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An unified treatment on the matrix methods of analysis of the
elastic~plastic problems will be described in this paper. In the
earlier section the stress-strain matrices suitable for analyzing
the elastic-plastic problems are derived first based on the Mises
yield condition and its associated flow rule which is the Prandfl-
Reuss equation. Examples of the stress-strain matrices will be
shown as applied to the plane problems, the axisymmetric as well as
Saint-Venant torsion problems. As numerical examples for the plane
and axisymmetric problems, tensile test of a sheet and a round bar
with V notches will be treated. As for Saint-Venant torsion problems,
a new displacement method of solution will be proposed as an alter-
native of the existing matrix method of solution based on the well
known stress function. The elastic-plastic torsion problems can he
treated in comparatively easy manner by the proposed displacement
method. The present paper includes, in the last section, the discussion
of the elastic-plastic analysis of the frame structures. Although the
application of the matrix methods to the elastic~plasticframe analysis
is not necessarily new, attempt will be made to establish an unified
procedure for the solution of relevant problems, giving considerations
to (1) the relation to the continuum problems, and (2) treatment of
load distributed along the span. Through the present study, it is con-~
cluded that the plastic limit designwill be replaced, in the near future,
by the matrix methods which are ideally suited for the analysis of
nonlinear problems involving plastic deformation,
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SECTION I
INTRODUCTION

It has been considered for long time that the elastic-plastic problem is extremely in-
tractable in the continuum mechanics. Although the importance of plasticity solution has
been recognized in the earlier days in the field of material science, ‘intractableness’ has
been fatal defect and also has made the theory of plasticity inaccessible. So, the development
of the very ingenious method of solution called as the plastic limit analysis may be considered
the very last countermeasure to avoid difficulties in the analysis of the elastic-plastic
problems. It may be said that recent development of matrix methods has completely changed
the situation.

In the stage of application where the iterative solution of plasticity problems was sought on
the basis of the total strain, or deformation theory of plasticity, matrix methods were not
considered to be so powerful for analysis of nonlinear problems. The recent success in appli-
cation of matrix methods to plasticity problems could be mainly attributed to their bridging
to the incremental theory of plasticity. In the earlier days of 1950 --- when development of
matrix methods had been just started with evolution of the electronic digital computers --- the
incremental theory had been established by the scientists and engineers in plasticity such as
Hill (Reference 1) and others. As well the introduction of the finite element method in the field
of structural and continuum mechanics, the establishment of the incremental approach in the
field of plasticity theory should be highly evaluated.

The Prandtl-Reuss equation has been widely accepted as the basis of the incremental
theory of plasticity. Not only is the Prandtl~-Reuss equation generally consistent with exper-
imental observations, but it is quite fortunate thatthe equation is ideally suited for theoretical
analysis by means of digital computers, As is well known, the Prandtl-Reuss equation is
derived from the Mises yield condition as the plastic potential. In the earlier part of this
paper, the stress~strain matrix written inthe convenient form for its application to the matrix
displacement method will be derived through the inversion of the Prandtl-Reuss equation, and
various forms of the matrix will be given for specific cases such as the plane stress, plane
strain and axisymmetric¢ problems.

Once the stress-strain matrix has been formulated (the possible extension of the present
approach to the soil and rock mechanics would be obvious), the elastic-plastic problems can be
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solved by using the standard procedure of analysis well established in the matrix displace-
ment method, except simple modification of the stress-strain matrices (from elastic to
plastic) for yielded discrete elements. Thus, we can determine the elastic-plastic boundary
with the growth of plastic region in continua, while in case of frame structures we can trace
all the process of plastic hinge formation up to the plastic collapse of the structures.

In the process of such elastic-plastic analysis, the yield criteria will be applied for the
discrimination of plastic elements (or members) from elastic ones. In the earlier section
where analysis of continua is described, a step by siep method of tracing the yielding of
individual discrete elements will be discussed. In the frame structures, a similar procedure
will be applied for consecutive pursuit of the plastic hinge formation at the member-ends or
somewhere in the structures.

It must be emphasized that the effects of strain-hardening of the material can be easily
taken into account in the elastic-plastic analysis based on the matrix displacement method.
Furthermore, the effects of the change of structural configuration due to large displacement
as well as the effects of axial forces in the frame structures (more generally, the force-
moment interaction in the yield condition) can be allowed for without introducing appreciable
difficulty in the matrix methods. Therefore, it can be concluded that the field of application
of the methods is extremely broad and the solutions to be obtained are very realistic and
significant.

