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ABSTRACT

The present paper deals with the control of free vibrations in structures
by maximizing the energy dissipation rate, or minimizing the settling time of
transient free vibrations. The energy dissipation rate is a generalization of
the Rayleigh dissipation function for viscous damping. Both proportional and
nonproportional damping are included and the eigenvalues and eigenvectors are
complex in general. The dissipation rate D is a real, positive number and the
integral of 2D with respect to time represents the total dissipated energy for
the specified time interval, which is of primary interest in designing damping
treatments.

It is shown that, for free vibrations, the value of D at time t=0 is suf-
ficient information to optimize the dissipation rate, so that integration over
a time period is not necessary. The dissipation rate for each mode, or a set
of appropriately weighted modes, becomes the objective function. The optimum
location for a limited amount of damping is determined.

Particular examples of the optimization of damping are given for a truss
having ten bars. It is assumed that viscous damping is to be added to only the
truss members where it will be most useful and an appropriate constraint equa-
tion is written. To carry out the optimization, the sensitivities may be de-
termined for the eigenvalues and the eigenvectors by taking their derivatives
with respect to the dashpot constants in the matrix C. The sensitivity of D
may be determined by finite differences or more precisely using the eigenvalue
and eigenvector derivatives. Optimization of the dissipation rate D is com-
pared with optimization of the modal damping ratios. Results are related to
settling time. Thus the problem is formulated so it can be solved by an opti-
mization procedure, such as the Method of Feasible Directionms.

A phenomenon of particular interest is demonstrated: namely, that as the
damping is increased in certain areas of a structure, the modal damping of an
individual mode may decrease dramatically while it increases in other modes.
There is an associated change in mode shape, which would not be predicted if
proportional damping had been assumed.
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Background and Related Literature

Optimal control of vibrations in structures by active or passive means is

1-4

an important practical problem, as evidenced by titles of conferences and

published books® 8.  Passive damping may be developed by the use of dashpots,
piezoelectric elements, electromagnetic devices, or viscoelastic layers, to
only a few methods. The present paper deals with the optimum choice of size
and location of velocity- or rate-dependent linear elements. The analysis has
a wide range of applications and applies to viscoelastic damping and to active
control where the rate-depehdent gains are constant.

Much information is available on the behavior of viscoelastic materials

9, but the representation of this

as a function of temperature and frequency
behavior in dynamic analyses of structures is a challenging pfoblem because of
the variation of the dynamic properties with frequency and :emperature. Bagley
and Torvikl® developed a fractional calculus approach to the representation of
viscoelastic damping and have adapted it to finite element techniques. A meth-
requiring calculation of complex stiffness matrix at each resonant frequency

was outlined by Segallanll

in terms of measurable viscoelastic properties. The
use of fictitious, over-damped, mini-oscillators to represent frequency vari-
ation of the complex modulus is a part of the method outlined by McTavish and
Huqheslz. Closed-loop, constant gain, rate-dependent active control makes use
of dashpots with negative parameters.

To optimize parameters, one needs the derivatives or sensitivities of the

response variables in terms of the design parameters. Venkayya13

presented a
unified approach to optimization suitable for application to problems in many
disciplines. In addition, computer programs are available, such as CONMIN, by

Vanderplaatsl4

» Which will determine optimum values of design parameters using
sensitivity and response variable values provided by the program user. Deter-
mination of derivatives of eigenvalues and eigenvectors is the subject of pap-

15 16, and othersl?20

ers by Rogers~, Nelson . With the assumption of proportion-
al damping, Gibson and Johnson?! optiﬁize the size and location of viscoelas-
tic damping on plites by optimizing modal loss factor, taken to be the ratio
of the modal strain energy in the viscoelastic layer to the total modal strain

energy.

rcp-2

Confirmed public via DTIC Online 01/29/2015



From ADA309666 Downloaded from Digitized 01/29/2015

ANALYTICAL BASIS

The problem is formulated in the state vector form:

I EHE R
0 -X 4 K O z 0
or w'a + K np=P(t) (2)
The resulting eigenvalue problem is
[-AI + Al x =0 (3)
where a=-m17L K. (4)

The matrices M, K and C are assumed to be symmetric.

