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ABSTRACT

Models are proposed for the decislon and control processes
Involved 1n the adaptation by the human controller to sudden
changes in the dynamies that he 1s controlling. The decision
processes postulated are detection of a change of dynamics,
identificatlion of the new dynamics and selection of the appro-
priate new control strategy. The control processes postulated
are steady-state tracking, modification, transient tracking,
vernler adjustment and then steady-state tracking with the

new dynamics.

A Bayesian model 1s proposed for the detection and identifica-
tion processes and 1s tested in experiments wilth controlled
dynamics of the form K/s and K/s2. Good agreement was achieved
between the behavior of the model and the observed behavior of
the human controller. The models for steady-state and transl-
ent tracking are based upon a simple describing function repre-
sentation for the human controller. Modification is postulated
to be simply a switching of control strategles. Data from
experiments with a variety of controlled dynamics are used to
substantiate these models.
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CHAPTER I

INTRODUCTION

The ability of the human controller to adapt hls character-
istlcs to changes in the characteristics of the vehlcle or
process he 1s controlling is an important factor determin-
ing the safety and performance of piloted vehlicles and other
manually-controlled systems. In alrcraft and space vehicle
systems, the human pllot often has to change his control
characteristics to compensate for the changes that cccur in
the vehlcle's characteristics as the speed and altitude
change. The pllot must also maintain control, or take over
centrol from an automatle system, if a malfuncticon in the
flight control system or i1f a change 1n the aerodynamic con-
figuration occurs. Clearly, a quantitative description and
a mathematical model of the process by which human control-
lers adapt to changes in vehicle dynamics would be useful for
the design of plloted vehicles and for the analysis of theilr
performance, rellability and safety.

The extensive lliterature on time-invariant manual control
systems provides considerable Information and a number of
useful models for the human controller for a wide varilety
of time-invariant systems.* These results indlcate the

¥

Summaries of research on time-invariant manual congrol Sys-
tems have beﬁn published by McRuer et al, Elkind,< McRuer
and Krendel,? and Licklider.3



scope of the human controller's ablility to control differ-
ent dynamic systems, but shed little light on the dynamic
processes involved in his adaptation to time-variations of

the system dynamics.

The literature on human controller adaptation in time-vary-
ing control situations 1is not nearly so extensive. Research
on this problem has been hampered by the lack of a good
theoretical framework and good measurement technliques. The
first study of human controller adaptation was performed by
Sheridan.5 He measured slowly-varying human controller des-
cribing functions in situations where the plant dynamics

were also slowly varying. Another early study was performed
by Sadoff6 who Investigated the ability of skllled pllots to
control both fixed and moving-base simulators 1n the presence
of sudden changes in the controlled-element dynamics. More
recently, Young et al,7 in a study that served as the pre-
lude to the research reported here, sought to determine the
speed with which human controllers could adapt to sudden
changes in the gain of plants whose dynamlics were a pure
galn. Knoop and Fu8 proposed an adaptive model for very
simple plants in which the human controller 1s assumed to
have a model of the plant being controlled and in which
modificatlion 1s accomplished by a gradlent search type of
parameter adjustment. Gould and Fu9 extended thlis model by
incorporating pattern recognition techniques for process
identification. Hesslo’11
odically-varying plants. Weir and Phatak

investigated adaptation to peri-
12 suggested the
use of time optimal control models to account for the human's
behavior after he has detected and identified a change in

dynamics.

This report 1s a complete account of the principal theoreti-
cal and experlimental results obtalned during a three-year



research program that began late in 1962, The objective

of this program was to develop models for one aspect of

human controller adaptation —-- adaptation by trained control-
lers to sudden changes 1n the controlled-element dynamics of
single-axis compensatory control systems. A number of papers
describing intermedlate results have already been published.
The first of these by Elkind et al13 proposed and discussed a
multi-phase model for the adaptive process. Miller,lll in a
thesls investigation begun as part of this research program,
examined 1n detall the detection phase of this model. Elkind
and Miller15 revised the multi-phase model and proposed detall-

ed models for the identification and modification phases.

In Chapter I1II of this report the type of time-varying compensa-
tory control situation used 1n the experiments is described
briefly. The principal features of the human controller’'s
adaptive response are 1llustrated through a detalled examina-
tion of a typiecal response by the human operator to a sudden
change in controlled dynamics. The adaptive process is partl-
tioned into a set of decisicn processes and a set of control
processes. Analytic models for each of these sets are developed
in Chapter III, and are discussed in detall there.

In Chapter IV is a description of the three principal experil-
ments that were performed during this study. The apparatus,
the experimental condlitions, the subjects, the forcing function
inputs, and the performance measures are described. The results
of the three experiments are presented in Chapters V, VI and
VII, and are discussed from the point of view of the model that
was presented in Chapter III. Chapters V and VI discuss the
experiments relevent to the declision processes of adaptation.
Chapter VII discusses the experiments relevent to the control
processes. The extent to which the results support the basic
assumptions underlying the model and the structure of the model
are examined in these chapters. In Chapter VIII we summarize



the results of thls program. The princlipal findings are
delineated. The applicability of the model to realistic con-
trol situatlions is discussed briefly.



CHAPTER II

THE ADAPTIVE CONTROL SITUATION

A. SYSTEM CONFIGURATION

In this study of the process by which human controllers
adapt te changes in controlled dynamics we have used highly
simplified 1deallzations of the control systems found in
actual piloted-vehlcle systems. Qur experiments and analy-
ses were performed with conventional single-axis, compensa-
tory control systems whose essential characteristles can be
represented by the block dlagram of Fig. 1. In such systems
the human controller's task 1s to keep the output, o(t),
equal to the input disturbance, d(t), or alternatively, to
keep the system error, e(t), zero. He controls the system
output by making appropriate movements of a control device.
These control movements, c¢(t), are functlons of e(t), the
only source of information about the state of the system
avallable to the human controller.

The controlled dynamic¢s are represented 1n Fig. 1 by a time-
varying transfer function, C(s,t). A finite number of
different controlled elements were permissible in our experi-
ments wilth transitions from one ¢f these to another occur-
ring suddenly in a step-like manner. In most of the experi-
ments the controlled dynamics were of the form K, K/s, or
K/sE. Changes of the polarity and magnitude of K, the gain
of the controlled dynamics, and changes of the order of



the controlled dynamlcs were the principal transitions
studied. 1In all of the experiments the input disturbance,
d(t), was a low-frequency gaussian process. The human
controller was well-trained at controlling all of the diff-
erent dynamics that were permisslble in an experiment, and
moreover, he was also well-trained at adapting to transi-
tions among these dynamics.

da(t) + e(t) |HUMAN c(t) | CONTROLLED | o(t)
CONTROLLER —Pp1 DYNAMICS
\ H(s,t} C(s,t)

Fig. 1. Simplified block diagram of experimental control
system,

O



B. CHARACTERISTICS OF ADAPTIVE RESPONSES

1. Time History of a Typical Adaptlve Response

The nature of the human controller's adaptive process is
easily illustrated by examlining 1n detall a typical response
by a highly-tralned human controller to a change 1in con-
trolled dynamics. Figure 2 shows the time histories of the
input disturbance, the response of the controlled dynamics,
the control movement, and the errcr before and after a
transition in controlled dynamics from K/s° to -2K/s°. The
dynamics changed abruptly at the time to indicated on the
record. This time,to, is the transitlion time.

In spite of the fact that after to the closed-loop system
was unstable, the state of the dynamics at to and the input
after to were such that the error and error rate remained
small until to + 1.2 see. During the period from to to

to + 1.2, the controller made two large corrective movements,
but it 1s clear from the direction of these and subsequent
movements that he had not detected the fact that the dynamics
had changed. The error at transition was slightly negative
and the controller's movements were directed so as to reduce
this error if a change in dynamics had not cccurred. Be-
cause of the change in the polarity of the controlled dynam-
ics galn, these corrective movements had the effect of mak-
ing the error more negative. But the input velocity during
this period also decreased and compensated for the negative
tendency of the error. In fact, the change 1n input veloc-
ity caused the error to drift toward zeroc, thereby probably
giving the controller the impression that his movements were
still appropriate.
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After to + 1.2 sec, the error rate became large and the
fact that the plant dynamlics had changed must have been
apparent to the controller., He made one or two more move-
ments, still of the wrong polarity, perhaps to identify
plant dynamlcs, and then at to + 1.7 sec he modified his
control characteristies by reversing the polarity of his
control movements. Since the second overshoot in the error
was smaller than the first, he must also have at least par-
tially compensated for the increase in plant gain before the
beginning of the large negative stick movement at to + 2.5
sec. Thus, in less than 1.3 sec from the time of the prob-
able detection of a transition, the contrcller had changed
the polarity of his movements and had sufficlently lowered
his gain so as to render the system stable.

During the interval from to + 1.7 sec to about to + 4 sec,
the error was still large. Prior to the controller's change
of the polarity of his movements at to + 1.7, a large error
and error rate bullt up. During the ensulng 2.3 sec, the
controller was in a transient tracklne mode of behavior as
he attempted to reduce these errors.

By to + 6, the transient errors resulting from the transi-
tion had been eliminated and the error signal appears to
have stablliized. There 1s little change in the error char-
acteristics after to + 6, and the controller was effectively
in a steady-state mode of tracking after this time. Thus,
any vernler adjustment of the controller's characteristics
must also have been completed by t0 + 6 sec.

2. Describing Functions for a Typical Response

In Fig. 3 are Bode plots of describing functions relating
error and control displacement that were computed from five
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Fig. 3. Bode plots of human controller describing functions
obtained from successive five second segments error
and stick signals before and after a change in C{s)
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sec segments of the error and control signals precedling and
following a transition of the same type as that shown in
Fig. 2, but from a different run. C(s) changed from K/s®
to -2K/32 at time to. These describing functions were ob-
tained using a multiple regression analysis method described
in previous papers.l6’17 For the 5 sec period preceding the
transition (t0-5 to to) the describing function exhibits
low-frequency lead that is evident in both the amplitude
ratic and the phase. For the 5 se¢ period starting at to + 3,
the phase was reduced by 180 degrees reflecting the fact that
the controller had detected the change of the polarity of

the system gain and had reversed the direction of his move-
ments. There is some lead compensatlon evident in both
amplitude ratio and phase, but not as much as before. The
amplitude ratic was reduced by 9 or 12 db, indicating the
controller had overcompensated for the 6 db increase in the

gain of C(s).

For the next 5 sec period, the one beglnning at to + 8, the
controller increased hls galn so that the total open-loop
amplitude ratio, controller plus controlled dynamics, was
about the same as it was before the transition. He also
increased his lead to make the total open-lcop phase charac-
teristics nearly the same as they were before the transition.

3. Speed of Adaptation

The speed with which the human controller adapts to changes
in controlled dynamlcs 1s a remarkable feature of the adapt-
ive process. The speed of response observed in Figs. 2 and

3 1s typical of the speeds we observed 1in our experiments

and those observed by Sheridan,5 Young et al,7 and Knoop

and Fu8 in similar studles with controlled dynamlcs whose
form was falrly simple. These studies demonstrate that human

11



controllers who are trained to control all the dynamics

that they will encounter and to adapt to transitions among
these dynamlcs can adapt in very short times to a wide

range of transitions. The controller can complete the modi-
fication of his control strategy wlthin about 1 to 2 sec
after the detection of a transition for dynamics up to the
second order. The time required for reduction of accumu-
lated errors and optimization of steady-state tracklng
characteristics depends upon the dynamlcs. It is about U sec
or more for some K/52 transitions and less time for lower

order dynamles.

There 1s some evidence, however, that in more complex con-

trol situatlons the adaptive process may take longer.

Sadoff6 in his study of pilots' adaptation to failures in
flight contrel systems observed that the times required to
stabllize the system and to reduce the accumulated errors

were often as long as 30 sec, a consilderably longer time than
that found in simpler situatlions. In these experiments the
post-transition plant dynamics were unstable and very difficult
to control, which may account for the longer adaptation times.
Also the frequent occurrence of failures during most experiments
that have been performed with simple plant dynamics may have
induced an alertness that might have been lacking in Sadoff's
experiments (as well as 1n operational situations) where
fallures occurred less freguently.
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C. ELEMENTS OF THE ADAPTIVE PROCESS

It 1s evident from Figs. 2 and 3 that the adaptive process
conslists of a set of declslon processes and a related set

of contrel processes. We will consider the decision pro-
cesses to consist of the following tasks: (1) monitoring
to detect changes 1n the system; (2) identifying the changes

when they occur; and (3) selecting control strategies appro-
priate to the new control situation. We will consider the
control processes to consist of the following tasks: (1)
steady-state tracking before and after changes in dynamics;
{(2) modification of control strategy when a transition is
identified; (3) transient tracking to null the large errors
that result from a change in dynamics; and (4) vernier adjust-
ment of the parameters of the steady-state response to optim-
ize the system's performance in the post-transition perilod.

This particular partitioning of the adaptive process 1s not
the only one that could be employed. Gibson18 consliders
automatlic adaptive processes to consist of the functions:
identiflcation, declsion, and modiflcation. Young et al7
first polnted ocut the convenlence of considering the human
adaptive process to consist of the separable phases: detec-
tlon, ildentificatlion, and adjustment. In previous paperslu’15
we have also made use of this concept, but used a somewhat

different set of phases.

Although many different partitionings of the adaptive pro-
cess are posslible, separatlion into a set of declsion and a
set of control processes ls especlally convenlent for the
purposes of model bullding. It permits us stralghtforwardly

13



to use results from declision theory and from empirical
studies of human decision processes to derive models for

the decision processes involved in human controller adapta-
tion. In a similar way, we can use the results from manual
control experiments and control theory to derive models for
the control process. The particular set of decision and
control tasks delineated above is to some extent an arbitrary
cholce, but it appears to account for most of the identifi-
able funetlions performed by the human controller in a time-
varying control situation. This partitioning is the one that
we willl use in the rest of this report.

14



CHAPTER III

A MODEL FOR HUMAN CONTROLLER ADAPTATION

In this chapter we develop a model for the adaptive charac-
teristics of highly-trained human controllers in an ideal-
ized time-varying control situation. The model 1s based
upon concepts taken from decision theory and control theory.
The control situation considered 1s a single-axis, compensa-
tory trackling task llke that 1llustrated in Fig. 1  in which
the controlled dynamics may change suddenly. This 1s the
type of situation that we have studled experimentally.

To simplify the development of the model, we will make a
number of assumptlons about the characteristics of the human
controller and about the time-varying system that he 1is opera-
ting. These are discussed first. Next, we discuss the model
for the decision processes involved in the human controller's
adaptation. Then we consider the model for the control
processes.

A. ASSUMPTIONS

The system has a compensatory display whlch shows only the
error signal, e(t). The displayed error and the control
movements, c¢(t), will be assumed to be the only information
available to the controller about the state of the system.
We will assume that he makes no attempt to predict the in-
put disturbance, d(t). All signals in the system will be

15



assumed to be gaussian. For the control model, the human
controller will be assumed to be contlnuous in his observa-
tions of the error and in his movements of the control.

For the declsion model, however, the human controller will

be assumed to be a discrete observer of the error and a con-
tinuous observer of his own control movements. Samples of
the error will be assumed to be taken periocdically every T
seconds.* The interval between samples 1s called the control
interval (CI). During the CI, the controller makes control
movements designed to reduce the error observed at the begin-
ning of the CI. Although the human controller is not a per-
fect observer, we will assume that the errors he makes in
observling the error signal and control meovements are small
compared to other sources of varlation, and these observatlon

errors wlill be taken to be zero.

Time~variations 1n the controlled dynamics will be abrupt,

- step-like changes, which will be assumed to occur only at
the beginning of a CI. Initlalily, the controlled dynamics
will be assumed to be Co(s). Transitions from Co(s) to any
one of the K other dynamics, Cl(s)....CK(s), may occur at
the beginning of any CI with equal probabllity q/K.

The numan controller will be assumed to be well-trained so
that he 1s able to predlct the response of all possible
controlled dynamics to his control movements. Moreover, we
assume that he 1s trained to recognize the changes in system
output that occur as a result of changes of the dynamics.

* .
Later in this chapter, in the discussion of the control
model, we will associate T with the effective time-delay 1n
the simple crossover model approximation to the human con-
troller's describing function.l
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B. DECISION MODEL

We postulated that the decision processes are monitoring,
identificatlion and selectlon. Of these three, monitoring

to detect a transition and identification of the transition
are best described in terms of statistical declsion theory.
The selectlon of control strategies can be considered to be
a deterministic process in which a pre-stored strategy 1s
retrieved from memory. In this section we flrst present the
basis for the statlistical decision theory models for moni-
toring and'identification.* We then use the theory to
develop detalled models for the monitoring and ldentiflca-
tion functlons performed by the human controller 1n a time-
varying contrel situatlon. Finally, we present a very simple
deterministic model for the process used to select control
strategles.

1. Basis for Decision Theory Models

Both the monitoring and ldentification tasks can be represented
by the same statlistlcal declsion theory model. In both of
these tasks we postulate that the human controller takes note -
of his control movements, c(t), observes the behavior of the
error signal, e(t), and from this information decldes what

the controlled dynamics are. The actual cholce 1s based upon
the controller's estimates of the probabillitlies of the several
possible dynamics and upon the values and costs associated

wilth making correct and incorrect cholces.

‘Green and Swets®? and Edwards20»°l give good discussions
of the application of statistical decision theory, particu-
larly Bayeslan theory, to the modelling of human decision

making.
17



Let us describe this decision process more precisely. The
controlled dynamics can be any of Co(s), Cl(s)....CK(s).
During the nEE control interval (CI) the human controller
observes the system and gathers some data, Dn’ relevant to
its behavior. Given Dn’ it should be possible for the human
controller to estimate the probabilities of each of the
Ci(s). These probabilities are written

{P(Coan),P(Clan)... .P(CKIDn)}

and are called the posterior probabilities of the Ci(s).
They are subjJective probablilities in the sense that they
represent the human controller's estimates of the probabili-
ties of each of the Ci(s) after he has obtained Dn'

The posterior probabllities play a key role in the duecision
process. For example, 1f we wanted to adopt as the objective
of the decision process the maximization of the probability

of a correct decision, we would simply use the decision rule:

Choose the Ci(s) whose posterior probability, P(Ci|Dn), is
greatest. Most decision objectives commonly used in decision
models lead to decislion rules that can be expressea in terms
of the posterlor probablilities.

In our model of the decision processes of adaptation we will
choose maximization of expected value as the decision objec-
tive. This is a rather versatile decision objective in the
sense that many different declsion situations can be repre-
sented by models designed to achieve this objective. Maxi-
mization of probability of a correct decision is a special
case of maximization of expected value,.

The expected value of choosing Ci(s) is given by the relation
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V(D) = ViOP(Coan)+‘"'ViiP(Cian)+""ViKP(CKIDn)

K
¥ ViJP(leDn) (3.1)
=0

J
where Vi(Dn) is the expected value of choosing Ci(s) given
the data Dn’ and the ViJ are the values asscciated with
choosing Ci(s) when, 1n fact, the controlled dynamics are
really Cj(s). Thus, V
and the Vij’
decisions.

i1 is the value of a correct decision,

for J#1, are the values associated with incorrect

The expected value of the decislon is maximized by selectling
the Ci(s) that yields to the highest value of Vi. The
decision rule that will achieve the obJectlive 1s: Compute
Vi(Dn) for each of the Ci(s). Select the Ci(s) that gives
the largest Vi(Dn)'

A simpler expression for Vi is obtainéd when, as 1s often the
case, the values of all incorrect decisions, vij’ are, or can
be, assumed to be equal. In this case, the value of the in-
correct decisions can be set arbltrarily to zero wilthout alter-
ing the relative values of the correct and incorrect decisions,
and therefore without altering the decision outcome. With

V1J = 0, the expected value of choosing Ci(s) becomes simply

v,(D ) = vnp(cilnn) (3.2)
So far, we have sald nothing about how toc compute the posteri-

or probabilities, P(Ci|Dn)’ which are essential for computation
of Vi(Dn)' These probabilities are most easlly determined
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through the use of Bayes Rule.19 Using this rule, we may
express the posterior probabilities as

p(Dnlci)P(Ci)

p(D,)

P(CiIDn) = (3.3)

where p(DnICi) is the probability density of Dy given that the
dynamics are Ci(s). This probability density 1is called the
likelihood of D under Ci(s). P(Ci) is the probability that
the dynamics were Ci(s) at the beginning of the CI, before the
data Dn were obtained. It is called the prior probability of
Ci(s). p(Dn) is the probability density of D, and it is the
same for all Ci(s). All of these probabilitles and probabill-
ity densltles are subjective and are the human controller's
estimates of the true probabilities.

We can use Egq. (3.3) to express Vi(Dn)’ the expected value of
choosing Ci(s), in terms of the prior probabllities and the
likellhoods.

VygP(CyIp(D [Cy)
0 p(D,)

(3.4)

8
v,(b) = JE

Since p(Dn) in Eq. (3.4) is the same for all Ci(s), it plays
the rcie of a normalizing constant and its value does not
change the relative values of the Vi(Dn). Without loss of
generality, we may write

K
Vi(D ) = JZO Vy4P(CyIp (D lCy) (3.5)

where Vi(Dn} and Vi(Dn) differ by the factor p(Dn). Any
declsion rule based on Vi(Dn) willl give results identical
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to one based on Vi(Dn)’ and for simplicity we will often use
Vi(Dn) to denote the computed expected value of a decision.

