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ABSTRACT

Radiation heat transfer calculations are made for a cylindrical
model of a 50th percentile "suited" space man in 7 space configurations:
(1) deep space probe, (2) a point 136 miles from the bright side of the
moor,, (3) a point 136 miles from the surface of the dark side of the
moon, (4) a point 500 miles from the surface of the bright side of the
earth, (5) a point 500 miles from the surface of the dark side of the
earth, (6) a 500 mile circular earth orbit and (7) a 136 mile circular
moon orbit. Similarily, radiation heat transfer calculations are made
for the same space man model in four hypothetical chamber configurations
I, 11, TIII and IV. The space results are superimposed on the chamber
results in order to determine equivalent temperatures for simulating
the given space conditions. Tor instance, depending on the space suit
absorptance, ihe required chamber III temperature for simulating the
deep space probe can vary from 260 R to 1150 R, With these results
the capabilities of the AMRL thermal chamber for simulating any one of
the seven space configurations are determined.
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INTRODUCTTION

Various theoretical investigations have been made of the thermal
condition of satellites, space suits and space men in a variety of
space configurations, For instance, Irvine and Cramer {(ref. 14) have
conducted a thermal analysis of space suits in earth orbit and or non-
uniform suit temperatures for space suits in earth orbit. Correale
and Guy (ref. 12) show that the total heat absorbed by a '"suited man'"
on the solar side of the moon is approximately 400 btu/hr. Schmidt
and Hanawalt (ref. 39) show that satellite skin temperatures for an
earth orbiting satellite vary from approximately 400 F to -200 F
depending on the orbit attitude and the thermal radiation properties
of the orbiting wvehicle.

Similiar studies have been conducted, both theoretically and
experimentally, with human subjects in space suits, flying suits and
Yshirt sleeve'" attire during laboratory imposed thermal enviornments.
For example, McCutchan (ref. 34) provided a graphical computation of
human thermal tolerance time in terms of body storage index (btu/hr)
and tolerance time (hr) where body storage index is defined as a
function of thermal chamber properties. On the theoretical side,
iberall's hypothesis (ref. 26) points to the number of degrees of
freedom that must be involved in the thermoregulation of the human
body as an inconstant heat source and the specific non-linear charac-
teristics of the system. He concludes that a resistance model to
clothing, space suits, etc., is possible only as an ohmic relation
among time-averaged equilibrium values and for a specific mode of
operation of the system.

Finally, Kaufman (ref. 29) has determined the thermal tolerance
time of '"shirt sleeve' crews in a thermal environment in which the
temperature was varied from 115 F to 130 F at humidities of 10 to
20 mm of hg water vapor pressure, He found that human tolerance time
ranged from 8 to 2 hours. However, in all cases a common link between
theoretical space and laboratory environments and human tolerance time
in these environments in missing. Therefore, the purpose of this
investigation is to provide a link between space and laboratory thermal
environments and human tolerance time in these environments. Specifi-
cally, the following questicons are asked:

(1) 1s it theoretically possible to conduct
human experimentation in ventilated space
suits under less than space-equivalent
conditions and extrapolate the results to
a specific space condition?

(2) 1Is it feasible to perform these experiments
in the Aerospace Medical Research Laboratories
Environmental Test Facility (AMRL)?



{(3) If the capabilities of the environmental test facility
are inadequate, what are the minimum conditions required?



THEORY AND METHOD OF SOLUTION

Blackbody Radiation (ref. 24, ref. 30, ref. 31)

A blackbody radiator is defined as a diffuse radiator (intensity
is independent of direction) which emits at any specified body temp-
erature the maximum possible amount of thermal radiation at all
wavelengths. Moreover, it absorbs all incident radiation and transmits
none. Kirchhoff's law as applied to blackbedy radiation concludes that
no surface can absorb or emit more radiation than a blackbody surface.
Furthermore, the total emissive power of a blackbody is given by the
Stefan-Boltzmann equation as

E = ot

where E is the total emissive power in btu/hr ftz, O is the Stefan--
Boltzman constant (0.1714 x 10-8 btu/hr ft2 R4) and T is the absolute
temperature of the body.

The radiation intensity I 1s the energy radiated from a body
within a unit solid angle in a given direction by a unit surface
element projected on a plane perpendicular to the radiation direction.
Refer to figure 1.

L d9;.5
1-2 dAl cos 91 duﬁ-Z

dw , =~ the solid angle subtended by dA, with respect to the
center of di,

dA; cos B
2 2
dy_y - >
Flez
dql_2 - the portion of the radiation from.dAl intercepted by dA,

Lambert's cosine law states that the rate at which radiant energy
is emitted from a blackbody source is independent of direction,or the
surface of the source has the same flux density in all directionms.
Mathematically, where 1 1is the time rate per unit area of the source,

I =1cos 8

8
per unit solid angle, at which radiant energy is emitted from an
infinitesimal element of blackbody surface into a minute solid angle
around the normal to the element of surface and Ig is the corresponding



Figure 1. Radiation intensity wvector notation.




rate of emission in a direction making angle © with the normal. Conse-
quently, the rate of emission of radiant energy from a blackboedy of
given area in a direction making angle 8 with its normal is proportional
to the projection of that area upon a plane normal to the direction in
question; that is, it is proportional to the cos & (ref. 24), Thus,
the corresponding rate of emission per unit of projected area is

Ig

cos B

This means that an emitting area A' = 1/cos 8 is necessary in order to
have one unit projected area in that direction, or the rate of radiant
energy Ip in the specified direction per unit projected area of surface
is

= T
Ip = IQA =1

Ip is called the radiance of the blackbody.

Furthermore, when a hemisphere of radius unity is placed over the
area dA]l, the solid angle subtended by any portion dA? of the area of
the hemisphere with respect to dAj is numerically equal te dds. If Ej
is the total rate of radiative emission by the area dAj, then

1)
- = 2 : —
E1 = jgzquos Olduﬁ = 2ﬂI1 J; cos 91 sin 91 dgl = ﬂIl

Whereas, the Stefan-Boltzmann equation represents the total radiant
energy emitted by a blackbody in all directions of a hemispherical space
per unit area and time for all wavelengths, Planck's quantum theory gives
the radiation intensity and emissive power as a function of wavelength.
Specifically,

2=
b )LS(eCZ/kT - 1)

o=

Cop /AT

(e - 1)

Ebl - monochromatic emissive power of a blackbody (btu/hr ftz)

A - wavelength ()

T - absolute temperature (R)

e - napierian base of logarithms
¢, - 1.1870 x 108 beu ree2 hr
C, ~ 2.5896 x 104 Ry



Comparison of the equations of Planck and the Stefan-Boltzmann equation
for blackbody radiation shows that

en e =] ;\-
E=l[Epr=c j d
0 1l Jo
)Ls(e.cszT - 1)
E = ._% Ta = OTL"
15¢,
4
where g = cim (see appendix III).
15¢,%

In a manner similar to the derivation above, Livingston (ref. 33)
shows that the band emissive power of blackbody source functions can be
described in terms of blackbody radiation as follows. Given that

C1
b)\dk = di
5 eCz/)LT - 1)

AT(
Then, the emissive power over a band of wavelengths is

E

A9 f A o,
E = Eiadd = dA
bAX I bA R
)t]_ )‘1 )LS(eCZ/}\T - D
Let
C
x = 2
AT
Then,
T 3
E = oT —F dy
b Ax Xy -1

where y 1is a dummy variable. Let

f(x)

-1
%% Ix y3eY - 1) gy

4[ ] _C _ _Ca
bl - cT f(xz) - f(xl) Xl_}\l_T’ X, '7@?

E

Thus, Livingston states that the fraction of radiation emitted by a
source in a desired wavelength band is determined by the values of



f(x) between the two limits of the wavelength band and lists the
following source functions for the sun, earth and moon {in btu/hr ftz).

The Sun
B, = 444|:f(x2) - £0x) |
< = 2.51
A
The Earth

The earth's thermal radiation cobserved at a distance Z from the
earth (measured in earth radii) is

E = 66.3 [f(xz) - f(xl)J

bk 22
a
L = 5L.5
AL

The earth's albedo flux measured at a distance Z from the earth
{(measured in earth radii) is

37.7 . - g
b Ax 2 E(ﬂ - ¢e) cos ¢e + sin wej [f(xz) - f(xl)J

e

=
]

2.51

X =

A

¥ is the angle subtended at the earth between the sun and an imaginary
observer.

The Moon

The moon's thermal radiation observed at a distance 7 (measured
in moon radii) from the moon is

_ 412 . Cx o
Fpi = 22 L+ cos ] |:f(x2) f(xl)] . x = 36.4
m

The moon's albedo flux measured at a distance Z (measured in moon
radii) from the moon is

—

By = 25 L(” - ¥w) c05 i + S1n U | (Lf(xz) - f(xl)] 3 ox = ii)
zm

|

~



where |, is the angle between the sun and the vehicle as seen from the
moon.