In this paper, general application of the incremental procedure of the matrix displacement
method to the elastic-plastic analysis of continuum and frame structures will be discussed,
and power of this newly developed technique will be demonstrated by showing, as many as
possible, the numeral examples of the following problems: (a) the plane and axisymmetric
problems, (b) Saint-Venant torsion, (c) plane trusses and frames.
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SECTION II

DERIVATION OF THE PLASTIC STRESS-STRAIN MATRIX

Various matrix methods for the solution of continuum plasticity problems where the
material nonlinearity is taken into account are described by Zienkiewicz (Reference 2).
Among them the incremental approach seems to be comparatively new and the earlier works

of Pope (Reference 3), Marcal and Pilgrim (Reference 4), Marcal and King (Reference 5)
and others.

Success of the matrix methods in plasticity problems entirely depends upon the possi-
bility whether the siress-strain relation in plastic range can be postulated in such a form
that it may be suitable for application to the matrix methods or not. More precisely, in the
case of Prandtl-Reuss equation, formulation of the matrix theory will be successful if the
proportionality factor d A involved in the following equations can be expressed either by
the stress-increments or by the strain-increments. The equations are:

- 4 — _ h
dex-c"xd)\ +d(cr)c vo vo, Y/ E

Y
f

dey -orydk+ d(a'y - vo, —vo, )/ E

de =crzd)\+ d(crz —vo, ~ vo, )/ E

y i ()

dyzy =27xy dX +cl'rMr /G

dy,, =27, d\+dT , /6

dy,, =27

7x dA+dT, /G

where oy , gy ,0; are the deviatoric stresses,and d )’xy . d);,z ,4%,, denote the engineering
shearing strain increments; the other notations being considered to be of self-evidence. In
the earlier work of Yamada (Reference 6) the factor d\ was shown to be expressed by the
following equation:
/ ’
o~ oy de, + oy dey + 0, de; + T, dy,, FT,dyy, + T, dygy, )

% % (1+H'/36)

Equation 2 may bhe easily verified through the combined use of the Mises yield condition
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with Equation 1, where & denotes the equivalent stress, and H' is the slope of equivalent
Substituting Equation 2

stress (&)-equivalent strain (fdeP ) relation; i.e, H'=d&/ deP,

into Equation 1 and solving for the stress-increments

(se} « [o7] {ae)
where
{ da} = d.crx { de} : d'ex
97,4 47 2x
and
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S in Equation 5 is identical with the denominator of Equation 2 and expressed by
.2 _.2 '
S=~3 7 (I+H /36) {6)

Alternatively, Equation 5 can be derived from the fact that the proportionality factor d\ can

be expressed in terms of stress-increments as follows:

3
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’
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Equation 7 is obtained from the definition of dAandthe differential form of Equation 3, The
plastic stress-strain matrix [Dp] of Equation 5 corresponds to the well-known elastic stress-
strain matrix

|l —v v v
I-2v {—2v |—-2v © ©
v |y L. 0 o0 O
j-2v | -2v (—2v
v vV |-V o O 0
[De] ] £ l-2v -2v -2y (8)
i+ v o] o) ¢/ % o 0
0 0 0 0 -!5 0
0 0 0 0 o -é—

From comparison between Equations 5 and 8, it can be seen that leading diagonal elements of
Equation 5 are definitely less than the corresponding elements in the elastic matrix [De].
This represents the reduction in the stiffness of the material element due to yielding. In
addition, components of the shear strain- (or stress-) increments in Equation 5 are as-
sociated with components of normal stress- (or strain-) increments, and so some cross-
effects in stress-strain relation are observed in the plastic range.

As a special case, the stress~ and strain-increments in Equation 4 would be for the
axisymmetric problems

( do, ) (de, )
dO'B dee
{da}w io, , {de} =< e, L (9
\ dTl"i'. J \ der /
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The expression for I:Dp] in the axisymmetric case would be obvious, and not be necessary to
describe here. The stress-strain matrix for plane strain problems is also simple and is
expressed specifically for the case where de,= 0 (d )’yz s d%,= 0)

r 3 —l v 0_'2 i
- X
- SYM. €
do -2y s d€x
E gl o _ 0.2
p do, > = v _x "y -y _ ¥ 4 de > (10)
y I+y | |-2p S -2v s y
' ‘ 2
o, T o) T | T
Y% Txy _ %y Txy S
ITxy 5 S 2 s 47xy
J — L

Equation 10 can be obtained by deleting the rows of 4o, . dryzzdrnz 0 as well as the columns
corresponding to de, =dYyz=dY = 0 in the plastic stress-strain matrix [Dp] of Equation 5.
As an additional special case, the following stress-strain matrix should be used in the case
of Saint-Venant torsion problems to be discussed in Section IV

—

2

T T
| Tyz yz "z d
a7, =~ 3 3 Ty
=26 Tz {n
T, T
yz Tzx I 1
97, T s 2 3 47 2x

where z axis is taken along the centroidal axis of a bar.

