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ABSTRACT

The impact damped classical elastic cantilever beam in free decay is
studied in its many states of vibration by means of time history studies. The
effective damping is correlated with the impact mass behavior. The three
major behavior regimes studied are: (1) a high amplitude range with an
infinite number of impacts per half cycle resulting in decreased damping
effectiveness, (2) a moderate amplitude range with a highly useful finite
number of impacts per half cycle resulting in the most effective damping, and
(3) a low amplitude range with less than one impact per half cycle yielding
very low damping. The relative effects on energy dissipation produced in the
beam by variations in the number of natural modes used during calculation,
impactor/beam mass ratio, and impactor/beam coefficient of restitution are
studied. These parametric studies have shown that the impactor reduces the
amplitude of beam vibration in the same fashion regardless of the number of
natural modes used during calculation. Furthermore it is shown that the most
effective damping occurs when the dimensionless amplitude of transverse beam
vibration at the longitudinal cavity coordinate is less than 1.0 independent
of all other parameters.
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NOMENCLATURE

Beam Height
Beam Width
Cavity Depth
Impactor Height
Coefficient of Restitution
Linear Spring Potential Energy
Change in Linear Spring Potential Energy
Beam Flexural Rigidity '
Cavity Width
Total Cavity Length
Ey/L = Dimensionless Cavity Width
Magni%ude of Sine Input
Fo/pV¢ = Dimensionless Magnitude of Sine Input
F(X) Initial Beam Displacement
£(x) F(X)/L = Dimensionless Initial Beam Displacement
G(X) Initial Beam Velocity
g(x) G(X)/L = Dimensionless Initial Beam Velocity
-D = Cavity Length (Gap)
/L = Dimensionless Cavity Length (Gap)
Beam Length
Impactor Mass
Dimensionless Impactor to Beam Mass Ratio
Magnitude of Impulse During Impact at .T = Ty
P;/pLV = Dimensionless Impulse During Impact
Real Time
Beam Characteristic Wave Time
T/T, = Dimensionless Time
Dimensionless Time of Impact with Cavity Wall
Average Period of Oscillation Across Five Cycles
Relative Displacement of Impactor
U(T)/H = Dimensionless Impactor Relative Displacement
Y(X,+0.5E,,T) = Cavity Deflection
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w(t) W(T)/L = Dimensionless Cavity Deflection
X Beam Longitudinal Coordinate
X X/L = Dimensionless Beam Longitudinal Coordinate
X¢ Longitudinal Coordinate of Sine Force Xy = X, +(0.5)E,
Xg X¢/L = Dimensionless Location of Sine Force
X, Longitudinal Coordinate of Cavity Left Wall 0 < X, < X +E, < L
Xo X,/L = Dimensionless Location of Cavity
y Linear Spring Deflection
Ay Change in Linear Spring Deflection
Y(X,T) Transverse Beam Deflection (Neutral Axis)
y(x,t) Y(X,T)/L = Dimensionless Transverse Beam Deflection
1(T) Heavigide Unit Step Function
§(T) Dirac Impulse Function
n Loss Factor for One Half Cycle
P Beam Mass per unit Length
é1 Phase angle at Impact tg
0 Angular Frequency of Sine Input
wg 0T, = Dimensionless Angular Frequency of Sine Input
W Beam Natural Modal Frequencies
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INTRODUCTION

Impact damping dissipates vibrational energy by internal mechanical
means. The primary model of the mechanism by which energy is removed from the
system is the coefficient of restitution. A simple but effective illustration
of how the coefficient of restitution is used to model energy loss during
impact is a bouncing ball in a uniform gravitational field. During the
bouncing process the maximum height reached during each successive cycle is
smaller than that of the previous cycle. For this to be true the energy of
the ball, which is the sum of the kinetic and potential energies at any point
in time, has decreased by some finite amount. This decrease in the total
energy is a function of the decrease in the ball’s maximum height between two
successive cycles. For the case of a ball bouncing on a hard floor in a
constant gravitational field in the absence of air resistance the "coefficient
of restitution is simply the square root of the ritio of the maximum height
after impact to the maximum height before impact"®. It can be easily shown
that the ball’s rebound height becomes successively smaller while approaching
zero. Although the ball will theoretically go through an infinite number of
bounces, this occurs in a finite period of time. For practical purposes the
ball is said to be resting on the floor at the end of this finite time. This
phenomenon 1s referred to herein as "bounce-down". It will be shown later
that the damping effectiveness of an impact damped system depends heavily upon
the amplitude of oscillation at the cavity.

