analogy with a mass dashpot
system, it can be shown that the imaginary parts of equations (25) and (26) represent the
contribution of the viscous force, while the real parts of equations (25) and (26) represent
the contribution of the inertia force. In fact, the imaginary part of the approximation of
equation (26) is equal to the contribution of the viscous force as predicted by the classical
lubrication theory, and the real part of the approximation of equation (26) is equal to the
contribution of the inertia force as predicted by the energy method described in the previous
section.!] Thus, it may be concluded that the energy method predicts the inertia effects
reasonably accurately, in the range of application of SFDs, and this is true even for long
dampers whose velocity profiles are more sensitive to Re. It is clear from Figure 8 that the
inertia force is equal to the viscous force for Re=10, and is larger thereafter. In fact, the
inertia force is about 4 times as large as the viscous force at Re = 40, and we can say that,
at such high Re, the damper is totally dominated by the inertia forces.
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The forces acting on the journal can be obtained by integrating equation (24), thus
L
. 5 62
F,=- L.[ pcos® RdOdZ

M N}

L
3-2- 62

F,=- LJe psin® RdOdZ
-5 8

Now using the limit of f(Re), equation (26), in equation (24), the forces acting on the
journal become

L
3 tanh(—) 8, 0,
F = 12&-R3—Lem I—TD [—I sinecos9d9+% cos26d0:|
c - 9 9,
D
@27
L
Ft=12uRLcm 1—-—D —I sin29d0+£ sin © cos 6 dO
03 L 9, 10 9
D
(28)
where the quantity
L
anh (5 )
K=y1l-—"1—
D

has been termed a leakage factor by Warner!! which accounts for the finiteness of the
damper. Equations (27) and (28) represent a finite length solution to the governing
equations. To be able to compare the results of the kinetic coenergy method with the above
equations, we have to consider the limiting cases of long and short dampers. For a long

2
damper L/D — oo thus K, — 1, and for a short damper L/D — 0 thus K, — % ( % )
For a long damper with 2n-film equations (27) and (28) become

3

k= 1 PRL 2

F,= 12 Toc *eQ@ (29)
3

Ft=—12uR3L1tco)

c
The radial force is the centrifugal force and the tangential force is the damping force. These
forces are the forces acting on the journal when it executes a small circular-centered orbit in

a 2n-film. These are the same forces as those predicted by equation (12) for F; and (13)

for F,, if we take the limit as € tends to zero of the inertia and damping coefficients, which
is the condition of a small orbit.

Similarly, for a short damper with 2x-film equations (27) and (28) become

3
_PpRL 2
F=bpneo (30)
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RL3

Re®w
c3

The radial force is the centrifugal force and the tangential force is the damping force. These
forces are the forces acting on the journal when it executes a small circular-centered orbit in

a 2n-film. These are the same forces as those predicted by equation (12) for F; and (13)

for Fy, if we take the limit as € tends to zero of the inertia and damping coefficients, which
is the condition of a small orbit. Thus it may be concluded that the forces acting on the
journal when it executes a small circular-centered orbit in a squeeze film damper, obtained

by taking the limit as Re — 0 of the solution of the governing partial differential equations,
are the same as those predicted by the kinetic coenergy method.

Equation (29), for a long damper, indicates that the radial force is proportional to
the centrifugal acceleration, thus the proportionality constant represents the added mass to
the journal myy
npRL

10c
and the mass of the journal is m;

2

where we assumed that the journal is made of steel and py, is the density of steel. Then the
ratio of the added mass to the mass of the journal is

T _12 p R
m 10p, c
For typical SFDs, the ratio R/c is 1000 and the density of oil is approximately 800 kg/m3,
and the density of steel is approximately 7800 kg/m3, then the added mass to the journal
due to the oil film is approximately 60 times the mass of the journal. This is because of the
huge velocities and accelerations that the fluid undergoes in a SFD.
Similarly, for a short damper, from equation (30), the added mass to the journal is

_upRL3

10c
and the ratio of the added mass to the mass of the journal is

My __I__LLZR

My = 12

If we assume R=L, and the typical values for the other parameters we used with the long
dampers, then we find that the added mass to the journal due to the oil film is
approximately 10 times the mass of the journal. The short dampers have a smaller added
mass than the long dampers because the flow in the long dampers is the same at each
section in the axial direction and thus every section is resisting the squeezing by the journal
in the same manner, while for the short dampers the flow at each section in the axial
direction varies linearly with the axial coordinate Z, and in fact is equal to zero at the middle
of the damper. Thus the short dampers exhibit less resistance to the squeezing motion, and
thus exhibit a smaller added mass.

Conclusion
Fluid inertia can be very important in squeeze film dampers. The added mass to the

journal was shown to be as high as 60 times the mass of the journal, for small circular
centered whirl, which cannot be neglected in the dynamic analysis of rotors incorporating
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squeeze film dampers. Also, for the case of small circular centered whirl, it was shown
that the fluid inertia forces are equal to the viscous forces in the damper at squeeze
Reynolds number equal to 10, and are larger thereafter.

Also it was shown that, for Reynolds number within the range of usual application
of squeeze film dampers, the classical lubrication thw?l' predicts the velocity profiles fairly
accurately, which permits the kinetic coenergy of the fluid in the damper to be calculated.
Finally it was shown that the fluid inertia forces predicted by the kinetic coenergy method
are g:gl t(t)n .tlllose obtained by the solution of the governing equations for a small circular
cen whirl.
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