The stress-strain matrix for plane stress problems (03=0) can be obtained by putting
do; =0 in Equation 4 and eliminating the corresponding strain component de; therefrom,
However, the authors have found that it is simpler to derive it directly by using the original

Equations 1 and 7, Putting o3 =0 in Equation 1 and retaining the necessary equations and/or

terms, we obtain
1

’ —
de, = o, d)\+—-E (do, vdcry)
/ |
dey=a'y di + --—E (dcry -~vdo, ) (12)
1+ v
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Substituting dA from Equation 13 into 12 and solving for the stress-increments

( ~ . - r 3
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E ’ 2
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Using Equation 14, we can represent the stress-increments in Equation 13 in terms of strain-

increments, and obtain an alternative expression for dA

) i} ’ I
d\ = a [(o-x+y0' ) dex+(cry+v0'* ) dey +(I.—v)‘r" d)’,‘,] (16}

y

The proportionality factor dA or the corresponding plastic equivalent strain-
increment §¢P. 25 d) /3 should be positive for continued loadings. In the case of the strain-
hardening materials, this check of sign can be made by using Equations 7 and 13. But for the
nonhardening materials with H'= Q0 the check should be made by Equations 2 and 16, Since
it is easily proved that Q involved in Equation 16 is positive, the sign of dA for plane stress
problems can be checked only by examination of the term in the square bracket of Equation 16.
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SECTION III

APPLICATION FOR THE SOLUTION OF CONTINUUM PROBLEMS
AND SOME NUMERICAL EXAMPLES

Using the plastic stress-strain matrix obtained in the preceding section, the characteristic
stiffness of the individual finite element in the plastic state can be evaluated. In the case of
the plane stress field, for example, the stiffness matrix [kP] of a triangular element can be

[ (W] 07 [ )

where { denotes the plate thickness of the element which is assumed to be constant, and A is

expressed as

the area of a given triangle. The matrix [N] is identical with [a] defined by Equation (3.10)
in Zienkiewicz (Reference 2). And [N]Tis the transpose of the matrix {N] .

In the case of the axisymmetric problems (Figure 1), Equation 17 is to be replaced by

[uP]=21r[RT]T [DP] [F]TA (18)

in which A implies the area of a triangle as shown in Figure 1. Approximation of the mean
radius r is used in Equation 18 as well as in the numerical examples to be shown later.
[ﬁ] is again identical with [E] defined by Equation (4.14) in Zienkiewicz (Reference 2).

Procedure of assembling the overall or complete stiffness matrix of the whole body is
the same as that in the corresponding elastic problems except using plastic stiffness matrix
such as Equations 17 and 18 for the yielded elements. The stiffness matrix thus assembled
represents the reduced stiffness at each stage of the expansion of the plastic region. However,
8o long as the plastic region does notdevelop to a large extent, i.e. in the case of the contained
plastic problems, reduction of the overall stiffness may not be profound because of the re-
straint of the neighbors which continue to be in the elastic state. If the material is assumed
to be nonhardening, the ultimate condition which corresponds to the ‘limiting state’ in the
plastic or limit analysis will be automatically attained by continuous fracing of the whole
solution in the elastic-plastic range,

The method of solution proposed by Yamada, Yoshimura, and Sakurai (Reference 7)

employs the stress-strain and stiffness matrices go far described, and is purely incremental
in that the load-increment just enough to cause yielding of a single discrete element is used
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at each loading stage. Accordingly the load-increment ig not a constant and is specified as
the consequence of the calculation, Instead of reintroducing the details of the calculation
procedures, the method of determination of the load~increment at each stage will be only
described here,

In the case of the usual triangular element adopted for plane stress analysis, the stresses
as well as strains are constant throughout the element. Similarly, in the approximate treat-
ment of axisymmetric problems where the mean radius ¥ and the mean value of 2 coordinate
are used, we can assume the stresses and strains in each element to be constant. Under these

circumstances, the yield condition of the triangular element is given by

_ 2 1 I
= — ol o. =Y (19}
g \ﬁz O-I] ij

where the Mises yield condition has been employed, and o, o ;j are the equivalent and the

deviatoric stresses respectively. Y denotes the yield stress determined by the tensile or
compression test. When O in a certain element reaches Y, the element is regarded to be in
plastic {or yielded) state.