The following modal notation is used.

3
jS

the modal displacement vector, Nx1

ALH
Yii = J1l = gtate space modal vector, 2Nxl
J1 ?5i

x = displacement vector, nxl

T = % %M % = kinetic energy

U=%xKx

(E]

potential energy

p=1%zick

half the rate of energy dissipation

H=T+ U = the Hamiltonian
Now the energies may be related to the differential equations of
motion for free vibratioms,

mMx+Cx+Kx=E. (5)
Pre-multiplying by g?, the energies may be identified.

sTHx+ ATC R+ XKX -XF =0 (6)

g-t-[% itg+3x’xy ]+ 27C % -%'F =0 (1

Thus the rate of change of the Hamiltonian is equal to the rate at which
external work is done on the system minus the rate of energy dissipation, or

$+0 = %F - 2D (8)

For conservative systems, the rate of change of the Hamiltonian is zero.
If Eq. (8) is integrated with respect to time, energies at time t are related

| t
by H(t) - H(0) = J’o (xTF -2D)dt (9)
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Modal Energy, General Viscous Damping

Now for general viscous damping, where ¥ is 2Nx2N and g is 2Nxl, the
state vector may be expanded in terms of the modal eigenvectors as

[i}-g q (10)
) _ - ql -
= M9 R0 295 205 ¢ 0 N9y q (11)
‘Pl ‘Pl ‘Pz (92 (Pn ] q2 r
L)
3, |

The free vibration modal amplitudes qi(t) are, as a function of time t,

qi(t) = &, e~ At (12)

If the mode is underdamped, then the eigenvalues Ai are of the form
A= tgey + 5 ey (1-eh 05« —pio; wyap (13)
and Aag= Ky = otgep = o (1-eH 05w cp0n —japs (14)

For real initial values, the response will be real, the ql(t) occur in complex
conjugate pairs, and q1+1(t) will be

Qyap ()= 33 (1) = Ky e ik, (15)
The kinetic energy is
T = % ;Tn X = % gTQTm g (16)
and the der1vat1ve of T with respect to time is
or = gT8TH @ qg. (17)
The derivative of the potential energy with respect to time is
0=§"e'xagq (18)
and the dissipation function D is
; m=4Tsceg (19)
It is helptul to see the details for a two-deqree-of treedom system.
Q15Q1 Qlcﬁl 91CQ2 Qlcﬂg - ( &1
e )| S AR M S | &
2200 €200y ¢;C0; €300, q2
| 8700, 8308, 8300, 85, | | & |
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It can be seen that the complex numbers in the core matrix QTCQ matrix occur

in complex conjugate pairs, since the numbers in C are real.

The orthogonality relationships are, in terms of the 2Nx1 y vectors

vy, = 0 r#s

and g My, = b, r=s (21)
YKy, = 0 rs

and ¥ K'y, = -\b, r=s (22)

In terms of the Nx1 ¢ vectors, the orthogonality relationships are

AAGOIHg, - oiKg, = 0 r¥s (23)
and ,\,2, 9 M0, = ¢ Ko = Db, r=s (24)
T Too =
Aprg@gO0, + (A FA )@ K, = 0 r¥s (25)
2 T - =
and Ap 2,00, + ZXrQrRQT = krbr r=s (26)

The Eqs. (23)-(26) may be combined to form alternate, but not independent,
orthogonality relationships as
@r0g, + (A #rgloilp, =0 r#s (27)
T : T = =
and 0.0, + 220, M0, xrbr r=s (28)