Non-Blackbody Radiation (ref. 24, ref. 28, ref. 29, ref, 30, ref. 31)

A real surface always radiates less than a blackbody surface at
the same temperature. Specifically, the intensity of radiation of a
non-blackbody may be expressed as a fractional ratio of the intensity
of radiation of a blackbody at the same temperature and is defined as
the emittance € of the body, Furthermore, the magnitude of the
emittance is dependent on the composition, size, shape and surface
properties of the body in question, the temperature of the body and the
wavelength or the wavelength band for which the ratio applies. Thus,
in order to denote the emittance of a surface at various wavelengths,
the spectral hemispherical emittance €} is defined as the emittance of
a non~blackbody at a given wavelength A. Consequently, the total
emissive power Epp of a non~blackbody is

Enb=j

0

o w©

' e, dA
- A 4
SAE}tdk = Cl ‘J‘O

/X -
}LS(eZ/T-l)

where € is the total hemispherical emittance. Also, a greybody
radiator is defined as a non-blackbedy radiator for which the emittance
€)=€g 1is constant over all wavelengths, and the shape of a spectrora-
diometric curve for a greybody surface is similar to that of a black-
body surface at the same temperature execpt that the height is reduced
by the numerical value of the emittance (see fig. 2).

Suppose, now, that two small bodies By and Bs with surface areas
Al and A2 are placed in a large evacuated enclosure which is perfectly
insulated from its surroundings. A net radiation exchange between the
bodies and the enclosure walls exists until both bodies and the walls
have reached the same temperature., Then, the rate at which each body
emits radiation must equal the rate at which it absorbs radiation.
Kreith shows that if E 1is the rate of emission from the enclosure
walls on each of the bodies, and & and Op are the absorptances and
E1 and E; are the emissive powers of By and By respectively,

or
El E9 E Ep
CI.]_“CLZ_ Tl
E
E
b
a
However, EL =€ . Thus, @ = £ , or at thermal equilibrium the
b
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Figure 2. Monochromatic intensity of radiation for blackbody
and greybody radiators at 2700 R versus wavelength.
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the absorptance and the emittance of a body are equal. Again, for
greybody radiators, a) and €jare constant over the entire wavelength
spectrum; consequently, O = € irrespective of the temperatures of the
emitter and receiver.

In contrast to greybody radiation suppose & = € vary with wave-
length such that the absorptance and emittance are equal only at a
given wavelength and temperature. For example, the variation of Oy
and €; for two real surfaces, anodised aluminum and white tile, is given
in figure 3. q) and €) are not comstant. Thus, Kreith suggests that
for radiation heat transfer calculations with real surfaces such as
anodised alumninum on white tile, use an average emittance (€,) or
absorptance (U,) for the wavelength band in which the bulk of the radia-
tion is received or emitted. He further suggests that in order to
evaluate 0y and €; correctly for a real surface, 0y should be chosen to
correspond to the wavelength spectrum of the thermal energy source and
€, corresponding to the actual temperature of the body.

Suppose two blackbody enviornments A and B are maintained at
reference temperatures Ty and Thp and

(1) that T, is greater than Tp
(2) that a diffusely radiating body C 1is enclosed in environment A

(3) that a vacuum and/or non~absorbing medium exists between the
enclosed body and the environment.

Three particular problems are evident, namely the net heat exchange
between the enclosed body and the environment when the enclosed body is
considered

{1) a blackbody radiator

(2) a greybody radiator

(3) a non-blackbody radiator

Christiansen's equation for the net heat transfer by radiation
from an enclosed greybody to its grey enclosure is

= 1

4
Qnet -

4

A )

EHE:
1+€1 -{".E A2

where subscripts (1) refer to the body in question and subscripts (2)
refer to the enclosure in question. If the environment or enclosure
is a blackbody enclosure,

Qnet = E:1[35"'\1(']:14 - T24)

or
g _ Quet _ c o1 b _ poh
L v 10 (T1™ - T2%)

10



Christiansen's equation then applies to cases (1) and (2); however, if
the surface or body in question is a non-blackbody surface, the relation-
ship between any two areas A and A, applies only at a given wavelength

A or, in other words, Qe+t is now a function of A. Thus,

* Ex1 - Ey
. 0

1+ ey +21 (L

-1

It is possible to simplify the calculations for non-blackbody
surfaces if, for example, €j; and €)p have constant values from A=20
to A = K and from A = K to A = @ In this case the integral may be
broken into two parts and Christiansen's equation may be used for a
direction analysis. Although the enclosed body is mnon-black over the
entire radiation spectrum, it is considered grey over the spectral
bands, that is, from A = 0 to A = K and from A = K to A = =, The
energy fluxes emitted by the environments A and B are then

Ea=%={jﬂ'aa
Ay
Q
Ebz_b= OTb4
Ap

When the enclosed body is in environment A, the incident energy on the
body is the same as the energy emitted by environment A. Furthermore,
the radiating body will absorb a certain amount of the incident radiation
depending on whether it is defined by case 1, case 2 or case 3. For
example, 1f the body is a blackbody; if the body is a greybody

Qabsorbed = Abody Ea
Qabsorbed = “body Mhody Ea » Tespectively.

The body will emit a certain amount of energy to the environment
dependent on its emittance and its temperature. If the body is a
blackbody,

4
Qemitted = Abody ¢ Thody

If the body is a greybody,
Qomi = A € o Ty a¥
emitted body “body body

If the body is non-black,

_ 4
Viemitted Abody €Abody 9 Tbody

i1



Let environment A denote a satellite earth orbit in which the
external sources of energy are (1) solar radiation, (2) the earth's
emitted energy and (3) the earth's albedo. The heat transfer equation
governing the instantaneous heat balance on a surface element of the
earth orbit space vehicle is

dr 4
S
chdx —d? = FSSG'S + FrRG‘r + FeaeEe + Pt + QC + Qi -0 E:STS

de - weight of the element
Cp - specific heat of the element
dT
:ﬁ? ~ rate of change of element surface temperature with time
FSSCI.S - absorbed solar radiation
FrR{Lr - absorbed earth reflection
F.E,a, - absorbed earth emission
OGST54 - radiation emitted by the satellite
Py - dinternal generated heat

Q. - heat conducted along the satellite wall to the element
in question

Q; - internal heat radiation

Let environment B (ref. 37) denote a thermal simulator or chamber
with the following properties:

{1) The internal radiation area of the chamber is very large.
(2) The internal chamber pressure is 0 atmospheres,
(3) The chamber walls are diffuse blackbody radiators,

(4) fThere ave no internal radiation sources available except the
subject and the chamber walls,

(5) Any external heat transfer to an enclosed surface by conduction
is negligible.

(6) The interior of the chamber is a non-absorbing medium,

The heat balance on the same element in the the¥mal simulator
(enviornment B) is

12



Wdex T = oF (T~ - T )+ Pp + Qe + Q4 (2)

where F 1is the geometrical configuration factor and Ty is the wall
temperature of the thermal simulator. All other remaining terms of
equation (2} are identical with those of equation (1).

Exact temperature simulation requires, then, that at any time the
general solutions and boundary conditions of equations (1) and (2) must
be the same, or

dT dr
Wwe. -5 (1 = WC_.__8 (2
Pdt() pdt()
and
4 4 _
o F(Tw - TS Y+ Pt + Qc +Q; = FSSOLS + F Ra,. + FE 0

4

Thus, the P., Q¢ and Qi terms can be canceled since the initial conditions
for both configurations are assumed to be the same, or

o F(TW4 - TSA) = F 803 + F.Ray + F E 0, - oesqu (4}

If equation (4) can be satisfied, the space environment A can be
successfully simulated in environment B, From Christiansen's equation

€s
A
1+€S<_J:_,_1>_
S Ay

where €, 1s the emittance of the enclosed body. However, since environ-
ment A is a blackbody enviromment, &; = 1 and F = €. Thus, equation
(4) can be revised as follows:

F =

cresTw4 = FgS0g + F RAUpr + FgEu0y (5}

Equation (5) indicates that the temperature history of enviornment B
depends only on the time history of the external radiation absorbed

by the vehicle in the giwven space configuration (A) and its surface
properties, Thus, in order to simulate space environments in this
theoretical laboratory environment it is not necessary to evaluate the
complex internal heat transfer terms of equations (1) and (2). However,
two primary simulator requirements must be satisfied;

(1) The simulator walls must be blackbody radiators.

13



(2) The simulator must be maintained at a complete vacuum,

The chamber walls of the AMRL facility are not blackbody radiators,
and the internal chamber pressure varies between finite limits. Thus,
revise environment B as follows:

(1) Let o, = g, = 0.94 (greybody radiator).

(2) Let the internal chamber pressure vary between finite limits.
Hence, for the revised version of enviromnment B, two heat transfer
mechanisms are employed for transferring heat to the surface element in
question, namely heat transfer by radiation and heat transfer by convection.

Also, since &, is now 0.94 instead of 1.0, the shape factor F is not
necessarily equal to €; . Refer again to Christiansen's equation.

€s
1+ e (g; - 1:)ﬁi ®)
A

Let . equal 0.1 and €, equal 0.94.
W

F =

E:,'E‘:_
1 + 0.0064¢,

From table 1 (g, = 0.94) F varies from 0.9936 (gg 1.0) to 0,04998

(€5 = 0.05). The difference between F based on &; = .94 and F based

on €; = 1.0 varies from 0.647% (es = 1.0) to a minimum of 0.03% at eg = 0.05.
It is concluded that greybody thermal environments with &; = o, for at

least values of 0.94 and greater can be considered blackbody radiators.

O0f course, referring again to equation (6}, F is approximately equal

to € if the ratio of A/Ay, is very small regardless of the value of &.
However, the ratio of A/Ay = 0.1 was selected since it is a representa-
tive value for the AMRI, thermal chamber.

Convection heat transfer is introduced into the analysis by adding
the convection term, Qugop = ho (T, - Tg), into equation 5.

4

oely,  + h (T, - Tg) = FgSaq + FrRO, + F EQ, (7}

where Qqon is the net heat transferred by convection and T, is the air
temperature inside the thermal simulator.