The history of impact damping can be traced to 1833 in published
literature. Although this subject has a long history it agpears that the
majority of recently published work has been done by Masri“, Bapat and
Popplewell”. Past work done in the area of impact damping has concentrated on
the analysis of steady-state forced oscillators. In doing this the authors
have assumed a steady-state solution, generally two impacts per half cycle.
These assumed solutions limit the impactor analysis to a narrow range of
cavity amplitudes. The use of these limited solutions does give the reader an
indication of the effectiveness of impact dampers but is inadequate for
determining the optimum damper effectiveness.

zn 1982, under sponsorship of NASA Lewis Research Center, Brown and
North™ initiated the study of the transient response of the simple harmonic
oscillator with a single internal impact damper. These studies began with the
development of an analytical and a digital computer model of an undamped,
freely vibrating simple harmonic oscillator having a single cavity containing
a single frictionless impact damper. A second model that was developed by
North (unpublished) included the effects of Coulomb friction between the
impactor and the primary mass. In 1986 the authors began to develop a digital
model of the free and forced vibration of a classical elastic cantilever beam
damped by a single internal frictionless impact damper. The results obtained
from the beam model are the subject of this document.

The study of a continuous beam subject to impact damping in free decay
may appear to be unimportant compared to the study of impact damping of the
forced beam. This is not necessarily so. Analysis of the transient free
decay of the impact damped beam provides a great deal of valuable information
which can be applied to the forced vibrating beam with impact damping.

First, there exist several characteristics of transient free decay which
also apply to forced response. It is later shown that impact damping is
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frequency independent. This leads to the conclusion that impact damping
effectiveness 1s independent of a forcing function’s frequency. Impact
damping is found to be most heavily dependent upon the amplitude of vibration
experienced by the beam cavity. Free decay initial cavity amplitudes are used
to span a wide range of forcing functions magnitudes. This allows free decay
analysis to be applied to forced motion response of various transient and
steady state cavity amplitudes.

Secondly, the simplicity of free motion makes it more advantageous to
study than forced motion response. The absence of large transient conditions
during free decay make it possible to observe the several impactor behavioral
characteristics within shorter time intervals than would be required for
transient forced motion. Free decay characterizes impact damping across a
wide range of beam cavity vibrational amplitudes using a single time-history
profile with appropriately chosen initial conditions. The patterned behavior
which characterizes impactor motion is more easily discerned with the use of
free decay time histories. The presence of a forcing function can eliminate a
significant portion of the impactor’s patterned spectrum.

Finally, the study of transient free decay can be made to simulate the
recovery from the occurrence of a transient disturbance to a steady state
beam”. All of these reasons make the use of transient free decay time-history
studies useful.

The application of impact damping would provide a means of significantly
decreasing the amplitude of vibration without altering the external
configuration of the system. The use of impact dampers also could reduce the
fatigue effects of vibration experienced by aerospace parts. This would allow
the stringency of design criteria for such parts to be relaxed. The reduced
effects of fatigue would allow lighter weight parts with a longer working
lifetime to be produced.

This study was initiated to determine the characteristics and
effectiveness of impact damping applied to a continuous elastic cantilever
beam. The overall motivating factor for these studies is a desire to
investigate the concept of adding very light damping to aerospace systems
which exhibit self-excited vibration or forced vibration near a natural
frequency. This research was performed with the following objectives in hand:

1.) Compare the effects of impact damping applied to continuous elastic
cantilever beams with that of simple harmonic oscillators. Determine the
similarities and differences in the behavior of the two applications.

2.) Determine the effects of higher modal frequencies on the characteristic
behavior of the impactor and the ability of impact damping to effectively
reduce continuous elastic cantilever beam vibration amplitude.

3.) Evaluate the ability of impact dampers to inhibit vibration. This
decrease in vibration amplitude is quantified by means of loss factor
evaluation.