Having obtained the solutions up to the jth stage of calculation, the subsequent stress-
increment A O‘i} is calculated by carrying out the usual analysis with respect to the assumed
test load{A Lt} . By this process, the stress-increment PR of each elastic element from the
known state of stress P at ,-th stage can be determined (Figure 2). Relation between the stress

o * A cri} at R and the equivalent stress & +4 ' is given by the following equation:

T+ A51=\/—23(0'.’. +Ac! Wa! +Ac! ) (20)
1] 1) ) 1
The stress-increment required to cause yielding of elastic element sould be given by PQ in
Figure 2. Thus, denoting PQ/PR = ', we obtain

- -'3_ ' 1 ’ -t
Y-/z (0'”+7A0'ij " % -l-y./_\rfij ) {21}
r can be determined from Equations 20 and 21

. 2 Yo
T +[I"2+4(Aori;) (v?-3%)]

2(Ag! ¥
i

r:

(22)
—_— 2 - — 2

r =(A0'ij') -2 At - (AT h
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Figure 1. Triangular Element in Axisymmetric Problem
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PR = E&'l_it . r = PQ/PR

Figure 2, Determination of the Load Increment Just Enough to Cause Yielding of the Elastic
Element
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where

t 3 I ]
Ao, =\/——— Ao/t At - i
i > i i PR of Figure 2

AEt involved in Equation 22 can be evaluated by subtracting o at the preceding stage from
a+ AO""tcalculated by Equation 20 for the assumed test load.

Following the procedures mentioned above, r can be found for all the elements which

remain elastic at jth stage, and the minimum of which is designated by r The element

min *
(or elements) having rp,j, is nearest to yielding at the relevant stage and can be regarded
to be yielded in the next ( j +| ) th load-increment which is fmin{A Lt} . The specific form of

(22) for Saint-Venant torsion problems to be discussed in the next section is

— |
I+ [1“2+4( Ar'? (k® —rzl]/a

.. (23)
2(ath?
where
— 2
I' s &zt -2t Art - (ArhH)
T /Ty ¥ T 0 T +ar! =\/( Ty t AT§2)2 +r,, +ATY )
and

res - t 2 t 2
Art -\/(Aryz) +(Arzx)

The first numerical examples worked out by the authors were the plane stress problems
of 90 degree V-notched and slit-notched tension specimens (Reference 7). Here we present
recent examples which concern with the plane and axisymmetric problems of 60 degree
V-notched tension specimens with a small bottom notch radius in Figure 3 (Reference 8).
Major difference between specimens with round bottom notches and with sharp ones is that
the plastic zones surround the notch sides considerably in the former. It has been observed
from comparison between plane stress and axisymmetric solutions that the development of
the plastic zone is rapid in the former, that is the spread of the yielded region of the plate
gpecimen is broader at the same level of nominal axial stress P/AY. In the examples shown
in Figure 3, the materials have heen assumed to work-harden obeying the stress-strain
relation & = 5.'5+420,\/§T , and the change of shape due to large displacements or deformations
of the elements has been taken into account.
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plate

Figure 3. Sixty-degree V-notched Plate and Bar Specimens Under Tensile Test, Showing the
Successive Expansion of Plastic Region in Quadrant
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SECTION IV

SAINT-VENANT TORSION

General treatment of Saint-Venant torsion problems is relatively simple, and it provides
a good example of the application of basic principles in continuum mechanics where it is
possible to give physical interpretation to the principles. The finite element method as ap~
plied to the Saint-Venant torsion problems by means of the stress function has been well
established (Reference 2). Using the prismatic element as shown in Figure 4 and denoting
the stress function by ¢ , the expressions for shearing stresses Ty, and 7,, are as

follows:
2 . L b
Y TT e tT 7 hivite] {4 (24
®m
. F
d¢ | #
T = = — . C. .
2x* T3y 28 Leic cnl {45 ¢ (25)
- ¢m
where
bi =¥ Yy by Ty Y by = ¥ Y
} (286)
C X T X Cj = A X, Cm-xj - x;

As usual, z axis is taken along the centroidal axis of a bar and x and y axes lie in the

plane of a cross~-section.

The equations for the determination of stress function ¢ are expressed as

2‘? LR T ?Fi =0 (27)

i

where Z implies summation over all the prismatic elements having their vertices of
i

triangle at the nodal point i . The boundary condition for the solution of ¢ is along the contour

of the cross section
4) = const.

hijj is the element of j th row and j th column of the matrix [h] which is
[h]TIA—, ({65} [e5] sy Hed 1L ieiiivm (28)
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Figure 4. Prismatic Element as Used for the Analysis of Saint-Venant Torsion Problems

and Fj denotes

2

where A; refers to the cross-sectional area of the relevant prism. g is the shear modulus
and @ is the angle of twist per unit length along the bar. Using Equations 24 and 25, we can
write Equation 27 in an alternative form as

| l 2
—E"' Zbi (Tyz)i"'?}:-ci (sz )i _Ei:_?,GBAi =0 (30)

i i
where ( 7y, ); and ( Tp); are the shearing stresses in the prismatic elements which meet

at the nodal point i ; these stresses being constant throughout each element in the framework
of the theory.