From Eqs. (25) and (27) a special relationshifp22 follows between the rth mode

, . T 2ol T . -
and its complex conjugate, due to the fact that Arkr @y, and Xr+xt 2¢r°r'
T T
e 2¢ 0.Cy
namely, 2r 0, =- L and -%——r = - 2¢ 0. (29)
o ke, r ohg,

Choice of Objective Function for Damping Optimizatjon

If we wish to find the optimum damping by an optimization process, it is
common to specify an objective function. In modern control theory the perfor-
performance index may be of the form, given for example in reference 4.

t
PI jo(m"mmntf;"[n]mm (30)

vhere {¥}
(£}
[Q] = state weighting matrix, positive semidefinite
[R]

modal vector, 2Nx1

active control vector, Pxl

control weighting matrix, positive definite
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If emphasis is to be placed on particular response or control points, the
weighting matrices [Q] and [R] may be so adjusted. In the absence of that type
of goal, then [Q] and [R] may be chosen as the unit or identity matrix.

In choosing [Q] we might also consider the matrices

"*'[:;{J cx*-[: g]‘ mx*a[;:] n*-[f,‘_°] (31)
| vhere X' = ex'+ xx"*

Then 'K @ = ¥7cx"% + T kK" (32)

= ATeTeen + eTi'e (33)

and QTCO and QTKX*¢ are not diagonal, even though QTK*Q is diagonal. Products
g{t&i appear on the diagonal of QTC¢, but off the diagonal terms like ggcgi

occur which are not zero, and in fact may be of the same magnitude as the dia-
gonal terms.

The product ¥ ex'y is important, because it is the kernel of the Rayleigh
dissipation fuaction D, as seen in Eq. (34). Note that ¢ is Nx2N and C is NxN.

2D=gT3TCE § = g A $TCP Ag (34)

The Rayleigh Dissipation Rate as an Objective Function
| Thi Rayleigh Dissipation Function D is given by

2D = %7 € & (35)
In state vector form, the velocity and displacement are expressed in terms of
modal coerdinates by

2Nx1 2Nx2N 2Nx1

X $ A
(" P g = 3 q (36)
Hence the dissipation function may be gotten from the product

° T .
X co 4
2”{&}[°4{5}'Jﬂw£§g o7

- The dissipation function D is a real, positive number. There are 2N modal co-
ordinates, qi(t), in the form qt N complex conjugate pairs. The initial val-
ues q; (0) are gotten from the initial value vectcrs %(0) and x(0). An effici-
ent approach is to use the orthogonality relationship Eq. (21) so that

(0)
o o {2(0)} = 8%q(0). (38)
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Here BD is a diagonal matrix of b;s and the eigenvectors have been norma-

lized so that each BD=I, the identity matrix. From Eq. (36) we see that if
g(0) is real, then x(0) is real. If we wanted to excite a pure second

mode, for example, the following relationships would exist from Eq. (38)

( ql(O) ] ( 0 ]
{*{ i Y% '°'} IR 75 2 IR AR BN B (39)
qZ (0) 1
q,(0) 1

The vector 12+Ez is real, and Eq. (39) shows that the initial,value,‘yectbr is

a pure 2ad modal vector when q2(0)=32(0)=1. This idea will be used next in

finding the dissipation function D when we wish to excite a pure modé'or'ctoup
of modes. T '

It may be observed that an upper bound on the dissipation rate at t=0 can
be determined by taking the sum of the absolute values of the real parts of

the numbers in the complex matrix QTCR*@. The sum is then a candidate for an
an objective function, to be maximized, in a free vibratipn _p:oblem., It may
appear that the magnitude of the dissipation rate is somewhat arbitrary, but
it should be noted that because of the normalizaﬁion of the eigenvectors by
o™n*e = BP=I, then the initial value of the energy T(0)-U(0) = 2n, where n is
the number of modes excited. In the examples given below, the initial poten-
tential energy U(0) is very small, so the settling time depends on the time

it takes the energy level given in Eq. (40) to reach zero. This equation also
T(0)+U(0) j 2D dt ¥ 2n - I 2D dt (40)

sbows that the settling time depends simply on the time for 2D to reach zZero.