If the probability densitles of D, given each of the Ci(s)
are known, and if the prior probabilities, P(Ci) and the
values, Vij’ are known for each of the Ci(s), the value of
choosing each of the Ci(s) can be computed from Eq. (3.4) or
Eq. (3.5). The appropriate declsion rule to maximize the

expected value 1s: Select Ci(s) for which

V(D) > V(D)

K K
JEOViJP(Cian) > JZOVkJP(CJIDn)
(3.6)

K K
J£0V13P‘CJ)P‘Dn'CJ) > JEOVkJP(CJ’p(Dn'CJ’
for all k#¥i

This pule assures the selection of the Ci(s) whose value 1is
greatest.

If the values of all incorrect decislons are equal so that
they can be set to zero, ViJ=O for 1#J, we obtain a simpler
formulation of the decisicn rule: Select the Ci(s) for which

p(D_[C,) v, P(C,)
__n 17 > _kk "k’ (3.7)
p(DlC,)  VyyP(Cy) for all k¢l

where V, ., 1s the value of correctly choosing Ck(s). The

ratio on the left slde of this equatlion 1s called the likelil-
hood ratio of D  under Ci(s) relative to Ck(s).
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All of these alternate expressions for the declslon rule
are equivalent. Which one is most convenient to use depe.ads
upon the partilcular problem that is to be solved.

This discussion provides the basis for the models that we
willl develop for the monitoring and identification functions
of the adaptlve process. Each of these will require some
additlonal assumptions and the separate determination of the
appropriate preobabilities and values. These issues are dis-
cussed in the followlng sections.

2. The Monitoring Model

The monitoring task requires the human controller to observe
the behavior of the system and to decide whether or not the
controlled dynamics have changed. He knows that 1nitlally
the dynamics were Co(s). His decislon task is to choose one
of two alternatives: Co(s) or Eo(s). Eo(s) denotes that the
dynamics are not Co(s). By virtue of his fraining, he can
predict the response of all of the possible dynamlcs to his
ecntrol movements. Since a report that a transition has
occurred merely initiates an identification process, the con-
troller loses 1little by reporting a transition when none has
occurred. However, if he mlisses a transition, his adapta-
tion will be delayed and large tracking errors may result.
Thus, there 1is low cost (high value) associated with a false
alarm and a high cost (low value) associated with a miss.

We use V 0 to denote the value of correctly detiding 1n favor

0
of Co(s), Vﬁﬁ to denote the value of correctly choosing Eo(s)
VOE to dencte the value of choosing Co(s) when ﬁg(s) is

correct (a miss), and V5 to denote the value of choosing Co(s)

when Co(s) is correct (a false alarm). From Eq. (3.6) we
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see that a transition should be reported when

VornP(G4 D, ) + V= P(C.|D ) >
00" *“0'"n 00" *¥0'"n (3.8)

VOOP(coan) + VoﬁP(Eoan)

P(COIDn)aﬂENcoan) are the posterior probabilities of

Co(s) and Co(s), respectively. By rearranging terms, we
obtailn

(Voa~Vog)P(CqID,) 2 (Vq-V54)P(CqIDy) (3-9)

But since

_ K
P(C4ID,) = 1§1P(Ci|Dn) (3.10)

we can write for Eg. (3.9)

(v

K
55-Vo3) glp(ci|nn) 2 (Vog=Vgo) B(Cy D) (3.11)

i

Bayes rule, Eq. (3.3),can be used to expand the posterior
probabilities, P(CianL and we obtailn

K
(V55-Vo3) 1£lp(Dn|C1)P(Ci) > (Vgy=Vgo )P (B, 1CoIP(Cy)

(3.12)

All the terms in summation on the left side of Eq. (3.12) are
positive. Therefore, if for any Ci(s)

(Vog-Vogir(P,[CyIR(C,) 3(V00-V50)9(Dn|CO)P(CO) (3.13)
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Eq. (3.12) will also be true and a transition should be
reported. Equation (3.13) is relatively simple to use, and
if the densitles p(DnICi) do not overlap much, it will lead
to decislons that are essentlally the same as those made
using the complete formulation of Eq. (3.12).

To summarize: A transition should be reported if any one
Ci(s) can be found for which Eq. (3.13) is satisfied, or if
Eq. (3.11)or Eq. (3.12) are satisfied for the entire set of

Ci(s).

In order to specialize the decision theory Just presented so

as to derive a model for the monitoring function, we must
postulate characteristics of the data Dn’ of the likelihood
functions p(Dn[Ci), of the prior probabilities P(C,), ana

of the values, Vﬁﬁ’ Voﬁ’ VOO’ and VUO‘ We must then reformu-
late the declsion rule in terms of these postulated quantities.
Each of these issues are consldered in order in the development
which fellows.

a. Informatlon Used for Monitoring

The human controller presumably processes the error and stick
signals to declde whether or not a transition has occurred.

A key problem in the development of a model for the monitoring
process 1s to determline what 1nformation must be extracted
from these two signals by the model in order to predict the
detection performance of the controller with reasonably good

accuracy.

For those transitions that result in rapidly increasing
errors, such as a large increase in the gain or a change of
polarity of the galn of the controlled dynamics, a variety
of different functions of the error will result in gooa
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13

we found that the detectlon process could be represented well

predictions of detection performance. In our early studles

by a model that reported a transition whenever an excessively
large error occurred. The model would have been equally good
had we postulated that error rate was used as the basis for
detectlon. Transitions of this kind are usually accompanied
by unusually large values of the error and its derivatives
and by control movements of large amplitude. The cholce of
the information to be used for detection is not critical.

Many transltions, such as a decrease in the gain of the con-
trclled dynamics, result In slowly increasing errors. For
these the cholce of the Information to be used for detection
becomes more critical. In"particular, error magnitude alone
appears to be insufficient.lu’l5 Millerlu in a study per-
formed under this contract, suggested the use of error rate
as the basls for detection. He proposed a model in which
the observed change in the error rate durlng a control inter-
val, Aé, 1s compared to the change in error rate expected
from the 1lnitlal dynamics, Co(s). If the difference between
the observed and the expected changes 1n error rate is
greater than a criterion value, the model reports that a

transition has occurred.

The use of error rate as the basls for detection is reason-
able from several polints cof view. The error rate 1is a quan-
tity that is easily perceived by the human controller.
Proper control over error rate 1ls essential for stability
and good performance.

To achleve stability in a steady-state tracking situation,
the human controller must adjust his characteristics so that
in the region of the gain crossover frequency

W -T8

HC(s) 2 e (3.14)

mlo
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where H(s) 1s the describing function of the human controller.
w, is the gain crossover frequency and T 1s the effective time
delay of the human controller.l 1In many control situations

Eq. (3.14) 1s a good first approximation to the open-loop char-
acteristlcs of the system over most of the frequency band in
which there i1s a significant input power. For these situations
Eq. (3.14) implies that the human controller establishes a

well specified relation between the output rate at time 5,

and the error tv sec earllier. It will be convenient to set the

duration of the control interval CI equal to T.

In a compensatory control situation the ocutput rate 1s not
avalilable to the controller and he must use the error rate
to estimate the output rate. Thus, we may say that to a
first approximation the human controller makes control move-
ments so that the error rate at time t will be proportional
to the error 1 sec¢ earlier. That is,

e(t) = -w,e(t-t) (3.15)

We assumed at the beglinning of thilis development that discrete
observatlons of the error were taken at the end of each CI.

If €(t) 1s the primary informatlion quantity for monitoring,

the monitoring decision will be based upon a sequence of
sampled values of é(t). But the error rate at any time t can
be expressed as the sum of the increments in the error rate

in all previous control intervals, plus the initlal value of
the error rate. For large values of t, the initial value
should not affect the detection decision very much, and, there-
fore, it may be neglected. Thus we may use Aé{t)}, the change
in error rate during a CI, instead of &(t) for the monitoring
decision. Except for the initial value, the use of Aé&(t) will
lead to the same results as will the use of the &(t). Since the
human controller has more direct control over Aé(t) than over
é(t), Aé(t) will depend more upon the control movements made
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during the current CI than upon those made during previous CI
and successive samples of Aé&(t) will tend to be less highly-
correlated than successive samples of é(t). Therefore, Aé(t)
1s a somewhat better quantity to use 1n the model than &(t).

In order to determine the Aé(t) that is expected from Co(s)
or any of the other dynamics, the human controller must
also make use of hls knowledge of his control movements,
c(t). Thus, we postulate that the data, Dn’ consists of
the couple (Aé,c). This 1s what we will use for both the
monltoring and the identification models.

b. Posterior Probabillties

We postulated that the monitoring declsion 1s based upon
observations of A& and c(t). The posterior probabllities
previously written as P(Ci|Dn) must be rewritten in terms

of these new quantities. They become P(Ci|Aén,cn), the
probability of Ci(s) conditioned on the Aé(t) and c(t) ob-
served during the n®2 CI. To simplify notation we will

write these probabilities as P(Ci|Aé,c;n), and when the CI
index n 1s not an issue in the development we will use simply

P(C1|Aé,c).

Bayes Rule, Eg. (3.3) must alsc be rewritten in terms of

these new quantlties

p(a&,clC,;n)P(C, ;n)
1 1 (3.16)

P(C,|aé,e;n) =
p(Aé,c;n)

where all the probablillties are for the nEg CI. We note
that c¢{(t) is a quantity that is under the control of the
human controller and that the declision problem 1s to Jjudge
whether or not Aé(t) 1is approprilate for both the dynamics,
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Ci(s), and the control movement, c¢(t). Thus, it i1s more
useful to write Bayes Rule in the following form, which
can be easily shown to be equivalent to Eg. (3.16).

p(aé]|C,,c;n)P(C, ;n)
1 4 (3.17)

P(C, [a&,c3n) =
p{aé|e;n)

As before, when the CI interval index n 1s not of concern,
we will use the slmpler expression

p(ag|C,,e)P(C,)
p(aé|e)

(3.18)

P(C,lae,c) =

C. Likellhood Functions

To use Eqs. (3.17) or (3.18) we must evaluate the likelihcods

p(Aé[Ci,c). We emphaslize that the p(Aé|Ci,c) are the subjec-

tive likelihcods, the human controller's estimates of the true
likelihoods.

The p(Aé]Ci,c) are the probabllity density functions of the
observed values of Aé(t) when the dynamlcs are Ci(s) and the
control movement is c¢(t). The properties of these functions
are determined by the characteristics of Ci(s) and the input
disturbance, d(t). From the relations inherent in the system
block diagram of Flg. 1,

Ad(t) = Ad(t) - Abi(t) (3.19)
where A&, Ad and Aéi are the changes that occur in the de-
rivatives of the error, the disturbance input, and the output
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of dynamics Ci(s) during the CI. These increments are
defined by relaticns of the form

Ad(t) = a(t) - d(t-T). (3.20)

Since all the signals in the system were assumed to be normal,
the p(Aé|Ci,c) will be normal probabillity densities. The mean
My and variance 012, which completely specify these densitles,
must be determined for each of the Ci(s).

Recall that we assumed that the controller made no attempt to
predict the input disturbance, d(t), and that his training
was sufflclent for him to predict the Aéi,
put rate resulting from his control movements c¢(t) for each
of the possible Ci(s)' Under these assumptlons the expected
value of Aéi, the Aé prealcted by the human controller under
the assumption that Ci(s) are the dynamics and that c(t) is

the change in out-

the control movement 1is
E[Aéi] = E[Ad - Abi] = E[-Aéi] = -40, (3.21)
But E[Aéi] is the mean of p(Aé]Ci,c), and therefore,

My = -Aéi (3.22)

Observed values of Aé will be distributed about My To 1n-
dicate this fact, we write

(3.23)

where Séi is the deviation of Aé from lts mean value when
Ci(s) 1s the dynamics and c¢(t) is the control movement.
The variance of Aé 1s just the varlance of Géi.



From Eq. (3.19) it 1s apparent that Géi has two components
that we assume are statistically independent. One of these
is equal to A4 and the other to the errors made by the human
controller in predicting Aéi. We postulate that the errors
of predictlon are normal, statistically independent in suc-
cessive CI, and proportiocnal to the magnitude of Aéi. Thus,

we may write

6éi = Ad + nAéi (3.24)

where n 1s the random coefficient representing the fractional
error in the prediction of Aoi.

The variance of §&, is o 2 the desired variance of

i 10
p(8&|Cy,e).
6.2 = Var [sé&, ]
1 1

= Var[Ad + nAéi] (3.25)

2 2 2

= oAd (L\éi) On

_ 2 2 2

= Opg * My O,

where oﬁg 1s the variance of Ad and 0n2 is the variance of n.
When UA&iS small compared to uian, the standard deviation

of 5é1 1s approximately Proportional to the magnitude of its
mean.
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Given w, and o, the expression for p(AélCi,c) can be written

i
as
2
2
20
p(AélCi,c) = —""“"'l_' e 1
Y2 oy
(3.26)
2
_ déi
2. 2
. 1 . 20n My
ven o, luy |

where in this context 6éi is taken to be the deviatilon of
the observed Aé from By

Equations (3.22) and (3.25) specify the mean and variance of
the distributions p(AélCi,c). There 1s only one unknown
parameter 1n these equations, cng. Al]l the other quantities
can be computed from knowledge of Ci(s), the 1nput statis-
tics and the control movement, c¢(t). We postulate that the
human contrecller develops estlimates of these quantities for
each of the possihble controlled dynamics and, where necessary,
such as the case of filrst order dynamics, for each possible

change of dynamics.
d. Prior Probabilities
The prior probabilities, P(Ci), are not constant for all CI.

These probabllities change as the human controller obtalns
more information about the state of the system,.
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Consider the control slftuatlon that we have investigated

in our experiments. Assume that the controlled dynamics has
been Co(s) for a long time. Let n = 0 be the index of the
present CI. Durlng the perlod prior to n = 0, the human
controller's estimates of P(CO) wlll convérge to unlity and
his estimates of P(Ci) for 1 # 0 will converge to zero. We
assumed that a transltion could cccur at the beginning of
any CI with probability of gq. Typlcally, g will be small,
of the order of .0l1. All K possible dynamics are equally
likely for the transition.

The prlor probabllities for the present CI P(Ci;o), are the
posterior probabllities at the end of the previous interval
modified to take 1Intoc account the probability that a transi-
tion occurred at the beginning of the present CI. Since the
posterlor probabllities are 1 and 0, respectively,

P(CO;O) =1-q
£ 1
and (3.27)
P(Ci;O) = q/K for 1 # 0

In the flrst of these equaticns we took advantage of the

assumption that g was very small.

P(Ci;O) will be very small. For the human controller to be
able to detect a transition 1In the CI in which 1t occurred,
Géo will have to be large so that the likellhood p(AélCO,c)
will be smaill.
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For the nEﬂ CI, the prior probabilitles must be expressed

in terms of the posteriocr probabllities for the (n--l)§£
CI. Thus,

s

P(Cy3n) & P(Cy|aé,c;n~1)

and (3.28)
P(Ci;n) 2 %P(CO|Aé,c;n-l) + P(Cilaé,c;n-l)
for 1 # 0.

The two terms in the expression for P(Ci;n) are, respectively:
(1) the probability that the dynamics were Co(s) in CI n-1
and that a transition occurred at the beginning of CI n; and
(2) the probability that the daynamics were Ci(s) in CI

(n-1). We assume that the probabllity of two transitions,

i. e., from C, to Ci(s) and then from Ci(s) to CJ(s) is
negligible.

By making use of Eq. (3.17) a recurrence relation for these
probablilities can be obtalned.

p(AéICO,c;n-l)P(CO;n-l)

P(Cysn) # (3.29)
p(Aéjc;n-1)
and
pl(aé|C,;c;n=1)P(C,;n-1)
P(C,5n) + & 0 0
p(Aéle;n-1)
(3.30)
. p(AéICi,c;n-l)P(Ci;n—l)
p(Aé|c;n-1)
for 1 # 0
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It is apparent from Egq. (3.29) and Eq. (3.30) that the

prior probabilities gradually change as more Information

is obtalned from successive CI. Although 1t will be diffi-
cult to detect the transition in the CI in which 1t occurred,
P(Ci;n) will inecrease and P(Co;n) will decrease with success—
ive CI following the transition, because the likelihoods
p(ﬁé[Co,c;n—l) and p(Aé|Ci,c;n-1) will reflect the fact that
the dynamics have changed from CO(s) to some Ci(s). Detec~-
tion In a post-transition CI will, therefore, be easier

than detection in the CI in which the transition occurred.

e. Values of Declision Alternatives

In the monitoring situation little penalty 1s incurred for
reporting a translition when, in fact, none occurred. A

false alarm will simply lead to a superfluous attempt to
identify the controlled-dynamics, a process that should result
in CO(s) being selected as the dynamics. If a transition is
missed, however, the penalty in terms of the resulting error
may be large, and this is a situatlion torbe avoided.

Recall that by virtue of Eq. (3.12) the monitoring decision
depends upon the quantities (Vﬁﬁ-dbﬁ)and (VOO_Vﬁo)' Vﬁﬁ is
the value of correctly deciding that a transition occurred,
and VUO the value of deciding correctly no transition
occurred, respectively. Voﬁ is the value of a miss, and

VBO is the value of a false alarm. The relative importance
of the two kinds of errors suggests that VOﬁ should be low
and VﬁO should be high. On the other hand, correctly
deciding that no transition has occurred means that the con-
troller will not have to be concerned with identification
and modification and that there wiill not be a large increase
of the system error which usually occurs following a transi-

tlon. Thus, it is reasonable to assign a higher value to
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VOO than to Vﬁﬁ Thus, the quantities (V---V ﬁ) and
(V -V— ) will tend to be more nearly equal than would be
expected from consideration of the miss and false alarm

values above.

There are a few other considerations to take into account.
First, we do not want tco many false alarms. Second, when

Geo {(the deviation of Aé from that expected if C (s) were

the dynamics) is very small, say of the order of oad, (the
standard deviation of Ad) we would expect the controller to
be content to keep Co(s) as his choice for the dynamics.
Third, as 1is apparent from Eq. (3.6) the values act in concert
with the prior probablilities to determine the decision and it
is difficult to separate out the effects of each upon the
decision.

Thus, depending upon the prior probabiiities, we don't want
(VOO-VﬁO)to be too low with respect to Nbﬁ—voﬁ). In fact,

to minimize detections when Géo is small, we might 1like
(VOO_Vﬁo) to be somewhat larger than (vﬁﬁ-voﬁ). Given the
uncertainty iIntroduced by the effects of the prior probabili-
ties, let us, for the time being, set (VOO"Vﬁb) equal to
(V-"VOG) We will re-evaluate this cholice after we have
examined the experimental resultfs.

f. Decision Rule

The decision rule given by Eq. (3.12) can now be rewriltten
in terms of the probabllities and values appropriate to the
monitoring situation. First, let us restate the rule. For
each CI we postulate that the human controller determlnes
whether or not

(V55-V05) 121 p(D, 1C,)P(C,)2(Vy=Vg54)P(D, |CHIP(Cy)
(3.31)
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is satisfied. If it is, he decides that a transition has

occurred.
We have postulated that
(Vﬁﬁ-voﬁ) = (VOO-VﬁO) (3.32)

We have also postulated that the likelihoods are In the form
used in Egq. (3.17). Making use of these results we can wrilte

for Eq. (3.31)

N~

p(A&[C,,c;n)P(C,3n)>p(A&]|Cy,e;n)P(Cy;n) (3.33)

i=1

where the prior probabllities P(Ci;n) and P{Co;n) are given
by Egs. (3.27),(3.29) and (3.30).

Two simplifications of Eq. (3.33) can be made. First, we
can take advantage of the fact that the lnequality condition
will be satisfied 1f for any term of the summation

p(4&|C,y,e3n)P(Cy3n)>p(4&[|Cy,e5n)P(Cy;n) (3.34)

Second, since the probabllities of all alternative dynamics
must sum to unity, we can relate the summation of the left
side of Eq. (3.33) to the term on the right.

p(Aé‘Ci,c;n)P(Ci;n) p(AéICOsC;n)P(Cosn)
=1 - (3.35)
p(Aéfe;n) p{Aé|c;n)

)
1=1
Using this relation, Egq. (3.33) may be written

p(Aé|CO,c;n)P(CO;n)

< 0.5 (3.36)
p(Aé&jc;n)
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The decision rule is then: Report a transition if one of
Eq. {3.33), (3.34) or (3.36) is satisfied.

The decislon rule in terms of Eqg. (3.34) 1s illustrated in
Fig. U4 for a typical detection situation. The distribution
of p(Aé]Ci,c;n) is shown as a function of Aé for the three
cholces of Ci(s) in a hypothetical situation in which two
dynamics are possible in addition to CO(S)'

In making Fig. 4 we assumed that P(Ci;n) was the same for

all three choices. The expected values of A& for the three
alternatives, HgsHys and U,, are also glven in the figure.
Aé' 1s a hypothetlcal observed value of Aé and the déo, Gél,
and 6é2, also shown In the figure, are deviations of Aé' from
the three mean values. Note that the standard deviations of
the distributions increase as p increases. It 1s c¢clear from
the figure that CO(S) 1s the decislon that should be made

and that a transition should not be reported.

Figure 4 also illustrates that the decision rule can also be
expressed dilrectly in terms of Aé. A set of regions called
acceptance reglons can be defined such that a value of Aé

in Region Ai will lead to the choice of Ci(s>' In terms of
Fig. 4, the definitions are:

A 0 < A& < ¢

0 02
A A& < 0 (3.37)
Ay: cgsy < Aé

where cg, 1s the value of Aé at which p(Aé|CO,c;n) and
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p(AélCz,c;n) cross. The acceptance regions can also be
defined in terms of the Géi by a similar set of eguations.

It is perhaps more reasonable to expect the human controller
to use a decislon rule based on acceptance reglons defined
in terms of Aé& or Géi. If Géi is small, relative to 1its
standard deviatlion, and the other GéJ are large, then a
decision in favor of Ci(s) is likely to be correct. It is
clear from Fig. 4 that declsions based upon a correctly de-
fined set of acceptance regions will be the same as those

based upon Egs. (3.33), (3.34) and (3.36).