It should be noted here that Equation 30 is eguivalent to the following relation:
é T dg —269 ZE| =G ¢ dw =0 (31)
i

where dS represents a line element passing through the centroid of triangle and parallel
to the edge opposite to the nodal point | (Figure 5) and Z\-i= 4A,/9. T;is the shearing stress
along dS , and w denotes the warping function. Equation 31 implies that the line integral of
the warping function along the closed path is zero, i. e. the warping function is single-valued,
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It is known, in general, that the approximate compatibility eguations can be derived from the
principle of the minimum complementary energy. (Reference 9) The above discussion ex-
emplifies the application of the principle and makes clear the physical meaning of the finite
element method based on the stress function.

Contrasting to the method by means of the stress function (which belongs to the force
method), Kawai and Yoshimur (Reference 10) have proposed a method which keeps the
warping function as variable and essentially is one of the displacement method, Their method

uses the following well-known displacement function:
uz—8yz , v=8xz , w= wix,y) (32)

where u, v and w are displacement components along * , ¥ and z axes respectively. In the
method, the bar of uniform cross section is again divided into the prismatic elements, and
the warping function w of Equation 32 is assumed to be represented, in each discrete
element, by the linear function

w=a|+a2x+aay (33)

Denoting the angle of twist, the values of warping at nodal points i, j, m of an element by

g, W, W, and LA the moment M corresponding to £ and the nodal force vector

1, Zi Zm) can be shown to be expressed as

g -

M ] 8
NGO el
Z w.
z:n “'r:\
\ ; ~ .
where
1 [ -2ay b bj b
(v 22 { 200 c'i cj] c: l (35)
and

[0°] = ¢ Ll_-) ? ] (36)

[N ]Tis the transpose of [N] and b| yeoes €y . are given by Equation 26 and A is the
cross-sectional area of the prism as before.
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The shearing stresses Ty, and T;x in the element can be shown to be given as

8
e SR L R B )
*m

Therefore M in Equation 34 is

M =ff (xryz—yrnldxdy

and it represents the twisting moment which each element will carry. Denoting the mean

shearing stresses in the element by (T,x ) mean a0d (7yz ) mean » the following relation will

result
i CU S e,
zl = _2_ b] Cj ZX "mean {38)
zm bm Cm (T)‘Z ’meon

Thus as indicated in Figure 6, it can be seen that Z, is equal to one-half of the resultant
shearing force acting on the edge surface (whose area is jm x 1) opposite to the nodal point j .
And so, summing up the shearing forces in z direction of the prismatic elements which
meet at the nodal point i in usual way and equating it to zero, the approximate force equi-
libriumn condition in Zz direction can be obtained. This result coincides with the Veubeke’s

discussion (Reference 11) on the plane stress problems.

In order to compare the elastic solutions by the two methods above, torsion of a bar with
elliptic section as shown in Figure 7 has been studied. Assuming in arbitrary unit M=4,
G=106, a=2 and b=1, results obtained by the two different methods are given in Table 1
together with the exact solution., Comparison is made for shearing stresses at five points A,
B, C, D, and E of Figure 7 and the angle of twist & associated with the input data. From
the results shown, it can be concluded that the accuracy of the displacement method is
satisfactory. Further improvement would be expected by considering the implication of the
approximate equilibrium condition indicated referring to Figure 6, and making reasonable

division of the cross section in the neighborhood of the boundary.

The matrix displacement method so far developed for the solution of the elastic
Saint-Venant torsion problems can be extended to elastic-plastic range by applying the
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(X, ¥p)

Figure 5. Closed Path Around the Nodal Point 1

Figure 6. Prismatic Elements Meeting at the Nodal Point i and Shearing Forces
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TABLE 1. COMPARISON OF THE NUMERICAL RESULTS, TORSION OF A BAR OF
ELLIPTIC SECTION

{a) exact solution (b) force method [c) present displacement method

A B C D E
Ty M@ 127824 0. 126686 090928 050830
(b} 1281 0. 12245 09056 05086
fe) 127185 0. 124450 090474 0509246
T,y i@ 0. -063662 -006868 -044563 -010099
(b) 0. -0.6257 -0.06178 -044845 -019340
(e) 0. -064781 -008471 -044881 -019326

B(rad.) (a)0.795775x10 % (1p.80500x10 % (ep.706958x10"°

a=1

Figure 7. Torsion of a Bar of Elliptic Section, Showing the Division of the Section as Used
in the Calculations.
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procedure discussed in Section IIl. More precisely, in place of [De] defined by Equation 36,
Equation 11 should be adopted with

s=-2:,; 72 1+ ) -24f (|+—d-ﬂ)

G
=z
T -,/ryz +T,,

dar/ d)’P is the slope of the shearing stress-plastic strain curve determined by torsional

(39)

testing of the thin-walled circular tube. The condition whether a specific element is yielded
or not may be checked by using Equation 23,

In contrast to the treatment of the work-hardening material, the Saint-Venant torsion
problems of the non-hardening material may need a somewhat different consideration. It is
known that the shearing stress T in the yielded element remains constant both in magnitude
and direction once the element has become plastic and therefore the following relation

holds {(Reference 1),
dyyz‘ /dyzx O 4 L (40}

Substituting this into Equation 11 and using Equation 39 with dv/d YP . o for the non-
hardening material, the condition of constancy of T{i.e. dTy,= dT,= O would be confirmed.