Sensitivity of the Rayleigh Dissipation Function

The sensitivity of the dissipation rate D is gotten by taking the partial
derivative 8D/8Cm, where Cm is the value of the mth dashpot parameter, and D

may be taken in the following form,

20 =3TCx=n €'n =g FeX T g - (41)
. x A |
with 2= 1" 2g=97 3 (42)
FCD-1
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Symbolizing aderivative by a comma as aD/Cm! D,. the derivative of Eq. (41) is

2D, =2¢ ¥eK'eg+ 299, T Keg+ g ok, Vg (43)

Here qi= ql(O) e-)‘it

. From Eq. (42) the derivative Q'c involves the deriva-
tive of the eigenvalues N and the eigenvectors $, which may be found by the
methods of references 16 through 21.

Next an example of a ten-bar truss is presented, where first the optimi-
zation of modal damping ratios is discussed and then the optimization of the
energy dissipation rate D is considered.

OPTIMIZATION OF DAMPING RATIO AND DISSIPATION RATE, TEN-BAR TRUSS

The question addressed in this section is: suppose the total dashpot cap-
ability, with units of 1b-s/in, is limited, then on which members of the truss
may it be used most efficiently to maximize the damping ratios, ¢yr of selec-

ted modes? Thus, with &y appropriate weighting functions, the objective func-
tion, OBJ, is
OBJ = } @y &4 (44)
If CTOT is the total dashpot capacity to be used, then a corresponding con-
straint equation is
G(1) = X YnCp~77CTOTS 0.0 (45)
where 7 are weighting factors and tC, are the viscous dashpot constants, taken

here as design parameters.

As an example, the ten-bar truss shown in Figure 1 was investigated. The
connections are assumed to be frictionless pins. The bars are all made of the
same material with Young's modulus E, and the cross-sectional areas A, are as

listed in Table 1. The stiffness of each bar is KmakmEm/Lm.

bar there is a dashpot, not shown, with damping parameter Cm. Note that mem-

Parallel to each

bers 2, 5, 6, and 10 have much smaller areas than the other six bars.

/s 3 (2] 1
/
/
[8] (10
[6]
(7] (9]
/
]

Figure 1 Ten-bar Truss, with Node and Member Numbers
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Table 1 Member Areas, Lengths, Stiffnesses and Damping Parameters

BT No. [Krea Length Stiffness Damping C,
m Ly Ky (pmal? m
in in 1b/in ib s/in
1 31.5 360.000 875 000 276.699 30
2 0.1 360.000 2 778 0.878 41
3 23.0 360.000 638 889 202.034 41
4 15.5 360.000 430 556 136.153 62
5 0.1 360.000 2 778 0.878 41
6 0.5 360.000 4 167 4.392 05
7 7.5 509.117 147 314 46.584 75
8 20.5 509.117 402 658 127.331 65
9 21.0 509.117 412 479 130.437 30
19 0.1 509,117 1 964 0.621 13

[}
A factor By is arbitrarily introduced such that c‘- J:El . Hence if all

the pm are the same, the damping matrix C is proportional to the stiffness ma-

trix K. The mass matrix M is diagonal, formed by lumping half the mass of each

bar at its ends. The values of the modal damping ratios,

frequencies, w;, are given in Table 2,

‘i' and the natural

for the values of Cn when ﬁ‘ =1, for

m =1 to 10. The damping ratios for the higher modes are the largest. The @4

range from 131.13 to 796.21 rad/s and are well separated.

