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ABSTRACT 

The purpose of sixth-order beam theory is to include the 
effects of core shearing due to extentional deformation in 
terms of the transverse displacements. The constraint to 
eliminate the extentional motion reduces a twelfth-order 
system of equations into a single sixth-order equation. 

Since boundary conditions are necessary to completely 
specify the solution of partial differential equations, 
the author purposes to use this forum to present a 
detailed derivation of the sixth-order equation of motion 
using energy method techniques. The boundary conditions 
follow naturally as a consequence of the energy method 
formulation. The author show how two "natural" boundary 
conditions are lost, and must be replaced by two "kine
matic" boundary conditions. The author interprets the 
boundary conditions and their consequences in the analysis 
of damped beams. 
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1.0 IlfflU)l)UCTIOH 

Usage of constrained-layer damping composites for sound and vibration 

suppression originated in the 1950's, perhaps earlier[k]; however, the un

derlying theory was based on 4th-order beam theory and presumed no extension

al deformation of the laminate. In order to include the extensional flexib

ility, several authors developed 6th-order beam and plate theories to de

scribe the dynamic behavior of damped composite laminates [a,b,c,g,h,i]. The 

purpose of the 6th -order theories is to include the effects of core shearing 

due to the extension of the face sheets, in terms of the transverse bending 

displacements. The constraint to eliminate the extensional motion causes the 

equations of motion to be of 6th -order. 

Dowell[h] and Miles[c] derive the laminate equations using an energy 

method approach to obtain the equations of motion. Dowell then retains terms 

only to 4th-order, since the adhesive shear layer is assumed stiff. The 

resulting boundary conditions are those found for 4th-order beam and plate 

theory. Dowell's formulation is useful in evaluating the interlaminar shear 

in fiber composites. Miles' obtains the 6th-order equations as a side dis

cussion to validate his model; he does not elaborate on the boundary con

ditions required for solution for the 6th-order system. Miles study pro

ceeds to thickness effects on damping. 

Mead[a,b] and Abdulhadi[g] derive the 

dard strength of materials perspective. 

yield the boundary conditions as part of 

equations of motion from a stan

This approach does not directly 

the formulation. Abdulhadi also 

does not articulate the boundary conditions necessary for solution: simply 

supported boundary conditions are presumed. Mead develops the boundary 

conditions and discusses the solutions for various boundary conditions. 

Maynor [j] numerically evaluated the effect of Mead's boundary conditions on 

loss factor estimates. He also observed that Abdulhadi deleted two boundary 

conditions in obtaining his solution. Essentially, Abdulhadi's equations of 

motion are equivalent to the 4th -order RKU equations [kl. Maynor delineated 

the difficulties and limitations in using the 6th -order equations. 

I 
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In the attached paragraphs, the 6th-order partial differential equation 

is obtained using energy methods. Subsequently, the boundary conditions are 

obtained. The limiting procedure shows how two "natural" boundary conditions 

are lost. Thus, two "kinematic" boundary conditio~s must be specified, that 

further reduce the generality of the 6
th -order equation. The basic outline of 

the paper begins with the derivation of the equations of motions following 

Miles' assumptions, then validating the required boundary conditions used by 

Mead. The ramifications of those boundary conditions are discussed. 

2.0 VARI.ll'IOIIAL FORMDLATIOII OF THE SIXTH-ORDD. BEAM EQUATIOIIS 

The sixth-order differential equation governing the vibration of a three 

layer sandwich beam will be derived using a variational approach. The beam 

geometry is depicted in the preceeding Figure. 

The kinetic energy of a the vibrating beam is given by: 

T,.. 1/2 s:[m1[(w1)2 + (1\)2] + m2[(w2)2 + (u2)2]] dx. (2-1) 

Similarly the elastic energy due to deflection of the constraining skin mat-

erials is given by: 

V
9
= 1/2 f: [(EI) 1 (w/) 2 + (EI) 2 (w2 ")

2 + (EA)
1
(u/)

2 + (EA) 2 (u/)
2

] dx.(2-2) 

The strain energy due to shearing of the adhesive core material is[d]: 

v.- l/2f: Gb f :3 
y2 

d, dx, where r= i)w + au. 
ax i)z 

(2-3) 

The shear traction at the upper and lower surfaces of the adhesive is found 

to be: 

r i = w ' + 

b::J 
w ' + 

(2::J 
w ' + ~\: u,J 1 1 2 (2-4a) 

r 2 = w ' 
+ b::J w ' 