It follows, for the yielded elements of the nocnhardening material

M e
. T|¥
R B N A 0 IR
J ¥z
ij

where sze, ryg represent the shearing stresses at onset of yielding of the relevant element,
Using Equation 34 for the elastic elements and Equation 41 for the yielded elements which
have their nodal points on the elastic-plastic boundary, the force equilibrium equations at
nodal points in the elastic region (including the nodal points on the elastic~plastic boundary)
will be formulated. These equations determine the warping function in the elastic region and
in particular on the elastic-plastic boundary. And afterwards, the warping in the plastic
region can be calculated, if necessary. Equation 37 is still valid for the stresses in the
elastic region, If the differential forms of Eguation 34 and Equation 41 are used, the calcu-
lation procedures may be somewhat simplified. The differential forms are for the
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elastic elements

dM d8

(a2 b <[] [] [w] axer {2
dZj dwj
dZ dw,,

and for the post-yielded elements {d P} =0

As an alternative of the displacement method, the force method of solution {especially
incremental approach) for the elastic-plastic torsion problems may be similarly formulated
where the stress function will be employed again., However, it is the authors’ opinion that the
displacement method would be superior to the force method for Saint-Venant torsion problems
because by the former (1) problems of multiple-connected region may be easily treated,
(2) the warping as well as stress distributions can be readily determined with excellent
accuracy such as shown in Table 1, and (3) from the viewpoints of structural engineering
practice, automatic calculation of torsional properties (such as the warping-torsional rigid-
ities, location of the shear center beside the Saint-Venant torsional stiffness) of structural
shapes with complicated cross sections will be possible,
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SECTION V

TRUSSES AND FRAME STRUCTURES

In the case of pin-jointed trusses, individual structural member can only carry axial
forces, Therefore, in analyzing their elastic-plastic problems it is only necessary to replace
the Young’s modulus E by the tangent modulus E4 = do/de for the yielded members;
o and € being axial stress and axial total strain respectively in the tensile or com-
pression test of the member. Elastic-plastic analysis of trusses is entirely similar to that
of the continua irrespective of the material property (i.e. strain-hardening or not), and since
the number of structural members in trusses is finite, the solution to be obtained will be
exact within the theory of structures.

In the elastic~plastic analysis of rigid frames, onthe other hand, it is a common practice
to adopt the concept of ‘plastic hinge’ and to assume the yielding of structural members at the
positions of the maximum bending moment. Besides these, assumptions made by Livesley
(Reference 12) in the collapse analysis will be employed in the following. Thus neglecting the
effects of axial thrust on the bending moment, and adopting the notations of Livesley, the
simplest load-displacement equations take the following form (Figure 8):

| Kll dl+ Kl2d2

~

(43)
PZ:KZI d|+Kzzdz
where
Pl * | Py Pz= Px2 df 3, dz: By,
PYI Pya 8y| 8)4'2
m Mg 8| 92
and
K“ = EA/L o] 0
3 2
0 2EL /L 6EL/L (44)
0 6E1/L% 4ET /L
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K -K’

e

0
—12e1/3
-6EI/L?

0
I2EL/C
-6er/L?

0
6EI/L%
2EL/L |

o}
-6E1/12
4EI/LJ

If the plastic hinge is formed at the member end 1, we have

- +
ml x mp

. SE

L 4E1I
Zz 8y|+"—-'L—9|—

6ET
h

—_—

2EI
8y2+ - 8,

{45)

(46)

where m, denotes the fully plastic bending moment. Substituting 8, from this equation into

Equation 43, we obtain

where
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K” d| +K|2 d'2+ I“I'lp C|
Kz: d|+K22 dz+ Mp Cz
EA/L 0
0 3g1/°
o 0 0 |
[ EA/L 0 0 7]
0 -3g1/.° 3eT/18
| o 0 o) ]
EA/L o 0 7]
0 3er/c -3e1 /2
2
|0 ~3EI1/L 3EL/L B
0 C,=%| o
3 -3
?/L 2/L
L
. 2

47)

(48)

{49)

{50)

(51)
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Similarly, if the plastic hinge is formed at the member end 2, K {) »» - and C { 20 in

Equations 48 through 51 can be shown to be

— -
K - EA /L 0 0
n 3 ?
0 3EL/L 3EL /L
0 3e1 /8 3ET/L
K =KT = -ea/L 0 0
12 2t o -3e1/0 )
0 -3g1 /8 o
K - EA/L 0 . 0
22 0 3ET/L 0
L ° ° 0 -

Q
"
o

<3
N
o

NIU"
~
—

1

|
~
-

of

And when plastic hinges are formed at both ends 1 and 2, the expressions should be

C,-+]|o C,-+|o
o o

-and the flexural terms in K, ,.K,z.Kal ) Kzzare Zero.