Introduction of the convection term upsets the simulation equation
since it now contains a quantity which represents the net heat gained
or lost due to convection. One obvious simplification is to reduce the
pressure in the chamber to a point where Q.on 15 negligible when compared
to the heat absorbed by radiation. Equation (7) is then effectively
reduced to equation (5).
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TABLE 1

THE VARIATICN IN SHAPE FACTOR F FOR CHAMBER
WALLS WITH AN EMITTANCE OF 1.0 AND 0.9%

Percent
Emittance F(Greybody Radiator) F(Blackbody Radiator) Variation

1.0 0.9936 1.0 0.642
0.9 0.8948 0.9 0.579
0.8 0.7959 0.8 0.510
0.7 0.6969 0.7 0.450
0.6 0.5977 0.6 0.38
0.5 0.4984 0.5 0.32
0.4 0.399%0 0.4 0.26
0.3 0.299% 0.3 0.19
0.2 0.1997 0.2 0.13
0.1 0.0999 0.1 0.06
0.05 0.04998 0.05 0.03

15



Thus, in oxder to utilize this concept for comparing spatial and
laboratory thermal conditions it is necessary to stipulate the incident
absorbed thermal radiation on a space man in various space configurations
and to compare these absorbed heat loads with incident absorbed thermal
loads which can be produced by the AMRL facility or at least by represen-
tative models of the AMRL facility. Specifically, incident absorbed
heat calculations are calculated for a cylindrical model of a 50th
percentile suited man in the following space configurations:

(A) Deep space probe

(B) A point 136 miles from the surface of the bright side of the
moon

(C) A point 136 miles from the surface of the dark side of the
moon

(D) A point 500 miles from the surface of the bright side of the
earth

(E) A point 500 miles from the surface of the dark side of the
earth

(F) A 500 mile circular earth orbit
(G) A 136 mile circular moon orbit

Assume, now, that a man in a space suit in any one of the space
configurations above will move about, turn around, etc., in an attempt
to prevent over-heating or cooling of his body in such a manner that
the average rate of thermal radiation on the space suit is constant.

In this case a blackbody environment at the appropriate uniform temp-
erature can simulate the given space condition. For a non-turning space
man, at least two separate thermal energy fields are necessary.
Specifically, incident absorbed heat load calculations are made for

four hypothetical chambers I, II, III and IV. Chambers I and III apply
to a turning or spilnning space man and chambers II and IV apply to a
non-turning space man. These chambers are then used to determine the
limitations of the space simulation and/or human tolerance to space
capabilities of the AMRL thermal chamber.

16



SHAPE FACTORS

The intensity of blackbody radiation in a non-absorbing medium
between two areas, A; and Ap, is a vector quantity whose magnitude
has been defined previously as

2
= dqi-2 Ly,
1, )=
1-2 A
1dA2cos Blcos 92
or
dg; o = ill_ZIdAldAzcoselcos 8,
2
Lo
and
El"z = TTI]_-Z

Let E;1 be defined as the total radiation leaving a greybody
surface Ay per unit time

_dQy

E = =
1~ A
& 1

where dQq is the total radiation. The rate of radiative heat transfer
from a greybody dA; to dA, is

dgqy.p = Eg1d(AyFpp)
Similarly, the rate of radiative heat tramnsfer from dA; to dA; is
dqy.y = Egad(AgFyy)

where

cos Glcos 92

d(aF1,) = d(AyFpy) = >
ﬂLl"ZdAldAz

Combining these two equatioms

(Egl - Egz)cos 8 cos 92dA1dA2

2
ﬂLl_2

dq;_p =

17



For uniformally irradiated finite areas, the net rate of radiative heat
transfer is

cos 6, cos 82

TL

91-2 % Egl - Ego J;l JLZ dA;da,

1-2

Since

la

TTLl_z

I cos 91 cos 92
)

"

AlFl2 (Egl - EgZ)

or

]

4 4
qp.p = AqFyp O (T17 - Ty

F1p2 is defined as the shape factor based on area Aj,and Fjy is defined
as the shape factor based on area Az. 1In more general notation AjFqs
is given as AjFjj and is defined as the "effective area”.

Kreith further shows that the shape factor of a surface element

dAy with respect to a finite surface Ap at a distance Lj_p from the
surface element is

Fi.2 = 1 ‘r cos O@pduy
m A‘z

which refering to figure 4 reduces to

"
Fl.2 = %
Fy.o - shape factor
8y - angle between the normal to dA; and the line of sight
from dA; to A
duy - unit solid angle subtended by an element of Ay, dAp at dij
As - finite area in question
dA; - surface element
H - a ficticious hemisphere of radius R

18



Figure 4. Geometry for mechanical shape factor integration,

8, - angle between Lj_, and the normal to A,
Ly_p - distance from dA; to Ay
Az' - area subtended on the surface hemisphere by the solid angle

oy - solid angle subtended at dA; by Ap

Ay - area obtained by normal projection of Ay on the base of
the hemisphere

Let the hemisphere denote a diffuse thermal radiation source and/or
refilector and let Ay denote the area of a body at a distance L £from
the hemisphere. By determining A" graphically, mechanically or optically,
the shape factor for numerical heat transfer calculations between the
body and the source can be computed. Specifically, Belasco (ref. 1)
gives the shape factors for a cylindrical model versus distance from
the surface of the earth for the earth's albedo and the earth's emitted
emergy. For this report, shape factors for the earth's emitted energy,
the earth's albedo, the -moon's emitted energy and the moon's albedo with
regard to the cylindrical model are included in the heat transfer calcu-
lations and are not given as separate information. 8ee figures 11, 12
and 13 for the variation of the earth's and moon's albedo etc. absorbed
by the space man as a function of the distance from the space man to the
surface of the earth or moon.

19



THE EARTH-SUN ENVIRONMENT

Dynamics of the earth-moon-sun system (ref. 2)

In the earth-moon-sun system the earth rotates in an elliptic path
(peribhelion 91.3 x 106 miles; aphelion 94.5 x 10® miles) about the sun
with an average distance between centers of 92.88 x 106 miles, and the
moon rotates in an elliptic path about the earth with an average distance
between centers of 238, 856 miles (perigee 221, 463 miles; apogee 252, 710
miles). During the orbit of the earth about the sun (see figure 5), the
equatorial plane of the earth is at an angle of 23% 7' with respect to
the plane of the ecliptic. Also, the plane of the earth-moon system
about its barycenter is inclined to the plane of the ecliptic by 5° 9'
{see figure 6). The points where the moon's orbit meets the ecliptic
plane are called its '"nodes", and the ascending node denotes motion from
south to north while the descending node denotes motion from north to
south., When the ascending node coincides with the vernal equinox, the
angle between the moon's orbit and the earth's equator is a maximum of

289 36'. When the descending node of the lunar orbit ceincides with
the vernal equinox, the angle between the moon's and earth's equators
is 189 18'. The moon's equator is tilted with respect to its orbit by
6° 41°,

Thermal properties of the earth-moon-sun system

The Sun (ref. 30). Inspection of the sun's solar distribution curve
shows that it is closely approximated by a blackbody radiator at a temp-
erature of 10,400 R and that 95% of its total energy is transmitted at
wavelengths less than 2.5 microns. Kreith gives a detailed table of the
syn's radiation intensity versus wavelength at an atmospheric pressure
of zero atmospheres and at the average earth to sun distance of 92.88 x 106
miles. He concludes that the solar constant at the earth is 442 btu/hr £t 2
+ 9 btu/hr fr2,

The Earth. The earth's radiation effects are (1) the earth's albedo
and (2) the earth's emitted energy. The earth's albedo is usually given
as 0.4 + 0.1 and its spectral distribution is assumed to be the same as
the sun's incident energy. As far as the earth's ewitted energy is con-
cerned, a rather wide variation in analysis exists. Kreith suggests that
the earth is a blackbody radiator at an equivalent blackbody temperature
of 455R., On the other hand, Livingston suggests that the earth's black-
body temperatures are 516 R in the sunlight and 499 R in the shadow for
an average blackbody temperature of 504 R. For calculating the terrestrial
radiation, Belasco used yet another blackbody temperature of 450 R. Kuiper
(ref. 32) also lists the earth's blackbody temperature as 450 R, Conse-
quently, for these calculations the earth is assumed to approximate a

20
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A blackbody radiator at a temperature of 450 R with the major portion
of the emitted energy transmitted at wavelengths between 4 and 32 microns.

The Moon. (ref. 2, ref. 32, ref. 42, ref. 45). The moon is sub-
jected to a wide variety of temperatures varying from 710 R at subsolar
to 210 R during the middle of the lunar night since the relatively slow
spin of the moon allows it to acquire different "“equilibrium" tempera-
tures at distinct lunar locations. Consequently, the bright side of
the moon is assumed a blackbody radiator at a temperature of 710 R,
while the dark side of the moon is assumed a blackbody radiator at a
temperature of 210 R. These values for the tempetrature of the light and
dark sides of the moon are confirmed by Livingston who lists temperatures
of 713 R and 210 R. Furthermore, based on these temperatures, the major
part of the moon's emitted energy is transmitted at wavelengths between
2.8 and 27 microns and 9.5 and 90 microns for the solar and dark sides
of the moon, respectively.

Correale and guy suggest that the moon's albedo at or near the
moon's surface is 0.07. Kuiper gives a value for the moon's albedo of
0.073. For these calculations the moon's albedo 1s assumed to be
0.073 and spectrally is assumed to exhibit the same properties as the
sun's incident solar energy.