Table 4 Natural Frequencies @q and Damping Ratios ¢y for all pmsl.o

i

0 ~ O W & W N

€4
0.0207
0.0274
0.0426
0.0515
0.0730
0.0948
0.1051
0.1258

3350
1571
4408
5221
5049
6770
3561
9253
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131.1301
173.3921
269.7048
326.0448
462.0119
599.9960
664.9360
796.2143
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The eight mode shapes for zero damping are shown in Figure 2. Intuition
tells us that, for a dashpot to be effective: (1) there must be a high rela-
tive velocity Dbetween the end-points amd (2) it should be in parallel with a
bar or relatively small stiffness. The first criterion is satisfied if there
is a large extension of the of the bar on the mode shape. Inspection of the
shape for mode 2 reveals that bars 2, 5,7 and 10 have large deformations; for
mode 4, bars 2 and 10; for mode 7, bars 6 and 10; and so on. If damping is ad-
ded in a proportional manner, then the mode shapes, or vectors, remain real
and the same as shown. If damping becomes nonproportional, the mode shapes do
change and eigenvectors contain complex numbers. As the mode shapes change
the optimum distribution of the damping to the various members may change from
that which was most favorable for small or no damping. This effect is not ac-
counted for in analyses that assume that the damping is proportional. The de-

rivatives ati/acm of the ith modal damping with respect to the mth dashpot Cn
indicate how ¢; is changing with increased damping, and the dg;/dC, show the
rate of change of the mode shape with the mth dashpot. The derivatives of ¢4

were found and are discussedknext.

Sensitivities of Modal Damping Rgtiqs and Natural Frequencies

The exact derivatives 3¢;/3C, were calculated and their values are listed
in Table 3. There are 80 elements, corresponding to 8 modes and 10 bars. The
total for each row and column is also given, and these sub-totals add to the
grand total of 10.27867. By the sums at the bottoms of the columns, the list.
of the bars in order of the magnitudes of the sensitivities is 2,10,6,5,4,9,3,
8,1,7. By stiffness, fron'snallest to largest, the order is 10,2,5,6,7,8,4,
4,3,1. Bar 7 seems to be somewhat out of order, but notice that there are two
negative values in the coluﬁnkfor bar 7. 1In a ranking of potential effective-
ness according to ‘the absolute sum of the columns, the value for dashpot 7
would be 0.037637 and it would precede dashpot 3 in the sensitivity list.

The fact that negative derivatives occur for bar 7 on modes 1 and 2 shows
that the modal damping ratio will decrease for these modes as the value of c,
is increased. These derivatives were calculated for the damping level where
all f,=1 and the values of the modal damping ratios ¢; are the same as those
given in Table 2. Thus the negative sensitivity has occurred at small levels
of damping. |
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MODE 3,

269.70 RAD/S

MODE 4, s18.04 nao/s

MODE 7, 884.94 Rao/s
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Variation of $g cs, g, and “g with C1

As the values of the Cj are changed nonproportionally, the modal . ampli-
tudes become complex numbers and the derivatives or gradients change in an un-
expected manner in some cases. The variation of {5 and $s with Cq is shown in
Fig. 3. The values of all other C, vere taken as zero. The plot shows that,
for 0$C153, both {g and $6 increase monotonically. However, for C1>3, the rate
of increase of ts becomes larger while ¢5 decreases. The slopes of these lines
are plotted in Fig. 4, where it is seen that the 3¢ ;/3C; changes sign and fi-
nally approaches zero as C, increases.

The corresponding variation of the damped natural frequencies wps and “p6
with ¢4 is shown in Fig. 5. Here “pi defined as in Eq. (13). Note that “ng

decreases in magnitude while “ps is increasing. At ﬁl ¥ 6, the curves cross

and thereafter “pg approaches a constant value but remains greater than “pg

As B8y g 12.0, $6 approaches unity or critical damping as wpg approaches zero.

As B is further increased, the eigenvalues for mode 6 become real and nega-
tive, while the other fourteen eigenvalues are still complex conjugate pairs,
for underdamped modes. Actually, if the modes are numbered initially in terms
of the magnitude of “pg ¢ from smallest to largest, then it is clear that they
will change their relative positions as the damping increases. Hence their
identities must be traced carefully if changes in a mode having a particular
"name" are of interest. The tracing of mode numbers is especially challenging
when more than one mode is overdamped, since they no longer occur in complex

conjugate pairs.

