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The paper deals with the possible overestimation of the damping ratio, when 
evaluated from autocorrelation functions in the time domain, because of a bias caused 
by a triangular window. 

Some theoretical considerations permitted to evaluate a lower bound for the sampling 
period over which it has been possible to estimate the damping ratio with acceptable 
errors and therefore to limit the effects of the above said bias. 

Several numerical examples singled out its possible effects on the modal parameter 
estimations and gave quantitative evaluations of it. Firstly numerical data regarded 
single degree of freedom systems in function of the sampling period, afterwards two 
modes have been considered. This last example is also presented with a high random 
noise added to the original impulse response, and that because the autocorrelation 
permits to clean up the noisy signal. In addition when more modes are present in the 
baseband the problem could become critical: in fact the mode with the highest time 
constant and therefore, in general, the one with the lowest frequency, is exposed to bias 
errors which, in case of a large oversampling, become completely unacceptable. 
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ER 
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natural frequency (Hz) 
sampled impulse response 
lag index 
index of samples 
sampled triangular window 
expectation value 
maximum number of lag points 
number of points contained in the impulse response 
residue magnitude 
sampling period (s) 
limit sampling period (s) 
sampled autocorrelation function relative to h[n] 
estimated autocorrelation sequence 
error in the natural frequency estimation 
error in the residue magnitude estimation 
error in the damping ratio estimation 
viscous damping ratio 
decay rate (rad/s) 
time constant (s) 
limit time (s) 
damped angular frequency (rad/s) 
natural angular frequency (rad/s) 

1. Introduction 

Correlation functions play an important role in diverse areas of science and 
technology, in particular they are commonly utilized in Modal Analysis to obtain 
Frequency Response Functions (FRFs) [l to 4]. Besides, Autocorrelation Functions 
(AFs), derived from Impulse Responses (!Rs), could be used to get modal parameters, 
i.e. natural frequencies and damping factors, directly in the time domain. This approach 
can tum out to be useful when the impulse responses are corrupted by a very high 
additive random noise [5], as it happens for data gathered from flight tests; in fact, 
evaluating autocorrelation functions, it is possible to remove an uncorrelated noise 
present in the original impulse response. 

Autocorrelation functions are generally estimated by a relationship that introduces 
a bias consisting in a triangular window around the origin of the time axis. 

For a sampled signal, the maximum time lag - given by the sampling period times 

GCD-2 



the number of points whereof the signal is shifted with respect to the origin - where the 
autocorrelation is estimated from the available data, must satisfy some constraints. It 
not only ought to be of the order of one tenth of the data block length in order to avoid 
instability in Power Spectral Density estimates [6], but it must be also chosen in such 
a way that the exponentially decaying envelope of the autocorrelation is smaller than 
the contribution of the triangular window. So if the number of the lag points is 
determined in function of the available number of the total points of the original IR, the 
sampling period, in addition to the Shannon condition, that determines an upper limit, 
must also satisfy a lower limit, which permits to estimate the damping ratio with 
acceptable errors. 

In this paper the evaluation of the above said parameter is derived, for each mode, 
from the instantaneous envelope and phase of the autocorrelation function, which in tum 
are obtained via the Hilbert transform [7, 8]. 

2. Theoretical considerations 

In order to discuss our subject, let us consider the impulse response - sampled over 
N points - of a real mode derived from a single degree of freedom system: 

0 s n < (N-1) (1) 

where n is the sample index, T, is the sampling period, u is the decay rate and wd is the 
damped angular frequency. 

The autocorrelation sequence can be estimated by the following relationship: 

[ 
1 l N-m-1 

p11[m] = - E h[n] h[n+m] 
N n-o 

(2) 

valid for Os m < (N-1), where m indicates the number of lag points of which one 
sequence is shifted with respect to the other (the time lag is therefore given by mT.). 

Since the autocorrelation is an even function: 

(3) 

and in addition we are only interested in the sequence relative to m > 0, Eq. (2) is 
completely sufficient for our purpose. 