23



SPACE MAN MODEL

Dunkle (ref. 17) shows that the surface area of a '"standard" man
without a space suit is 22.5 £ft2 and that the effective radiation area
of the same man is 18.51 ft2, He attributes this decrease in area of
17% to the fact that there is radiation heat transfer between certain
areas of the body such as the arms, legs or neck. Belasco (ref. 1)
states that the surface area of a 30th percentile suited man is 22.5 2,
Consequently, based on Dunkle's analysis the effective radiation area
of a 50th percentile suited space man is approximately 20 £t2,

The applicable model used for these investigations is based on the
cylindrical model adapted by Belasco with one major exception: Belasco
based the dimensions of his model on the surface area of a 50th percentile
man while for these investigations the dimensions of the model are based
on the effective radiation area of 20 ft2, Specifically, the model is
5.84 £t by 1.13 ft (diameter) with a projected area of 6.56 ft2 (see fig. 7).

24



igure 7. Cylindrical model of a "suited" man.
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SPACE CONFIGURATIONS

Configuration A (Deep Space Probe). The space man is considered
at least 100,000 miles from either the moon or the earth with no other
radiation sources available except the sun (see fig. 8). Moreover,
any change in the "mean'" man to sun distance is considered negligible
when compared to the "mean" earth to sun distance. The effective solar
constant is 442 btu/hr ftz,and the area over which the solar energy acts
is the applicable projected area of the man. The presence of a space
capsule is neglected.

Configuration B (Solar Side of the Moon) defines the hottest
possible point in a moon orbit when the orbit is at an angle of zero
degrees with respect to the moon-sun centerline (see fig. 8). Speci-
fically, the space man is suspended at a point 136 miles from the surface
of the moon on the moon~sun centerline, The presence of a space capsule
is neglected.

Configuration C (Dark Side of the Moon). The space man is suspended
136 miles from the moon's surface in the umbra region on the projected
moon-sun centerline and is at the coldest possible point in a moon orbit
when the orbit is at an angle of zero degrees with respect to the moon-sun
centerline (see fig. 8). The presence of a space capsule is neglected.

Configuration D (Solar Side of Earth) defines the hottest possible
point iIn an earth orbit when the orbit is at an angle of zero degrees
with respect to the earth-sun centerline (see fig. 8). Specifically,
the space man is suspended at a point 500 miles from the surface of the
earth on the earth-sun centerline. The presence of a space capsule is
neglected.

Configuration E (Dark Side of the Earth). The space man is suspended
500 miles in the umbra region from the surface of the earth on the pro-
jected earth-sun centerline (see fig. 8). He is at the coldest possible
point in an earth orbit when the orbit is at an angle of zero degrees
with respect teo the earth-sun centerline. The presence of a space capsule
is neglected.

Configuration F (Moen Orbit) is the moon orbit ocutlined in space
configuration B (see fig. 9).

Configuration G (Earth Orbit) is the earth orbit outlined in space
configuration D (see fig. 10).

Analytically, the total heat loads absorbed (Qup4orpedq) PY the space
man in each of the space configurations A through G are

(L) Qg = GSSAP + OpsEpshg
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(2)
(3)
(4)
(5)
(6)

(7

ms!Emd

Qp
Qe
Qq

Q¢

0S4, + CmaFmaRphy + OmeFmeEmehp
OmeFmeEmedp + ObshsEhs
OgSAp + OgeFeeBeehp T OeaFeaRelp
0:’eeFet—taEeeA‘p + G‘bsEbsAs

10 180
cgs[Apcos B + A Sin e:§30+ AP[FmeameEms] JF Ap[?meameEmd]?

1

180
+ Ap[amaFmaRm] o

10 60
= ass[gp cos 8 + A, sin 9:ﬁ30+ ApGEEEeeFee:ro
180
+ ueaFeaReAp] :

space sult absorptance based on the sun as the energy source
solar constant
projected area of the space man

space suit absorptance based on the energy spectrum of
black space

energy emitted by the black space environment
surface area of the space man

space sult absorptance based on the energy spectrum of the
moon's albedo

shape factor for the moon's albedo

moon's albedo

space suit absorptance based on the temperature of the moon
emitted energy shape factor for the moon

emitted energy of the moon

space suit absorptance based on the earth's temperature
emitted energy of the earth

space suit absorptance based on the energy spectrum of the
earth's albedo

earth's albedo shape factor
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Re =~ earth's albedo
Foe =~ emitted energy shape factor for the earth

Black space calculations are neglected for space configurations
D, E, F and G and the heat absorbed by the space man due to the moon's
and earth's emitted energy and albedo is given as a function of dis-
tance to the space man from the surface of the moon and earth in figures
11, 12 and 13. These results are then combined with equations 1, 2, 3,
4, 5, 6 and 7 to yield values of heat absorbed by the space man in
terms of btu/hr. Moreover, in analyzing equations 1, 2, 3, 4, 5, 6 and
7 it is necessary to know the thermal radiation properties of the space
suit in question. An initial assumption is:

Assume that the space suit is a diffuse greybody radiator.

Belasco based his analysis on the greybody assumption and suggested
that an absorptance and/or emittance of 0.12 is somewhat representative of a
typical space suit. His assumption is substantiated by fig. 14 which
shows that the average reflectance for aluminized nylon cloth from 0.6
to 2.25 microns is essentially constant and that the average absorptance
is approximately 0.12. Consider the space configurations. For calcula-
tions of the incident absorbed thermal radiation during the deep space
probe, Belasco's assumption is probably valid since the heat absorbed
due to the incident solar flux is transmitted primarily at wavelengths
between 0.3 and 2.5 microns and since the incident energy absorbed due
to black space is very small. Furthermore, analysis of configuration
B shows that the assumption for the heat absorbed due to the solar flux
and albedo flux is again feasible, but consider the moon's emitted energy.
In this case the major portion of the absorbed energy is transmitted
within a wavelength band of 2.8 te 27 microns. Consequently, there is
no justification for assuming that the absorptance of the suit is 0,12
when subjected to these higher wavelength radiations. As a matter of
fact, the average absorptance versus wavelength for aluminized cloth in
the range of 2 to 9 microns (ref. 22) increases to about 0.3 (see fig.
14).

Thus, absorptance and emlttance of probable space suit surfaces
versus wavelength, say from 0.3 U to 70 [ is essential for an exact
thermal analysis. A review of the literature shows that this informa-
tion is, in general, inaccessible. Therefore, the following procedure
is adopted for the remainder of the report. Total heat lead calcula-
tions are made for space configurations A, B, €, D, E, F and G in which
the average absorptance for a given space suit is broken into two
categories: (1) absorptance {0g) based on short wavelength radiation
or radiation transmitted at wavelengths less than 4l and (2) absorptance
(®4,) based on higher wavelength radiation or radiation at wavelengths
greater than 44, The results of these calculations are then given in
tabular form in terms of total heat absorbed by the space man (see Tables
2, 3, 4, 5, 6, 7 and 8) as (g and 0p vary from values of 1.0 to 0.05.

These tables are used as follows:

Suppose that the absorptance and/or emittance for a given space suit is
0.12. Then, in order to determine the heat absorbed by the space man in
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space configuration A, for instance, find in TABLE 2 the appropriate
value of Q(solar), 350 btu/hr, corresponding to Qg equal 0.12 in the
column labeled Q(solar)., Also, find the value of Q(black space }, 1.4
btu/hr, in the column labeled Q(black space) corresponding to apg equal
0.12, Hence, the solar side of the space man absorbs heat at the rate

of only 1.4 btu/hr. The total heat absorbed by the model is approximately
351 btu/hr. A similar procedure is used for configurations B, C, D, E,

F and G. As a final example (other examples are given in Appendix V),
the total heat absorbed by the model in configuration B when the absorpt-
ance and emittance are 0.12 is given in terms of Q(solar), Q{albedo) and
Q(emitted). Selection of the appropriate absorbed heat terms from TABLE
3 shows that Q(solar), Q{albedo) and Q(emitted) are 350, 15 and 321
btu/hr, respectively, or the total heat absorbed relative to the solar
side of the man is 350 btu/hr while the total heat absorbed on the moon
side is 336 btu/hr. The total heat absorbed on both sides of the man

is 685 btu/hr.
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HYPOTHETICAL CHAMBER CONFIGURATIONS I, II, I11 AND IV

Chamber T properties are given as follows:

(1) The effective radiation area of the chamber is 210 £t2,

(2) The internal chamber pressure is zero atsmopheres,
{(3) The chamber walls are diffuse blackbody radiators,

(4) There are no internal radiation sources present except the
subject and the chamber walls

{5) The wall temperatures vary from 320 R to 950 R.
(6) Any heat gained by the subject due to conduction is negligible.

(7) A non-absorbing medium exists between the chamber walls and
the subject,

The total amount of heat absorbed in btu/hr by the cylindrical medel
in chamber 1 is given in tabular and graphical form (see TABLE 9 and
figure. 15) at wall temperatures ranging from 320 R to 950 R and for
subject absorptances (0g) varying from 1.0 to 0.05. For an absorptance
of 1.0, Q(absorbed) varies from 365 btu/hr at a wall temperature of
320 R to 28, 345 btu/hr at a wall temperature of 950 R. For an absorpt-
ance of 0.05, Q(absorbed) varies from 18 btu/hr at a wall temperature of
320 R to 1375 btu/hr at a wall temperature of 950 R.