(52)

(53)

(54)

(55)

{56)

Thus, Livesley has suggested a method for the elastic-plastic analysis of frames where
stiffness matrices of the members are to be modified depending upon hinge formation at
their ends. According to hig method, translations 8,‘ 1 8, of all the joints and the ro-
tations & at member ends where no hinge was formed are determined first from the as-
sembled overall load-displacement equations. After these calculations, rotations at the
member ends of hinge formation can be determined, if necessary. The rotations at the hinge
may vary from one member to the other. Therefore discontinuities of rotation or slope may

exist at the positions of hinge formation.

Summarizing the Livesley’s method, the load-displacement equations of the complete
structure formed from members of nonhardening material ( mp = constant) can be written as

P-f ) :-Kd
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where P indicates the applied joint lcads, and dindicates the corresponding joint dis~
placements. f is a linear function of mp which is formed from the various terms mp C (
mp Cz etc. As stated before, the overall stiffness matrix J& is modified whenever a new
plastic hinge is formed, and the stage where K becomes singular corresponds to the
limiting state where the frame may collapse into mechanism.

In another method of the elastic-plastic frame analysis, the discontinuities of rotation
at the plastic hinge (which will be called hinge~rotations hereafter) are used as new variables.
The method has been proposed by Jennings and Majid (Reference 13) and independently by
Yamada (Reference 14). In their method, the elastic load~displacement Equation 43 for the
individual member are modified after the hinge is formed at the end (or ends) to

P| : Kudl +K|z da * Cu 91* + C|z 82*
Pa ) Kaldl * Kzz dz + CZI 94* + 02282*

where B*implies hinge rotation., The stiffness matrices K " ,_K,z ,KZl and Kzzare
identical with Equations 44 through 46 in the elastic range.C“ s et ey sz represent

(57)

column vectors which consist of the last column of corresponding matrices TR
K 22+ 1t must be emphasized that Equation 57 are only applied to the yielded members
(i. e, members that have hinges at either end or both) and Bl*, 8; represent discontinuities

of rotation at the ends of such member (Figure 9).

Using Equation 43 for the elastic members and Equation 57 for the yielded ones we can as~
semble in usual way the overall load-displacement equations as follows:

P-2Cs":-Kd (58)

where C implies a column vector which are formed from C" 'Clz and so on appearing
in Equations 57, and z represents summation with respect to hinges already developed.
Inverting Equation 58

d:-K"'[P-32Cos*] (59)

since. KK in this method is identical with that of elastic analysis, the inversion of J will be
necessary once for all,

Substituting d from Equation 59 into the expressions of bending moment at the member
ends where plastic hinges are formed, we can obtain a set of linear simultaneous equations
for the external load vector I and hinge-rotations 8*at every stage of hinge formation.
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The collapse of the frame can be identified by the condition that a matrix consisting of

. * . .
coefficients of 8 in these equations becomes singular.

As an example of the method of solution which uses the hinge-rotations e *as variables,
a portal frame shown in Figure 10 is analyzed. This is the one discussed in Neal (Ref-
erence 15). The results are shown in Table 2 and are completely identical with those in the
Neal’s book. In the example of Figure 10, the hinges are formed in a sequence of positions E,
B, C and D,

Figure 11 is a similar example, except that the beam is subjected to the distributed load.
Plastic hinges may be formed at some intermediate points along the length of the beam under
distributed load in this case. This possibility should be taken into account in the evaluation
of the fixed end forces and moments at joints A and B equivalent to the distributed loadings.
More precisely, the fixed end forces and moments should be modified when a hinge (or hinges)
is formed at some intermediate points. In the example of Figure 11, the hinges are formed

in a sequence of E, B, D, and C; the detailed results being shown in Table 3.