4.) Determine impactor behavior and damping effectiveness as the cavity
vibrational amplitude decays.
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5.) Measure the change in effective damping with respect to variations in the
impactor/beam mass ratio.

6.) Evaluate the effects of the coefficient of restitution on the
characteristic behavior and damping effectiveness of the impactor.

IMPACTOR BEHAVIOR AND DECAY STUDY

A FORTRAN digital model of the impact damped classical elastic cantilever
beam, Figures 1 and 2, was developed for the purpose of performing parametric
studies of beam impactor performance. The longitudinal position of the beam
cavity, x,, is set at 0.684 units. This cavity location was determined by use
of beam mode shape displacement analysis. This cavity position is used to
maximize the vibrational activity of the beam at the location of the
1mpactor5. During this study the initial conditions of the beam were such
that the first mode was excited with an initial generalized displacement of
0.05 and no initial generalized velocity. The magnitude of the resulting
initial dimensionless displacement of the cavity was 6.0 units. The effects
of varying the initial conditions are not explored in this study. Mass ratios
of 1.0, 2.0, and 3.0 percent and coefficients of restitution of 0.5, 0.6, 0.7,
and 0.8 were used to generate the time histories. The geometrical
configuration of the beam is kept unchanged for the time history studies
discussed in this report. The magnitudes of the dimensionless physical beam
dimensions were determined by a comparative analysis with the data used by
Brown and North*. A cavity width, e,, of 0.04 units and a cavity length, h,
of 0.01 units are used, Figures 1 and 2. The beam is unforced with no initial
relative displacement or relative velocity of the impactor. Another parameter
that is varied in this study is the number of mode shapes used during
computation. Time histories were made with 1, 2, 5, and 10 mode shapes for
the varying mass ratios with a constant coefficient of restitution of 0.6.
From this comparative analysis it was found that the higher modal frequencies
are of little significance when determining the damping effectiveness of the
impactor.

The impactor relative displacement and absolute displacement curves
presented in the Appendix, Figures 3 thru 7, show how the impactor behaves as
the cavity amplitude of vibration decays. Note that in Figures 6 and 7 the
solid lines represent the top and bottom cavity walls with the dashed line
representing the impactor. At first, during high amplitude motion, Figure 3,
the impactor experiences an infinite number of impacts per half cycle. This
occurs because the cavity wall is moving in the same direction as the impactor
with a velocity of greater magnitude than that of the impactor. This type of
impactor behavior is referred to as bounce-down and is followed immediately by
stuck impactor failure. During bounce-down and stuck impactor failure the
impactor exhibits a low level of damping effectiveness. This type of high
cavity amplitude impactor behavior ceases at moderate amplitudes and is
immediately followed by a range during which a finite number of impacts per
half cycle occur. This can be observed in two predominate patterns, the first
being an equal number of impacts on each side of the cavity for successive
half cycles with the second type of motion being an alternating pattern of
even to odd numbers of impacts on opposite cavity walls for successive half
cycles. The effectiveness of impact damping steadily increases during this
behavior to a maximum damping effectiveness when one impact per half cycle is
the pattern of motion, Figures 5 and 6. The damping effectiveness of this
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motion is attributed to the fact that the impactor is striking an advancing
cavity wall resulting in the most effective reduction of beam velocity
experienced as a result of impact damping. When one impact per half cycle is
occurring impact damper failure soon follows. When the cyclic motion of the
impactor degenerates to occasional random impacts along the cavity wall with
less than one impact per half cycle for successive periods, Figure 7, impact
damping is no longer effective. Once this occurs the damping of the impactor
quickly diminishes.

The presence of higher modes does not alter the basic types of behavior
the impactor experiences. However, higher modal frequencies do cause the
presence of bounce-down and stuck impactor failure to be less predominate at
high amplitudes. As a result the impactor experiences a finite number of
impacts per half cycle over a wider cavity amplitude range.

The amplitude decay for the impact damped classical elastic cantilever
beam is a simple and quick indicator of the damping occurring as a result of
the impactor. The amplitude decay is determined by plotting the amplitude of
beam cavity vibration for each half cycle versus the corresponding
dimensionless time at which the amplitude occurs (see Figures 8 thru 10).