3. Identification Model

After a transition has been detected, the human controller
willl prcbably want to confirm the correctness of his detec-
tion decislion and then determine which of the K dynamics
Cl(s)....CK(s) are in the system. Thus, the identification
task consists of choosing one of K+1 possible control dynam-
ics.,

a. Qutline of the Identification Model

The declislon processes lnvolved 1n identiflcation are essen-
tlally the same as those lnvolved in monitoring, and the
model we postulate for ldentification 1s very similar to the
monitoring model. Most of the results obtained in the devel-
opment of the monitoring model can be applied directly to

the identification model.

Por identification we postulate a model whose decision ob-

Jective is maximization of expected value. The declisions
are based on observatlons of Aé and c(t) during a CI. The
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observed value of Aé is compared with the Aéi, the values
predicted from knowledge of Ci(s) and of c¢(t). The expected
value of choosing Ci(S) is

K
Vi (agesn)= ]V,

jP(CJIAé,c;n)
J=0

(3.38)

K
Vi(aé,c;5n)= JgovijP(CJ;n)p(Aélcjp;n)

where once again we have chosen to lgnore the factor p(Aé|c;n).
The likellhood functions in Eq. (3.38) have the same normal

dlstribution as beforg. The mean 1is ui and the variance 012
has two components cbé and uizunz.

We will permit the identlfication model to use the same data
as was used for detectlon. Thus, ldentlfication can be made
in the same (CI as 1s detection. However, it need not be, and
in certain clrcumstances additlcnal data may be regulred.
This situation may arise if we use different walues, Vii’ for
identification and for monitoring.

In the identification situation there can be a large penalty
for incorrectly choosing one of the alternative dynamlcs.
This penalty arises from the fact that the controller will
modify hils control strategy immediately after identification
is made. The modification process takes some time, and if
it is based on an incorrect lildentification, large system
errors may result. 3St1ll more time will be required until
the mistake 1is corrected and the proper contreol strategy 1s
established. The contreoller would be well-advlsed, therefore,
to be conservative and to not modify his characteristics
until he is fairly certain that the system 1s correctly
identified.
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The identificatilon declsion involves finding the Ci(s) for
which inequalities of the following form are satisfled:

Vi 2 Yy

K K

Jzovijp(cj)p(“é|cj’°) > JEOVKJP(CJ)p(AéICJac) (3.39)
= =

for all k#i

where we have dropped the index n to simplify the notation.
The terms for j=1i and J=k can be ‘extracted from the summation
and after some rearrangling we obtaln an expression similar to
that derived for the monitoring declision

(Vy1-V, 1 )P(CyIp(AE]C, ,e) >

(ka-vik)P(Ck)p(déle,c) + (3.40)

Co(s) is 8 possible choice s0 that if a false alarm is made
during monitoring i1t can be corrected by the identification
procedure. In many situations the controller will want to act
conservatively and continue controlling as if Co(s) were the
dynamics until he is very sure that they are CJ(s). For these
situations Voj,the value of selecting Co(s) when the dynamics
are CJ, probably should be high and viO’ the value of select-
ing ci(s) when Co(s) are the dynamics should be low. Further-
more, often de and V1J for J¥0,1, or k can be assumed equal.
These are the values of choosing Ck(s) and Ci(s), respectively,
when the dynamics are actually neither of these nor Co(s).
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If these assumptions.are made, Eq. (3.40) can be written first
for K=0
(Vii-VOi)P(Ci)p(Aé|Ci,c)l(Voowvio)P(Co)p(AéICO,c)

I )P(C, )p(A&|C, ,c) (340
+ v..-V,,)P(C,Ip(ae|C,,c
for all i#0
and, eliminating Co(s) as a possible choice,
(Vii—Vki)P(Ci)p(Aé|Ci,c)l(ka-Vik)P(Ck)p(AéICk,c)
(3.42)

for all k#¥0,1

In order for any dynamlcs other than Co(s) to be chosen,
Eq. (3.41) must be satisfied. If it is, the Ci(s) for which
Eg. (3.42) 1s satisfied for all other Ck(s) should be

L}

selected.

In other control situations speclal treatment of Co(s) 1s not
appropriate and equal values can be assigned to VO1 and to

viJ‘ In these cases, Eq. (3.40) can be written simply as

(Vii-Vki)P(Ci)p(AéICi,c)3(ka-Vik)P(Ck)p(Aéle,c)
(3.43)

for all k¥i

where we retaln the assumption that ij = vij for j#0,i, or k.
The decision rulle now becomes: Select the Ci(s) for which

Eq. (3.43) is satisfied for all Ck(s), ki,
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In Chapter VI we use a still simpler version of the identi-
fication model. In that chapter we assume, in much the same
way as we did for the monitoring model, that (Vii'vki) and
(ka—vik) are equal for all values of 1 and k. By making this
assumption, we are treating all dynamics equally and are not
assoclating different values to the different cholces of
Ci(s). With this simplification, the lnequality upon which
the decision is based becomes:

P(Cy)p(Ae]Cy,e) > P(Ck)p(Aé|Ck,c)
(3.44)
for all k#i

The declsion rule is: Select the Ci(s) which satisfles Eq.
(3.44) for all kpi.

C. Recycling

The identification process may result Iin the selection of Co(s)
as the dynamics which has highest expected value. If this
occurs, no change 1in control strategy wlll be made. The model
will revert to monltoring mode for the next CI. If a detec-
tion of a transition is made during this CI, another 1identifica-
tion is attempted. The process will be repeated until one of
the Ci(s) is ldentified, or until steady monitoring is achieved.
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d. Partial Identification.

In certain control situations a subset of the alternative
dynamics may respond similarly to the control movements,
c(t). A set of dynamics differing only slightly in gain is
an example. Initlally, the ldentification procedure may
select one of this subset from the other dynamies, but not
correctly select speclific dynamics from the subset. Data ob-
tained from subsequent c¢ontreol intervals may be necessary to
make this finer discriminatlion. As soon as the initial 1den-
tification has been made, the controller can be eXpected to
modify hls characteristlics in accordance with his current
estimate of the identity of the controlled dynamics. As the
identification is refined, the human controller can refine his
characteristics accordingly.

e. Incorrect Identification

Under certain circumstances the input disturbance may comblne
with the output of the control dynamies to produce an error
signal that is 1ncorrectly identified. Thls sometimes hap~
pens when a reductlon cof the gain of the controlled element
and a change of the polarity of the gain are two of the
possible transitions that might occur. If the 1nput forc-
Ing function has a high veloclty and a high acceleration of
the same sign at the time of transition, the error that
results after a gain reductlion will increase with each suc-
cessive CI, 1n much the same way as it would following a
polarity reversal. The model should account for these kinds
of errors, and some of the experlimental results indicate
that 1t does.
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4, Selection Model

Once the identification has been made, the controller must
select and employ & new contrel strategy that l1ls appropriate
to the new controlled dynamices. If large errors have_built up
prior to the time that identification 1s completed, the
control strategy selected wlll be one appropriate to the
trackling of transilent disturbances. After the transient
errors have been reduced, a further modificatlon of control
strategy 1s required in order to.track the steady-state dis-
turbances with the new control dynamics.

Since we have assumed that the controller knows the charac-
teristlics of all the possible controlled dynamics to the ex-
tent that he 1s able to predict for each the gutput that
results from hls control movements, it 1s also reascnable to
assume that he knows the control strategles to use for transi-
ent tracking with each of these dynamics. Once an identifi-
cation has been made, we postulate that the controller merely
selects the appropriate control strategy from hls memory.
Since 1t wlll almost always be the case that the errors at
identiflcation wlll be large, usually it wlll be appropriate
for him to use a translent tracking strategy. After the
controller has modifled his characteristics and managed fto
reduce most of the accumulated errors, the control strategy
wlll be changed to one approprlate to steady-state tracking.
It is not clear whether the human controller has stored a
steady-state contrecl strategy for each of the controlled
dynamics which he merely retrieves from his memory at the
appropriate time, or gradually adjusts the parameters of his
transient control strategy to achieve good steady-state per-
formance.

We postulate that the process of selecting the transient
tracking strategy from memory is simple, takes a filxed
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amount of time, is error free, and can be represented simply
by a time delay. This retrleval time will be taken to be
equal to the duration of a CI, whieh, in turn, 1is equiva-
lent to the human controller's time delay 1 shown in Eq.
(3.14).

We have not studlied in detall the process by which the con-
troller decldes to change from a translent to a steady-state
tracking strategy. We would expect that the change would
occur when the error and error rate became small, but we
have no information on which to base the selection of the
values of these quantities at which the change would be
initiated.
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C. CONTROL MODEL

We postulate that the control processes of human controller
adaptation are steady-state tracking, modification, transi-
ent tracking and vernier adjustment. In this sectlion we first
present the emplirical and theoretlical bases for the steady-
state tracking and transient tracking, and develop 1in detaill
the models for these processes. A simple mode switching

model for the modiflcation process 1s postulated and some
remarks on the vernler adjustment process are given.

The assumptions of Section A of this Chapter will be invoked
to simplify the development of the control models. The models
we develop will be based heavily upon empirical 'results from
studles of manual control systems and upon concepts taken

from coptimal control theory.

1. Steady-State Tracklng

The characteristics of fhe human controller in linear, single-
axls, time-invariant, compensatory manual controcl systems are
well documented.1 These results can be used dilrectly to

model the human controller's characteristics in steady-state
tracking. '

It has been demonstrated that in a time-invariant compensa-
tory system, the human controller's characteristics can be
represented with good accuracy by a quasi-linear descrlbing
function, plus a remnant that accounts for those parts of the
controller's response that are not linearly related to the

input.l_u The characteristics of the human controller's
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describing function c¢an, in turn, be approximated to the
first order by the so-called crossover model suggested by

1 The crossover model 1s a2 simple model that

MeRuer,et al.
is based on the observation that the human controller adjusts his
characteristics so that In the reglon of the gain crossover
frequency the open-loop transfer function of the system is of

the form

HC(s) = ~§e (3.45)

where H(s) is the describing function of the human controller,
C{s) 1s the transfer functlion of the controlled dynamics, w,
is the galn crossover frequency, and T 1s the effective time
delay cof the controller. Thls relatlon, together with some
rules for adjusting w, and T constlitute the crossover model.

Approximate values for w, and T for the dynamics and input
signals used in our experiments are glven in Table 1. These
values are those given by McRuen et al% Fer other dynamics

or inputs, the reader 1s referred to McRuer's report.

Table 1

APPROXIMATE VALUES OF w, and 1 FOR
THE CROSSOVER MOBEL

Dynamics w, T sec
C(s) rad/sec
K 5.1 .2
K/s 4.6 .24
K/s? 3.2 .39
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Strictly speaking, the crossover model describes the human
controller's characteristics only in the region of the gain
crossover frequency. We shall, however, assume that this
model is valid over the entire frequency band, and neglect
the additional lead and lag terms which are frequently found
in the human controller's describing functions at high and
low frequencies. By using the crossover meodel, we introduce
errors which would not be present if we used a more detalled
model. However, we also achleve considerable slmplicity, and
for our purposes, this tradeoff Seems worthwhlle.

The crossover model is useful for descrlblng the human con-
troller's characteristics in two distinetly different phases
of the adaptive process. Naturally, it is directly applicable
in the interval between transitions, when the system 1s in
steady-state and all transient errors resulting from previous
transitions are eliminated. The crossover model can also be
used to predict the characteristiecs of the human controller
and of the system 1n the perlod between the occurrence of a
transition and the time at which the human controller begins
to modify his characteristics. In this interval, called the
retention phase by Welr and Phatak%2 the controller presumably
retains the control strategy that was approprilate to the pre-

transition dynamics, Co(s), even though the dynamlcs are Ci(s).

If the human controller's describing function in the pre-transi-
tion period is Ho(s), in the post-transition retention phase
prior to modification, the describlng function of the complete
open-loop system 1s Hoci(s). The closed-loop behavior of the
system 1s, of course, determlined largely by the roots of
l+H001(s). In particular, the relation between system error

and the input disturbance 1s
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where E(s) and D(s) are the Laplace transforms of the error,
e{t), and the input disturbance, d(t), respectively. G(s)
is the 1input to error transfer function. We substitute Eq.

(3.45) for HOCO(s) and let Cio(s) denote the ratio Ci/CO.

G(s) = (3.47)

where Wag and T, are the values of w, and t appropriate to
1

Co(s). A Pade approximation may be used for the time delay

without great loss of accuracy.

G(s) = (3.48)

L mco(s-E/To)CiO(s)

S(s+2/10)

It 1s clear from Eqs. (3.47) and (3.48) that the behavior of
the closeddoop system in the immediate post-transitlon period
depends upon the nature of the change in the controlled
dynamics, more than upon elther the pre- or post-transition
dynamics. More precisely, the closed-lcop roots are
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determined by CiO(s)’ the ratlo of the two controlled dynamics
and by the characteristics of the crossover model. These
roots can be determlned from a root locus analysis of Eqg.
(3.48), or by other methods.

A common kind of transition 1s a change in the gain of the
controlled element for which Cio(s) = KiO' KiO is the ratilo
of the post- and pre-transition gains. In Flg. 5 we show the
locus of the closed-loop roots as a function of KiO for

Wog = 4.6 rad/sec and Tg = .24, values from Table 1 for K/s
dynamics. Negatlive values of Kio give rise to positive real
roots and to non-oscillatory divergence. Gain increases, if
large enough, give rise to osclllatory divergence.

Given {e(to), é(to)....e(i)(t&}, the error and its derivatives
at the time of transition, the input, d(t), after the transi-
tion, and the closed-loop poles, Sy, we can determine e(t) in
the immediate post-transition period. If the poles are
distlinct the expression for the error is

N N-]
(1)

e(t) = ) ) a,, e (t.)exp|-s,(t-t ﬂ

j=1 1=0 i) 0 [ J 0

(3.49)

t
[ da(r) exp[—sj(t-r)]dr
0
where N i1s the number of poles, exp[-] is the exponential
function, e(i)(to) 1s the (1%) derivative of e(t) at t.
The coefficlents aiJ and hJ are determined from G(s) using
the standard methods.22 The second term on the rlght 1s the
convolution of the impulse response relating error to the

input disturbance d(t).

)
+ h
j=1 9 ¢

51



0¢d

*suteb

JUdWA[8-p3]|[043U0I uo(jLsueal-aad 07 -3sod jo orres ayz *Oty o uoL3ouny

e se soLweudp s/y y3im uteb jo abueyd> e Buimo|1o} (S)9H 30 S3004 jO sn20] g B4

Gl Ol

(23s/1) o
o)

Si- 0e-=

(®2/2+s)s

(°2/2-5) Pm %y -

I

#—

)
—
4]

_ I

IVSHM3A3Y
-0l
0oz

—e ®
- e-

ol

Gl

(03s/avy) mf

52



2. Transient Tracking

We postulate that in the translent tracklng phase that begins
after modlification the human controller adopts the character-
1stics specifled by the crossover model, except that hls gain

w is adjusted to give minimum mean-squared error.

c!

The crossover model requires that

HC(s) 2 —S— (3.50)

where the subscript 1 1s used to indicate that the quantities
are appreopriate to the post-transition dynamics, Ci(s). We
treat the error that exists at the beginning of the transient
tracking phase as a step input. The mean-squared error 1is

Jeo
- [ D(s) y) ( D(-s) is (3.51)
2m3 -Joo 1+HC(s 1+HC(=-5)

where D(s) is the Laplace transform of the disturbance step
that was assumed to exist at the beginning of translent track-
Ing. We may choose the sfep to be of unit amplitude without
changing the results, whlch makes

D(s) = 1 (3.52)
A Pad€ approximation 1s used for the time delay giving
1 s(s+;[2—)
R = > 5 (3.53)
1+HC(s) s(s+>)-w,(s-2)
2
) s(s+¥ )

2
s +(? - wc)s +-7F—



The substitution of these quantities into Eq. (3.51) ylelds

{s+=) (—s+%)

2 : 2 ,2 c
s +(; - w, )st— s —(; - mc)3+—;“

(3.55)

The method of Booton, Mathews and Seifert20 may be used to
integrate Eq. (3.55). We find that
2
(wc+?)
E€ = (3.56)
2
2w, (3 )

To find the optimum value of the gain w, we differentiate with
respect to we and set the result equal to zero. We obtaln

w, = .828/ (3.57)
opt

The c¢losed-loop roots of the optimum system in transient
tracking mode are found to be approximately

s = -2+ /) (3.58)

This corresponds to a natural frequency w_ = 1.29/t and a

n
damping factor of 0.45

In Table 2 we give the values of w for the dynamics and

c
Inputs we have used 1in our experimeggg. The values of T were
taken from Table 1. The values of w, for steady-state track-
ing were also from Table 1, and are shown to allow comparison

of the two modes of trackling. It 1s evident from Table 2 that
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the steady-state ©, is consistently higher than the correéspond-

ing transient w Therefore, we would expect the phase

Copt*
margin and damping during steady-state tracking to be consider-

ably less than that durlng translient tracking.
Table 2

COMPARISON OF W, FOR STEADY-STATE
AND TRANSIENT TRACKING

Steady State Transient
Dynamics T w
C(s) sec rad/Sec rad?sec
K .2 5.1 .
K/s .24 4.6 3.4
K/s2 .39 3.2 2.1

3. Modification

We postulate a mode switching model for modification. Once
the human controller has selected the deslired control strategy
and retrieved it from memory, he begins to employ it. We will
assume that there is a time delay between the retrieval and
the activation of the new dynamics. For simplicity this delay
wlll be taken equal to T, the duration of a CI, which, in
turn, is taken to be equal to T, the human controller's
effective time delay with post-transition dynamies.

by, Vernier Adjustment

In the vernler adjustment phase, we postulate that the human
controller adjusts his gain W, (and other parameters that we
shall ignore for simplicity) to be the values appropriate to
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steady-state tracking. We expect this adjustment process to
be slow relative to the rate at which the control strategy
was changed during modification.

We have not investigated the vernier adjustment process in
detail and do not have an analytic model to propose. It
seems reasonable to think 1n terms of a model that employs an
iterative procedure for finding the value of W, that gives
optimal performance in say the minimum mean-squared error
sense. A gradlient method might be employed in this iterative
search process. Standard methods of finding the gradlient by
introducing perturbation of the gain could be employed.23

Presumably the vernler adjustment phase would begin after
transient tracking had reduced the error and error rate to a
low value. A declsion process is involved in determining
when to begin vernier adjustment. This was treated brlefly in
the discussion of the selectlon part of the decision model.
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CHAPTER IV

DESCRIPTION OF EXPERIMENTS

At the beginnlng of thls research program only a limited
quantity of data relevant to the human controller's adaptive
process was available. Little progress had been made toward
achleving a quantitative model for this process. We 1nitla-
ted a series of experiments to enlarge the data base and to
increase our understanding of the adaptive process so that
we might be better able to develop a model.

The experiments that we performed fall naturally into three
groups. The flrst group of experiments was a detaliled study
of the ability of the human controller to adapt to known
changes 1In dynamlcs that occurred at random times. In these
experiments the controllied dynamics were switched between two
different dynamics, both of which were well known to the con-
troller. A varlety of palrs of dynamics were used. These
experiments provided basic information about the control
processes involved in adaptation.

In the second experiments the effects on the adaptive pro-
cess of uncertalnty about the post-transition dynamics and
the effects of an alerting signal were investligated. The
results of these experiments provided important information
about the identification process.,

The third experiment was primarily a detailed study of the
decision processes involved 1n adaptation, although some
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information about modification and vernier adjustment was
obtained from i1t. The post-transition dynamics were uncer-
taln. In most of the experiments a button was glven to

the controller for him to report when a transition had
occurred. The experimental conditions were carefully con-
trolled to reduce the variation of the adaptive response.

The conditions of each of the experiments are summarized in
Table 3. This table gives the purpose of each experiment,

the identity and number of subjects used 1In the experiments,
the pre- and post-transition controlled dynamics (Co(s) and
Ci(s), respectively), the number of different controlled
dynamics that were possible in a transition, whether or not
an input transient could occur instead of a transitlon,
whether or not the subjJect was alerted that a change of dyn-
amics had occurred, and the input forelng functlon. The nota-
tion used for the forcing functions has the followlng meaning:
Rl.5 was a pseudo=-gaussian input with rectangular spectrum
whose cutoff frequency was 1.5 rad/sec. R1.5A denotes a
signal with the same spectrum augmented by a high-frequency
shelf composed of low-amplitude components. These 1nputs are
described more fully in Section B.

The procedures followed in the several experiments varied 1n
detall, but were basically slmilar. Data were taken from a
set of experimental sessions. The duration of each session
was typically four to elght minutes. During each session a
series of transitions were made between the controlled dynamics
relevant to the experiment without interrupting the session.
Usually between ten and twenty transitions comprised a session.
The interval between transitions was not constant, but varled
from between 10 and 30 sec¢. The procedures followed in each
experiment are discussed more fully along wlth the presenta-
tion of the experimental results.
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Fig. 6. Photograph of tracking apparatus used in Experiments
IA and IB.