Chamber [T is identical to chamber I except that the effective
radiation area of the chamber is divided into two individual energy
fields such that the temperatures of each field can be controlled separately
from 320 R to 950 R. For instance, the temperature of the top half of
the chamber can be a maximum value of 950 R while the wall temperature
of the bottom half is a minimum of 320 R. The total heat absorbed by
the cylindrical model in chamber II is given in tabular and graphical
form in TABLE 10 and fig. 16 in terms of heat absorbed versus chamber
wall temperature (320 R to 950 R) for subject absorptances varying from
1.0 to 0.05. For a subject absorptance of 1.0 Q{absorbed) varies from
183 btu/hr (Ty - 320 R) to 14,172 btu/hr (T - 950 R} while for a subject
absorptance of 0.05, Q(absorbed) varies from 9 btu/hr (t, - 320) to 709
btu/hr at a wall temperature of 950 R. Chamber II is, of course, identical
to chamber I as long as the wall temperatures of each half of the chamber
are the same.

Chambey IIT is identical to chamber I with the following exceptions:

(1) The emittance and absorptance of the chamber walls are 0.94.
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(2} The internal chamber pressure is no longer a vacuum but varies
from 1.0 to 0.01 atmospheres.

The total heat absorbed by the model in chamber III (see TABLE 11
and fig. 17) varies for a subject absorptance of 1.0 from 343 btu/hr at
a wall temperature of 320 R to 26,643 btu/hr at a wall temperature of
950 R while for a subject absorptance of 0,05, Q(absorbed) varies from
17 btu/hr at a wall temperature of 320 R to 1332 btu/hr at a wall tempera-
ture of 950 R. Since the internal chamber pressure of chamber III exists
between finite limits, the heat transferred by convection must also be
determined in order to establish which of the two equations (5) or (7)
page 13 is applicable for chamber III analysis. Specifically, natural
convection film coefficlents are given (see tables 12, 13 and 14) for
various combinations of environmental and surface element temperatures
at internal chamber pressures of 1.0, 0.1 and 0.01 atmospheres (see
Appendices II and IV). The average film coefficients for natural con-
vection over a horizontal cylinder at chamber pressures of 1.0, 0.1
and 0,01 atmospheres are 0,097, 0,03 and 0.0097 btu/hr ft2, respectively,
Thus, the average film coefficients in conjunction with the applicable
area A and the applicable temperature difference A T yield the net
heat gained or lost by convection. Furthermore, for any actual test
the surface temperature of the subject must be known. However, a check
of the effect of convection on the total amount of heat absorbed by
the man can be obtained by the following analysis,

Suppose that at time equal zero the chamber III wall and air temp-
eratures are 900 R and that the surface temperature of the space suit
is 560 R, Dependent on the absorptance of the suit, Q(absorbed) due
to radiation may assume values from 21,470 btu/hr to 1074 btu/hr and
the heat transferred by convection is 660 btu/hr at 1.0 atmospheres,
198 btu/hr at 0.1 atmospheres and 66 btu/hr at 0.01 atmospheres.
Furthermore, the ratio of Q(convection}/Q(radiation) varies from 3.07%
for @ equal 1.0 to 61l.4% for a equal 0.05 at a chamber pressure of 1.0
atmospheres (see fig., 18), and at chamber pressures of 0.1 and 0,01
atmospheres the per cent variatioen is 0.92% (oo = 1.0) to 18.4% (g = 0.05)
and 0.31% (0c = 1.0) to 6.14% (G = 0.05), respectively. Similar curves
are available for environmental temperatures of 700 R and 600 R (see fig.
19 and 20), but in each case the ratio of Q{convection) to Q{radiation)
is practically the same as jllustrated in the example. Thus, for
environmental temperatures greater than the initial surface temperature
of the space suit, convection is negligible at a chamber pressure of 0.01
atmospheres. Moreover, at a pressure of 0.1 atmospheres it 1Is negligible
for suits with an average absorptance greater than 0.3.

Suppose now that at time equal zero the surface temperature of the
suit, T, and the air temperature in the chamber, T , are assumed to be
560 R and 400 R, respectively, Heat is now transferred from the subject
to the surroundings at a greater rate than the subject receives heat,.
Furthermore, based on the average film coefficient, the instantaneous heat
loss due to convection is 310 btu/hr at a chamber pressure of 1.0 atmospheres,
96.3 btu/hr at 0,1 atmospheres and 31 btu/hr at 0.0l atmospheres. The
heat absorbed due to radiation varies from 837 btu/hr to 42 btu/hr at
absorptances of 1.0 and 0.05, respectively. Thus, the instantaneous heat
loss due to convection is of major importance when compared to heat absorbed
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XATURAL CONVECTION FILM COEFFICIEKTS FOR FLOW

TAGLE 12

OVEfRl A HORIZONTAL CYLINDER USIKG YARIOUS
ENVIROKMERTAL AND SURFACE TEMPERATURES AT A
BARCOMETRIC PRESSURE OF 1.0 ATMOSPHERES

Surface Temperature {(Tg-F)

T(F) =50 =25 0 50 100 150 200 Jog 400
=50 ¢.000 0,071 0,085 0,100 0.110 0.120 0.126 0.138 0.147
=25 0,067 0,000 0.067 0.088 0,100 0,108 0.116 0,127 ©.138
Q 0.078 0,065 0,000 0,078 0,082 0.102 0,110 0.120 0,131

50 0.089 ¢,082 0,075 0.000 0,075 0.089 0,089 0.1Fk2 ©,122
100 .096 0.092 0,087 0,073 0,000 0,073 0,087 0,103 0,109
150 0.101 0,097 0,094 0,085 (.071 0,000 0,071 0,094 0.106
200 0,103 0,101 0,098 0,081 0.082 0.069 0,000 0,082 0,088
250 0,106 0.104 0.101 0,096 D,089 0.080 0.068 O©,068 0.089
300 D.108 ¢.106 0.103 0,099 0,093 0.087 ¢.G79 0.000 0,079
350 0.10% 0.107 0,106 0.101 0,097 ©,082 0,085 0,065 0,065
400 0.111 0,110 0,108 0.104 0,101 0,086 ¢,091 0,076 0,000
450 0.109 0,198 0,107 0.104 ©,100 0,086 0,082 0,031 0.062

TABLE 13
NATURAL COLVECTIOR FILM COEFFICIEI'TS FOR FLOW
OVER A HORIZOKTAL CYLIKDER USING VARIOUS
E! VIRONME} TAL AND> SURFACE TEMPERATURES AT
A BAROMETRIC PRESSURE OF 0.1 ATMOSPHERES
Surface Temperature (Tg-F)

T(F) =50 =25 4} 50 100 150 200 00 400
=~ 50 0,000 0.023 0,027 0,032 0.036 0,038 0.040 0.044 0,047
=25 0,021 0.000 0,021 0,028 ©.032 0,034 0,037 0.040 0,043

0 0,025 0,021 0,000 0.025 0,029 0.032 6,035 0.038 0.041

50 0,028 0,026 0,024 0.000 0,024 0.028 0,041 0,035 0.03%
100 4,030 0.0290 0,027 0,023 0,000 0,023 0.027 0,033 9.036
150 0,032 0,031 0.030 0,627 0.023 0,000 0.023 0,030 4,034
200 0.033 ¢,032 0.031 o0.028 0,026 0,022 0,000 0,026 @.03]1
250 0.034 0,033 0,032 0,030 0,028 0,020 0,021 0,021 0,028
300 0.034 0,033 0,033 0,031 0,030 0.027 0,025 0.000 0,035
as0 ¢.034 0,034 0,033 0,032 0.031 0.028 0,027 06.021 0,021
400 0,035 0,035 0,034 0,033 0.032 0,030 0.029 0,024 0,000
450 0.035 0,036 0.034 0,033 0,032 0.030 0©.029 0,026 0.019
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NATURAL CONVECTION FILM COEFFICIENTS FOR FLOW

TABLE 14

OVER A HORIZONTAL CYLINDER UBING VARIOUS
ENVIRONMENTAL AND SURFACE TEMPERATURES AT A
BARCNETRIC PRESSWEX OF 0.0) ATMOSPHERES

Surface Temperaturs (T -F)

T(F) ~50 ~25 4] 50 100 150 200 300 400
=50 0.000 0.007 0,008 0,010 0.011 0.012 0,013 0.014 0,015
«2% 0.008 0.000 0,008 0,011 0.012 ©.,013 0,014 0,015 0.018
¢ 0,008 0,007 0,000 0,008 0.009 (,010 0.011 0,012 0.013
50 0,008 0.008 0,007 0,000 0,008 0,009 0,010 0.011 0.013
100 0.010 0,008 0©,008 0,007 0,000 0,007 0,008 0,010 0©,011
150 0,010 0,010 0,008 0,008 0.007 0,000 0.007 0,008 0,01)
200 0.010 0,010 0,010 0,008 0,008 0,007 0.000 0,008 0.010
250 ¢.011 0,010 0.010 0,010 0.008 0,008 0.007 0.007 0.009
300 0,011 ¢.011 0.010 0,010 0.000 0.0080 0.008 0,000 0.008
350 0,011 0,011 0,011 0.010 0,010 0,008 0,009 0.008 0.006
400 0,011 0,011 0,011 9.010 0,010 0,010 0,009 0.008 0,000
450 0,011 0,011 0,011 0.01¢ ©.,01¢ 0.010 0,008 0.008 O.006
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due to radiation. However, if the final surface temperature of the space
suit approaches the temperature of the surrounding envirvonment in a
reasonably short period of time after the subject has been placed in the
chamber, convection can be neglected at a chamber pressure of 0.01
atmospheres (see fig. 21). 1If the transient or step function is not
approximated, convection cannot be neglected and the surface temperature
of the space suit and the environmental temperature must be recorded so
that equation 7, page 14 can be applied to the heat absorbed calculations.
In conclusion, experimental tests are necessary in order to provide
numerical results for environmental temperatures less than the initial
space suit temperature,

Chamber IV is identical with chamber TI with the following exceptions:
(1) The emittance of the chamber walls is 0.094.