The effects of the higher mode shapes on the amplitude decay curves are
minimal. It is demonstrated in Figure 8 that the amplitude decay for 1, 2, 5,
and 10 modes all follow the same general trend with a small increase in the
range of time during which low damping effectiveness occurs. This extension
of the upper portion of the curve results in the effective regime of behavior
to be shifted to a later period in time. Another effect of the higher modes
is to cause impact failure to occur at a slightly higher amplitude. Although
the point at which impact failure occurs is very important when designing an
impact damped system, the higher mode shapes do not significantly change the
results from those observed in the single mode case.

The amplitude decay curves for mass ratios of 1, 2, and 3 percent are
presented collectively in Figure 9. From this figure the observation can be
made that increasing the mass ratio decreases the period of time during which
damping of low effectiveness occurs.

The amplitude decay curves for varying values of the coefficient of
restitution ranging from 0.5 to 0.8 are shown in Figure 10. From this graph
it can be seen that lower values of the coefficient of restitution reduce the
time required for equivalent damping. It can also be seen that the decrease
in the time required for equivalent damping is not linearly related to the
decrease in the coefficient of restitution. As the coefficient of restitution
becomes smaller (less than 0.6) the decrease in the time required for
equivalent damping becomes significantly less.

LOSS FACTOR RESULTS

The loss factor is defined as the change in beam energy with respect to
initial beam energy over a cycle of beam vibration. It can be shown that the
loss factor is simply a function of the change in beam cavity amplitude over a
cycle of beam vibration with respect to the initial amplitude of the cycle.
Applying this fact the calculation of the loss factor was performed using a
least squares parabolic fit. This fit is performed to smooth the loss factor
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curve and calculate an averaged loss factor, which will be referred to as the
loss factor (see Appendix B). The loss factor is plotted with reference to
the cavity amplitude. By observing the amplitude decay curve, Figure 8, one
would expect the loss factor to increase as the amplitude decreases to the
point of impact damper failure. Figure 12 does indeed show this to be the
case with impact failure occurring in an amplitude range of 0.3 to 0.07. From
this figure it is also observed that the most effective damping which the beam
experiences occurs in a cavity amplitude range less than unity. From phase
plot Figure 17 whose construction is detailed later, it is illustrated that
chaotic and one impact per half cycle behavior of the impactor occurs at
amplitudes less than and equal to unity while two impacts per half cycle are
experienced by the impactor at an amplitude slightly greater than unity. From
this it is concluded that the most effective damping correlates to impactor
behavior beginning at the transition from two to one impacts per half cycle.

As previously discussed the influence of higher modes does not play a
major factor in changing the behavior of the impact damped classical elastic
cantilever beam. This fact is again illustrated by observing the loss factor
curves for 1, 2, 5, and 10 modes with all other variables held constant.
Figure 11 shows that the presence of higher mode frequencies does not
significantly alter the loss factor curve with respect to the cavity
amplitude. The presence of higher modal frequencies does tend to band the
loss factor about those results obtained for the single mode case. The center
of this band width occurs about the first mode. It is therefore concluded
that the effects of other parameters on the loss factor can be based upon a
first mode comparative analysis.

The impactor to beam mass ratio plays a significant role in determining
the value of the loss factor for any given cavity amplitude. More
specifically, as seen in Figure 12, increasing the mass ratio results in an
increase in the loss factor for all amplitudes prior to impact failure. It is
also observed that this increase is a constant value change which can be
directly expressed as a function of the reciprocal of the mass ratio. To
illustrate this fact the loss factor is divided by the mass ratio to obtain
the specific total loss factor. Figure 13 shows that the specific total loss
factor reduces all mass dependent loss factors to one common curve as a
function of cavity amplitude. The specific total loss factor begins with a
magnitude of 0.09 at a cavity amplitude of 6.0 while undergoing stuck impactor
behavior and reaches a peak value of 9.0 prior to impact damper failure. From
the Mass Normalized Loss Factor plot, Figure 13, it is observed that the
specific total loss factor behaves as a linear function of the cavity
amplitude with a slope of approximately negative one. To show the extent.to
which this is true the product of the specific total loss factor and cavity
amplitude is illustrated in Figure 14. When observing this result it can be
inferred that this product behaves on the average as a constant of magnitude
approximately 0.4 for all cavity amplitudes. This constant value
interpretation is valid within an error range of +25 percent prior to impact
damper failure. A significant point of interest is that the simple harmonic
oscillator was found to behave in a very similar manner with refezence to the
loss factor’s dependence upon the mass ratio and cavity amplitude”.