+ b::J 
w ' + ~\: u,J (2-4b) 2 2 1 

The distributed shear strain throughout the adhesive thickness is: 
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1 = 11 +' t<11 :31,lJ (2-5) 

After substitution and integration over the thickness, the strain energy due 

to shearing of the adhesive is found to be: 

( 1112 + (-y 
2 

dx (2-6) 

In order to apply Hamilton's Principle, the total energy in the vibrating 

beam is given as Q=T-V -v +w , where 
e s nc 

dx. (2-7) 

Applying Hamilton's Principle, the variational of the energy is minimized, 

that is: 

6J = 6 I : Q ( • ) dt = 0. 

Hence, the differential of J(.) is: 

6J= . f : { f: ([~~l 6ul + :~l 6ul + :~1' 6ul '] (2-8) 

+ aF 6u + aF 6u '] + [a~ 6w + aF 6w + aF 6w ' + aF 6w "] 
au

2 
2 au

2
' 2 l_aw

1 
1 aw

1 
1 aw

1
' 1 aw

1
" 1 

+ r~~ 6W2 + :~ 6W2 + :! 1 6W/ + :! II 6W2 "])ctx }dt • (2-8) 
LJ 2 2 2 2 

After integration by parts, . the integral appears as: 

- _g(~F )]6u 
dx l_au

2
' 2 

(2-9) 
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~
aF d (~F ) + V ]a + ~aF - OW ,- dxlaw " L2 W2 OW " 

2 2 x•O 1 
- M ']aw ' - [aF + M ']aw ' Rl 1 l!}w" Ll 1 

x•L 1 x•O 

+ ~oF - M ']aw ' - ~aF + M ']aw ' -aW R2 2 OW n L2 2 
2 x•L 2 x•O 

r:~ ,+ T1]au1 - r:~ ,+ T2]au2) 
~ 1 x•O ~ 2 x•O 

dt. 

Equating each variational term to zero then yields the equations of motion 

and the required "natural" (or force-type) boundary conditions. Thus, the 

complete system of equations is found to be: 

oF 
di~~J J~~i') o, aF 

d~F) d~F ) = o, 
aul 

- = 
au2 

- dt au2 - di au/ 

oF 
d~F) d~F ) + ' d

2 
~F ) (Eqns. 2-10) 

awl 
- dt aw

1 dx ow/ dx2 owl" = pl (x,t), 

and oF d~oF ) d~F ) d
2 

~F ) ,.. P 2 (x, t) aw2 - dt aw2 - dx ow/ + dx2 aw2" 

The system is subject to the following boundary conditions: 

aw,-
1 

oF 
aw,-

2 

oF 
aw"-

2 

The system is comprised of two fourth-order equations and two second-order 

equations. The twelve "natural" boundary conditions completely specify the 

solution. Hence, this set of differential equations is well-posed, as should 

be expected. 

Next, the various partial derivatives of F(.) are derived: 

oF = -(1/2)Gb 
au

1 
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:! ,•-(1/2)Gbt3{[2/3+2a
1 

(Ha
1
)]w/ + [-2/3+(Ha

1
) (Ha2)+a

1
a

2
]w/ 

1 

+ (1+2u1 ) (\u2)), and 

~F , =- (1/2) Gbt {[-2/3+ (1 +a ) (Ha ) +a a ] w ' + [2/3+2a
2 

(Ha
2

) ] w
2

' 
uW 3 1 2 1 2 1 

, + (1+2u,) tuc,Jl 

After substitution into the (2-10) and (2-11), the equations of motion for 

the system are obtained: 

m
1
w

1 
+ (EI) w <4

> 

- (1/2) ~b~ 3 {[2/3+2a
1 

(1 +a
1
)] w

1
" + [-2/3+(1+a) (l+a )+a a ]w" 

1 2 1 2 2 
(2-12a) 

(u '-u ')) + (H2a1 ) t \
3 

2 = P
1 

(x,t), 

m
2
w

2 
+ (EI) w <4

> 

- (1/2) ~b~ 3 {[-2/3+ (Ha
1

) (Ha2) +a
1 

a
2

] w
1

" + [2/3+2a2 (1+a2)]w2" (2-12b) 