{2) The internal chamber pressure is no longer a vacuum but varies
from 1.0 to 0.01 atmospheres,.

Also, all comments and assumptions which apply to the convection heat
transfer analysis concerning chamber ITI apply to chamber IV, and the
total heat absorbed by the model in chamber IV due to radiation is givenin
tabular form in Table 15 and in graphical form in fig. 22.

Two additional modified versions of chambers III and IV were also
considered in the preliminary calculations. Specifically, chambers
IIT and IV were modified by the addition of two 20" x 12" silica glass
windows. However, calculations indicate that the effect of the glass
windows on the overall chamber performance of the modified chambers when
compared to chambers III and IV is negligible since silica glass is
considered opaque at thermal wavelengths greater than 2.7 1 .

The AMRL Facility. The overall properties of the chamber at the
Aerospace Medical Research Laboratories are summarized as follows:

(1) Upper wall and ceiling temperatures. . . . . .410 R to 910 R,
{2) Lower wall and ceiling temperatures, . . . . .410 R to 910 R.
(3) Air temperature. . ., . . . . . . . . . . . . 410 R to 910 R.
{4) Barometric Pressure. . , . . . .760 mm of Hg to 20 mm of Hg.
(5} Air Motion . . . . . + . « + . « v « « . . . .0 - 800 fpm.
(6) Humidity . . . . . . . . .5 mm of Hg HyO to 50 mm of Hg HpO.

When the AMRE thermal chamber is compared with chambers I, II, TIII
and IV the following variations are evident:

(1) The effective temperature range of the AMRL chamber is 410 R

to 910 R compared to 320 R to 950 R for chambers I, II, IIT
and 1V,
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(2y The lower pressure limit for chambers I and TI is zero atmospheres
and for chambers TIT and IV is 7.6 mm of Hg compared to 20 mm of
Hg for the AMRL chamber.

{3} Dty air is assumed for chambers III and IV
If items (2) and (3) are neglected,the only differences between

chambers III and IV and the AMRL chamber are the effective temperature
ranges for each case.
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COMPARISON OF SPACE CONFIGURATIONS A, B, C, D
AND E WITH CHAMBER CONFIGURATION III

Due to the amount of graphical and tabular data involved, only one
comparison of space configurations A, B, C, D and E with one chamber
configuration III, is presented as a guide for the interpretation of all
numerical calculations. Space configurations F and G are not compared
with chamber III since space configurations B and D are special cases of
F and G. To recapitulate, the heat loads absorbed by the model in space
configurations A, B, C, D and E are given in Tables 2, 3, 4, 5 and 6.

The heat absorbed by the model in chamber III is given in figure 17 and
Table 11. Since the results of the heat absorbed calculations for both
space and chamber configurations are given for various space suit absorp-
tances ranging from 1.0 to 0.05, one obvious method of comparison is to
superimpose the results of the space calculations on the chamber calcula-
tions. Specifically, the results of space configurations A, B, C, D and
E in terms of heat absorbed by the cylindrical model in btu/hr are super-
imposed on the results of the chamber III calculations which are, also,
in terms of heat absorbed (btu/hr) by the model as the chamber IIT wall
temperatures vary from 320 R to 950 R (see fig. 23, 24, 25, 26 and 27).

For a specific example consider the comparison of the heat absorbed
by the cylindrical model in chamber TII with the heat absorbed by the
model in space configuration A (see fig. 23 and the supplementary infor-
mation page 76).

The intersections of the vertical lines (heat absorbed by the model
in space configuration A) and the slanted lines (heat absorbed by the
model in the chamber) defines all possible points required for determining
the equivalent chamber temperatures for simulating the space condition,
Specifically, the minimum temperature required is 263 R and the maximum
temperature is 1150 R. ©Note that for a greybody radiator the required
chamber simulation temperature is 550 R for all suit absorptances.

The temperature range of chamber III varies from 320 R to 950 R.
However, since the temperature range of the AMRL chamber varies from
410 R to 910 R, these two temperatures (410 R and 910 R) are used as the
boundary limits for the comparison of chamber III with the space configura-
tions., Moreover, models of space suits with surface properties that
yield results which fall within the closed loop marked by the heavy unbroken
line can be simulated directly in chamber III. For instance, if the suit
absorptance is 0.9, the chamber can be used for direct simulation of space
configuration A as ¢, varies from 1.0 to 0,16.

Comparison of the heat absorbed by the cylindrical model in chamber
11T with the heat absorbed by the model in space configuration B is
given in fig. 24 in which the space configuration results are again
superimposed on the chamber configuration results. Q. is the suit
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10.

11.

12.

13.

SUPPLEMENTARY AID

For Figures 23, 24, 25, 26 and 27

Oy is the space suit absorptance based on the sun as the thermal
energy source.

Q4 is the space suit absorptance based on the black space
environment as the thermal energy source.

Ume 15 the space suit absorptance based on the moon as the thermal
energy source,

Jae is the space suit absorptance based on the earth as the thermal
energy source.

The absorptance of the suit based on the sun and the earth's and moon's
albedos as thermal energy sources is the same for all three cases.

Oc is the space suit absorptance based on the thermal chamber as
the thermal energy source.

The temperature limits of the AMRL chamber are 410 R to 910 R and
are designated on each figure as (C-C).

The temperature limits of hypothetical chamber IITI are 320 R to 950 R.

The vertical straight lines (B-B on each figure} denote the heat
absorbed by the cylindrical model for the given space configuration
as the appropriate absorptance (Qpg, Ope OF Uee) varies from 1.0 to
0.05.

The slanted straight lines (A-A on each figure) denote the heat
absorbed by the cylindrical model in chamber III as the space suit
absorptance (0) varies from 1.0 to 0.05 as follows: 1.0, 0.9,
0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0.05.

All points obtained by the intersection of the vertical and slanted
straight lines which fall within the closed loop marked by the heavy
unbroken line can be simulated in the AMRL chamber.

REFER TO FIGURE 24: FEach segment labeled g (1.0), ag (0.9), ag (0.8),

Xs (07)5 s (0-6)3 Cs (05): s (0'4): Us (03)3 Uy (02)) Qg (Ol)
and Qg (0.05) represents the heat absorbed by the model for each
appropriate value of «g.

REFER TO FIGURE 24: The vertical lines represent the variation in

the heat absorbed for each value of Qge as Qs varies from 1.0 to 0.9
to 0.8 to 0.7 to 0.6 to 0.5 to 0.4 to 0.3 to 0.2 to 0.1 to 0.05.
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14,

REFER TO FIGURE 24: For each segment the slanted lines (A-A)
represent the heat absorbed by the model while the model is in the
thermal chamber as the space suit absorptance Qg varies from 1.0 to
0.9 to 0.8 to 0.7 to 0.6 to 0.5 to 0.4 to 0.3 to 0.2 to 0.1 to 0.05.
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absorptance based on the energy spectrum of the moon's emitted energy.
Og varies from 1.0 to 0.05 and the absorptance of the suit as a function
of wavelength is the same for the incident solar energy and the moon's
albedo. However, at each value of Ug , Uy varies from 1.0 to 0.05.
Thus, in order to prevent overlapping values for the heat absorbed as

Os and Ope vary from 1.0 to 0.05, the superimposed results are presented
in segments for each wvalue of COg from 1.0 to 0.05 as Qe varies from

1.0 to 0.5. Again, the vertical lines denote the variation in heat
absorbed by the model in the thermal chamber as Q. varies from 1.0 to
0.05, and the intersection of these lines defines all possible points
required for determining the equivalent chamber temperatures, Specifi-
cally, for simulating space configuration B the minimum temperature
required is 303 R while the maximum temperature required is 1370 R.

As before, cylindrical models with surface properties that fall within
the closed loop marked by the heavy unbroken line can be simulated
directly in chamber IIIL.

The heat abscorbed by the model in space configurations C and E are
given in figures 25 and 27 as Oy and Qpg vary from 1.0 to 0.05. The
intersections of the vertical and slanted lines in the closed loop
denote values which can be simulated in the chamber. For instance, for
space configuration C if QO and Qpg are 1.0 and o is 0.10, the required
chamber temperature for simulating the space condition is 485 R,

Finally, the heat absorbed by the cylindrical model in space con-
figuration D is superimposed on the heat absorbed calculations for
chamber configuration III (see fig. 26) as Og, Uee and Q¢ vary from
1.0 to 0.05. ge is the absoprtance of the model based on the energy
spectrum of the earth's emitted energy, and all points obtained by the
intersection of the vertical and slanted lines which fall within the
closed loop can be simulated in chamber III.

If the AMRL chamber approximates a greybody radiator with a wall
absorptance and/or emittance of at least 0.94 and convection is negligible,
chamber IIT as outlined above is identical to the AMRL chamber. Thus,
all conditions which fall within the closed loops can be simulated in
the AMRL facility. Consequently, human tolerance to the space conditions
which can be simulated is simply a matter of experimentation. However,
other methods must be employed in addition to actual experimentation to
determine the human tolerance time to the space conditions which fall
outside the temperature range of the AMRL chamber.