GCD-3 



Although the relationship above mentioned is frequently utilized, in fact it provides 
a true autocorrelation sequence (the matrix formed with its elements results to be always 
positive semidefinite), this estimate is biased by the triangular window: 

w[m]= [ 1-; l (4) 

As for N• oo the window is identically equal to the unit, the autocorrelation estimate 
(2) results asymptotically unbiased [9,10]. Thus the expectation of the estimated 
sequence is given by the product of the actual autocorrelation times the window: 

(5) 

If the maximum lag index M is small enough in comparison with N, the estimate 
given by Eq. (2) is an acceptable approximation of Ph[m] and, under proper conditions 
[5], it can be written as follows: 

[ 

1 l R2"' e-"<"'T,> 
p11 [m] = -- d • COS 

NT V 2 2 1 4uu +w4 

(6) 

When the viscous damping model is adopted, the decay rate and the damped angular 
frequency can be written as follows: 

(7) 

and 

(8) 

where r is the damping ratio, thus relation (6) reduces to: 

(9) 

Besides, if the damping ratio is small such that its square value is negligible with 
respect to the unit, relationship (9) is further simplified: 
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A [ ] ~ R
2 

- u(mT,) [ ( T ) ] p11 m = --- e • cos wd m s 
4NTS <J 

(10) 

in fact, the damped and the natural frequencies are practically equal and for the above 
said position: 

arctan [ r l = arctan (t) = o 
✓1-r2 

(11) 

Actually, owing to the presence of the bias mentioned above, the decaying of the 
function results greater than the one due to the exponential term appearing in relations 
(6), (9) and (10). Because our interest is devoted to estimate the decay rate, or better 
the damping ratio, it is necessary that the contribution of the triangular window is 
negligible with respect to the one of the exponential decay. A limit time {TiiaJ can be 
derived from the following relationship (Fig. l): 

triangular window 

exponentially decaying envelope 

- a -rlim e 

( 
't fun) 1--
T 

Limit time 

Figure 1 - Limit time evaluated at the maximum time lag. 

G:0-5 
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that - in function of the sampling period, of the maximum number of lag points and of 
the total number of samples - becomes: 

(13) 

Performing the natural logarithm, it is possible to derive a relation between the 
system time constant (re= 1/ a) and Tiim : 

7
lim [ Ml - = -In 1--

Tc N 
(14) 

Therefore the limit time ought to be in the order of [(1/lO)Tc] or less, supposing M 
much lower than N, so that the contribution of the triangular window is small enough. 
Thus the limit sampling period, evaluated for the maximum value of the lag points, is 
given by: 

(J;)llio a - [ ~ ] ln [ 1-;] (15) 

Since Tc is unknown "a priori", it is necessary to have a rough knowledge at least 
of its order of magnitude, anyway once the natural frequency and the damping ratio 
have been estimated, it is possible to check the limit sampling, in fact if (T Jlim, 
evaluated introducing into relationship (15) the estimated time constant, is not 
sufficiently less than the sampling period actually employed, a longer Ts must be used. 

When several modes are contained within the baseband, (T Jlim is constrained by the 
highest time constant, that is - supposing the damping ratio almost equal for each mode 
- by the mode with the lowest natural frequency. 

3. Numerical tests 

Data sequences presented in the following numerical simulations are formed by 4096 
points, whereas the number of lag points of the autocorrelation function has been 
chosen equal to 512 in order to get the Hilbert transform by a standard FFT software. 
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All the impulse responses considered hereafter have the same amplitude: R = 10, 
even when two modes are presented. 

In Tab.1 estimates from the autocorrelation of an impulse response representing a 
real mode with a very low natural frequency and a light damping ratio ( the input modal 
parameters are: f.=0.71 Hz and f=0.003) are shown: 

Table 1 - Modal parameter estimates from a highly truncated impulse response 
versus the sampling period. 

T1 (s) R I Ea.I (%) fD IErl (%) r IErl (%) 

0.150 10. 0004 7 0.47 10-2 0.71 0.46 10-3 0.30002 10·2 0.59 10·2 

0.100 10.00142 0.14 lo-1 0.71 0.47 10·3 0.30007 10·2 0.23 10-1 

0.050 10.04965 0.50 0.71 0.62 10-3 0.30406 10·2 1.35 

0.030 10.32771 3.28 0.71 0.17 10·3 0.33171 10-2 10.57 

0.020 10.80397 8.04 0.71 0.34 10-3 0.39330 10-2 31.10 

0.015 11.25559 12.56 0.70996 0.51 10-2 0.47019 10-2 56.73 

0.010 11.95407 19.54 0.70973 0.39 10-1 0.64287 10·2 114.29 

Since the baseband is 2 (Hz), the sampling period must be less than 0.195 (s), 
because a sampling factor equal to 2.56 has been considered. On the other hand T, 
should be greater than the limit time 0.0195 (s), derived from Eq.(15). Actually up to 
T,=0.050 (s) errors on fare negligible, on the contrary for decreasing sampling periods 
higher and higher damping ratios have been obtained, owing to the presence of the 
triangular window. 

The amplitude R has been achieved through estimates of the decay rate and of initial 
values of the autocorrelation function, Eq.(10). 

Natural frequencies have been instead evaluated with immaterial errors for all the 
cases presented. 