Fig. 7. Photograph of tracking apparatus used in Experiments
IIB and III,
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A. APPARATUS

The apparatus used in the experiments went through several
stages of evolution., Initially, we used the apparatus that
Young et al7 employed in their studles wlth pure gain con-
trolled-element dynamics. Thils setup shown in Pig. 6 was
employed in Experiments IA and IB. Later, we changed the
display oscilloscope from an 11x14 inch rectangular display
to a 12 cm dlameter circular display. In other respects,

the apparatus remained the same. Thls slightly modified set-
up was used in Experliment IIA. After thls experiment we
completely redesigned the subject's station. The princlpal
changes were a new enclosure and a new control device. This
last setup, shown In Fig. 7, was used for Experiments IIB and III,

1. Initlal Apparatus

The apparatus used In Experlments IA and IB is shown in the
photegraph of Fig. 6. The subjJect was seated in a small
cubicle 6 feet high, 2-1/2 feet wide, and 6 feet long. Placed
on the wall directly in front of him was an 11x14 inch oscil-
loscope whose center was positioned at eye level and approxi-
mately 36 inches from the subject. The visual indicators

on the display were a 1/2 inch dlameter circle and a small
dot. The clrcle remalned statlenary at the center of the
oscilloscope and the horizontal displacement of the small dot
was proportional to the error. Mechanlcal choppers were used
in the X and Y axes for presentation of the two visual 1in-
dicators on the display osclilloscope. The-input signals were

stored on magnetic tape.
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A special display card was used to mask all but the display
part of the oscilloscope face, showing only a small rectangu-
lar segment of the screen which was 3 inches high and 1Y
inches wide. At the edge of this display was an arrow mark-
ing the horizontal center of the rectangle. Other indlca-
tions occurred at 3 and 5 inches to the right and left of
center. These markings were used to reduce auto-kinetic
effects in the tracking cubilcle.

The subject made his response by moving a light control
stick which protruded through a circular hole in the right
arm rest of a student's chalr on which the subject was seat-
ed. The control stlck was spring restralned and easily
manipulated by a wrist movement. One pound was required for
maximum deflection. The stick could be moved approximately
+45 degrees from its upright position. The right and left
movements of the stick provided the voltages for the input
to the controlled dynamlics. The stick was free to move in
the forward and back directions as well as left and right,
but only the latter motion affected the response signal.

The cublecle was lighted indlrectly from a fluorescent lamp
positioned about one foot above the oscilloscope. The walls
of the cublcle were palnted dull gray to reduce reflectlions
from the face of the display. The response signal from the
sublect's control stlck was fed to an Electronic Associates
Inc. TR~48 analog computer which was used to simulate the
controlled dynamics, to control the transitlion and to con-
struct the displays. The TR-48 computer was programmed to
give two parallel channels of controlled dynamics. Each
channel could simulate a varlety of different controlled
dynamics by proper selection of galns and insertion of in-
tegrators. While the subject was tracking with one set of
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dynamics using one channel, the variables of the other
channel, which was not connected to the display, were set
to give the desired dynamics.

Transitions could occur only when several conditions were
satisfied simultaneously: (1) the experimenter had to set

an "activate" switch; (2) the input rate had to be of proper
sign (usually negative); (3) the input rate had to be greater
than some minimum value; and (4) the output of the active
channel had to be egqual to the output of the inactive channel.
The 1nactive channel was usually held in ground state until
the transition occurred, and when this was the case, transi-
tions could occur only when the output was zero. Condition
{4) insured continuity of the output through the transitiocn.
Conditions (3) and (4) insured that transitions would occur
during similar portions of the input so that the responses
could be compared more easily.

Pen recordings were made of the input, output, stick and
error slgnals, and of the tlime of transition. TFor computa-
tion of the ensemble average error followlng a transition,
the tracking error was recorded on magnetic tape and later
was played into a Digital Equipment Corporation FDP-1 digi-
tal computer.

2. Second Stage Apparatus

For Experiments ITA, the initial apparatus was modified
slightly. The large rectangular oscllloscope was replaced
by a circular one 12 cm in diameter. The scope was located
at eye level approximately 18 inches from the subject. The
indicators on the display were a .4 cm diameter circle and
a small dot. The circle remained statlonary at the center
of the oscllloscope and the horizontal displacement of the
dot was proportional to the system error.
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In Experiment IIA one of the experimental conditlons required
the use of an audlo alerting signal. This signal was a 1000
cps tone of moderate intensity which was presented to the
subject through earphones. The signal was turned on when a
transition was made from the base condition dynamics and
remained on until the transition back to the base condition
occurred.

3. Third Stage Apparatus

The apparatus was completely redesigned for Experiments IIB
and III. The new setup 1s shown in Fig. 7. The subject's
station was redesigned and placed in a soundproof room. The
subJect was seated facing an osclilloscope screen whose diam-
eter was 12 ecm. A compensatory tracking display was used, but
performance feedback was provided the subJect by making the
diameter of the target circle vary in propertion to the run-
ning mean-squared error. The averagling time was 10 sec.

The larger the mean-squared error during thils perlod, the
larger the circle dlameter.

A new control device, a modified Measurement Systems, Inc.
Model 435, force-sensitive hand control was installed. The
modification to the control consisted of the addition of an
ll-inch nylon stick which was attached toc the transducer of
this control to give an omni-directional, spring-restrained
control device. The stick had a spring constant of

2.2x106 dynes/cm displacement of the top of the stick.

The control was oriented so that the stick was horizontal
and could be moved left-right and up-down in a plane parallel
to the scope face. Only the left-rlight movements controlled
the error dot. The controlled dynamics were of the form
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C(s) = K/s. The stick gain was adjusted so that an error
dot velocity of 15 cm/sec resulted from a 1 cm stick dis-

placement.

A signaling device was gilven the subjJect with which he could
indicate when he thought a transition had occurred. The
signal device was held in the subject's left hand. It con-
tained a button which the subject kept depressed until he
detected a transition. The release of the button was taken
to be an indication that a transition had been detected.

65



B. FORCING FUNCTION DISTURBANCES

Pseudo-gaussian, low-frequency forcing function 1nputs were
used in the experliments. These inputs were constructed by
adding together a large number {(at least forty) of sinusoids
which were equally spaced 1n frequency. The spacing was
about .04 rad/sec. The amplitudes of the sinusolds were
adjusted to give a rectangular power spectrum. The cutoff
frequency of this spectrum was 1.5 rad/sec. The RMS dis-
placement of the forcing function was 1.5 inches on the
large rectangular oscllloscope and 1.3 cm on the 12 cm scope.
Signals having these characterlstics are designated R1.5

in Table 3.

In Experiments IIA and IIIB the rectangular spectrum was aug-
mented by the addition of three silnusolds at frequencies of 3,

6, and 12 rad/sec. The RMS displacement of this high-frequency
signal was 26 db below the primary rectangular spectrum.

The 1lnput disturbance augmented in this way 1is designated
R1.5A in Table 3.

In Experiments IIB and IIIA an unaugmented rectangular spectrum
with cutoff frequency of 1.5 rad/sec was used. This was the
same spectrum as was used 1n Experiment I. The RMS displace-
ment of this input was 2.1 cm on the 12 cm scope.
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C. SUBJECTS

Two subjects (GK and RB) were used in Experiments I

and 1IIB, Two subjects (GK and RBT) were used in Experiment
IIB. Three subjects (RBT, RGT, and JCV) were used in Experi-
ment IITA. One subJect (GK) was used in Experiment IIIB.

All of these subjects were male, high school or college
students. None had pilot training, all were automoblle
drivers and all well-tralned to be good trackers before data
were taken. SubjJects GK and RB had between 20 and 30 hours
of tracklng experience before Experiment I was begun.

SubJects RBT, RGT and JCV were trained until they were equally
proficient in tracking each of the alternative dynamics and
until thelr performance appeared to stabllize. Total tracking
time with K/s controlled-element dynamics ranged from 3 to 6
hours. They were then allowed to practice transitions between
dynamics until thelr adaptive performance stabillized.
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D. PERFORMANCE MEASURES

A number of different time-domain performance measures were
used to compare and describe the human controller's adapt-
ive processes in these experiments. Time~domaln descript-
lons are well-suited to describing time-varying systems.
The measures were: ensemble average error curves following
a transition; descriptive properties of the adaptive response
such as estimated times for detection, identification and
modification; ensemble average estimates of the human con-
troller's time-varying gain; and, of course, the time hls-
tories of the input, error, stick and output signal before
and after a transition.

1. Ensemble Average Error Waveforms

The results of Experiment I will be presented principally

in the form of ensemble average error waveforms. The

ensemble average error waveforms following each type of transi-
tion were computed to reveal consistencies in a subject's
responses to that type of transition. Indlvidual adaptive
responses to transitions of a slingle kind often showed large
variabilities which were attributed 1n part to variatlons in the
input signal in the region ahout transition and in part to

the variations 1in the subJect's adaptation characteristics.

In Experiment I, however, transitions could cccur only when
the system output was zero and when the output velocity was
greater than some threshold and in a specifled direction.
Therefore, transitions tended to occur during portions of the
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input slgnal that were similar, and the error responses
obtalned showed a systematic dependence upon control situa-
tlon and type of transition. The ensemble averaging tech-
nique caused those aspects of error not closely associated
with the adaptive process to cancel out on the average, and
enhanced the consistent features of the adaptive process.

Because of the consistency of the input signal during a
transition, a major component of the average error curves was
due to the input alone anag not t¢ the transition. This com-
ponent was eliminated by subtracting the average error occur-
ring when the pre- and post-transition dynamics are lidentical
so that the transitions involved no change whatsocever in the
controlled-element characteristics. The average error curves
presented 1n the uiscussion of thls experiment were compensa-~
ted by this process.

A more detailed discussicn of the average error computatilon
procedure is given by Young et al.7 The computations were

done on a Digital Equipment Corporatlon PDP-1 computer.

2. Descriptive Measures

The results of Experiment II are presented principally in

terms of descriptive measures which approximately delimit

three phases of the adaptlive process: 1identification, modi-
ficatlon and transient trackling. The ldentification phase is
concluded when the subject has discovered what the new aynamics
are. The modification phase ls concluded when he has changed
his characterlistics so that they are appropriate to the new
conditlon, and the transient tracklng is concluded when his
tracking performance becomes commensurate with the steady-
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state level appropriate to the new dynamics. We use the
terms identification, modification and adjustment times to
refer to the termination of each of these phases. All times
are taken relative to the transition time.

It 1s not easy to determline the termination times of all
three phases from time histories, and in Experiments I and II
we had to improvise to obtain rough estimates of these
quantities. The followlng are the descriptive measures used
for Experiments I and II.

a. Identification Time

We have used the time at which the subjJect's post-transition
tracking behavior starts to differ from his pre-transition
tracking behavior as an estimate of the identification time.
Since we require that the subjlJect change his behavior in order
to reglster an identification, the ldentification times we ob-
talned include at least some portion of the modification
phase.

b. Peak Error
The peak error is the maximum error observed following a

transition. It provides information about the speed and
appropriateness of the subject's adaptation.
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c. Time of Peak Error

For transitions that lead to unstable closed-loop behavior
and for many other transitions, the error peak will occur
after modification is completed. Thus, the time of peak
error provides an estimate of the modification time.

d. AdJjustment Time

When the error following a transition fell below a criterion,
we considered the transient tracking phase to have ended,
steady-state tracking to have begun, and the subject to have
essentlially completed his adaptatlion. For subject GK, the
error had to fall below 0.4 cm and remain below .8 cm for

1l sec. For subject RB, .8 c¢cm and 1.2 cm were used. These
ceriterlia agreed in most cases with the subjective estimates
of when the subject had adJusted to new conditions.

In Experiment III the subjects used a signaling device to
indicate when they thought a detectlon had occurred. The
signaling time was taken as an estimate of detection time,
The time at which the subject changed the character of his
response could then be used as an estimate of identification
time. Modification and adjustment times were obtained
through the use of an ensemble averagling technique for meas-
uring controller gain which is described below.

3. Human Controller Galn Estimates

When C(s) is equal to K/s, we obtain a very simple representa-
tion for the human controller from the crossover model of
Eq. (3.#45).

w e~ T8

HC(s) = =
S (4.1)
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K (4.2)

Direct measurements of.Kh can be made from values of the
error, e(t), and the stick, c(t), time functions. If we
assume Eq. (4.2), then 1t follows that c(t) can be written
as

c(t) = Kh(t)e(t-r) + n(t) (4.3)

where e(t-1) 1s the error delayed by T sec, and n(t) 1s the

remnant. To obtaln stable estimates of K_ we average over

h
an ensemble of correctly synchronlized adaptive responses to

the same type of transition. Doing this we obtain

<c{t)e({t-1)>
(4.4)

K. (t) =
h <e2(t—r)>

where <ce> and <e2> are averages taken over the ensemble.
The standard deviation of Kh(t), oK(t), can be estimated at
the same time K, 1s being computed.l6

5 <n2(t)>
oR(t) 4 ———— (4.5)

N<e2(t-1)>

where N is the size of the ensemble and <n2(t)> is the
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average squared remnant. By definltion
<n®> = R-r(t)] <c?(t)> (4.6)
where r(t) is the correlation between e(t-1) and c(t).

<c(t)e(t-1)>
p2(t) = —n (4.7)

<02(t)> éea(t-r)>

One of the problems encountered in computlng ensemble aver-
ages 1s how to synchronize the members of the ensemble 1in a
consistent way. In the analyslis of most of our data, we found
that synchronizing all the responses with respect to the
detection time ylelded the most conslistent estimates of Kh'

For Experiment 1II, the signaling time was taken to be an
indication of the detectlon time, and 1t was used for synchron-
ization.
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CHAPTER V

PRELIMINARY EVALUATION OF DECISION MODEL

Experiment II was performed primarily to explore the nature
of the declsion processes of adaptation and to test in a
preliminary way models for these processes. In this Chapter
we present the results of Experiments IIA and IIB, and then
we use these results to evaluate the decision model developed
in Chapter III.

Experiment IIA was a study of the effects of transition uncer-
tainty and alerting on the adaptive process. Experiment IIB
was a study of the identificatlon in which transition uncer-
tainty was also a factor. Both of these experiments have been

13,14 However,

discussed at least partially in previous papers.
since writing these papers we have revised the model for the
decislon processes considerably and have analyzed additional

data from these experlments.

A. EXPERIMENT ITIA: STUDIES OF THE EFFECTS OF TRANSITION
UNCERTAINTY AND ALERTING

1. Summary of Conditions

In most time-varying contreol situations the human controller
does not have complete knowledge of the post-transition dynam-
1es. In other situations he receives warning, or alerting
signals that tell him that a transition is about to occur or
has just occurred. To determine the effects of these two
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factors upcen the adaptlve process, two sets of experiments

were performed 1in whlch the post~transition dynamles were

not completely predletable and in which an audio signal alerted
the subject that a transition had occurred.

In Experiment IIA four congitions were tested and compared:

a. Alerted Certain, (AC) -- the audlo signal
indicated that a transition had occurred
and the subject had complete knowledge of the
post-transition dynamics.

b. Alerted Uncertain, (AU) -~ the audlo signal
indicated the change, but the subJect did not
have complete knowledge of the post-transi-
tion dynamics.

¢. Not Alerted Certain, (NC) -- no alerting sig-
nal, but the subject knew what the post-transi-
tion dynamics would be.

d. Not Alerted Uncertain, (NU) -- no signal and
incomplete knowledge of post-transition dynam-
ics.

The transitions were from a bhase condition of KO/s2 to any
one of 18 other dynamics for one subject, and to any one of
12 other dynamics for the other subject. Each transition
from the base condition was followed by a transitlion back to
the base conditlcon. The possible dynamlcs Included Ki’ Ki/s,
and Ki/sz, where Ki could be of elther polarlity and have
three magnitudes with each system order.

There were two subjects, GK and RB. Each recelved basically
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the same set of experimental conditlons. This experiment was
carried out after each subJect's total tracklng experience
was approximately 40 to 50 hours.

2. Results of Experiment IIA

Descriptive measures were obtained for the five types of
transitions: +8/s2 to 16/32; +8/s2 to —16/52; +8/s2 to +16/s;
+8/s2 to -16/s; and +8/s2 to +4 for each of the four conditions
of alerting and certalnty. These measures, shown in Table 4
are the average of the measurements made on ten transiticns for
the certain cases and three transitions for the uncertain cases
for each of the two subjects.

a. Identification Times

The 1dentification for all transitions, except 8/52 to +l6/s2
are in Table 4a. The control strategies required for 8/s2 and
+l6/s2 were very simllar, and it was not possible to determilne
accurately the times at which €he human controller changed hils
control strategy and had identifled the new dynamics. There-
fore, the ldentlificatlion times were omitted.

The i1dentification times for the AC condition were generally the
shortest. Not only was the overall mean AC time shortest, but
the majority of the AC times for each transition were shorter
than the times for corresponding transitions under the other
conditions. The times for the other three conditions were not
ranked in any consistent way. The AC times were significantly
shorter than the NC times. A sign test24
for each type of transitlon for each of the two subjects in-
dicated a significant difference at the .01 level. Comparisons
made on the other palrs of condltions did not give signifiecant

on the mean scores

results.
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b. Peak Error

Table 4b shows that the average peak error scores for each
transition under the AC conditlon were smaller than the

scores for the correspondlng transltions made under any of the
other three conditions. A sign test made on the mean scores
for each subJect for each transitlon indicated a significant
difference between the AC and NC scores at the .05 level.
Although the AU mean was less than the NU mean, the difference
was not sighiflcant and the two subjects gave inconsistent
results. (The mean AU score for RB was greater than his NU
score). Thus, we cannot conclude that alerting per se leads
toc smaller peak errors.

The peak error scores for the two certaln conditions were
smaller than for the two uncertaln conditions. The mean AC
peaks were about 60 percent of the AU error. The difference
was significant at the .01 level. The mean NC peak error was
about 75 percent of the NU error, the difference belng signi-
ficant at the .05 level. Combining all the AC and NC transi-
tions of the same type and comparing them with the combined NC
and NU transitions, we, of course, alsc found that the certain
scores were significantly lower than the uncertaln scores, the
significance level being .005. Thus, complete knowledge of
the post-transition dynamics appears to result in conslderably
and significantly smaller peak errors.

¢. Time of Peak Error
The times to reach peak error are in Table 4c. Controlled-
element dynamics had a greater effect on time of peak error

than did either alerting or certainty. The higher the order,
the longer was the time to peak error.
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The two certaln conditions gave shorter times than did the
two uncertain condltions. The AC conditions gave shorter
times than any'of the other transitlions. The AC times were
significantly shorter than the times for each of the other
three conditions. The significance level belng .01 for the
three comparisons. The times for the two certaln conditions
combined were significantly shorter (at the .01 level) than
the times for the two uncertain conditions.

d. Adjustment times

Adjustment times in Table 4d tended to increase with the sys-
tem order and with uncertainty. The mean AC was shorter than
the mean times for the other three conditions. The AC adjust-
ment times were signlficantly shorter than the NC and AU times,
the signiflcance levels belng .05 and .01, respectively

3. Discussion of Experiment IIA

The effects of alerting ahd knowledge of the post-transition
dynamics cobserved in this experiment should be predicted by
the model for the ldentification process developed in Chapter
ITITI. According to this model, the ldentification decislion 1s
based upon Eqs. (3.41) and (3.42) which are repeated here,

The decision rule based on these equations 1s: Select a Ci(s)
other than Co(s) as the dynamics if a Ci(s) can be found for
which

(Vii-V01)P(Ci;n)p(Aé|Ci,c;n) > (VOO-Vio)?(CO;n)p(Aé|C0,c;n)

+ 1 (v JP(C

;n)p(agic,,e;n)  (5.1)
1#1,0 J

03~V13)7(Cy
for 1p0.
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and for which
(Vy=V, 4 P(Cysn)p(aéCy,e3n) > (V) -V, )P(C ;n)p(a&|C, ,c;5n)
for k#0,1 , (5.2)
The effect of the alerting signal should be to reduce the

prior probability of Co(s) to zero. Thus, for the trials with
the alertling signal

.
o

P(C,;0) %

0°*
and

li«

P(C,30) & (5.3)

3
As before, we have assumed the transition occurs at the begin-
ning of CI(n=0), and that there are K possible dynamics. We
showed in Chapter III (Eg. (3.27)) that without the alerting
signal

P(Cy;00% 1
and (5.4)
P(Cy50) ¢ 3
The effect of complete knowledge of the post-transition dynam-
ics (the certain condition}) is to make all but one of the
prior probabilitles approach zero. If Ci(s) 1s certain to be
the post-transition dynamics

P(C,;0) £ 0 for J#0,1 (5.5)

Ji

In this experiment the likelihood functions should not have
changed with experimental conditions. The main variables of
alerting and certainty should affect the results primarily
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through the prior probabilities. We use Egq. (3.27) to find
these probabllities. For the AC condition

P(CO;O) = P(CJ;O) & o for j#¥0,1
1 (5.6)

P(C,;0)

For the NC condition

P(CO;O) 2 1
P(Cy30) = q (5.7)
P(CJ;O) 2 0 for j#0,1

For the AU condition

== o

P(CO;O)
P(C,;0) ¢ for 1#0 (5.8)

and for the NU condition

P(CO;O)
(5.9)
for 1#0

P(C,;0) = %
It is clear from these probabllities that the AC condition
imposes the least uncertainty upon the human controller, and
that, therefore, little, if any, information need be derived
from observations of A&(t) and c(t) in order to identify the
new dynamlcs and select an appropriate control strategy. As

a result we would expect the AC conditlon to lead to the
shortest identification times. This, in fact, was the observed
result for most cases, Table 4a).

There was essentially no difference in the AU and the NU mean
identification times. 1In the AU runs, P(CO;0)=0,and P(Ci;o)

82



should have been consliderably larger than in the NU runs.

We, therefore, would expect that identification to be easier
in the AU and to requlre less time. The fact that the times
were about the same suggests that at the tlime of the alerting
signal the secpnd term on the right side, Eq. (5.1), the sum-
mation term, was sufficlently large so as to preclude an
immedliate selection of one of the Ci(s)' The summation repre-
sents the difference in the expected values of choosing Co(s)
and Ci(s) when, in fact, the dynamics are neither. If the
penalty for incorrectly choosing Ci(s) is high, the 1dentifica-
tion decision will be postponed until sufficlent data has been
obtained to make the probablility of such an error small enough
so that Eq. (5.1) i1s satisfled. This delay would tend to ob-
scure the tendency of the alerting signal to decrease the
identification times,.