Is it theoretically possible to conduct human
experimentation in ventilated space sults under less
than space equivalent conditions and extrapolate the
results to a specific space condition?

Extrapolation is defined as:
To infer from the observed trend of a variable,

values of that variable beyond the observation
range.
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In other words if a definite trend of the wvariable, tolerance time,
can be recorded as a function of chamber wall temperature, extrapolation
is in order. Moreover, since tolerance time is a function of the tempera-
ture of the hot and cold environments, it is necessary to investigate
extrapolation beyond the hot (positive) and cold (negative) environmental
1imits of the AMRL chamber. One rule of thumb states that extrapolation
is applicable for values 50% greater than the difference between the norm
and the maximum experimental wvalues.

Consider the positive chamber environmental limit of 910 R as applied
to the comparison of space configurations A, B, C, D and E with chamber
III or the AMRL chamber. The maximum temperature required is 1360 R or
a temperature 450 R greater than the maximum chamber temperature. Assume
a reference environment at a temperature of 560 R. It is suggested that
between 560 R and 910 R a definite trend can be established between
chamber wall temperature and telerance time with a sufficient number of
experimental tests., In this case extrapolation to at least 1100 R is
acceptable,

Consider the negative chamber environmental limit of 410 R. The
minimum temperature required is 150 R. As before, assume a reference
environment at a temperature of 560 R. It seems doubtful that a trend
between tolerance time and wall temperature can be established between
410 R and 560 R which will provide extrapolative data, unless at the
lower temperatures tolerance to the cold environment is due to localized
cooling such as cold hands or feet.

In conclusion the AMRL thermal chamber is inadequate for simulating
or extrapolating to a specific space condition where the maximum chamber
temperature required is greater than 1100 R. Furthermore, using strictly
""the rule of thumb", the extrapolation limit of the negative environment
is 360 R. Based on these results, a more optimum set of chamber properties
are:

(1) Minimum chamber temperature ., . . . . . . . . . . . . .320R.

(2) Barometric pressure . . . . . . . . . pressure at 300,000 ft
P
above the earth,

(3) Greybody chamber walls with an absorptance and/or emittance
of 0.94 or greater.

(4) Dry air inside the chamber.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9}

SUMMATION OF MAJOR CONCLUSIONS

Greybody environments with an emittance and/or absorptance
of 0.94 or greater approximate blackbody radiators.

Convection is negligible at a chamber pressure of 0.01
atmospheres for chamber environmental temperatures greater
than the initial surface temperature of the space suit,

Experimental tests are necessary in order to determine if
convection is negligible for chamber environmental tempera=
tures less than the initial space suit temperature.

The AMRL chamber is identical to chambers III and IV if
convection heat transfer is neglected and dry air is assumed
for the AMRL chamber and chambers III and IV,

The extrapolation limit for the AMRL chamber's positive
environment is 1100 R.

The extrapolation limit for the AMRL chamber's negative
enviromment is 360 R.

A more optimum set of AMRL chawber properties are;

a, Minimum chamber temperature . . . . . . . . . . 320 R.

b, Maximum chamber temperature . . . . . . . . . . 1100 R,

c. Barometric pressure . . . . . . . . . . . . . .pressure at
300,000 £t above
the earth.

d. Greybody chamber walls with an absorptance and/or emittance
of 0.94 or greater,

e, Dry air inside the chamber,

All points which can be simulated directly in the AMRL chamber
are given graphically in fig. 23, 24, 25, 26 and 27.

Four specific examples of particular space suits as applied

to chamber configurations I, II, III and IV and space configura-
tions A, B, C, D, E, F and G are given in Appendix V.
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II.

IIT.

RECOMMENDATIOQONS

The present calculations should be continued as follows:

(1) Repeat all calculations for space configurations A, B, C, D,
E, F and G in which the presence of a space wvehicle is not
neglected,

(2) Expand the calculations to include, for example, space men on
the surface of the moon and orbits of Venus and Mars,

(3) Repeat all calculations with a more sophisticated space man
model such as the model illustrated in fig. 28,

(4) Expand the orbit analysis to include specific launch times
(hour, day, month, year) and to include different types of
circular orbits ranging from polar to equatorial orbits,

(5) Repeat all orbit calculations for wvarious elliptical orbits.
The method of solution should be up~dated as follows:

(1) Instead of selecting two distinct suit absorptances Os and oy
determine experimentally the relationship between ¢ and the
source wavelength for given space suit materials so that
solutions of all calculations by computer methods will provide
results based on the actural space suit properties,

(2) Determine the absorptance and emittance of the AMRL facility
as a function of wavelength. This will, of course, confirm or
deny the use of the greybody assumption used in this report,

(3) Determine the time required for the surface temperature of the
space suit to attain the environmental chamber temperature.
This will give an indication of whether convection is really
negligible.

{4) Repeat all calculations using the results of‘items (1), (2)
and (3)

Conduct experimental tests based on the present calculations relating

human tolerance time to specific AMRL chamber conditions and to the
space conditions which can be simulated in the AMRL chamber.
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Space man model based on a system of cylinders.

Figure 23
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APPENDIX I

Approximate orbit analysis (ref. 30). The geometry of an earth-
sun-satellite system is illustrated below.

Sun

Satellite

Earth

The angle T is defined as the angle between the plane of the satellite
orbit and the earth's terminator. The angular position of the satellite
in its orbit is denotedby 8 such that the noon position or the point of
the orbit nearest the sun is given by the value 8 = 0,

The angle at which the satellite enters the earth's shadow is given
by the expression
R
Sin"1 Sin{Cos~! 1)
- + 90°
Sin T

8, =

where R is the radius of the earth and r 1is the distance from the
center of the earth to the satellite. For a circular orbit, the time
required for 1 orbit is

where VS is defined as

o - (D

5]

The time spent in the earth's shadow is

2
R -
t = /3 { 1 - L gin-l [ sin(cos'1 /r)J }
5 / 90 sin T

Ry 8
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APPENDIX II

Properties of Dry Air at Low Pressure (ref. 23, ref. 28, ref. 35)

I.

II.

Thermal conductivity--According to Jakob, thermal conductivity
k is a function of pressure below 1 mm of Hg for heavy gases
and below 20 mm of Hg for light gases (hydrogen and helium)
otherwise k 1s independent of pressure and is a function of
temperature only.

Viscosity--From the kinetic theory of gases it is shown that
the coefficient of viscosity M is defined as follows (ref. 5).

U= 1.051 m v
3 2 net + Yy
m - molecular mass
v - random velocity
g - diameter of the molecules
D - constant depending on the gas
T =~ absolute temperature

From this equation it is seen that viscosity is independent of
pressure. Refer to figure 29 for the variation of density,
specific heat, Prandtl number, dynamic viscosity and thermal
conductivity of dry air with air temperature.
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TABLE 16

SPECIFIC HEAT OF DRY AIR AT VARIOUS
PRESSURES AND TEHPERATURES

Tenp Praasures

(R) +01 atwm .1 atm 4 ata +«7 atmo 1 atm
360 « 2344 .2385 . 2398 . 2264 <2404
450 .2396 . 2396 . 2398 « 2400 . 2401
540 » 2400 . 2400 « 2401 2403 . 2404
630 . 2408 . 2408 . 2409 . 2410 .2411
720 2420 2421 2421 . 2422 L2422
310 .2438 .2438 .2438 »2430 L2439
900 « 2459 . 2459 . 2458 +2480 + 2460
999 . 2483 . 2484 +24B4 . 2484 2484

TABLE 17

DELSITY OF DRY AIR AT YARIOQUS
PRESSURES AKD TEMPERATURES

Temp Presgures

(R} .0l atm .1 atm .4 atm .7 ata 1 atm
360 001102 01102 »0441 0773 .1104
450 0008815 00882 0353 0617 0882
340 000735 00735 .0284 0514 0735
630 000630 00630 0252 0441 0630
T30 000551 .00551 0220 0386 .0551
810 00049 L 00490 .0196 .0343 .0490
200 00044 +00441 0176 ,0308 L0441
990 00040 00401 0160 .0280 0401
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APPENDIX 1T

Subject: Integration of the following equation.

i} T da .
F_-cj AT (2)

Ca

Let x 7\_[_

Revise equation (a) as follows

C* da)

/ (eCZ/AT__ 1)

d(x) =-X*da

E=C

thus
[=] 3 _L
Sty () 4G
C ) et ) @A k (b)

The differential and the limits of integration are in terms of I/K.

4
T
C; T3¢, T

U

(c)

Reverse the limits on equation (b) and multiply equation (a) by equa-

tion (c}.
f (%) A(ﬂ) @

CzﬁzT

However, x = Co/AT and the limits of integration are in terms of x .
Thus, equation (d) can be revised as follows:

C, x3dx | 4 -
E= cr L‘( e’ T ©
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81 X K . oo
e ;‘L<e-“x)= € _ e erei----se
e - | e I-€

equation (e) becomes
F - [ ] [
c - - -3% 4
{i:Ej[_J’x*"e *dx +f><’ & dx +jx"‘e dx +] T (£)
o ° 4
oo

n -ax - {qt
fxedx"“ﬁ_-ﬁ'
5 d
if n is a positive integer and a > 0 (ref. 24). n 1is 3, thus equation

(f) is revised as follows;

E = G [é—l +§_.!..+§_!.++--—- +§.L]T4‘

LI AT oot

and since 3! =6

Thus,
F-=T?
where
-
s=6% S L
C4' m+
z M=)
or

gc. w* _ ¢ ¢
4
c, 9C C, 15

o =
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APPENDIX IV

THERMAL BOUNDARY LAYERS IN NATURAL FLOW

The equations describing two dimensional fluid flow are (ref. 3, ref. 38):

> Yy (a)
ag,gxu) 4 a(agg =0
PUB v g)s S ) -4frpop T @
_ T z P (e)
096 (0 E v )= k5L e (3) +u K
— (d)

For inconpressible flow (p = constant) and for constant viscosity, equation
a, b, ¢ and d reduce to

fc
+
&
1]
O

5% >4 (e)
()
u uy — 2y P
pLu3t v i) =u 24 - & +pg,p (o)
- z
2T 2T\ _ k &% 2% (2)
pges (3L +v ) = € LI, un (38

which gives three equations for u, v and T.
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Natural flow of a gas over a flat plate,cylinder,etc., is defined as
flow which is generated by density gradients created by temperature
differences. These flows, of course, exhibit a boundary layer structure
dependent on the viscosity and thermal conductivity of the £luid.