Fortunately, in this example, the last plastic hinge was found to be formed at C under
distributed load, and so no difficulties were experienced in the analysis. The positions X of
the maximum bending moment in the beam which are effected by every hinge formation are
given in the last row of Table 3. If a hinge (or hinges) is found to develop at an intermediate
point under distributed load at the earlier stage of the elastic-plastic analysis, it may be
unavoidable, in order to continue calculations, that the location of the hinge is approximately
- fixed and consequently the yield condition is violated to some degree in the neighborhood of
the hinge,

Two methods of solution are discussed so far on the elastic-plastic problems of struc-
tural frames. The authors believe that the latter method which takes the hinge rotations as
variables would be preferable, since (1) the effects of strain-hardening at the plastic hinge
may be easily incorporated and (2) we need compute only once the inverse of the matrix AK
which remains unchanged during the whole process (in this discussion, the effects of axial
thrust on the bending moment is not considered).
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TABLE 2. ELASTIC-PLASTIC ANALYSIS OF PORTAL FRAME OF FIGURE 10

hinge formation

E B o} D
at
He/mp 2424 2.567 2957 3.0
mp,/hp -05152 -05821 -091286 - 1.0
m,/m -0.0303 -00149 ~00048 0
m . /m 0.72173 07761 1.0 i.0
my/m, -09394 - 1.0 -0 -1.0
LmE/mp 1.0 1.0 1.0 1.0
BJM/%M _— _— —_— _—
0 A'EL/mpe - —_— — —
*
0c EL/mpé _— N — 6.1667
*
8 s El/mpf _ - ~0.2174 -03333
*
0 g EL mp# -00299 -01300 -01667

TABLE 3. ELASTIC-PLASTIC ANALYSIS OF PORTAL FRAME OF FIGURE 11

hinge formation

at E B D C

HE /m 2424 2587 8059 3328

my,/Smy -05152 -05821 - Lo -1.0

m,/m -0.0308 ~00149 0.0588 03270

me/my 04811 0.5182 0.7376 1.0

my/m, -09394 - 10 - 1.0 - 10

mg Sm 1.0 1.0 1.0 Lo
0, EI/m_ £ _— —_— — -03808
0, El/m £ _ —_— e —
0, El/m_¢ — _— S —_—
0y El/m ¢ _— N 02745 -0.7673
§g El/m ¢ _— -0.0299 -01569 -049028
pos ition x of(m ymax 07508 074428 0.7602 0.734¢

1297



AFFDL-TR-68-150

uresqg Iy} Jo yyduog
o1y Buory SuipBoT peInqLIISIQ ISpuUf SWBL T804 ‘1T 9andig

q a
W/ E

3
Hw=Fmg
s 7

78

q S T T "
m:::::::;

SUOIYR]0Y SNOnULU0ISKI pue afuly onyseld ‘6 oIndLI

2 ﬁm q Nm q ﬂm e am
14 z4A
A A
¢ ¢ et %
:nm mxm me mxm
P e
2
qr ez ql
n__w?..ﬂm % L0V 0T

gdupeoT PajeIIuaduo))
0] pejoslgng ewrex g [ep0d remdueioey sydung ‘01 sandiy

1 a
.*\\\Km X —— gL
NP . "Lt
o] B
7
a )
JE S " Vo
w | v (3 [
7 nad - Q H
8 7 A a_ 7 S v
A _h

ISQUIATY ULIOIIU B Jo Suipudg SUB[J Ul SPEO] JIOJ SUOBION ‘§ 2andig

| 0 -
.9
1
3Xy
X g
B Ty

1298



AFFDL~TR=-68=150

SECTION VI
REFERENCES

i, R, Hill, The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950).

2. 0. C, Zienkiewicz, The Finite Element Method in Structural and Continuum Mechanics,
McGraw-Hill, London and New York (1967).

8. G. G. Pope, Proc. *‘Conf. Matrix Methods in Structural Mechanics,” p. 635. Air Force
Inst. of Technology, Wright Patierson A, F, Base, Chio (1965),

4. P, V., Marcal and W. R, Pilgrim, J. ‘‘Strain Analysis’’_1, 339 (1966).

P. V. Marcal and I. P. King, Int. J. Mech. Sei, 9, 143 (1967).

Y. Yamada, ‘‘Seisan Kenkyu’’ 19, 75 (1967) (in Japanese).

7. Y. Yamada, N. Yoshimura and T. Sakurai, Int. J. Mech. Sci. _1_9_ 343 (1968).
K

. Setoguchi, unpublished data, Nagasaki Technical Institute, Mitsubishi Heavy Industries,
Ltd.

9. K. Washizu, Variational Methods in Elasticity and Plasticity. Pergamon (1968),

10, T. Kawai and N. Yoshimura, ‘‘Seisan Kenkyuw’’ 20, 246 (1968), (in Japanese),

11. F. de Veubeke, ‘‘Matrix Methods of Structural Analysis’’, AGARDograph 72, p. 165.
Pergamon (1964).

12. R. K. Livesley, ‘‘Matrix Methods of Structural Analysis’’, p., 253. Pergamon and
MacMillan (1964),

13. A. Jennings and K. Majid, ‘“The Structural Engineer’’_48, 407 (1965).
14. Y. Yamada,‘Seisan Kenkyu'20, 243 (1968), (in Japanese).

15, B, G. Neal, The Plastic Methods of Structural Analysis, p. 53. Chapman and Hall (1956).

1299