We would expect NC ldentification times to be shorfer than the
NU times and the result obtained in this experiment was sur-
prising. The NC times should be shorter because P(Ci;O) for
the NC condition is K times larger than for NU condition.
However, Eq. (5.1) still must be satisfied in the NC condition
and sufficient data must be obtalned to reduce the error prob-
ability to a sufficiently small value. This requirement would
tend to equalize the lidentification times for the two condi-
tions. The longer times actually observed for the NC were not
significantly different statistically from the times for the
NU conditlon, but the fact that they were longer runs counter
to the model. Statistical sampling errors may have been the
cause. Another posslble explanation is that the AC and the
‘NC trials were run before the AU and the NU trials and the
subjJects may have been more proficient at adapting in the
later experiments.

The fact that the AC trials resulted 1n smaller peak errors
and shorter tlmes to peak error 1s to be expected from the
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model, Once the identificatlon had been made, the subject
knew immediately the correct strategy to adopt and he should
not have made errors of identification or modification.

Since the ildentification times for the AC trials were the
shortest, the peak error times for this condition should also
be shortest. Since the peak error generally lncreases with
the time until a correct ldentlfication 1s made, shorter peak
error times should be accompanlied by smaller peak errors.
Note that the difference between the AC and the NC mean peak
error times 1s about the same as the difference between the
AC and NC mean identification times.*

The two certaln conditions gave smaller peak errors and shorter
peak error times (with one exception)than the two uncertain con-
ditions., The differences were statistlecally significant. For the

certain conditions, once a transition had been detected and con-
firmed using Eq. (5.1), the cholce of post-transition dynamics

could be made with little chance of error. For the uncertailn
conditions more information is required for 1dentiflication
error. This will take additional time and probably lead to
larger peak errors and longer peak error times.

The adjustment times are a measure of the time to complete

the entire adaptive process. Many factors, including the
identification times, peak errors, peak error times, and con-
trolled dynamiecs affect the adjustment times. It 1s not sur-
prising, therefore, to find that only the AC condition gave
rise to significantly shorter times. The NC times are also
shorter than NU time,, but the differences are not significant.

‘The peak error times for transitions to +16/s and to +4 are
smaller than the corresponding identification times. This
apparent anomaly results from the fact that for these transi-
tions the closed-loop roots of the system immediately after
these transitions were highly oscillatory. The peak error
resulted from the natural oscillation of the system. Modifica-
tion and identification typically occurred between the first
two peaks of this osecillation.
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In summary, these results confirm qualitatively several
features of the adaptive model proposed in Chapter I1II. In
terms of the performance measures used for thls experiment,
1t appears that complete knowledge of the post-transitlon
dynamics will lead to considerably improved adaptive per-
formance. Alerting wilthout such knowledge does not appear
to help much. The combination of alerting and certainty re-
sults in performance markedly better than any of the other
conditions.
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B. EXPERIMENT IIB: FURTHER STUDIES OF IDENTIFICATION

1. Summary of Conditions

In Experiment IIB we continued the study of the ldentifica-
tion process. In this experiment the effects of transition
uncertainty with K/s dynamics were investigated. Starting
from a base condition Ko/s, the gain could decrease by a fac-
tor of 5, or change polarity. In addition, a transient signal
that simulated the error waveform observed with a polarity
change could occur instead of a gain change.

The changes of control sltuation were presented 1n a random-
1zed order s¢ that the subject could not predict the change.
However, a change from the base condition of Ko/s was always
followed by a change back to the base condition. Thus, al-
though the first member of a palr of transitions was unpre-
dilctable, the second was always predictable. This procedure
allowed us to investligate within the context of a single run
the differences between the performance wlth complete and in-
complete knowledge of the post-transition control siltuation.
The use of the input translient allowed us to study how the
human controller distinguishes between two events, both of
which lead to similar error signals.

Two subjects were used in this experiment. They were both

well-trailned for steady-state tracking and for adapting to
transitions.
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2. Development of an Identification Strategy

In Fig. 8 1s an interesting serles of adaptive responses
obtained during the tralning period for this experiment. The
subJect had been trained wlth polarity reversals and gain de-
creases prior to the set of runs from which the data in Fig. 8
were taken. Without the subject's knowledge, a pseudo-transi-
tion consisting of a translent disturbance lnput occurred dur-
ing the portion of the run shown in Fig. 8a, instead of the
normal change of controlled dynamlics. The transient waveform
was designed to produce an error waveform similar to that ob-
served when a polarity reversal occurred. Figure B8a shows the
subject's response to thls pseudo-transition when he had re-
celved no prior tralning or exposure to such a transition. In
Fig. 8b 1is his response after 10 such transitions, and in Fig.
8c is his response after tracking about 50 such transitions.
These pseudo-transitions, which simulated a polarity reversal,
were embedded in a set of transitions consisting of polarity
reversals and gain decreases.

Early in thls training series, the subjJect assumed that the
pseudo-transition was a polarity reversal. He reversed the
polarity of his control movements immediately after detectlon
and had to reverse agalin when he found that hils ldentiflica-
tion was incorrect. Thils is what we would expect from our
identification model., Initially, the prior probabillity of the
pseudo-translition would be very small. The llkelihood that
the observed A& came from a polarity reversal would be high
and the prior probability of the reversal would also be rela-
tively high. Thus, the polarity reversal is the best cholce
given the subjJect's experience. After considerable experience
wlth this set of transitions, the subject adopted a different
strategy. He tracked both the pseudo-transitions and polarity
reversals as 1f they were input disturbances. He would
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reverse the polarity of his control movements only if the
error continued to increase 1n subsequent control intervals.

This strategy would also be predicted by our identification
model. After considerable experlence with thls set of transi-
tlons and pseudo-translitions, the subjective prior probabllity
of the polarity reversal and the pseudo-transition should be-
come approximately equal, since in this experiment both types
of transitions could occur with equal prcbability. However,
the error waveforms produced by both transitions were suffici-
ently simllar so that the likelihood of both transitions also
should be about equal. However, declding that the input
transient occurred 1is equivalent to deciding that Co(s) was
still the dynamics. In the identification model, 1if & higher
value were assoclated with choosing Co(s) than with the choos-
ing of other dynamics, we would predict that early in the
post-transition periocd, the subject would decide that no change
in dynamics had occurred. He would continue to track as if
dynamics had not changed until he obtalned sufficlent informa-
tion 1n subsequent control intervals that would lead him to
decide that a pelarity reversal had indeed occurred.

3. Effects of Transltion Uncertainty on Identification

As mentioned earlier, transltions cccurred in pairs, the first
of the pairs being uncertaln and the second belng certain. We
would expect that the identification times for the uncertaln
member of each palr would be longer than for the certain mem-
ber, Althcugh we did not obtain thls result in Experiment IIA,
the results of Experlment IIB confirm our expectations. The
effects of knowledge of the post-transition dynamics are
clearly evident in the results gilven 1in Table 5, The Table
contains the mean approximate identification times, the
standard deviatlon of these times, and the number of correct
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and 1ncorrect identifications made in the certain and uncer-
tain polarity reversal and transient input cases.

The approximate identification time is an estimate of the

time requlred for the subjJect to ldentify the transitlon once
the transition has been detected. It is the interval delim-
ited by the time at which the error first exceeded three times
the standard deviation of the pre-transition error and the
time at which the error reached 1ts peak value. The first of
these times is assumed to approximate the time of detection
and the second, the time of identification.

We see from Table 5 that for one subject (GK) about 15 per-~
cent of the reversals were ldentified as transient 1nputs in
the uncertaln case, whereas none of the reversals were lncor-
rectly identified in the certain case. For translent inputs,
about 20 percent of the transitions were incorrectly identi-
fied as reversals in the uncertain case and about 16 percent
were Incorrect in the certain case. The mean ldentification
time, £, for uncertain reversals was .24 sec longer than for
the certailn reversals. The mean identiflcation time for cer-
taln translent inputs was slightly less than the time for
uncertain transient inputs. Subject RBT showed smaller diff-
erences In 1dentification times and made fewer mistakes. For
both types of transitions, the certalin times are shorter than
for the uncertain times.

The small differences in 1dentification times for the certaln
and uncertain input transient transitlons reflect the fact
that the subjects adopted the strategy of deciding in favor
of Co(s) until the input translent and the polarity reversal
could be clearly distinguished. The larger values of t for
the uncertaln reversal transitions as c¢ompared to the certain
transiticns also reflects this strategy. The difference
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between the times for the certain and uncertain reversal
cases, which amounts to .24 sec for GK and .12 sec for RBT,

is comparable to the duration of a control interval, 1indi-
cating that about one additional movement was required for
identification of the polarity reversal when it was uncertain.
The number of identification errors made by GK is high 1n the
uncertain cases. To reduce thils number of errors, the sub-
Ject would have to acquire more information and, therefore,
presumably take more time to identify than he did.

These results clarify one of the anomalies of Experiment IIA,

namely, the lack of a slignificant difference between the non-

alerted uncertain, KU, and the non-alerted certaln, NC, condi-
tion. In the present experiment, 1in which better measurements
of the identification time were posslible because of the cholce
of dynamlcs and 1n which a larger sample slze was obtalned, we
were able to show significant differences between the certaln

reversal and the uncertain reversal transitions. This result

is predicted by the identification model.
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CHAPTER VI

DETAILED STUDY OF DECISION MODEL

In this chapter we present and discuss results obtained from
two experlments that constituted a detailed study of the moni-
toring and identification processes of adaptation. The first
of these experiments, Experiment IIIA, was performed by
Millerlu to test a model for the monitoring phase that he
developed as part of his thesis. We have used his data and
many of his results to valldate the monltoring and identifica-
tion model of Chapter III for the case iIn which the controlled
dynamics are of the form K/s*. The second eXperiment, Experi-
ment IIIB, performed by Elkind and KelleylS provides a test of

the model with K/s2 dynamics.

Because Miller's experiment provided the most complete set of
data avallable for testing the model, we present a fairly
complete account of his experiment. Several figures are re-
produced directly from his thesis.

#
Results from this experiment are also used for testing the
modification portion of the control model. These are dis-
cussed 1In the next chapter.



A. EXPERIMENT IIIA: MILLER'S STUDY WITH K/s DYNAMICS

1. Conditlons

a. Apparatus

Miller's experiment differed from Experiment II in a number
of Important respects that led to better experimental control
and more sensitive analyslis of the results. The controlled
dynamics were K/g. As a result, the human controller's
characteristics could be represented simply by a gain and a
delay as in Eq. (3.45). The transitlions, which involved only
changes 1In the polarity and magnlitude of the gain, were con-
trolled by a signal that was recorded on a channel of the
magnetlc tape on which the input forelng function was also
recorded. This insured that transitions would occur at the
same polnts of the input during each run, thereby eliminating
input signal differences as a source of run-to-run varlance.
Finally, the sublect was gilven a signaling device to 1indilcate
when he thought a transitlon had occurred. This device was

a normally-closed pushbutton switch. When the button was re-
leased, the marking pen on the etent channel of a strip-chart
recorder began to osclllate, thus indicating explicitly the
time of detectlon.

Two galn magnitudes were used for the controlled-element:
one produced a dot velocity of 15 cm/sec per cm of stick
deflection In the presence of no input signal, and the other
produced a velocity of 3 cm/sec per cm of stick deflection.
The polarity of the gain could be of either sign.
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Strip-chart recordings were made of the input, the output,

the error, the control displacement, the control signal which
triggered the transition, and the output of the signaling de-
vice which indicated the subject's detectlon of a transition.

b. Procedure

The three subjects, all 2l-year old, male, MIT students, were
first trained in steady-state tracking with each of the con-
trolled dynamics. Next, they practiced tracking with transi-
tions. After about two hours of practice with transitions,
they were given the signaling device and allowed to practlce
transitions uslng 1t. They were Instructed to use the same
tracking strategy with the signaling device as they did with-
out it. Then the data runs were begun.

In each data run there were eighteen pcoints at which a transi-
tion could occur. At slix of these, the same transitions
occurred during each run. These six transitions were the only
ones scored. The other twelve transitions were varied random-
ly from run to run. At some polnts, where a transition could
occur, no transition was made, so that. the subject could not
learn when to expect a change.

A total of twenty-six data runs each for two subjects, and eight-
een runs for the third one, were made with the signaling button.
Data from only the last ten runs with each subjJect were

analyzed. At the conclusion of the runs with the signaling
device, five to seven runs per subjJect were made in which the
subject did not have to signal at all, but could concentrate

on trackling the changes. These data were taken to allow
assessment of the extent to which the signaling task inter-
fered with the tracking task.
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2. Effects of Button Release on Adaptation

Comparison of the results with and without the signaling de-
vice indicated that the signaling task did not interfere
materially with monitoring and ldentification, but may have
interfered with modification and transient tracking.

In Table 6 1s a comparison of the average times of the peak error
and the average mean-squared tracking errors with and wlthout

the signaling device. The results inm the Table were obtailned
from seven signaling runs and flve no signaling runs with one
subject. The standard deviation of the peak error times and

the mean-squared error are also given,

Table b
COMPARISON OF RUNS WITH AND WITHOUT A SIGNALING TASK

Peak Error Times

With Signal Without Signal
Transition Standard Standard
Mean Deviation Mean Deviatlion
No. Type (sec) (sec) (sec) (sec)
7l +3/s * +15/s A0 .06 .38 .06
8] +15/s * ~15/s .56 .08 .58 .10
15! +3/s + -3/s .82 .23 .61 .05
14] +15/s » +3/s 2.10 .15 2.28 .22
16/ -3/s8 + -15%/s .93 .11 .68 .22
Mean-Squared Error
With Signal Without Signal
Standard Standard
Mean Deviagion Mean Deviation
mm< mm mme mm2
Average Over
Entire Run 25.8 7.4 17.3 1.9
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There are no consistent differences in the peak error times
between the signaling and no signaling results. Since for
K/s dynamlcs, detection of a transition and identification
must be essentially completed prlior to the time of peak
error, the lack of a difference in peak error times lndicates
that signaling did not interefere with these two tasks.

A large and slgnificant difference in the mean-squared error
scores was found. Most of the mean-squared tracking error 1is
produced by the large errors that result when a transition
occurs. Slnce the time of peak errors was not affected by

the signaling task, the larger mean-squared errors observed
when signaling was required probably resulted from interfer-
ence between the signallng task on the one hand and the modi-
ficatlion and transient tracking phases of the adaptive process
on the other. The modificatlion phase may extend beyond the
time of peak error and the greater part of the translient track-
ing phase will be after the peak of the error. Moreover, the
signal response usually occurred durlng the modification and
transient tracking phases. In spite of its apparent effect

on modlification and translent tracking, the information pro-
vided by the signaling device 1s very important for under-
standing detection and identification and its use seems Justi-
fiable.

3. Temporal Characteristics of the Adaptation

In Figs. 9a through 9f are typical time hlstories of the 1lnput,
response, and error signals corresponding to the transitlons
scored in this experiment. These include two galn Increases,
two galn decreases and two polarity reversals. Transitions

7, 8, and 15 (a gain increase and two polarity reversals),
shown in Figs. 9a, b and e, occurred during regions of the
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input where the input rate was high and where the control

displacement was large. As a result, the transitions were
accompanied by large changes in error rate. These transi-
tions were detected almost immediately.

Transitions 9 and 14 in Figs. 9¢ and 9d were galn decreases.
For these transitions the control displacement was small at
the time of transition, largely because the pre-transition
gain was high. As a consequence, the change in error rate
at transition was small and detection usually occurred .5 to
2 sec after the transition. Transition 16 in Fig. 9f was a
gain increase which occurred during a qulescent region of
the input signal. Because of this, the control displacement
and movements were small and there was only a small change
in error rate at transition, Here too, detection did not
occur until about 1 sec after the transition,

Table 7 gives, for each type of transition, the average time
interval between the transition and the button release. We
call this interval the signaling time. The standard devia-
tions of the signaling times are glso given in the

Table. For transitions 7, 8 and 15, which were accompanied
by large changes of the error rate at the transition, the
signal followed the transition by .3 to .5 sec. For these
transitions the subject evidently was able to detect the
transition in the control interval in which 1t occurred.

The signaling times are in the range expected for a reaction
time to a complex visual stimulus.

The longer detection times observed with transitions 9, 14
and 16 indicate that detection could not be made in the CI
in which the transition occurred. Several CI'S8 were needed be-

fore the subject reported a transitlion. The results with
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these transitions should provide a good basis for testing
certaln aspects of the monltoring model of Chapter III. 1In
particular note the large difference between the signaling
times for the two galn decrease transitlions (Transitions No. 9
and 14). Transition 14 occurred during a quiescent region of
the input. Since little control activity was required follow-
ing the transition, the detection of the transition was post-
poned. It will be interesting to see how well the monitoring
model accounts for thils effect.

Table 7
SIGNALING TIMES

Subject: RGT RBT JCV

Stand. Stand. Stand.

Transition Mean Devlia., Mean Devia. Mean Devia.

No. Type {(sec) (sec) (sec) (sec) | (sec) (sec)
7| +3/8 + +15/s R .10 .38 .0l .36 .05
B! +15/s + -15/s .36 .10 .32 .04 .30 .09
15( +3/8 + -3/s LAU3 .04 .36 .10 .32 .04
9| -15/s + =3/s .84 .30 .88 .30 1.06 .53
14| +15/s + +3/s 2.52 .15 2.32 .17 2.40 .36
16| -3/s + -15/s .88 .35 1.20 .32 .70 .19

103




b, Validation of Monitoring Model

a. Restatement of the Model

The most basic form of the monitoring model states that a
transition should be reported if

(V55 - Vob)P(EOIDn) > (Voo - Vﬁo)P(COIDn) (6.1)
If we assume that (Vbb - Voﬁ) is equal to (VOO - Vﬁo)’ as we
did in Chapter III, and that Dn is (Aé,c), Eq. (6.1) becomes

P(EOIAé,c;n) > P(C,|ae,cin) (6.2)
> .5

We want to expand the posterior probabilities in this eguation
in terms of the likelihood functions and the prior probabili-
tles as we dld in Chapter II1I. For the case of K/s controlled
dynamics thls expansion must take into account the fact that a
transition introduces a discontinuity in Ac(t). Thus, for a
CI in which no transition occurs,

ao(t) = K,ac(t) (6.3)
whereas, for a CI in which a transition does occur,
Ao(t) = KiAc(t) + AKic(t-T) (6.4)

In this last expression AK, is (Ki - Kol

i

Thus the expansion of P(COIAé,c;n) must be the sum of two

terms: (1) the likelihood and prior probability that a transi-

tion occurred during the nEE CI and (2) the likelihood and

prior probability that a transitlon occurred before the n-t—E
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CI. In Miller's experiment transitions could be made only

to two alternative dynamics which we label Cl(s) and Cz(s).
The probabillty of a transition to elther of these 1s q/2.

In all cases we will use Cl(s) to represent the dynamics to
which the transition was actually made and Cz(s) to represent
the other dynamics.

With these considerations in mind, we can write

P(C,|a&,c5n) = P(Cy|ae,e4n) + P(C,|A¢,c5n) (6.5)

where

p(AélClt,c;n) P(Co;n)q
2p(aéje)

P(Cl|Aé,c;n)

(6.6)
p(AélCl,c;n)P(Cl;n)

p(Aé|c)

A simlilar expression can be written for P(C2|Aé,c;n). The
term p(AéIClt,c;n) is the likelihood that the observed Aé
resulted from a transition from Co(s) to Cl(s) during the
present, that 1s, the nEE, CI. Since P(Co;n) 1s equal to the
probabllity that the dynamics were Co(s) at the end of the
previous CI, and since q/2 1s the probability of a transition
to Cl(s) at the beginning of the CI, q/2 P(CO;n) is the prior
probabllity of a transition at the beglinning of the nEE CIl.
The numerator of the second term of Eq. (6.6) 1s composed of
the likelihood that the observed Aé resulted from Cl(s) {and
no transition occurred durlng the nEE CI) and the prior prob-
ability of Cl(s). Because g is assumed to be very small,

P(Cl;n) 1s approximately the posterior probability of Cl(s)

at the end of the (n-1)3% cI.
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The expression for P(COIAé,c;n) is considerably simpler since
we need consider only the likelihood that the observed Aé came
from Co(s) without any transitions having occurred. Thus

p(AélCo,c;n)P(CO;n)
plagle)

(6.7)

P(COIAé,c;n) 2

where P(Co;n) is approximately equal Eo the posterior probabll-
1ty of Cy(s) at the end of the (n-1)2% cI.

Since the decision processes for monitoring are sequentlal
and since the prior probabllities for one CI are derlved from
the posterior probabilities for the previous interval which
in turn depend upon the likelihoods for that 1interval, 1t is
clear that the key elements of the model are the llkelihocod
functions. Given values for these likelihood functions for
several successive CI and approximate values for the prior
probabilities for the first CI, we can compute the posterior
probabllities for the nEﬂ CI. These posterior probabllitiles
will, in general, not depend very much upcn the 1nitial values
used for the prlor probabllities provided n is large.

In Chapter I1I we showed that the likelihood functions could be
assumed to be normal and in particular that p(Aé]Ci,c;n)

could be written
_;(G_é_i_)z
1 2

e 94 (6.8)
/ono

p(Aé]Ci,c;n) =
1

where déiis Aé - My and My and o, are the mean and standard

deviation of the distribution of Aé conditicned upon Ci(s)

and ¢(t) for the nEE CI. We will make the same assumption
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of normality for p(Aélcit,c;n) so that

Ceit)?_
p(ﬁélcit,c;n) = —}""_ e cit
Yeng

rPOj =

(6.9)
it
y

where Géit is A& - Myt and Mgy and ¢ are the mean and stand-

it
ard deviation.

b. Parameters of the Model

In order to implement and test the monitoring model we must
know the mean and standard deviation of each of the likeli-
hood densitles and the value of q. The procedure followed 1n
Miller's experiment determines g and its value is easy to
estimate. We will consider it first. The arguments advanced
in Chapter III, together with some of Miller's results can be
used to estimate the means and standard deviations, but these
estimates are more difficult to obtain, and we will consider

them second.