The truncation at the end of the maximum time lag does not affect the modal 
parameter estimates, in fact they have been carried out in the time domain with the 
Hilbert approach [7,8] (Appendix). 

The same case is also shown in Tab.2, where estimates have been carried out in the 
frequency domain, using 400 spectral lines, with the commercial software SMS Modal 
3.0 [11]: 
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Table 2 - Damping ratio estimations in the frequency domain. 

T, (s) 0.150 0.100 0.050 0.030 0.020 0.015 0.010 

r 0.00300 0.00300 0.00305 0.00337 0.00404 0.00490 0.00703 

!Erl (%) - - 1.67 12.33 34.67 63.33 134.33 

Errors on the damping ratio are in agreement with the ones obtained by the time 
approach: the FRF results to be biased, in fact the triangular window, due to the 
uncertainty principle [12, 13], broadens the peaks and therefore an overestimation of r 
occurs. For the first two sampling periods no errors could be evaluated because of the 
limited number of decimal digits provided by the software outputs. 

Amplitudes have not been reconstructed because they are not only altered by the 
errors on the decay ratio estimates, but they are also modified by the effects due to the 
truncation of the autocorrelation function at the end of its observation time [14]. 

Another example, with a greater decay rate ( f0 =8.25 Hz and r=0.01 ), is presented 
in Tab.3: 

Table 3 - Estimates from a higher decay rate impulse response . 

.. 

Ts (s) R !ERi (%) f .. I Erl (%) r I Erl (%) 

0.020 10.00123 12.33 10·1 8.24959 0.50 10·2 0.10001 10·1 0.14 10-1 

0.010 10.00031 0.31 10-2 8.24959 0.50 10·2 0.10001 10·1 0.90 10-2 

0.005 10.00083 0.83 10·2 8.24958 0.50 10·2 0.10002 10·1 0.17 10-1 

0.001 10.21345 2.13 8.25043 0.52 10·2 0.10544 10·1 5.44 

0.0008 10.28766 2.88 8.24636 0.44 10·1 0.10940 10·1 9.40 

0.0005 10.54330 5.43 8.28293 0.34 0.12641 10·1 26.41 

0.0003 12.76663 27.67 8.20648 0.53 0.21966 10·1 119.66 

In this case a baseband of 10 (Hz) has been considered , therefore the Shannon 
sampling period is equal to Ts=0.039 (s), on the contrary the limit sampling time 
equals 0.0005 (s). As in the first Table, errors on r increase as the sampling time 
lowers and unacceptable values have been obtained for Ts equal or less than the limit 
value. The order of magnitude of E1 is similar to the one gained for the first example. 

In the next Table two modes in the baseband of 10 (Hz) have been considered; 
modal parameter estimates achieved from autocorrelation functions of impulse responses 
with the same amplitudes and the same natural frequencies of the previous examples, 
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but with the damping ratio equal to 0.003 for both the modes, are shown (Tab.4): 

Table 4 - Modal parameter evaluations for two modes present in the same baseband 
(10 Hz) versus the sampling period. 

T, mode R I €RI (%) fn ierl (%) r ierl (%) 