Optimization of ¢3 with Respect to C3 and c4.

Now the optimization of one modal damping ratio is undertaken, with the
objective function taken as {3 and the design variables Cq and C4. Constraint

function G(1) puts a limit CTOT on the total damping available.
OBJ "¢3

G(1) = C3 + C4 - CTOT $ 0.0 (46)
By limiting the total number of design variables to two, we can show a two-
dimensional plot of the interaction between ¢3 and the two design variables.
Contours for ¢y = 0.05, 0.10, 0.15, and 0.20 are shown in Figure 6. The three

FCD-12'
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dotted, straight lines are constraint lines which were chosen to be approxi-
mately tangent to the given contour lines. They would be 45° lines if the
vertical and horizontal scales were equal. Since the contours are convex to-
vard the feasible region the optimum solution, which maximizes ¢(;, will Dbe
along the constraint boundary line. The results are summarized in Table 4 for
three values of CTOT, namely CTOT = 1157.3, 1838.5, and 2525.4 1lb-s/in. The
associated values of optimum {3 are close to 0.10, 0.15 and 0.20.

Table 4 Optimum Values of ¢3 on C3 vs. C4 Plot

Py By C3 7 {3 C3+Cy
0.796 537 7.318  160.928  996.373 0.0994 4614 1157.301

3.560 435 8.22 719.330 1119.184 0.1470 4782 1838.514
6.142 305 9.434 1240.957 1284.475 0.2015 5902 2525.432

Optimization of 2D(0) for Mode 3 using parameters C3 and Cq

Next the dissipation rate at t=0, 2D(0), was optimized when only mode
3 is excited in free vibrations by taking q3(0)= 53(0) =1.0. The interaction
curves of contours of 2D(0) on a plot of C, versus C, are shown in Figure 6.
The curved contour lines are for 2D(0)= 50, 100, 150, and 200 in-1b/s. The
solid, straight, constraint line represents the constraint C; + C, S 1040, and
the region between this line and the coordinate axes includes feasible, or ac-
ceptable solutions, as specified by the constraint equation. Obviously the
optimum solution is at the point of tangency between the constraint boundary

and a contour line, which occurs approximately at C3- 860 and Cs= 860 lb-s/in.

Optimization of 2D(0) for modes 4 and 7 using parameters c6 and C10

In Figures 8, 9, and 10 three more interaction curves, each of a different
shape, are shown for 2D(0). They are for modes 4 and 7 excited separately and
simultaneously, with the contours of 2D(0) plotted against Cg versus C,,. In
each case the contours are either nearly straight lines, as in FPigure 8 and 9,
or outwardly convex curves, as in Figure 10. In these situations, the optimum
solution is seen to be a corner of the feasible region, with the solutions for
the design parameters being C6=0, Cqi0=8.3: C5-8.3, cloco: and Cg=0, C10=8.3 on
the respective Figures 8, 9 and 10.
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2
x10
3Ty

674
036
373
486
432
890
079

0.000

Bar No. m — 1 2 3 4 5
Mode No.
i
1 0.002 025 0.004 389 0.000 900 0.001 138 0.007
2 0.000 197 0.021 051 0.001 518 0.000 001 0.154
3 0.000 180 0.004 650 0.005 255 0.010 230 0.006
4 0.000 054 4.336 10 0.000 037 0.000 021 0.000
5 0.008 992 0.045 043 0.004 783 0.001 471 0.007
6 0.011 616 0.009 531 0.005 680 0.000 325 0.000
7 0.000 203 - 0.018 862 0.000 531 0.000 367 0.000
8 0.000 314 0,000 946 0.017 544 0.051 749
0.023 581 4.440 572 0.036 248 0.065 302 0.176
B — 6 7 8 9 10
i
1 0.000 035 -0.001 810 0,006 954 0.001 747 0.007 211
2 0.000 238 -0.012 466 0.000 762 0.000 059 0.029 303
3 0.000 355 0.006 633 0.007 399 0.003 263 0.001 391
4 0.033 031 0.000 104 0.000 117 0.000 000 1.853 09
5 0.001 360 0.003 230 0,014 265 0.012 294 0.039 581
6 0.069 406 0.003 364 0.003 603 0.031 427 0.081 899
7 2.122 32  0.000 344 0,000 039 0.001 667 1.164 52
8 0.007 902 0.009 686 0,000 024 0.0190 797 0.020 834
2.234 647 0.009 085 0.033 163 0.061 254 3.197 829
icn-14
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(5 and (’6