In Miller's experiment the average interval between transitions
was about 18 sec. If we assume that the duration of a CI is
0.2 sec, then on the average a transition occurred in 1/90

of the control intervals. If we assumed that transitions
could occur with equal probability in any CI, g, the probabll-
ity of a transition during a €I would be about .01. However,
in fact transitions could not occur with equal probabllity
during all CI, and in particular the shortest interval between
transitions was at least 10 sec. Thus, the longer the elapsed
time from the previous transition, the greater became the
probabllity of a transition. Thus we should use a value of g
higher than .0l1. A value of q equal to .02 seems reasonable
and in the testling of the model we used this value as well as

several other values greater and less than .02.
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Now conslder My and Oy the mean and standard deviation of
p(AélCi,c;n) For K/s dynamics and CI in which no transition
occurs

= -K.Ac (6.10)

and

o N G ° + ui20 2 {(6.11)

uy is just the value of -Ao(t) expected from Ci(s) when Ac¢ 1s
the control movement. Given the values of the gain Ki of the
allowable controlled dynamics and Ac(t), My can be computed
for each Ci(s) for every CI.

O0f the two components of 012, the one due to changes in

input disturbance rate during a CI (OAé% can be calculated
from knowledge of the input and also can be estimated from
measurements made on the input. oAa2 is the variance of Ad.
But A4 l1s approximately equal to T times the second derivative

of d(t). Therefore,
. & Tgu
g Tcd

GH is the standard derivation of the second derivative of

d(t).

In Miller's experiments the power density spectrum of d(t) was
approximately rectangular and, therefore,
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w
co
0.2 = L g de‘”u dw
q 2r 0
(6.13)
mh
- co Ud2
5
where Woo is the cutoff frequency whlch was 1.5 rad/sec,
de 1s the power density spectrum of the input and 04 1s the
standard deviatlion of d(t). 1In Miller's experiments o4 was
2.1 em. Using these values in Eq. (6.13) we find that
944 42 (6.14)

Direct measurment of Ora using recorded values of d(t) gave the
result

%44 & .5 (6.15)

When we tested the monitoring models with both values of Opds
we found that setting Oad equal to 0.5 gave a somewhat better
match £o the human controller's detectlon performance than
did the smaller value.

We will now use some of the results that Miller obtained wilth
transition 14, a gain decrease in which the detection signal
did not occur until approximately 2.5 sec after the transition,
to verify the assumptlon that the second component of aiz 1s
proporticnal to u12 and to obtain bounds of the proportionality
constant cnz. For large values of Hys 9y in Ea. (6.11)

should be approximately l“ilun' The likelihood function of
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Eq. (6.8) should be approximately

1 2 ‘u,o
p(AélCi,c;n) 2 — e i'n (6.16)
fﬁﬁluilcn

Since for transition 14, detection did not occur until long
after transition, the subjects never made incorrect transitions,
and the variability of the signaling time was relatively small;
it seems reasonable to assume that P(CZIAé,c), the posterior
probability of the incorrect post-transition dynamics, will be
negligible near detectlion and that p(AélClt,c) wlll also be
small. Thus, in the nelghborhood of the signaling time it
should be sufficient to expand P(Cllﬁé,c) only in terms of
p(AélCl,c) and the prior probability assocliated with 1t in

Eqg. (6.6).

With these simplifylng assumptlions in mind, the inequallty of
Eq. (6.2) upon which the monitoring decision is based becomes

P(CliAé,c;n) > P(COIAé,c;n) (6.17)

We expand both sldes In terms of the likellhoods and the prior
probabilities

p(A2[C,,c3n)P(Cy5n) > p(A&]Cy,c;n)P(Cy;n) (6.18)

We substitute Eq. (6.16) for p(AélCi,c;n) in this expression,
take the logarithms of both sldes, and rearrange terms to ob-
taln

_(ﬁil)E + (E_Q ; > 20 zznriﬂl| P(Co;n) ]
- n Luo PiCl;X’lj

(6.19)

se 2 u 2 5 B Wy P(Co;n) o
( 0) - (EI Gél) > 20n anf] EE lﬁTEITHT Mo
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P4 2
To simplify notation let D equal [(5é0) - (“05é1P1) . Thus
we would expect the human controller to declde that a transi-

tlon had occurred whenever

k, P(C,;n)
D> 2°n2 zn[]~—l| ———0—-])102 (6.20)

Mo P(cl;y

The values of D observed at the time of detection should be
proportional to u02. This proportionality is a direct conse-
quence of the hypothesis that o, 1s proportional to Iuil for
large values of My

In order to verify whether or not D 1s proporticnal to u02 at
detection, we must first determine when detection actually
occurred. The results from transitions 8 and 15, the polarity
reversalss can be used to estimate the latency between the actual
detectlon and the detection signal. For these transitions, the
Aé at the transltion was very large and detection should have
been immediate. The average time between the transitlon and
the detection signal for these transitions was about 0.4 sec.
We have used this 0.4 sec latency to estimate the time of
detection and have computed D for transition 14 at times
approximately 0.4 sec prior to the detection signal. The
values of logD at these assumed detection times are plotted

in Flg. 10 versus log My- 6él and W, were obtained assuming
K1 was 3, the correct post-transitlion gain. The results for
all three subjects are shown in Filg. 10. Each point repre-
sents one transltion. For subject RGT, data from two transi-
tions in which Mg was very small were omitted.

The line drawn on the graph has a slope of two which Indicates
that D is approximately proportlonal to uog, as was postulated.

We can use this line to obtain an estimate of dn2. From Fig.
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10 we find that the coefficlent of uy° in Eq. (6.20),

> ¥y P(Cysn) .
20n in ial m .6 (6.21)

P(Co;n) and P(Cl;n), the prior probabilities for the CI in which
detection 1s made, are essentially equal to the posterior prob-
abilities for the previocus interval. If the ratio of these
posterior probabilities were less than one, the human controller
would presumably have detected during this previous CI. However,
if we set P(Co;n)/P(Cl;n) equal to one, to obtain an upper

bound on cne, we find from Egq. (6.21) that on2 must be negative,
an obvious impossibllity. The negative value results because
the ratio “1/“0 is just equal to Kl/KO, which for thils transi-
tion was .2. We can resolive thils difficulty by taking advantage
of the fact that the button release times showed congslderable
consistency. This suggests that the ratio of the prior prob-
abllities was much greater than the lower bound of unity. It
does not seem unreasonable to assume that P(Co;n)/P(Cl;n) is
between 10 or 100, which would lead to a value of cn between
0.66 and 0.32. We found that setting Un = ,3 gave the best
match to our data.

Finally, let us consider Hit and Tyt the mean and standard
deviation of p(Aé|Cit,c;n). As before, 1t §eems reasonable to
assume that Myt is equal to the value of -Ao(t) expected from
the system given complete knowledge of the control displacement
and the dynamics. From Eg. (6.4) we have

Mig = - [KiAc(t) + AKic(t-T)] (6.22)

Myg = Wy - AKic(t-T) (6.23)
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We will make somewhat different assumptions in developing an
expregsion for 04y than we did for Gq+ To predict the Aé for
a CI in whilch a transition occurs the human controller must
know c(t) as well as Ac(t). Whereas we assumed that the com-
ponent of 012 due to KiAc(t) was proportional to (Ac)2 and

Kiz, we will assume that the component of Uit2 due to AKic(t—T)
is proportional to (AK1)2 and to ccz, the variance of c(t).

By making thls assumption we are 1n effect saying that the
human controller's knowledge of c¢(t) is poor and he cannot use

c(t) to reduce his uncertainty of prediction of Aé.

More precisely, we may write

2
it

o Var [—Kiﬂc(t) - AKic(t—T)]

Var [ KiAc(t)]+ Var[AKiC(t-T)] (6.24)

e
i

2

0,° + (aK)%0,
For Miller's experiments in which the input bandwildth was
relatively low and in which the controlled dynamics were K/s,
the control movement Is proportional to the output rate which
in turn is approximately equal to the input rate. The vari-
ance of the input rate 1s simple to compute

c(t) = olt) 2 d (6.25)

(t)
1 Ky
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Thus

o
Q
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no

Q
(]
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-~
a8

w
co

L L s w) of aw (6.26)
.

2
1 2n

For the parameters of Miller's experilment °c2 Z (1.8/K1)2.
When we tested the monlitoring model we found that using a co-
efficient of 1.8 in the expression for oc2 did not give as
close a match to the human controller's monltoring performance
as did a coefficient of 1.0. Using this latter value the com-

plete expression for °1t2 is

AK, 2
2 2 1
o *9g * (—Ki)
(6.27)
.2 2 2 . LaK.2
20 tHpO 4 ‘Ti")

c. Computer Simulation of Monitoring Model

A computer program was written to test the monitoring model.
The data used by the program were values of &(t) and c(t)
taken from recordings obtained by Miller. Samples of these
quantities were taken every 0.2 sec in the reglon about each
transition starting at .4 to 1.0 sec before the transition
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and ending at the detection slignal. The program first com-
puted ,Aé and Ac and then Hys G4 Wye and Oyyg- From these
quantities the values of the llkelihoods were determined for
each CI for all of the allowable dynamlcs and transitions.

Then the posterior probabilitles of the three possible dynamics,
CO(S)’ Cl(s) and Cz(s), were computed for each CI by uslng

Eq. (6.7) for Co(s) and Eq. (6.6) for Cl(s) and C2(s). To

start thls computation values for the prior probabilities for
the first CI had to be assumed. The program would report a
transitlion whenever P(CO) became less than 0.5.

The computer program has six parameters that must be assigned
values. In the previous subsectlon we derived approximate
values for, or bounds on, four of these: q, IVE cn and Ou-
The other two are the initial prior probabllities P(CO;O)
and P(Cl;O) used to start the computational process.¥ Rather
arbitrarlly we set P(Cl;O) and P(Cz;O) to 1-q/2. The model's
performance 1s very insensitive to this 1nitial cholice and we
need nbt be concerned with it further.

When we used the derived values for the four principal param-
eters, the computer model dld not match the human controller's
detection performance as well as we had hoped. We then inves-
tigated the effects of the four principal parameters upon the
performance of the model and, in effect, sought to tune the
model by finding the best set of parameter values. The tuning
was a falrly extensive searching process in which we made
changes one at a time to each of the parameters and compared
performance of the model and the human controller.

¥
Specifying two of these priors specifies the third, since
they must sum to one.
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First, the results from the galn decrease transitions were
used to establlish the best values for q, Ta3 and on. For
these transitions, detectlon occurred some time after transi-
tion and the model's behavior was relatively insensitive to
varlations in oc. Then the best value of O was determined

by investlgating the polarlty reversal transitions for which
D(Aé|Cit,c) was the dominant likelihood and for which o, was
the principal parameter affecting performance. In the evalua-
tion of the model's performance, we considered the abllity of
the model to predlict both the monitoring and the identifica-

tion behavior of the human controller.

In Table B are shown the parameters of the model, the derived
values, or bounds, on these parameters, and the values that
gave the best match between model and human controller. These
"optimum" values are the ones used to obtain all of the re-
sults that we present in the discussion of the model's per-
formance which follows.

Table 8

PARAMETERS OF MODEL

Parameter Derived Value Value Gilving
Best Match
o] .01 .02
o
Ad 42 to .5 .5
on reasonable value be- .3
tween ,32 and ,66
O 1.8/Ki 1/K,
P(CI;O) .01
P(C2;0) .01
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Fig. 11. Typical time history of the posterior prob-
abilities of C,, C,, and C, for a gain
decrease trans?tio& (trans?tion 9 with sub-
ject RBT).
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The best values shown in Table 8 are very close to the
derived values. g, 95d and o, are within a factor of two of

the derived values. For On we could derive only a reason-

able range of values and the optimum value is at the low end of
this range. The difference between the best and derived
values of g is easlly attributed to the fact that the prob-
ability of a transition during a CI was not constant for all
CI, but increased as the time from the previous transition in-
creased. The derived and optimum values for Opq are very
nearly equal and, 1n fact, the optimum value is equal to the
estimate of aAd obtalned from measurements of d(t). The fact
that the optlimum value of o was .3 (the low end of the
derived range) implies that in Eq. (6.20) the ratio of the
prior probabilities P(Co;n)/P(Cl;n) for the CI in which de-
tection took place was approximately 100. This value 1is not
inconsistent with those cobserved when the model was actually
run with a wide varlety of transitions. The best value of

o, was slightly more than one-half the derived value which
implies that the controller used some knowledge of c(t) to
reduce the variance of his prediction of Aé&. Considering the
large number of the assumptions involved in the derivation of
these parameters, 1t is gratifying to find that the best
values are so close to the derived values.

d. Comparison of Model and Human Controller Performance

In Fig. 11 is a typlcal time history of the posterior prob-
abilities of the three controlled dynamics for one of the
gain decrease transitions (transition 9 with subject RBT).
P(Co) remains fairly close to unity until time t

when 1t starts to decrease. At about .5 seec, P(CO) falls
below 0.5 and P(Cl) rises above 0.5, and shortly thereafter
approaches 1.0. Detection should have occurred at this peint
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Fig., 12. Comparison of the detection signal times
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1n time. The detection signal was at 1.0 sec. A latency
of 0.5 se¢ between detectlon and detection signal is not
unreasonably large.

The time histories of the posterior probabllities are typically
well behaved 1n the manner shown in Fig. 11. Prior to a
transition,P(Co) is usually falrly stable near unity and the
cther probabllities are near zero, After the transition

P(CO) will begin to decrease usually monotonically toward zero
and the point in time at which P(CO) falls below 0.5 will be
well defined. Once P(CO) was below 0.5, it rarely rose above
this critical value and thus rarely would the model have to
retract a detection decision.

The major purpose of the monitoring model, of course, 1ls to
predict the time of detection. It is interesting, therefore,
to compare the detectlon times predicted by the model with
times at which the human controller slgnalled detection. In
Fig. 12 the detection signal times are plotted against the
detection times predicted by the model for each of the three
slow transitions. In Table 9 are the mean and standard devla-
tions of the slgnal times and the predicted detection times
for the three fast transitions and also for the three slow
transitions.

Figure 12 provides a critical test of the model. The line
drawn in the figure has unity slope and intersects the ordinate
at 0.4 sec, the expected latency of the detection signal. We
would expect the points to be distributed about this line, as,
in fact they are. There is a fairly large scatter 1in the
points about the line of prediction, but thisshould not be
surprising. The model is a probabilistic representation of a
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Table 9

MEAN SIGNALING TIMES AND MEAN PREDICTED
DETECTION TIMES

Signal Tiﬁé Predicted Detection
Transition Standard Time
Mean Deviation Mean Standard Dev.
(sec) (sec) (sec) (sec)
4
|
71 3/s + 15/s .39 | .07 .05 14
|
8l 15/s + =15/s .33 j .09 .09 .18
15| 3/s +» =3/s .37 | .08 .05 .1
i
gl -15/s + -3/s .93 { Y .34 .32
i
14| 15/s » 3/s 2.4 1 .25 1.61 .16
6| -3/s + -15/s .93 L .36 .54 .30

human detection process and we can not expect a point-to-point
match between model and human behavior. We can expect that
the model wlll predict the statistical characteristics of the
human controller's moniteoring behavior. Table § shows that
mean predicted detectlon times and the mean signaling times
vary with transition number in very much the same way. The
correlation between the mean signallng times and the mean pre-
dicted detectlon times shown 1in the table is ,99. The differ-
ences between these twe sets of means range from about .15 sec
to about .8 sec. The larger value 1s about twice the expected
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value of the detectlon signal latency that we expected. The
smaller value 1s about .25 sec less than the expected latency.
The standard deviatlons of the predlcted and observed detec-
tions are 1n very close agreement. The correlation between

the two sets of standard deviations is .85. Also, Fig. 12 shows
that not only 1is the model able to predict the mean detection
signal times for each transltion reasonably well, but it 1s also
able to account for much of the variation in the signaling

times for each transition. The correlation between the pre-
dicted and observed times plotted In the figure is .73.

5. Validation of Identification Model

a,. Restatement of Model

The identification model states that the Ci(s) whose expected
value 1s maximum should be selected as the best estimate of

the post-transition dynamics. If we assume that the wvalues
associated with correct identificatlion declsions are all equal,
and those assocliated wlth incorrect identifications are also
equal, the decision rule simplifies to the selection of the
Ci(s) whose posterior probabllity is the largest. If we make
the same assumptions as before about the nature of the data
that is used for the declision, the model requires that we find
the Ci(s) for which

P(Cil:‘.\.é,c;n) > P(CKIAé,c;n) (6.28)
for all k#i

The posterlor probabilities in this expression can be computed
from Egs. (6.6) and (6.7), which were derived for the monitor-
ing model. It 1s reasonable to assume that the likelihood

functions have the same means and standard deviations as they
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did for the monitoring process. By making thls assumption,
the computer program used to simulate the monitoring model
can also be used to simulate and test the ldentificatlon
model. Recall that this program computes the posteriocr prob-
abllitlies of the three possible dynamics for each CI. When
the probability of C0 falls below 0.5 1t declares that a
transition occurs. To apply thls program to ldentificatilon,
a second decision process must be added which finds the Ci(s)
having the hlghest posterior probabllity and declares it to
be the new controlled dynamics.

b. Compariéon of Model ana Human Controller
Jdentification Performance

The 1ldentification model can be tested by comparing its lden-
tiflcation decisions with those of the human controller. At
the very least we would hope that the model would make approxi-
mately the same number of correct and incorrect identification
declslons. A still better confirmation of the model would be
obtained if each of the models identification decisions

matched each of the human ceontroller's decisions. Finally,

we would hope that the times of 1dentiflication by the model
would correspond to the times of identification by the human

controller.

Control movement and error rate data for each translition were
the source data for the computer simulation of the model and
the posterior probabllitles of each Ci(s) were computed for
each CI. For each transition the ldentification decilsion
required choosing one of three dynamics: Cols), the
inltial dynamics, Cl(s), the correct dynamics; and Cz(s) the
possible alternatlive, but incorrect dynamies. The subjects
knew that if a transition occurred the post-transition dynamics
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could be one of only two posslble dynamics and they were

trained long encugh so that they should have known what the
alternatives were. DMost of the time the subjects identified
correctly, but occasicnally with transition 9 (-15/s + -3/s)

they made incorrect identifications.

The relative values of the posterior probability of Cl(s) and
of C2(s) in the first CI in which either of these probabili-
ties is larger than the probability of Co(s) determines the
models 1dentification decision. For two of the fast transi-
tions (7: +3/s » +15/s and 15: 3/s +» =3/s), the probability
of Cl(s),P(Cl), was almost always very near unity and P(Cg)
and P(CO) were almost always very near zerc in this critical
CI. For the other four types of transitlons evidence 1n
favor of Cl(s) was not so overwhelming. In Figs. 13a through
13d are plotted P(Cl) against P(Cz) for each of these four
types of transitlons. Each polnt 1n the flgures represents

a slngle trial.

If the polnts 1ie above the criterion line of unity slope
drawn on the graphs, the model would have chosen Cl(s), the
correct dynamics. If they lie below the line, the model would
have chosen Cz(s), the Incorrect dynamics. The filled polnts
in the flgure represent transltions that the subjects ldenti-
f'ied correctly. The open polnts represent transitions that
the subjlects identified 1lncorrectly.

Figure 13a shows the results for transition 16: -3/s + -15/s.
All of these transitions were ldentified correctly by the
model and by the subjects. The points i1n the figure are all
clustered in a region where P(Cl) 1s high and P(Cg) is low.
Thus the identlfication decision is unambiguous.
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Figure 13b shows the results for transition 14: 15/s + 3/s.
The points all lie in a reglon of low P(02)= and although
P(Cl) varies over a wide range, all of the points are well
above the criterion line. Hence, the model always identifled
correctly, as dild the sub]Jects.

The results for transition 8: 15/s + -15/s, are in Fig. 13c.
Most of the points lie about a line of slope -1 and span a
large range of values of P(Cl) and P(Cz). None of the points
lie below the criterion line shown in the graph and, therefore,
would have been ldentified correctly by the model. All the
transitions appeared to have been correctly ldentified by the
subjects.

The results of transition 9: -15/s + -3/s, shown 1in Fig. 134
are the most interesting. The polnts are widely dispersed
indicating a very large variation in P(Cl) and P(Cz). Nine

of the peints lle below the criterion line and were identified
by model to be polarity reversals, and eighteen above 1it.
Thirteen of the transltlions were incorrectly identified by the
subjects to be polarity reversals rather than gain decreases.
Of these thirteen, elight were also ldentified by the model to
be polarify reversals, and flve were identifled to be gailn

decreases. One transition was identified by the model te be
a reversal whereas the subject identified 1t correctly to be
a galn decrease. Thus, in only slx of the twenty-seven

transitions plotted the model did not reproduce the declsions
made by the subject. Half of these lile c¢lose to the criterion
lline.

Because the model is probabilistic, we should not expect it to

reproduce the subJect's behavior exactly and match every
decision. The fact the model does reproduce almost 80 per cent
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of the transition 9 decislons and shows essentially the same
probability of error as did the subjects 1s very encouraging.