+ (1+2u,) tu, ::u,')) - P 2 (x, t)' 

m1U1 - (EA) 1 u1 • - (l/2)Gb ((1+2u1 )w1 ' + (1+2u2)w2' + 2t~:u,n = O, (.2-12c) 

m2 il2 - (EA) 2 u2 • + (1/2) Gb ((1+2u1 ) w
1

' + (1+2a2) w2
' + 2 (u~:u, )) = O. (2-12d) 

Correspondingly, the boundary conditions become: 

(EI)lwl <
3

> - (1/2)Gbt3{[2/3+2al (Hal)Jw/ + [-2/3+(Hal) (l+a2)+ala2Jw/ 

+ (H2a1 ) (u~-u2))I = VR
1 

(2-13a) 

t 3 x-L 

(EI)lwl <
3

> - (1/2)Gbt3{[2/3+2al (Hal)]wi' + [-2/3+(Hal) (Ha2)+ala2]w/ 

+ (1+2a,) tucu,)) lx=O -vLl (2-13b) 

(EI) 2 w2 <
3 

> - (1/2) Gbt3 {[-2/3+ (Ha
1

) (Ha2 ) +a
1 
a 2 ] w/ + [2/3+2a

2 
(Ha

2
)] w/ 

+ (H2a2) (u~-u2))I = VR2 . (2-13c) 

t 3 x-L 

(EI) 2w2 <
3

> - (1/2)Gbt3{[-2/3+(Ha
1

) (Ha2)+a
1

a
2
Jw/ + [2/3+2a

2
(1+a

2
)]w/ 

+ (1+2u,) tu~:u,n L: -vL2 (2-13d) 
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(EI) 
1
w

1
11 

- ML1 I =0 (2-13e), 
x•L 

(EI) 2w2
11 

- ML2 I= 0 (2-13f), 
x•L 

(EI) w 11 + M I= 0 

(EA)
1
u

1
' - T

1

1

1

1

• 0 (;~13:i: 
(EA) 1u:;L+ T1 1· = 0 

(2-13g), (EI) w 11 + M I = 0 (2-13h), 

(EA) 
2 
•,' - \: I = :

2 

12~i;j), 

x-o 
(2-13k), and (EA)

2
u

2
'x:LT

2 
I= 0 (2-131). 
x•O 

The procedure of Miles and Reinhall[c] will be followed to reduce the 

system of equations to sixth-order. First, the two bending equations are 

added, then the two longitudinal equations are subtracted, respectively: 

+ w + (EI) w <
4

> + (EI) w <
4

> 

-(1/2)Gbt [2/3+2a (l+a )]w 11 + [-2/3+(1+a) (l+a )+a a ]w 11 

3 1 1 1 1 2 1 2 2 

m2 2 { 1 1 2 2 

+ 11+2 .. ,, t·c·,,J) 
[2/3+2a2 (1+a2)]w

2
11 

+ 11+2 .. ,, t·c·,,J) 
• P1 (x,t) + P2 (x,t) • P(x), and 

(EA)lul• + (EA)2u2 11 

- (1/2)Gb 
{

(1+2a )w' + (1+2a )w' + 2(u1-u2)) 11 22 -t--
3 

- (1/2)Gb ((1+2a1)w/ + (1+2a2)w/ + 2 (u~ -u2)) 
t 3 

Now allowing w1 • w
2

, the equations reduce to: 

- Gbt (l+a +a ) 2 w< 2
> -

3 1 2 
Gb(l+a +a )(u '-u ') = P'(x) 

1 2 1 2 

~
u -u) 1 2 = -(l+a +a )w' + 
-- 1 2 

t3 

((EA) 1 u1 " - (EA) 2 u2 "). 

t 2Gb 

= 0. 

,and (2-14a) 

(2-14b) 

P' (x)•P(x) - (m1 + m2) w. The effect of longitudinal inertia is also neglec

ted. Since the each cross-section must remain balanced in tension, (EA) 1u1'• 

-(EA) 2u
2
'. Using this relation and after substituting (2-14b) into (2-14a) 
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the former, the following equations are obtained: 

Dt w< 4
> -Gbt (l+a +a ) 2 w< 2

> -Gb (l+a +a ) ( 1 · + 1 ) (EA) u ' • P' (x), 
3 1 2 1 2 (EA) (EA) 1 1 (2-lSa) 

1 2 

and 

Dt w< 4
> - t (EA) (l+a +a )u <3

> = P' (x) 
3 1 1 2 1 ' 