Figure 3 Modal damping ratios, $s and (g versus Cl.
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Timewise Variation of the Dissipation Rate 2D(t) for Modes 5 and 6

The timewise variations of the energy dissipation rate for modes 5 and 6
excited separately and simultaneously are shown in Figurés 11 and 12, for pro-
portional and nonproportional damping respectively. In Figure 11 the solid
curve is for modes 5 and 6 excited simultaneously and the two other lines are
for modes 5 and 6 excited separately. The solid line seems to be a sum of the
other two. In Figure 11, for nonproportional damping, where ‘ﬁl=1‘° and all
other ﬁm=0, the case is entirely different and the dissipation rate at t=0 for
the simultaneous excitation of modes 5 and 6 is almost double that achieved
by excitation of the modes individually. This is because, as mentioned above,
the core matrix used for solving for the dissipation rate is nondiagonal, and
the additional contribution is due to nondiagonal, or modal cross-product ele-
ments contributing to the dissipation rate. In Table 5, a portion of this ma-
trix is shown for the rows and columns involving modes 5 and 6. Mode 5 would
be excited by making the initial values q5(0)= q5(0)= 1.0, or simply inserting
ones for qg and qg in the given matrices. It can be seen that the resulting
value of 2D(0) is equal to the sum of the complex numbers in the upper corner,
2%2, of this portion of the matrix. Here the notation is: (a,b) = (a+jb). So

the value of 2D(0) with only mode 5 excited is the real number 46.64 in-1b/s.
If only mode 6 is excited, the numbers in the lower corner 2x2 are summed to
yield 78.68 in-1b/s. If the two modes are excited simultaneously, the entire
4x4 matrix is summed for a total of 246.49 in-1b/s, which is almost twice the
total obtained by exciting the modes individually. In Table 6 the values of
the kinetic and potential energies, T and U, and their timewise derivatives at

t=0 are also given. Note that 1(0)+0(0)+2D(0) = 0 and T(0)-U(0) = 2n, as ex-
pected, where n is the number of modes excited. The ratio 2D(0)/[T(0)+U(0)] is
meaningful because it is the ratio of the dissipation rate to the total init-
jal energy excited. From this point of view, for proportional damping, the

Ta 5 tion of Tgl con matrix.

(q5d5q6d5) | (11.52,-2.54) (11.80,-0.00) (15.32,-0.02) (14.97,-3.28)}|ds
(11.80, 0.00) (11.52, 2.54) (14.97, 3.28) (15.32, 0.02)

—
at
w

(15.32,-0.02) (14.97, 3.28) (19.44, 4.23) (19.90, 0.00)||qg

(14.97,-3.28) (15.32, 0.02) (19.90, 0.00) (19.44,-4.23) Qg

FCD-19

Confirmed public via DTIC Online 01/29/2015



From ADA309666 Downloaded from Digitized 01/29/2015

Table 6 Energies an§ Energy Rates, Prop. and Nonprop. Damping

Modes ‘ e . -2D(0)
Excited T(0) u{0) T(0) u(0) 2D(0) T(0)+U(0)