Now let us compare the timing of the identification decisions
of the model and the sublects.
times of detection and identification by the model for each
The human controller's average slgnal-

type of transitlon.
ing times are also given,

In Table 10 are the average

We did not obtaln an explicit

indication of the subject's identification time from the ex-
periment, but for the polarity reversal transitions we can
infer the ldentification time from the subject's control move-

ments.

It 1s reasonable to expect that the subjects wlll make

an ldentification decision before they medify their control

strategy.

The beginning of modification 1s sharply delineated

in the time historles of the control movements following the

polarity reversal transitions.
average times at whlch modilfication began for the two sets of

polarity reversal transitions.

In Table 10 we are given the

Note that for these transitlons

modification begins only a few hundredths of a second later

than the detection signaling response.

The model's identifica-

tion decisions either occur simultaneously with detection or

follow detectlon by about the same amount of time.

Table 10
AVERAGE TIMES OF DETECTION AND IDENTIFICATICN
Transition Detect?ggEIIndenti. SignaliﬁngEEE? Tdenti.
Time(sec) Time (sec)| Time(sec) Time (sec)

Ti 3/s + 15/s . 05 .05 .39
8! 15/ + =15/s .09 .09 +33 <37
15( 3/s + -3/s .05 .05 .37 Ly

-15/8 + =3/s .34 39 .93
14) 15/s + 3/s 1.61 1.62 2.41
16| -3/s + -15/s .54 .55 .93

12
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B. EXPERIMENT IIIB: STUDY OF K/S2 DYNAMICS

1. Experimental Conditions

We have examined the extent to whilich the model represents the
decision behavlor of the human contrellier in contreol situa-
tions in which the controlled dynamics were C(s) = K/s.
Clearly, if the model 1s to be useful, it must be capable of
representing the declslon processes wilth other controlled
dynamlics as well. We have tested the model against results
obtained in a small experiment (Experiment IIIB) with K/82
dynamics. One highly-trained subject, the most proficient of
all of our subjJects, was used in this experiment. The appara-
tus was the same as that used 1ln Experiment II. The post-
transition daynamics were not completely predictable. Starting
from a base, or pre-transition, dynamics of 8/52, transitions
could be made to any of seven post-transition dynamics:

16/82, ﬂ/se, 2/52, -16/32, —8/52, -4/s? and —2/s2. There was
no signaling device so the time of 1dentification could only be
inferred from a change 1in tracking behavior,

2. Validation of the Declsion Model

The form of the decislon model for K/s2 dynamics is slightly
different from that for K/s dynamles. A change of galn with
K/s2 does not lead to a discontinuity of the output rate as
it does with K/s dynamics and we do not need a second set of
likelihocod functions to account for the hypothesls that the
transition occurred during the current CI.
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The expression for the posterior probability of Ci(s) is

p(Aé|Ci,c;n)
p(Aéle)

q
P(Ci|Aé,c;n) & P(C,;n) E + P(Cy3n)

“(6.29)
for 1 # 0

where q is the probability of a transition during the nEE CI
and K is the number of possible alternative dynamics. For

CO(S) we have

p(Aé|CO,c;n)

p(aglc)

P(COIAé,c;n) & P(Cy;n) (6.30)

We assume q is very small so that we do not have to consilder

multiple transitions.

The monitoring model was tested with data from a set of eight
time histories obtained from this experiment. From these
records of the system behavior, the output and error rates,
6(t) and é&(t), at points 0.2 sec apart were computed. The
changes in these quantities, Ad6(t)} and Aé(t), during 0.2 sec
long control intervals were then computed and used to calcu-
late the likelihood functions of Egs. {(6.29) and (6.30). For
the calculation we made essentlally the same assumptions about
the means and standard deviatlons of the likelihood functions
as we did for K/s dynamics. We assumed that the mean By was
unbiased and equal to the -Ad observed, properly scaled by the
ratio of the actual gain to the galn assoclated with Ci(s), K, .

We assumed that oiz was the sum of oié and (“1)2 oﬁ, as before,
and chose the same values for oia and c“ as we did for the

K/s case.
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Typically, P(Ci;n) for 1 # 0 remained small until some time
after transition when at least one of the P(Ci;n) would in-
crease and P(Co;n) would decrease from its initlal value near
unity. The time at which P(Co;n) fell below 0.5 was chosen

as the detection time. The time at which one of the P(Ci;n)
exceeded P(Co;n) was chosen as the identification time. There
was no signaling device in this experiment. Therefore we can
not check the detectlon performance of the model against the
subject's. However, we can obtain from the tracking records
estimates of the subject's identification times. 1In Fig. 14
are plotted the times at which the controller first started to
change his tracking behavior (our best estimate of his identi-
fication time) versus the model's identification times. The
line drawn in the figure has unity slope and an interceptft of
0.4 sec, the assumed modification response latency. The points
lie about this line, a result that is consistent with that
obtalned with C(s) = K/s.

In Table 11 are given, for each transition, the probabilities
of each of the Ci(s) for the CI in which the model made an
identification. The highest probabilities, the ones corres-
ponding to the Ci(s) chosen by the model, are underlined in

the table. The correct Ci(s) are in brackets. It is evident
from the table that the highest probabllity usually corres-
ponds to the correct galn, and that when it does not, it is off
by a factor of 2 at the most. Thus, the model accurately
accounts for the identification of transitions made by changing
the galin of K/32 controlled-element dynamics as well as transi-
tions with K/s dynamics. The good results obtalned with both
of these dynamlcs suggest that the model has a good chance of
predicting behavior with other dynamics as well.
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CHAPTER VII

STUDIES OF CONTROL MODEL

In this chapter we present and discuss the results obtained
from several studies of the control processes of adaptation.
In one set of studies we sought to determine the average char-
acteristics of the human controller during the post-transition
retention phase and during the transient tracking phase.
Ensemble average error curves 1n the post-transition period
were measured using techniques described in Chapter IV. These
results were obtalned using data from Experiments IA and IB
and cover a wide variety of transitions, including gain in-
creases and decreases, polarity reversals and order changes.
In another set of studies we lnvestigated the detalled struc-
ture of the modification phase. Ensemble average techniques
were used to compute the human controller's gain as a function
of time immediately before and after a transition. The methods
described in Chapter IV were used to obtalin these results.
Data from Experiment IIIA were analyzed 1n this fashion. Al-
though we did not study in detaill the vernier adjustment and
continuous tracking processes, some information relevant to
these phases can be obtained from the average error and time-

varying gain results.
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TRANSITIONS USED IN EXPERIMENTS IA and IB

Table 12

GAIN CHANGES

Pre-Transition

Post-Transition Dynamics

Dynamics Co(s) C,(s)
4 1/4 ~1/4 -1 -1
2 8 -2 _8
8 2
-8 2
4/s 16/s -4/s -16/s
16/s L/s
~16/s b4/s
y/se 16/s° -i/s2 —16/8°
16/s2 b/s°
-16/52 y/s2
ORDER INCREASES
Cl(s)/CO(s)
2/8 1/2s -1/2s =2/s
2 Lb/s =-4/s
8 /s
-8 4/s
4/s 8/32 -8/82
16/s 8/82
-16/s 8/s2
ORDER DECREASES
Cl(s)/CO(S)
28 s/2 -s5/2 -25
4/s 8 2 no
-i/s 5 data
8/s° 16/s 4/s ~16/s
—8/52 b/s




A. EXPERIMENTAL CONDITIONS

1. Experiments IA and IB

In these experiments we lnvestlgated adaptatlion in situations in
which transitions were made between: only two controlled-element
dynamlcs at more or less unpredictable times. A variety of
different dynamlics were employed to determine the effects of
galn and order changes. The two subjects were well-trained to
control all of the dynamics and td make all of the transitions
they would encounter. Thls combination of highly-tralned sub-
Jects and known dynamics provided adaptive response results

that should represent lower bounds on the time required for

the human controller's adaptation and on the errors resulting
from the transitlon. If the subjJect had less complete knowl-
edge of the nature of the transition and less training, we

would expect the time for adaptation and the errors to increase.

Two sets of experiments were performed. In Experiment IA the
transitions 1nvolved changes of the magnltude and polarity of
the galn, but not of the order of the controlled dynamics.
Controlled dynamics of the forms C(s) = K, K/s, K/52 were
used. Thils experiment was a ccontlnuation and extension of

the work of Young et al7 in which the transitions were changes
of the polarity and of the galn wilth C(s) = K. In fact, we
have used hls results for this conditlon rather than repeat
his experiment. The pre- and post-transition dynamlcs
employed in Experiment IA, includling values for the galns,

are given in Table 12. The experimental conditions and appara-
tus for this experiment are discussed 1n more detail in
Chapter IV, and are summarized 1n Table 1.

In Experiment IB, the transitions inveclved changes of the
order of the controlled-element dynamics as well as of the
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polarity and magnitude of the gain. The order changes

included increases of system order from position to velocity
dynamics and from velocity to acceleration dynamics and de-
creases of system order from acceleration to velocity dynamics,
and from veloclty to position dynamics. Table 12 also gilves
detalled information about these transitions.

As may be seen from Table 12, the same kinds of changes of

dynamics were made for positlon, veloclty, and acceleration
pre-transition dynamies. Thus, in Experiment IA, the ratilos
of post~transition to pre-transition gain were 4, 1/4, -1/4,

-1, and -4 with each of the three types of controlled dynamics:

position, velocity and acceleration dynamics. Similarly, In
Experiment IB, the order increases and decreases were accom-
panied by the same kinds of changes in the polarity and magni-
tude of the galn for each type of pre-transition dynamics.

For example, for the increases of order, transitions in which
Cl(s)/CO(s) was equal to 2/s, 1/2s, -1/2s8, and -2/s were
studled for both position ana velocity pre-transition dynamics.
By keeping the changes 1in dynamles invariant with system order
we were able to determine the effects of order on the adaptive
process.

2. Experiments Relevant to the Modification Phase

¥We have used the data from Miller's experiment with K/s dynam-
ics, Experiment IIIA, to obtaln information about the nature

*
Unfortunately, data could not be analyzed for one of the
order decrease translitions with K /s pre~transition dynamics.
This was the transition for which®C (s)/C (s) = -2s.
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of the modification process. These results are much
less complete than some of the others discussed in this

report, but nevertheless they provide at least a partial
verification of the model for the modification phase dis-
cussed in Chapter III. It will be recalled that for K/s
dynamics, the human controller's characteristics can be
represented approximately by a gain and a time delay. 1In a
time-varying control situation one can conslder a gain to be
time-varying. The ensemble averaging technique discussed

in Chapter IV (Eqs. (4.4) through (4.7)) can be used to deter-
mine the controller's gain as a function of time. We have
performed this analysis usling data from two sets of the pol-
arity reversal transitions and one set of the gain decrease
transitions. The results obtained are discussed in Section: E
of this chapter.
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Table 13
ROOTS OF POST-TRANSITION DYNAMICS

Cyls)
C,(8)/C,(s) 5
K, 1 Ky/s Ky/s
GAIN CHANGES
i 5.2 + 134 5.0 + 11] 3.8 + 7.14
1 -2.5 + 6.7 -1.9 *+ 5.9J -.96 + 3.9j
1/4 -6.9, -1.9 -5.4, -1.8 1-2,9, -1.4
-1/4 -12, -10, .92 [-6.6, .63
-1 -18, . -15, 2.5 |-1o0, 1.6
-} -36, -32, 4,9 =21, 3.1
ORDER _ INCREASES
2/s -11.6,.8242.93 | -10,.84+2.6J
1/2s -10.5,.24+1.5) | -8.8,.25+1.5]
-1/2s ~5.1,-7.1,2.2 | -3.7,-6.5,1.9
-2/s 2.5,-6.2+1.5J 2.3,-5.342.3}
ORDER DECREASES
2s 9.4 + 133 4.8 + 8.1y
5/2 3.5 + 13J 1.2 + 8.1]
-s/2 3.5 1.2
28 9.4 4.8
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B, APPLICATION OF CONTROL MODEL

1.  Post-Transition Retention Phase Tracking

Prior to transition we approximate the open-loop system by

the crossover model of Eq. (3.45). After transitlion and
before modificatlon the open systems can be approximated by
the crossover model multiplied by Ci(s)/co(s), the ratlo of
the post-transition to the pre-transition dynamics. The error
signal is related to the disturbance input by the transfer

function
E(s) 1
= .1
D) oo e'Tos (7.1)
1 4+ i wco
CO(S) s

The rcoots of the denominator of this expression are the closed-
loop roots of the system and they determine the system's
behavior.

In Figs. 15a, b, ¢ are plotted the locus of the closed-loop
roots as a function of the ratio of post- to pre-transition
galn for the three sets of transltions in which only the gailn
changed. In Figs. 16a, b are root locus plots for the order
increase transitions. The root locus plots for the order
decrease transitions are in Figs. 16 ¢, d. The parameter for
all of these plots is the ratio of the post-transition gain

to the pre-transitlion gain. The locl were computed using the
values for w, and 1 given in Table 1, values taken from

McRuer et al.l A first-order Padé approximation to the time de-
lay in Eq. (7.1) was used in the computation of the roots for all
transitions except those in which the order of the dynamics de-
creased. For the order decrease transitions the time delay was
used without approximation and the principal roots were found.
The post-transition closed-loop rocts for each transition in-
vestigated Iin these studles are shown on the loei and also

are tabulated in Table 13. 141
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For the pure galn change transitions of Experiment IA we see
from Table 13 that the closed-loop roots indicate an oscilla-
tory divergence for the gain increase fransitions and a non-
oscillatory dlvergence for the transitlions in whiech the pol-
arity was reversed. The rate of divergence increases as the
post-transition gain increases. It also lncreases as the
system order decreases.

For the transitions of Experiment IB in whlch the order of

the controlled dynamics 1increased, we see that the post-trans-
1tion system has a slightly divergent oscillatory character-
i1stic 1f there 1s no change of polarity and is non-osclllatory
divergent if there 1s a polarity change. The divergence
results from the fact that immediately after transition HC(s)
has & double pole at the origin which moves into the right-
half plane with elther positive or negative values of gain.
Figures 16a and b show this effect.

For the order decrease transitions, the post-transition
closed-loop system has only one pole. It lies in the right-half
plane for all gain values used in the experiment (see Figs.

16c and d). This pole results from the time delay Tye

Unless the post-transition loop gain is very low (less than

0.5 for the conditions used in these experiments) a divergence

will result.

Given the closed-loop poles and zeroes, the initial conditions
on the error at the time of transition, and the input dis-
turbance, we can compute the error translent that should
result from a transition by using standard Laplace transform
techniques. The computed error responses can then be compared
with the observed average error curves.
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All of the transitiocns in this experiment occurred at a
polint in time aft which the output was zZero and at which the
input had a high velocity. The input disturbance 1in the
vielinity of a transition can be approximated by a ramp func-
tion. Typically, Just prior to a transitlion the error was
significant, but the error rate was approximately zero. For
the computation of the system's response, we have assumed
that the 1nitial condition on the error rate 1is zero.

We have determined the form of the error response to a gain
change transitlon given a ramp disturbance and an initial

error. If the closed-~loop roots of the system are complex
with

81, 8, = 0oijw

we find that

2d 24 e w

e(t) = —%— + ( °. - °°> et sin(ut-y)  (7.2)
Wy Ty T WoW w

where
T = effectlive time delay for pre-transltion dynamics,
2 - 2 2

w, 6 + w

Vo= tan ()

do = slope of ramp dilsturbance.

= Initial error at transition.

If the closed-loop roots are real so that
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the error becomes

2&0 2&0 dzeolt - aleu?-’t
e(t) = + ~€, (7.3)
T,0:9, \T -

0192 0,

For transitions in which one of the roots, say 0,5 1s positive
and the other root, Oy is negative, the error determined by
Eq. (7.3) will be dominated by the exponential term containing
¢,. If, moreover, |01|>>|02|, Eq. (7.3) can be approximated
by

2d 24 0.t
e(t) = o -( 0 -e%) e 2 {7.4%)
t 2

169192 o®19

For large values of czt, this becomes approximately

. 2d o,t
e(t) = - (———9—— —eo) e 2 (7.5)

T0%1%2

We can use Eq. (7.5) to determine approximate values of o,
from the average error response curves obtalned with the gain
change transitions. Thls can be done by estimating the time
required for the average error to Increase by some factor,

for example, a factor of two. By comparling these experimental
values with those given in Table 13, we can obtain a check on
the accuracy wlth which the crossover model predicts the post-
transitlon behavior of the system.

If the roots are complex and w 1s much larger than o, Eq.
(7.2) can be approximated by the relation:
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W w_w L

. 24 2d e ot
2{(t) = g —( e _ .0 o)e cos wt (7.6)
o ‘o To%

The first peak of the average responses should occur at a time
that 1s approximately equal to n/w. Thus, from a measurement
of time of the first peak of the average error curve we can
determine the approximate value of the imaginary part of the
closed-loop roots.

2. Modiflcation

The model presented in Chapter III postulates that modifica-
tion consists essentlially of a switching of control strate-
gles from the one appropriate to the pre-transition dynamics
to the one appropriate to the dynamics selected by the identi-
fication process. The switchlng time was assumed to be equal
to 1, the duration of a CI. An additional 1 sec was also
assumed to be required to retrieve the appropriate control
strategy from memory once the ildentiflication had been made,
Thus we postulated that modification would be completed
approximately 21 sec after an identification 1s made. For K
and K/s dynamics 21 will be about 0.4 sec. For K/s® it will
be about 0.8 sec.

3. Translient Tracking

Following modification we postulated that the controller will
enter a transient tracking mode. His characteristies in this
mode were approximated by the crossover model:

HC(s)

(7.7)
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where w, 1s chosen sd that the mean-squared error willl be
o]

minimum. P Values for wcopt for the three types of dynamics

investigated in these experiments are given in Table 2.

If we represent the delay 1in Eq. (7.7) by a first order Padé
approximation, the closed-loop dynamics can be approximated

by a quadratic function of frequency in which the damping fac-
tor 1s about 0.5 and the natural frequency 1is about 1.2/t.

In Fig. 17 are shown the step responses of the transient ftrack-
ing model for XK, K/s, and K/32 post-transition dynamies. If

at the beginning of the transient'tracking phase there is an
initial error dilsplacement, Fig. 17 shows that thls transient
error will be reduced to a small value in about .8 sec for K
dynamics, 1.0 sec for K/s dynamics, and 1.6 sec for K/52 dynam-
les.

b, Vernier Adjustment

After the translent resulting from the transition has been
nulled, we postulated that there would be a gradual adjustment
of the galin until it becomes approximately equal to the value
appropriate to steady-state tiacking with the post-transition
dynamics. In terms of the crossover model the galn 1s w, .
Thus, during the vernier adjustment phase we postulate that

w, should go fromucopt to the steady-state value of W, s values
for which are given in Table 2. The values of Yeopt, for
transient tracking are between 65 and 80 percent of the values
of w, for steady-state tracking. The higher the system order,
the greater 1s the difference between the transient and steady-
state values of w, . For all of the systems we have studled,

we would expect tc see an increase 1n W, in the vernlier adjust-
ment phase.
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C. ENSEMBLE AVERAGE ERROR RESULTS

In Figs. 18 and 19 are the average error results for the
simple gain changes for each of the two subjects, respectively.
The results for the order increases are 1n Fig. 20 and those
for the order decreases are 1In Flg. 21. When we arranged the
average error responses for these figures we took advantage

of the fact that for all transitions of a glven type the veloc-
1ty of the input disturbance was of the same sign, although
the velocity was positive for certain types of transitions and
negative for others. We have standardlzed all of the average
error curves, reversing their polarity where necessary, so
that they represent the error response of the system to an
input whose veloclty is negative. Thus, in the discussion of
these average error curves we wlill be concerned with the
response of the system to a negatlive ramp-like disturbance
input. Por such an Input disturbance, the error at transition
was usually negative, and, as was pointed out earlier, the
error rate was nearly zero. Note that there is a discontinu-
ity at the beglinnling of each of the average error curves. It
results from the fact that there was a delay of either 76

or 152 msec (depending upon the time scale used) in the
digital computer program between the occurrence of a transi-
tlon and the first point averaged in the average error curves.

1. Experiment IA - Gain Changes with System Order Constant
(Figs. 18 and 19)

Gain Increase. As shown in Table 13, a galn increase by a
factor of four leads to an osclllatory instability. This oscil-

lation is more evident in the average response for the
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subject RB than for GK. It 1s also more evident in many of
the individual time historles of the transition response than
in the average response curves. The first peak of the error
curves for K dynamics occurred .2 to .3 sec after the transi-
tion, for K/s dynamic¢s it occurred between .3 and .4 sec and
for K/s2 dynamics between .3 and .6 sec.* These values are
consistent with the results of Table 13 that show the imagin-
ary part of the closed-loop roots decreases with increasing
system order.

Of particular interest in these figures 1s the observation
that 1n none of the cases 1s the subject's second error peak
of higher amplitude than the first one. Thus, some modifica-
tlon must have taken place before the second peak 1s reached,
and, undoubtedly, before the time the error has c¢rossed the
base line. For both subjJects the average error crosses the
base line at approximately .6 sec for K dynamics, at approxi-
mately .8 sec for K/s dynamics and at approximately 1 to 1.3
sec for K/s2 dynamics. Modificatlion must have been started
before these times.

Nete that subjJect RB's error curve for K/s2 dynamics is
oscillatory, but does not actually cross the base line before
the first complete oscillatlion. This subject appeared to be
more conservative in makling gross responses with these dynam-
ics and tended to bias his responses so that they would not
overshoot,

The error curves approach their asymptotle levels within
about 1 sec for K dynamics, 1.1 sec¢ for K/s dynamlcs, and 3
sec for K/s2 dynamics.