1st 10.19364 1.94 0.71 - 0.31820 10-2 6.07 
0.035 

2nd 10.00335 0.33 10·1 8.24995 6.06 10"4 0.30006 10-2 0.21 10·1 

1st 10.32731 3.27 0.71 - 0.33169 10-2 10.56 
0.030 

2nd 10.01256 0.13 8.24993 8.49 104 0.30025 10-2 0.85 10·1 

1st 10.52615 5.26 0.71 - 0.35444 10·2 18.15 
0.025 

2nd 10.00393 0.39 to- 1 8.24990 1.21 10·3 0.30009 10-2 0.30 10·1 

1st 10.80372 8.04 0.71 - 0.39328 10-2 31.10 
0.020 

2nd 10.00082 0.82 10·2 8.24989 1.33 10·3 0.30003 10·2 0.88 10·2 

1st 11.26584 12.66 0.70996 5.63 10-3 0.47096 10-2 56.99 
0.015 

2nd 9.97821 0.22 8.24984 1.94 10-3 0.29935 10-2 0.22 

1st 11.97794 19.78 0.70973 3.80 10"2 0.64517 10·2 115.06 
0.010 

2nd 9.95462 0.45 8.25002 2.42 10-4 0.29848 10-2 0.51 

For sampling period up to the limit value 0.0195 (s), due to the first mode (i.e. the 
one with the lowest decay rate), errors on !: increase to about 30% for the first mode, 
whereas they remain negligible for the second mode. In any case errors on natural 
frequencies are always irrelevant and therefore the ones on the amplitude are practically 
related to the errors on the correspondent !;'s. Obviously for shorter T;s, errors on the 
damping ratios of the first mode result higher and higher, whereas for the second mode 
they always remain small. Due to the presence of more modes in the baseband, and 
since the Hilbert transform approach works on the single mode, a suitable filter must 
be applied. In particular, an adaptable cosine tapered filter has been used: its width has 
been chosen taking into account the shift of the peaks in the frequency domain, owing 
to the different sampling periods. Estimates from the previous two modes, when they 
are added to an uncorrelated random noise, with zero mean and standard deviation 
equal to 50% of the common impulse response amplitude, are shown in Tab.5 (Fig.2 
shows the time history relative to Ts=0.02, whereas its autocorrelation is presented in 
Fig.3): 
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Table 5 - Effect of a high random noise on parameter estimates of the modes 
presented in Tab.4. 

T, I mode I R I IERI (%) I fn I !Erl (%) I r I I Erl (%) 

1st 9.97203 0.28 0.71019 2.63 10-2 0.32681 lo-2 8.94 
0.020 

2nd 12.32280 23.22 8.25263 3.19 10-2 0.34667 10-2 15.96 

1st 11.54107 15.41 0.71043 6.06 10-2 0.48112 10-2 60.37 
0.015 

2nd 9.32304 6.77 8.25823 9.98 10-2 0.24305 10-2 18.98 

1st 11.68375 16.84 0.70958 5.92 10-2 0.60516 10-2 101.72 
0.010 

2nd 8.69748 13.03 8.24198 9.72 10-2 0.24436 10-2 18.55 

In this case the effect of the added noise, on the damping ratio estimations, is 
especially significant for the second mode because its impulse response is more rapidly 
damped out. Besides, even if the residues of the two modes are equal, the initial 
amplitudes of the autocorrelation functions - derived by filtering - result to be 
completely different: in fact - for the sake of simplicity - considering each mode 
independently and not taking account of the cross-correlation terms, autocorrelation 
amplitudes are inverse functions, being all the other values common, of the relative 
decay rates and so the second mode could have a much smaller amplitude than the first 
one:see Figs.4 and 5 for the filtered autocorrelation functions and Figs.6 and 7 for the 
relative envelopes. 

4. Conclusions 

In the use of an approach based on autocorrelation functions of impulse responses 
in order to obtain - in the time domain - the modal parameters, a possible source of 
error in the damping ratio estimation is connected with a bias due to a triangular 
window positioned around the time axis origin. Owing to this bias, it is necessary to 
evaluate - for example at the maximum time lag where the autocorrelation function is 
calculated - a minimum sampling period (lower limit), suitable to analyze the signal and 
in particular to estimate the decay rate and consequently the damping ratio. Although 
the value of this sampling period is a function of the unknown signal time constant, 
nevertheless it is possible, starting from an its first estimate, to update the value of the 
sampling period and so to eliminate bias errors. In this way, the peculiar advantages 
deriving from the use of autocorrelation functions - especially if evaluated from highly 
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noisy impulse responses - to estimate modal parameters, and in particular damping 
ratios, can be thoroughly exploited. 
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Figure 2 - Impulse response of Tab.5, relative to T,=0.02 (s), contaminated by a 
random noise. 
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lines contain the points used in the least squares regression. 
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Appendix: Hilbert transform and modal parameter estimation 

The time sequence (10) can be considered as an amplitude modulated signal with 
the carrier equal to the damped angular frequency and the modulating signal equal to 
the decaying exponential function: [R2/(4NT1u)] exp(-umT.}. Since the spectrum of this 
last function is unbounded, relationship (10) and: 

(A.1) 

are not strictly a pair of Hilbert transforms. Nevertheless, under proper conditions [8], 
the Bedrosian theorem [ 15, 16] can be applied at least in the limit sense, thus the 
complex signal: 
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(A.2) 

R2 
e - o<mT,) eiw,<mT,) 

4NTp 

can be considered as analytic. 
It is easy to recognize that the magnitude of z[m] represents the modulating function, 

whose decay rate could be directly estimated from the straight line: 

ln lz[m]I = ln [ R
2 

]- am Ts 
4NTS<J 

(A.3) 

whereas its argument is the instantaneous phase, the slope of which gives the damped 
angular frequency: 

(A.4) 

Consequently, it is possible to achieve the natural angular frequency: 

(A.5) 

and the damping ratio: 

(A.6) 

The residue magnitude R can be evaluated introducing the known values and the 
estimate of a, achieved from the envelope, into the initial amplitude of Eq.(10). 

Good estimates of the parameters mentioned above can be gained performing least 
squares regressions on the two straight lines represented by Eqs.(A.3) and (A.4). 
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