Schlichting shows that for a vertical hot plate equation (e), (f)
and (g) reduce to

U+ 3V _ o (h)
X o

X 2 g av* T (i)
Uues +veoe . k. Je (3
X At gPCP \(2.
where
e _ T— —rsD
- Tw "'Tuo

He further shows

Z'”+ 3:([“—2(’

8" + 3 Npe 9 =

if
= - - = hi
u=3¢  v=-of ?"?x)"" ¢ =4vex Jy
f/q-

C: g(Tw—'Toﬁ)—‘{
i4rz T,
V=ve x—y¢(7(’~ 37)

where G(q } is the temperature distribution. The boundary conditions are

ZI >,2,0 1=°>1,oo
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The solutions of these equations for various values of the Prandtl
number are given on page 333 of Schlichling's Boundary Layer Theory.
Moreover, the quantity of heat transferred per unit time and area from
the plate to the fluid is

G0 - () = R (82), (- L),

since

The total heat

(a_a = -~ 0.508 Npg = 0133
>4 ),

transferred by a plateof length L and width b is

2
QT logoiu\)dx - 43 (D.Soa)bi.hCK (TN’T,O)

or
Qtotal = bKNm(TW - Ty )
where N = 0.677 134
or
_ 1/4
Nm = 0.478 Ngr
gL3(Tw ~ Tew)
N = 2
gr V2T

These calculations are for a heated vertical flat plate; however,
Schlichting points out that motion due to natural convection around a
horizontal circular cylinder has been treated in a similar manner by R.
Hermann, Namely, for P = 0.7 the mean heat transfer coefficient Ny is
0.372 Ngr% where Ngp 1s based on the cylinder diameter. Actual measure-
ments in air show that

%
Ny = 0.395 N,
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APPENDIX V

For specific comparisons of space configurations A, B, C, D, E,
F and G with chamber configurations I, II, III and IV, some stipulation
must be made concerning the thermal radiation properties of space suits,
Therefore, the following special cases are cited:
SPECTIAL CASE (1) Greybody Radiator (ref. 1)
g = 0.12
O = 6.12
SPECIAL CASE (2) Aluminized Nylon Cloth (ref. 22)

ag = 0.16

ap = 0.30

SPECIAL CASE (3) Polished Aluminum Surface (ref. 30)

Gy = 0.3
&, = 0.05
SPECIAL CASE (4) (Ref. 12)
g = 0.1
&, = 0.05

Tables 2, 3, 4, 5 and 6 give the total heat loads for the model in
space configurations A, B, C, D and E for various values of space suit
absorptivity,

Sample Problem: Determine the total heat absorbed by the cylindrical
model in space configuration A (table 2) for special case (1). Select
from the column labeled 0g the applicable space suit absorptivity of 0.12.
Select from the row labeled O}y the applicable space suit absorptance of
0.12. The intersection of the row corresponding to Qg = 0.12 and the
column corresponding to g = 0.12 gives 351 btu/hr, the total heat absorbed
by the medel in the given space configuration. Thus, the total heat loads
absorbed by the model in space configurations A, B, C, D and E are selected
from tables 2, 3, 4, 5 and 6 as illustrated above and summarized in table
18, For an illustration, configuration F (Special cagse 1) is given in
table 19, in which Q(solar), Q(earth) and Q(albedo) are given as a function
of orbit time.

Equivalent chamber temperatures for the four special cases, space
configurations A, B, C, D and E, are determined as follows:
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TABLE 18

RADIATIVE HEAT ABSOHBED BY THE CYLIMDRICAL MODEL
I} SPACE CONFIGURATICNS A, B, C, D AND E TFO!! 5PECIAL
CASES (1), (23, (3} ALD (4)

Total Heat Absorbed {Btu/hr}

Space Special Casa Special Cage Spacial Case pecial Case
Conflguration {1) (2) (3} (4)
A 351 470 877 283
B 685 1288 1044 438
C 21 30 62 20
D 485 708 1103 383
E 53 72 110 44
TABLE 18

SPECIAL CASE 1F; EARTH CRBIT ANALYSIS

Time (miputes) Solar (Rtu/hr} RKarth (Btu/hr) Albedo (Bto/hr) Bubtotal {Btu/hr) Total (Btu/hr)
4] 49 52 84 1348 185
7 217 52 B4 136 353
14 1 52 B4 136 462
21 349 52 84 136 485
28 326 52 B4 136 462
35 217 62 84 136 383
42 49 52 84 138 185
49 217 &2 - 52 2080
a6 - 52 - 52 52
63 - 52 - 52 53
70 - 52 - a2 52
7 217 52 - 52 208
a4 48 52 84 136 185
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Select one of the chamber configurations, for instance,
chamber III. The heat absorbed by the model in chamber IIX
is given in figure 17. Select the appropriate value of heat
absorbed from table 18 and superimpose this value, say 351
but/hr, on figure 17, Follow the vertical line which describes
351 btu/hr to the point where it crosses the applicable space
suit absorptivity, say 0.12. The equivalent chamber temperature
is read directly from figure 17 and is 548 R.

Specifically, the equivalent chamber temperatures for the four special
cases using space configurations, A, B, C, D and E are given in table 20.
The equivalent chamber temperatures required for chambers I and III to
similate the given space conditions fall within the actual operating
limits of these chambers except for configurations C(l) and C(2). For
chambers II and IV configurations B(l), B(2), B(4) and D(4) can be
simulated directly. Considering the AMRL facility, chamber configura-
tions A(1), A(2), A(3), A(4), B(1), B(2), B(3), B(4), C(3), D(1), D(2),
D(3), D(4) and E(3) can be simulated directly if the upper and lower
chamber wall temperatures are maintained at the same value. If the
upper and lower wall temperatures are varied simular to chamber 1V,
space configurations B(l), B(2), B{(4) and D(1), D(2), D(4) can be simu-
lated directly.

TAHBLE 20

EQUIVALENT CHAMEER TEMPERATURE FOR SPACE CONFIGURATIONS
A, B, C, D AND ¥

Equivalent Chamber Tewmperaturs (R)
Space Contiguration I ) 1T 11X ¥

A (W) 540 640 o 548 650 0
(2) 460 550 0 470 560 0
(3) 842 1000 o 860 1010 0
(4) 542 760 0 650 780 0

B (1) 640 640 638 645 650  B40
{2) 592 550 630 600 555 640
(3) 878 1000 @70 800 1005 680
{4) 710 760 640 7230 775 655

c (1) 265 312 0 268 315 o
(2} 332 268 o 235 270 0
€3) 416 480 [ 4320 500
{4) 325 383 0 328 380 [

D (1) 583 640 508 800 650 510
{2y 510 550 460 520 555 470
(3) 802 1000 720 800 1005 730
(C}] 685 760 570 700 775 550

E (1) 337 400 0 340 400 o
{2) 343 340 o 200 345 [
3 525 620 0 530 640 0
{4 400 470 0 400 480 [
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10.

11.

12.

13.

14,

APPENDIX VI
SUMMATION OF ASSUMPTIONS
Greybody thermal environments with & = € for at least values of
0.94 and greater approximate blackbody radiators.
A man in a space suit in any one of the space configurations will
move about, turn around, etc., in an attempt to prevent overheating
or cooling of his body in such a manner that the average rate of

thermal radiation on the space suit is constant.

The spectral distribution of the earth's and the moon's albedo is
the same as the sun's incident energy.

The earth approximates a blackbody radiator at a temperature of
450 R.

At the sub-solar position the moon is a blackbody radiator at a
temperature of 710 R,

The dark side of the moon is a blackbody radiator at a temperature
of 210 R,

The earth's albedo is 0.4 + 0.1.
The moon's albedo is 0.073.

A cylindrical model of a 50th percentile "suited" man is used
for all calculations.

The presence of a space capsule is neglected for all calculations
for the heat absorbed by the model in the applicable space

configuration,

Black space calculations are neglected for space configurations
B, D, F and G.

The bulk of the thermal radiation incident on the space man falls
into two catagories:

(1) Thermal radiation wavelengths less than 4l

(2) Thermal radiation wavelengths greater than 4p.

Absorbed heat loads are calculated for wvalues of average absorptance

0 based the short wavelength radiation and ¢4, based on the higher
wave length radiation.

For environmental temperatures greater than the initial surface

temperature of the space suit, convection is negligible at a
chamber pressure of 0.1 atmospheres.
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15,

16.

*»
The AMRL chamber is a greybody radiator with a wall absorptance
and/or emittance of 0.94 or greater.

The air pressure inside the AMRL chamber can be reduced to a point

(at least .01 atmospheres) where convection heat transfer is
negligible,
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