¥
Descriptive measures of the average curves are in Table 14
and are discussed on page 162
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Galn Decrease. A decrease In the galn of the controlled~

element by a factor of four does not lead to instability in
the ¢losed-loop performance, but simply lowers the open-loop
gain to a point where the system response becomes sluggish.
Such a transition produces very small initlal error when the
input signal is of low-frequency and does not have serlous
effects on system performance if adaptation does not take place
rapldly. The average error curves slowly increase negatively
reachling a rather flat peak at about .7 sec, and then gradu-
ally returning toward zero. They cross the axis between 1.0
and 2.0 sec for all cases.

Polarity Reversal and Gain Decrease. From Table 13 we see
that one of the post-transition roots 1s positive real and

the system should be dlvergent. The average error curves in-
crease slowly in a negative directlon for a fairly long time
and have a rather broad peak indicatling a large varlation 1in
the time at which modification 1s made. The times of the
first peak are about .7 sec for K dynamics, .8 sec for K/s
dynamics, and about .9 sec for K/s2 dynamics. Followlng thils
peak, the average error curves decrease toward zero. For the
subjJect RB, and to some extent for the subject GK, there
appears to be evidence of a long, low overshoot extending from
about 2 to 5 sec after the transition, indicating that the
subJects had not completely compensated for the galn decrease,

Polarity Reversal. A simple polarity reversal will result 1n
a positive, real root that wlll lead to a more rapldly diverg-

ent response than 1n the case of a polarity reversal accom-
panied by a2 galn decrease. The average error curves increase
rapldly in a negative direction following the polarity

reversal as each attempt to decrease the errcor merely increases
it further. The error reaches a peak at about .5 sec for K
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dynamics, .7 sec for K/s dynamics, and .9 sec for K/32 dynamics.
The peak error can occur only after the subjects have changed
thelr control strategy by reversing the polarity of their
control movements. Thus, the majJor modiflcation required for
this type of transition must have been completed in a time

less than the peak error time.

Followlng the change of the polarity of the controller's move-
ments, the error decreased rapidly to a low level usually
without significant overshoot. The times required for GK to
reach the asymptote are 1 sec for K dynamiecs, 1.2 to 1.5 sec
for K/s dynamics, and about 2 to U4 sec for K/s2 dynamics.
Once again we see timidity on the part of subject RB with K/52
dynamics, and he does not manage to cancel out the accumulated
errors until about 4 sec after the transition.

Polarity Reversal and Galn Increase. For thils case, the sys-

tem 1s even more highly divergent. To correct for the change

of dynamics the controller must reverse the polarity of his
response and also decrease hls galn. We see from the average
error curves that the polarity reversal occurs at a slightly
earlier time than it did for a simple change of polarity of

the controlled dynamics. The first peak of the error curves
oceur at about .4 sec for K dynamics, and about .5 sec for

K/s dynamlcs, and about .7 to .9 sec for K/s2 dynamics.

These times are also slightly shorter than the times of the first
peak for a simple galn increase, For several of the transitions
there 1is evidence of a second peak or overshoot such as was
observed for the case of the simple gain increase. When an
overshoot occcurs it is of lower amplitude than the 1nitial

peak, indicating that an adjustment of gain had been made
probably prior to the first crossing of the base line. The

time for the first base line crossing tends to be longer 1in

the case of the comblned gain increase and polarity reversal
than 1t was for the case of the simple gain lncrease,
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2. Experiment IB - Gain and Order Changes

Order Increases. (Fig. 20). The human controller adjusts his

characteristics so that the total open-loop characteristics
are approximately the same 1in the critlcal region around gailn
crossover for all the dynamics that we have employed in thils
experiment. Thus, we would expect that the response of the
system to a change in controlled-element dynamics would depend
primarily upon the nature of the change and secondarily upon
the pre-translitien dynamlics. From Table 13 we see that a
doubling of the gain and increasing of the plant order from
Ky to 2K0/s leads to about the same closed-loop roots as a
transition from a Ko/s to a 2K0/s2 plant. The average error
curves for the KO to the K%/s transitions are very similar to
those for the KO/S to Kl/s transitions. Note the difference
in time scales for these two sets of transitions. When the
plant order 1s Iincreased without a change of polarity, the
post~transition system wlll tend fto have an osclllatory
divergence. This is clearly seen in Fig. 20 for the case of
a galn doubling and order increase. The effect is less evi-
dent when the plant gain 1s decreased as the order 1s Increased.
Of course, when there is a reversal of the polarity of the
gain the post-transition system will show a non-osclllatory
divergence. Thls 1is alsc evldent in Fié. 20.

Order Decreases. (Fig. 21). A sudden decrease in the order of

the system will leave the post-translition dynamics with too
little lag compensation, and unless the galn is very low, a

rapld divergence will result. From the plots of the locus of the
principal roots of Figs. 1l6c and 16d, we see that the system will
be ose¢illatory if Kio is positive and non-oscillatory if Kio is
negative. The locatlon of the post-transitlon, closed-loop roots
is a sensitive functlon of the galn and we would expect, there-
fore, large trial-to-trial variations in the human controcller's
and in the system's response to transitions of this type. Large
variations were, in fact, observed in the time histories. In
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splte of this large variability there is still considerable
similarity between the transitions from Ko/s to Ky and those
from KO/s2 to Kl/s. The time hlstories for the order decrease
transitions indicate that modification frequently was not
accomplished in a single swltchlng from the pre-transition
control strategy to the correct post-transltion strategy.
Rather, the controller appeared to modify his control strategy
In sequential fashlon, correctlng separately for different
aspects of the change in controlled dynamics resulting from
the transition. Fig. 22 shows a sample time history of a
transition from K0/52 to —2Ko/s. Note that the correction
for the polarity reversal occurs first. But after this
modification, the gain remains too high, as is evlident from
the oscillatory character of the error. This indicates that modi-
fication had not yet been completed. It 1s 1likely that the
subject had compensated for the order decrease before the
first zero crossing because the error is oscillatory. The
root locl of Fig. 16d indicate a non-oscillatory divergence
for negative values of gain if there 1s no compensation for
the change in system order.

The fact that modification appears to be a sequential process
in these translitions does not necessarily contradict the
modification model which postulates a simple switching of
control strategles. It 1is possible that the controller was
not able to make a complete ldentification of the post-transi-
tion dynamlcs, and that, initlzally, he identifled correctly
the polarity and order of new dynamics, but did not identify
the galn. After he Initiated modifications to correct for
the polarity and order change, he may then have revised his
ldentification decision and correctly compensated for the
gain change. We cannot determine from our present results
whether or not the sequentlal modification process can be
explained by the identiflication model and this is a subject
that should be pursued In further research.
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D. DESCRIPTIVE MEASURES FROM THE AVERAGE RESPONSES

In Table 14 are descriptive measures of the adaptive process
for galn changes. These measures were taken from the average
error curves. The peak error, time of peak error, time to
first zero crossing, and time for the average error curve to
reach asymptote are given In the table. The entrles aire the
averages of the measures for the two subjects. The times to
reach asymptote are rough estimates of the time required for
the error to reach a small relatlvely steady value,

The peak error times provide an estimate of, usually a

lower bound on, the modificatlion time. The 1lncrease In peak
error times with system order reflects two factors. First,
the post-transition system is more divergent with low order
dynamics than with high order dynamlics. Therefore, the
error bullds up more slowly with the hlgher-order dynamics,
and detectlon and identification can be expected to occur
later. Second, because of the lower bandwidth of the higher
order systems, which results from the longer time delay
associated with such systems, corrective actions to reverse
the growth of the error will take longer to be effective.

In the case of the transitions with polarity reversal, the
more divergent the system, that 1s, the higher the gain, the
shorter is the time to peak error.

The peak error magnhitudes also lncrease with system order.
This result 1s expected for the same two reasons. The

longer detecticn and ldentification times for the higher-
order dynamics shceuld result in larger errors. The lower

the order of the dynamlecs the more rapidly can the subject
reverse the divergent course of the error. A single movement
with K dynamics will change the error displacement, whereas,
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Table 14

DESCRIPTIVE MEASURES FROM AVERAGE ERROR CURVES
(Average of Two Subjects)

Cl(s)/Co(s) Controlled | Peak Average | Time of | Time of Time to
Dynamics Error Peak lst zerof Asymptote
(in.) (sec) {sec) (sec)
4 K 1.1 .3 .6 1.0
K/s 2.4 LA .8 1.1
K/s® b5 .5 1.3 2.8
1/4 K .8 .7 1.5 1.5
K/s .6 .7 1.1 1,1
K/s° 1.1 7 1.5 3.1
-1/4 K 1.3 T 1.5 i.5
K/s 1.4 .8 1.7 2.3
K/s° 3.3 .9 - 2.3
-1 K 1.7 5 - 1.1
K/s 2.4 T - 1.4
K/5° 4,1 .9 - 3.5
-4 K 2.9 A .9 1.2
K/s 4.3 .5 1.2% 1.6
K/s® 0.0 .8 1.8% 2.2

¥0Only one subJect had a zero crossing.

that subject.
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a similar movement with K/s2 will merely provide a correct-
ing acceleratlion of the error. Some time must elapse before
this acceleration is reflected in a decrease of the error.

We also find that the times of the flirst zero crossing and
the times to reach asymptote generally increase with

order. Much of the increase in these times can be attributed
to the longer transient response times asscciated with the
higher order dynamics. This effect is evident 1In the step
responses of Fig. 17 which show the postulated characteris-
tlcs of the system durilng the translent tracking phase.

In Table 15 are given approximate values for the dominant
root 1in the post-transitlion retentlon period for the gain
change transitions 1n which there was a polarity reversal.
Also glven are approximate values for the imaginary part of
the roots for the gain lnerease transition without polarity
reversal. These were determined from measurements made on
the average error response curves. For the transitions, in
which there was a polarity reversal, the roots were determined
by using Eg. (7.5) and measurements of the time required for
the error to double. For the gain increase transitions, in
which the system was osclillatory divergent, the estimates of
the frequency of oscillation, w, were based upon Eq. (7.6)
and measurements of the time to the first peak of the average
error curves. The values shown 1in the table are the averages
of the estimates of the roots for the two subJects.

Comparison of the measured roots given in Table 1% with the
corresponding predicted roots, which are also given in Table
15, shows that except for the transition in which K, = —Ko/u,
the measured roots are generally within a factor of two of the
predicted roots. This agreement 1s not too bad, when we take

into account the approximations made in deriving Egs. (7.5) and
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Table 15
MEASURED AND PREDICTED POST-TRANSITION ROOTS

El(S)/CO(S) Pre-Transition Dynamics Co(s)
2l
KO Ko(s) Kols
Measured Roots
Ll w = 10.5 w = T.9 w = 6.3
~1/4 o, = 3.2 o, = 2.8 o, = 1.6
-1 o, = 4.2 g, = 2.9 o, = 1.6
-4 o, = 4.9 o, = 3.5 g, = 2.2
Predicted Roots
[l w = 13 w = 11 w = T.1
~1/4 o, = 1 0, = .92 o, = .63
-1 o, = 2.8 a, = 2.5 g, = 1.6
-4 02 = 5.7 02 = ‘l-g 02 = 3.1
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(7.6) and the difficulty of determining the roots accurately

from the average error curves. In particular, we can not be

certaln that modificatlon had not started durlng part of the
interval used to determine the time for the error to double
(for the divergent cases) or for the error to reach peak (for
the oscillatory cases). Thus we conclude that the crossover
model provides a reasonably good prediction of the controller's
behavior in the post-transition retention phase.
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E, TIME-VARYING GAIN MEASUREMENTS

In Figs. 23 through 26 are presented the human controller's
g£aln as a function of time for the three types of transitilons
investigated in Miller's experiment: a polarity reversal, a
gain decrease and a galn increase with K/s controlled dynamics.
The time histcories of the gain were determlned by averaging
over an ensemble of 8 to 10 transitions using the techniques
descrived 1in Chapter IV, Eq. (4.4), (4.5) and (4.7). For
several of the transitions estimates of the standard devliations
of the measured Kh are shown by the brackets arocund the Kh
points. Values of r2, the squared correlation between e(t-t)
and c¢(t) as a function of time, are also shown in the figures.
The stick and error signals were synchronized with the detection

signaling time for computation of Kh(t) and rz(t).

The time history of Fig. 23, a polarity reversal with one sub-
Ject, was determined over a particularly long time span. We
will discuss it in detail first. Kh starts to change about
0.1 to 0.2 sec¢ before the detectlon slgnal and changes polar-

ity 0.1 sec after the signal. For the next 1.5 sec, K, remains

falrly constant at about 1/3 1ts pre-transition magnitgde.
Then, the gain graduallv lncreases over the next 1.5 sec period
from about <=1 to about -3. A gain of -3 1s approximately
equal in magnitude (but opposite in sign) to the pre-transi-
tion gain of about 3. The gain appears to approach -3 approxi-

mately exponentlally with a time constant of about 0.4 sec.

Note that the standard deviations of the estimate of Kh are
small which indicates that the estimates are reliable. Note
also that the r2 in Pig. 23 1s generally close to unity whilch
indicates that the simple linear model of Eq. (4.3), namely
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that
cft) = Kh(t)e(t-'t) + n(t), (7.8)

accounts for most of the human controller's control movements
and that the remnant n(t) is small.

The Kh(t) behavior correlates well with that which we would
expect from the control model. From the ldentification results
of Chapter VI, we would expect that for this transition identi-
fication would be completed about 0.3 to 0.4 sec prior to the
_detection signal. 1In Flg. 23 we see that Kh
somewhere between 0.1 and 0.2 sec prior to the detection signal.

begins to change

The time of thlis change in galn corresponds to the beginning of
modification and occurs about 1T sec after ldentificatlion as was
postulated in the model. The gain reverses polarity at about
0.1 sec and is near -1 at about 0.2 sec. Since it remains near
-1 for the next 1.5 sec, we may conclude that modification is
complete by 0.1 to 0.2 sec after the detection signal, or about
0.3 sec after the modification begins. This Is jJust slightly
more than the time period of 1 sec that we postulated would be
required for the human controller to modify his control strat-
egy. The gain remains relatively constant until 1.6 sec when
it begins to increase. If we take 1.6 sec as the beginning of
the vernier adjustment phase, then the transient tracking phase
must extend from about 0.2 sec to 1.6 sec, an interval of 1.4
sec. PFrom Fig. 17 we note that the step response for transient
tracking with K/s dynamics reaches asymptote in about 1 to 1.2
sec, a duratlon that is reasonably consistent with that observed
from the Kh results of Flg. 23. Kh durling transient tracking
is about 37 percent of that observed for steady-state tracklng.
From Table 2 we would have predicted Kh for transient tracking
to be about 75 percent of the steady-state Kh. Thus, the
observed gain differs from the predicted galn by a factor of 2.
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In Filg. 24 are shown somewhat shorter segments of the time
histories of Kh(t) for the same polarity reversal transition
as 1s 1n Fig. 23 for all three subjects. For ali subjects
modificatlion appears to begin 0.1 to 0.2 sec prior tc the
detection signal. For two of the subjects, modification
appears to be largely completed about .2 sec after the signal.
For these two subjects the galn remalns falrly constant with

a magnitude that is about 1/2 to 1/3 its pre-transition value
for the remainder of the time shown in the figure. For the
third subject, RBT, modification is a more gradual process and
about 1 sec is required for the gain magnitude to reach 1/3 of
its pre-transition value. During the time period in which the
gain 1s changing, his r is very low, which indicates that the
model 18 not successfully accounting for the human controller's be-
havior. These low correlations result primarily from run-to-
run variations in the controller's behavior. For several of
the transitions for this subject, the polarity of the subject's
control movements was not changed until 0.3 to 0.4 sec after
the aetection signal. These delayed reversals cause the aver-
age galn Kh(t) to change gradually.

The significant characteristics of the time histories of Kup(s) for
the galn decrease transitions in Fig. 25 resemble those for the
polarity reversal transitions of Fig. 24. For subjects RBT and
RGT» ﬁ{s) starts to increase about 0.2 to 0.3 sec prior to the
detection signal from its pre-transition value of about 0.5.
Subject JCV does not appear to increase his gain until shortly
after the time of signal. For all three subjects, the gain
reaches approximately 1.3 within 0.2 sec after the signal.

This value of gain is about 2/3 of the expected steady-state
gain and thus there should be a gradual increase in the galn
magnltude later in the post-transition perliod, probably beglin-
ning at a time greater than that plotted in Fig. 25.
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TRANSITION 15: %—- ?-sz_’— -
SUBJECTS: o JCV

a R8T

a RGT

Ky (CONTROL CM/ERROR CM)

90.5 c 0.5 1.0
TIME FROM DETECTION SIGNAL (SEC)

Fig. 24. Time histor;es of the ensemble average of
Kn(t) and ré(t) for polarity reversal transitions
with three subjects.
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TRANSITION 14: % — -3’5-

SUBJECTS: o JCV
o RBT
| & RGT \

TIME FROM DETECTION SIGNAL (SEC)

Fig. 25. Time histories of the ensemble average of K (t)
and r2(t) for gain decrease transitions wit

three subjects.
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The results for the gain increase transition are in Fig. 26.
The gain K; decreases suddenly, and in some cases actually goes
negative, 0.3 to 0.2 sec prior to the detection signali. This
change in galn 1s in part an artifact that results from the
fact that the system has an oscillatory divergence followlng
the increase in controlled-element gain. As a result, there

is a considerable run-to-run varlabllity in relation between
control movement and error. Note that for all three sublects
r2 1s very small in thls period, which is further evidence of

large variability.

By about 0.2 sec after the detection signal the galn appears

to stabilize at a value of about 0.2, which 1is about 1/15 of

the nominal pre-transition value of about 3. For this transi-
tilon the gain of the controlled dynamics increased by a factor
of five and we would expect to see the steady-state post-transi-
tion gain of the human controller be 1/5 of his pre-transition
gain. Thus once again we see that the controller's gain dur-
ing the transient tracking phase 1s about 1/3 his steady-state
gain.

Kh(t) is not given for large enough values of time to clearly
show the vernler adjustment phase. Howeyer, there is some
evidence in the results for subject RGT that the vernier adjust-
ment begins at about 1.0 sec. At this time the magnitude of

the gain begins to increase toward .5, a value that would be
appropriate for steady-state tracking.

The significant features of the time historles of Kh(t) of
Figs. 23 through 26 for the three types of transitions are in
good agreement with each other and substantlate the model for
modification and transient tracking. The timing of the modi-
fication process 1s observed to correspond closely with that
posulated in the model. The gain during transition tracking,
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TRANSITION 7: —2-—-'—2—

SUBJECTS: o JCV
o RBT
a RGT

Fig.

26.

o OS 1.O
TIME FROM DETECTION SIGNAL (SEC)

Time histories of the ensembie average of K, (t)
and r2(t) for gain increase transitions witn
three subjects.
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however, 1s lower than predicted. The few results that we
obtained for large values of time indicate that vernler adjust-
ment begins at a time that is consistent with that predicted

by the transient tracking model.
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CHAPTER VIII

CONCLUSIONS

We have proposed a set of models for the decision and control
processes involved in the adaptation by the human controller

to sudden changes (transitions) in the dynamics that they are
controlling. The declslon processes postulated by the model
are detection of a translition, ldentification of the new dynam-
les, and selection of the appropriate new control strategy.

The control processes postulated are steady-state tracking,
modification, translent tracking, vernler adjustment and then
steady-state tracking with the new dynamies,

A statlstical decislon theory model 1s proposed for the
detectlon and identificatlon processes. This model has been
tested in detall Iin experiments with controlled dynamics of
the form K/s and K/sz. The agreement between the detectlion
and identification performance of the model and that obtained
in the experiments is very good. The selection process 1is
postulated to be a simple retrieval from memory of the appro-
prilate control strategy. Retrieval 1s assumed to take a
fixed time T. A few data supporting thils hypothesis were
obtained.

Steady~state tracklng performance is represented by the simple

crossover model proposed by McRuer et al.l Average error
response data obtained with K, ¥K/s and K/s2 dynamics showed
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that this model predlcts with falr accuracy the system behav-
ior in the post-transition retention perlod during which the
controller retains hils pre-transition control strategy, but the
controlled dynamics have changed. Modification was postulated
to be a simple switching of control strategies, the switching
time taking 1 sec. Ensemble average measurements of the human
controller's time-varying gain with K/s dynamlies support this
hypothesis. For transient tracklng we postulated a crossover
model with the galn adjusted to give minimum mean-~squared error.
The average error curves and the time-varying gain measurements
indicate that the time to correct for the transient errors
predicted by such a model is approximately correct. However,
the controller's galn during transient tracking predlcted by
the model 1s about twice that actually observed 1In the time-
varying gain measurements. Evidence for a vernler adjustment
of the controller’s galn is presented, but detalled studles of
this part of the adaptive process were not made,

The results of this study that are best substantliated and most
significant are the decision theory models for detection and
identification of a transition. These models cast the detec-
tion and identification processes in a framework that is
Intuitively satisfying and amenable to application to realistic
control situations in which transition may occur. To apply

the models, we must know the probability of a transition and
the dynamics that are possible 1f a transition occurs. These
are quantitles that usually are known, or can be estimated,
at least roughly in, for example, a reliabllity analysis. We
must also know the human controller's subjective likelihood
functions that a gliven error behavior will result from the
control movements that the subjJect makes. These functions,

in effect, summarize the human controller's state of knowledge
or his ability to predict the response of the possible con-
trolled dynamics. Although it is not clear how to estimate
these llkelihood functlons, if we make the assumption that
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they have a normal dlstribution, they can be characterized
by a few parameters that probably can be measured in some
simple experiments. In any case, the models delineate those
aspects of the detection and identification process that are
a function of the physical situation and those that are a
function of the human controller's knowledge of the physical
situation. Such a delineation 1s helpful for the analysils
and puts in focus a number of theoretical and empirical
questions that can only be answered by further studies.
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