A third parameter which plays a major role in the evaluation of impact
damper performance is the coefficient of restitution denoted by e. It is
observed that any increase in the coefficient of restitution results in a
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decrease in the effectiveness of the impact damper. Another conclusion that
can be made is that this decrease in the loss factor is not linearly related
to the coefficient of restitution. To effectively amplify changes in the loss
factor curve for varying values of the coefficient of restitution the product
of the specific total loss factor and cavity amplitude is used to generate the
Amplitude Specific Loss Factor curve, Figure 15. From these results it can be
more clearly observed that the loss factor is not linearly related to the
coefficient of restitution fzr all cavity amplitudes. Applying a relationship
developed by Brown and North™® the quotient of the amplitude specific loss
factor and (l-e) results in Figure 16. This result is valid only within the
range of motion for which a finite number of impacts occurs during each half
cycle. As with the amplitude specific loss factor this curve can be
reasonably approximated as a constant of value 1.0 to within an error of +30
percent, This illustrates that the loss factor for the classical elastic
canti%ever beam and simple harmonic oscillator investigated by Brown and
North™ behave in a similar manner with regard to variations in the coefficient
of restitution.

IMPACT PHASE

From the beam’s initial amplitude of vibratory motion to the point at
which impact damper failure occurs there exist several time spans of distinct
motion which the impactor experiences. These types of behavior can be
observed by calculating the phase angle for each impact across a half cycle of
vibration (see Appendix C). Plotting this phase angle in the range from 0° to
180° as a function of the cavity amplitude of vibration yields distinct and
well defined patterns and trends for the impactor. These patterns for the one
mode case are illustrated in Figure 17. Each impact is denoted by a point
marker on these figures. Phase plots are read from bottom to top while
progressing from right to left as time increases and amplitude decreases. By
reading this graph the number of impacts per half cycle can be determined for
any given amplitude. For the case of higher amplitudes the phase plot depicts
an infinite number of impacts for a given amplitude. This fact can be
observed by noticing that the point markers, representative of each impact,
meld into a solid line. When amplitudes diminish below the bounce-down and
stuck impactor failure range it is clear that well defined periodic motion of
the impactor is occurring. This periodic motion takes one of two forms. The
first is a pattern exhibiting an even number of impacts per half cycle while
the second contains an odd number of impacts. From this well defined periodic
motion the impactor motion degenerates into what is referred to as chaotic
motion. This is a type of motion during which no discernible pattern can be
extracted. Each zone of chaotic motion then flows into two clear paths know
as period doubling. These two paths soon merge into one solid line during
which well defined periodic motion of one less order occurs. The combined use
of phase plot Figure 17 and loss factor Figure 12 leads to the conclusion that
the effectiveness of the impactor increases as the number of impacts per half
cycle decreases prior to impact damper failure.

In the case of the phase plot, Figures 18 and 19, the higher mode shapes
do play a significant factor in the analysis of impactor behavior. The
presence of higher modal frequency vibration disrupts the well ordered motion
that is observed in the simple harmonic oscillator and one mode classical
elastic cantilever beam case; Figure 17. The presence of higher frequencies
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also disrupts the phenomenon of stuck impactor failure. In place of stuck
impactor failure the impactor experiences low relative displacement impacting
or high intensity bounce-down. In the event the impactor does become stuck it
is quickly slung free by the presence of high frequency vibration. While the
higher mode frequencies do disrupt the ordered behavior of the impactor it can
be seen that significantly fewer impacts per half cycle occur at lower cavity
amplitudes.