Proportional Damping, Bp= 1.0, all By-

5 2.0027 0.0027 -101.34 -33.84 135.18 67.41
6 2.0045 0.0045 -171.02 -57.18 228.20 113.59
5&6 4.0072 0.007 =272.36 __-91.02 363.38 90.52
Nonproportional Damping, fy = 1.0, ﬁm = 0.0, m#1.
5 2.0317 0.0317 - 34.83 -11.82 46.64 22.60
6 2.0228 0.0228 - 58.68 -20.00 78.68  38.46
5&6 4.0605 0.0605 -154.09 -92.40 246.49 59.82

ratio is largest if mode 6 is excited by itself, but for nonproportional damp-
ing the ratio is more favorable if modes 5&6 are excited simultaneously.

It should be noted with regard to Table 5 that here all the real parts of
the complex numbers are positive. This is not true of the entire core matrix
in general, and it may be necessary to excite the modes with varying initial
phase to achieve the maximum damping rate, and the rate achieved in this man-
ner may still be somewhat less than ||Core||, herein defined as the sum of the
absolute values of the real numbers in the core matrix.

Sensitivity of ||Core|| to parameters Cn

——

Finally the sensitivity of [ICore|| to changes in C, as found by the finite
difference method are given in Table 7. In each case, the initial Cp= 1.0 and
4C,=0.10. The largest gradients occur for the dashpots 2, 6, and 10.

Table 7 Semsitivity of |ICore|| to aC,

- a]|Corell
n - Cq lICorelj acy
1 1 1.74 1.74
2 1 110.77 109.56
3 1 3.86 3.86
4 1 4.26 4.26
5 1 4.67 4.67
6 1 103.89 101.88
7 -1 4.69 4.69
8 1 2.11 2.11
9 1 6.01 6.01
10 1 204.91 204.47
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Summary and Conclusions

1. It is demonstrated that the energy dissipation rate may be optimized
simply by using its value at time t=0 as the cost function. The settling time
depends on the total initial energy, which is the sum of the initial kinetic
and potential energies T(0) and U(0) and the dissipation rate 2D(0).

2. Because of the modal normalization procedure used in the present work,
the sum T(0)~U(0)=2n, where n is the number of modes excited with unit ampli-
tude. In the examples given, the U(0) was much smaller than T(0), so the total

initial energy equals T(0) and T(0) ¥ 2n.

3. An upper bound on the maximum energy dissipation rate which may be
achieved, if all the modes are excited with unit amplitude, is equal to the
sum of the absolute values of real parts of the complex numbers in the CORE of
the matrix from which 2D is calculated, which is

2D = g"ATeTen*® A g = g7 CORE ¢
If desired, the individual modes may be weighted differently when excited, to

put more emphasis on modes of interest. In a practical problem, the initial
values g(0) could be taken as those which actually exist.

4. The derivative, or sensitivity, of the Core to the damping paramters
may be calculated by taking the derivative of the given expression, which is
seen to involve the derivatives of the eigenvalue and eigenvector natrices, A
and ¥, as well as the damping matrix C.

5. The problem of deciding which truss members to damp and how much damp-
ing to use is reduced to a standard optimization problem. This problem may be
solved by the Method of Steepest Descent or the Method of Feasible Directions.
The solution may be obtained using a computer program such as CONMIN, which
has been used by the writer to minimize the forced random response of the gi-
ven truss vhile maintaining constraints on the modal damping ratios, so the
damping is evenly distributed to the modes.

6. Study of the sensitivities of the damping ratios and danped natural
frequencies of free vibration shows that as the viscous damping of a particu-
lar dashpot is increased, the damping ratio of one mode may decrease while the
damping ratios of the other modes is increasing. Concurrently, the damped nat-
ural frequency of that one mode will be increasing while that of the other
modes is decreasing. In the example given, one mode finally absorbed all the
damping provided. Thus, in a practical situation, it appears possible that
in some rare situations increasing damping could make matters worse, if damp-
ing is decreasing in the mode or modes that are being excited. The effect de-
scribed is due to change in mode shape.
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