This study, like that of Brown and Northa, found that variations in the
mass ratio affected the phase plots only by increasing and decreasing the
number of impacts that occur in a set time frame for the case of one mode. It
is observed that smaller mass ratios yield more dense plots because of the
increased number of impacts which occur during a incremental decrease in beam
cavity amplitude. From this it is concluded that a decrease in the impactor
to beam mass ratio increases the number of impacts required to lower the beam
cavity vibrational amplitude by a constant value. This implies that the
individual effectiveness of each impact is reduced as the mass ratio is
lowered. Another point of significance is that variations in the mass ratio
do not affect the amplitudes or phase angles for which each distinct pattern
of motion occurs. In the presence of higher mode frequencies the phase plots
differ as a result of varying the mass ratio but in no discernible pattern.

Unlike the mass ratio, variations in the coefficient of restitution, e,
do have a major affect on the phase plot. This analysis shows that while
lower values of the coefficient of restitution result in higher loss factors,
Figure 15, lower coefficients of restitution also cause bounce-down and stuck
impactor failure to occur at much lower amplitudes; Figures 20 and 21. An
example of this is a value of the coefficient of restitution equal to 0.5 for
which stuck impactor failure occurs at an amplitude as low as 3.0. In
comparison a value for the coefficient of restitution of 0.6 results in the
termination of stuck impactor failure at an amplitude of 5.0. As previously
discussed lowering the value of the coefficient of restitution becomes less
effective in decreasing the time required to damp the continuous elastic
cantilever beam vibration oscillation to a given amplitude when the
coefficient of restitution is less than 0.5. The use of phase plot Figure 20
may help to explain this phenomenon by noting that lowering the value of the
coefficient of restitution decreases the amplitude at which-stuck impactor
failure ceases. This in turn narrows the amplitude range during which
efficient damping occurs. This results in a trade off between the energy
dissipative properties of the coefficient of restitution and the lower
efficiency damping of bounce-down and stuck impactor failure.
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10.

11.

CONCLUSIONS

The impactor behavior for an impact damped continuous elastic
cantilever beam is characteristically the same as that of an impact
damped simple harmonic oscillator.

The magnitude of the damping effectiveness for an impact damped continuous
elastic cantilever beam behaves similarly to the damping effectiveness of
a simple harmonic oscillator.

The most effective damping of the continuous elastic cantilever beam and
simple harmonic oscillator occurs when the cavity vibrational amplitude
is less than unity. With the use of phase plots it is shown that this
corresponds to impactor motion of less than 2 impacts per half cycle.

The presence of higher mode frequencies does not change the damping
effectiveness of the impactor. This leads to the conclusion that the first
modal frequency predominates impactor damping effectiveness.

The loss factor is directly related to the mass ratio. A specific loss
factor can be determined by dividing the loss factor by the mass ratio.
This results in a single specific loss factor curve with respect to the
cavity vibrational amplitude.

The loss factor is a function of 1/(l-e) during periodic motion with a
finite number of impacts occurring per half cycle. Dividing the specific
loss factor by (l-e) yields a single curve with respect to the cavity
amplitude with the exception of the bounce-down followed by stuck impactor
failure and total impact damper failure.

The loss factor can be expressed as a constant of magnitude 1.0. It is
shown that the product of the loss factor and cavity amplitude divided by
the product of the mass ratio and (l-e) is reasonably constant.

For the case of one mode clear patterns of impactor motion can be observed
from the phase plot. This motion begins with bounce-down followed by
stuck impactor failure at high cavity amplitudes. This degenerates to
periodic motion with a distinct finite number of impacts per half cycle at
moderate cavity amplitudes. This periodic motion is characterized by
chaotic motion and period doubling. Impactor motion of one impact per
half cycle is soon followed by impact damper failure. This occurs at low
cavity amplitudes when the impactor experiences less than one impact per
half cycle.

The presence of higher modal frequencies disrupts the regularity of
impactor motion.

The time scale of the amplitude decay curve is directly related to the
mass ratio. Cavity amplitude plotted with respect to the product of the
mass ratio and dimensionless time results in a single curve.

While the impact damper does not require frequency tuning it does
require amplitude tuning. This is the result of the fact that impact
damping effectiveness is a function of the cavity's vibrational amplitude.
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APPENDIX A - SYSTEM MATHEMATICAL MODEL

A continuous beam with frictionless impact damping is represented by
Figures 1 and 2. A detailed derigation of the equations of motion which model
this system are presented by Nale®. Figures 1 and 2. are representative of the
physical system in dimensional variable form. For this study and the benefit
of future studies the system is made dimensionless in the following manner.
The beam length, L, is the unit of length with the exception of the impactor
relative displacement. The cavity length, H = E_-D, is used as the unit of
length for the dimensionless analysis of the relative displacement. The unit
of time is the beam characteristic wave time, T.. The beam mass is used as
the unit mass. The equation of motion of the beam is

a%y a2y
El + = Foexp(1QT) 1(T) §(X-Xg)
ax% at?
1 n
+ —_— [}(x-xo)-l(x-xo-nxﬂ Z Py6(T-Ty) (A.1)
E, i=1
with boundary conditions given by
Y a2y a3y
Y(0,T) = —(0,T) = ——(L,T) = ——(L,T) =0 T>0
ax ax2 ax3

and initial conditions given by:

ay
Y(X,0) = F(X) and —(X,0) = G(X) 0<X
aT

IA
-

The equation of motion (A.l) which models the physical system shown in Figures
1l and 2 is made dimensionless with respect to the appropriate unit variables
in equation (A.2). Dimensionless variables in (A.2) are denoted by lower case
letters corresponding to upper case diminsional variables in (A.1).

a“y 82y n
+ - foexp(iwft) 1(t)‘6(x-xf) + go(x) Z pyé(t-ty) (A.2)
ax’ at? 1-1
1
where: Bo(X) = — [l(x-xo)-l(x-xo-ex)]
ex

Boundary conditions:
¥(0,£) =y (0,t) =y (L&) = y'""(1,0) t>0
Initial conditions:

y(x,0) = £(x) and y(x,0) = g(x) 0

A
e

A
[y
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The impactor motion of the impact damped classical elastic cantilever
beam is characterized by four distinct types of behavior. Each of these types
of motion are individually modeled by an appropriate set of equations. Once
the type of behavior that is occurring is determined the correct model is used
to calculate the position, velocity, and acceleration of the impactor and beam
at the next point in time.

The simplest case of impactor behavior is impactor free motion (impactor
not at the cavity wall). During this period of motion the beam and impactor
are totally independent of one another. The beam is modeled as a simple
classical elastic cantilever beam having a single sinusoidal point load
located any where along the beam length with the exception of the center of
the beam cavity. The equation of motion for the beam is solved using the
method of generalized displacements (see Nales). The generalized
displacements, velocities, and accelerations are determined using the method
of LaPlace transforms. The resulting Fourier solutions for beam
displacements, velocities, and accelerations are valid until the next impact
is experienced.

The impactor in free motion is modeled as a free particle in rectilinear
motion. The constant velocity with which the impactor travels is determined
at the time of the most recent previous contact with the beam cavity wall.

When the position of the impactor coincides with that of the beam cavity
wall an impact or collision of the beam cavity wall and impactor occurs. The
impact is modeled by applying the coefficient of restitution theory. The
relative velocity Uy between the impactor and the beam immediately prior to
impact is related to that immediately after impact u;’ by:

uy! = -euy (A.3)

The time at which impact occurs is determined when the absolute displacement
of the beam cavity wall is equal to that of the impactor. While this time of
impact is modeled as instantaneous, the resulting impulse applied to the beam
occurs across a finite nonzero cavity width. '

A more difficult type of motion to model is that of bounce-down. Motion
of this nature is experienced by the system when consecutive impacts on the
same cavity wall occur with consistently shorter time intervals between
impact. This results in smaller maximum relative displacements between the
impactor and cavity wall for consecutive impacts. While experiencing this
type of motion an infinite number of impacts occur during a finite period of
time. The finite time during which bounce-down occurs is readily determined
by means of a convergent geometric series expansion (see Nale”). Bounce-down
terminates with the impactor resting at the cavity wall for until the
acceleration of the cavity wall reverses direction. This occurrence is
referred to as "stuck impactor failure",

The impactor is said to be stuck at the cavity wall when the following
three conditions occur simultaneously. First, the impactor must be located at

the cavity wall. Second, the velocity of the impactor relative to the beam
must be zero. Finally, the beam must be accelerating toward the impactor.
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During stuck impactor failure the total energy of the freely vibrating
impact damped classical elastic cantilever beam system remains constant. At
the same time energy is being exchanged between the impactor and beam. This
enexrgy transfer process from the beam to the impactor during stuck impactor
failure explains why minimal damping occurs even when the impactor is stuck at
the"beam cavity wall.

While the impactor is stuck there exists a normal reaction between the
impactor and the cavity wall. This normal reaction is a direct function of
the cavity acceleration. The impactor is slung free of the beam cavity wall
and set back in free motion when the normal reaction vanishes. The normal
reaction between the impactor and cavity wall is eliminated only when the beam
cavity acceleration changes direction.

These four states of impactor activity are used to determine the
appropriate set of equations to be used in calculating the position, velocity,
and acceleration of the impactor and beam for each progressive point in time.
Free motion and simple impact are modeled with relative ease. Bounce-down and
stuck impactor failure are more difficult, but not intractable (see Nale”).
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APPENDIX B - LOSS FACTOR

The loss factor is first illustrated for the simple harmonic oscillator.
The results are later applied to the beam model. The loss factor is defined
as the change in potential energy E with respect to itself. This relationship
is expressed in its most general form as shown in Equation (B.1):

AE
n=-— (B.1)
E

For the case of the simple harmonic oscillator the potential energy, E =
ky2/2, is simply the potential energy of the linear spring. The derivative of
-the spring energy with respect to the spring deflection, y, is used to
approximate the change in energy, AE = kyAy. Using the expressions for E and
AE for the simple harmonic oscillator in the general expression (B.l) the loss
factor is expressed simply as a function of spring amplitude of vibration:

n = 2Ay/y per cycle (B.2)

The loss factor is in practice calculated using an averaging process by
means of a least squares parabolic fit about five full cycles of motion. The
change in amplitude, Ay, is expressed as a function of the time rate of change
of the amplitude and the average period of oscillation. For this study the
loss factor is expressed in dimensionless form. This is done by dividing the
loss factor per cycle by 2x resulting in a loss factor per radian.
Substitution of the change in amplitude results in Equation (B.3).

1 y(ty)
n ==— — T

n per radian (B.3)
. y(t,)

The loss factor for the impact damped classical elastic cantilever beam
is determined in a similar manner from (B.3) by using the beam cavity
amplitude of vibration in place of the spring deflection y used for the simple
harmonic oscillator. This substitution results in a loss factor for the
impact damped cantilever beam at the center of the cavity longitudinal
coordinate.
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APPENDIX C - PHASE ANGLE CALCULATION
The phase angle is used to determine where the impactor collides with the
sinusoidal oscillating cavity wall. This measure is made in degrees across

each half cycle from 0° to 180°. The phase angle ¢; for the impact which
occurs at time t; is easily calculated using Equation (C.1).

$4 = 180° (ty-t;)/(tns1-tp) (c.1)

The times, t, and t,.;, are representative of when the acceleration of the
cavity wall changes direction sign.
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FIGURE 1 - SIDE VIEW SCHEMATIC OF IMPACT DAMPED CLASSICAL
ELASTIC CANTILEVER BEAM.

FIGURE 2 - CROSS SECTION A-A OF THE IMPACT DAMPED CLASSICAL
ELASTIC CANTILEVER BEAM.
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FIGURE & -~ RELATIVE IMPACTOR DISPLACEMENT OF ONE IH?AC‘I‘ PER
HALF CYCLE ALTERNATING WITH TWO; m = 0.03;
e = 0,6; ONE MODE.
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PIGURE 6 ~ ABSOLUTE IMPACTOR AND CAVITY DISPLACEMENT OF

ONE IMPACT EACH HALF CYCLE; m = 0.03; ¢ = 0.6
ONE MODE.
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FIGURE 8 - AMPLITUDE DECAY; m = 0.03; « = 0.63°10, S, 2, AND 1 MODR.
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FIGURE 11 - AVERAGE TOTAL LOSS FACTOR; w = 0.03; ¢ = 0.6; 10,5,2,1 MODE.
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FIGURE 21 - IMPACTOR PHASE; m = 0.03, ¢ = 0.8; ONE MODE.
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