(2-lSb) 

The equations can be greatly simplified using two scale factors[b,c]: 

t 2 
G' = Gb ( 1 + _1_ ) , and Y= .2. 

t
3 

(EA) 
1 

(EA) 
2 

Dt 
( (EA) 1 (EA) 2 ) ; thus, (2-16) 
t (EA) 

1 
+ (EA) 

2 

w< 4
> - G'Yw< 2

> - (G' t /D ) (l.+a +a ) u ' = P' (x) /D , and 
3 t 1 2 1 t 

(2-17a) 

(2-17b) w< 4
> - [t

3
(EA)/Dt](l+a

1
+a

2
)u

1
<3

> = P'(x)/Dt . 

The final step is to eliminate u
1 

from the equations. This is accomplished 

by taking the second partial with respect to "x" of the first equation and 

multiplying the second equation by G', then subtracting: 

w< 6
> - (l+Y)G' 

w< 6
> - (l+Y)G' w< 4

> 

~~: - G'P') ,or 
t . 

+ (m +m ) ~tw· G''') 1 1 2 - - W = 
0 ax2 0 

t t 

1 

D 
i.. 

~:2 -G'P) (2-18)//. 

The corresponding reduction in the boundary conditions follows in the follow~ 

ing section. 
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3.0 BOURDARY CClmITIORS FOR THE SIXTH-ORDER BEAK EQUATIOBS 

The procedure for reducing combining the boundary conditions follows the 

same prescription as above. After adding the shear terms together, the 

boundary equations become (w
1

=w
2

): 

D w(3) 2 - Gb ( l+a +a ) ( u - u ) I = V = V + V , and( 3-l) - Gbt (l+a +a) w' t 3 1 2 1 2 1 2 R Rl R2 
x-L 

D w<3) 2 - Gb ( l+a +a ) ( u - u) I =·-v = -v - V (3-2) - Gbt (l+a +a) w' t 3 1 2 1 2 1 2 L Ll L2 
x-o 

The following equation is valid throughtout the beaIJt and can be shown to be 

equivalent to the extentional boundary conditions (after a lot of work): 

(3-3) 

Since the procedure is identical for both equations, the derivation will pro

ceed using only the first equation. After direct substitution of the exten

tional terms, the boundary condition becomes: 

Taking the second derivative of (3-1) yields: 

I = V /D • 
R t 

x-L 

• 

w< 5
> - G'Yw< 3

> - [G't (l+a +a ) /D ] (EA) u " I = 0 
3 1 2 t 1 1 • 

x-L 

Eliminating the u
1 

from the preceeding equation: 

-w< 5
> + (l+Y)G' w< 3

> I = (G' /D ) V • 
t R 

x-L 

Thus, the set "natural" boundary conditions become[a,b]: 

(5) -w + (l+Y)G' w< 3ll = (G'/D) V. 
t R 

x-L 

-w< 5
> + (l+Y)G' w< 3

> I = 
x-o 

Dtw" - MR' I =0 (3-7c), and 
x•L 

- (G'/D) V 
t L' 

Dtw" + ML' I= 0 (3-7d). 
x-o 
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Analogously, the moment boundaries are evaluated. Again, right hand 

boundary alone will be evaluated, since the process for the left hand is 

identical. Thus , the moment equation equation becomes: 

D w" - (M + M ) - (Tl - T ) t3 (l+u1+u2) = 0. t Rl R2 2 (3-10) 

2 
x-L 

After substituting for Tl and T2, the resulting equation is: 

D w" - M - [ (EA)l,u1' - (EA) 2u2' ] t3 (l+u +u ) = 0 t R 1 2 
2 

x-L 

, or (3-lla) 

I 
since (EA)

1
u

1
'= -(EA) 2u2' throughout the beam, the equation reduces to, 

Dtw" - MR - (EA)
1
u/ [ t 3 (l+u

1
+u2) ] I= 0. 

x-L 
(3-llb) 

Taking the second partial derivative with respect to "x" of (3-lla) yields: 

Dtw< 4 > - MR - [ (EA)lul <3> - (EA)2u2 <3> ] t3 (l+ul+u2) ""0 • (3-12) 

2 

Substituting (3-3), this equation becomes: 

Dtw< 4 > - Gbt3 (1+u
1

+u2)2w" - Gb(l+u
1
+u2) (u/ - u/) I =0. 

x-L 
(3-13) 

This can be re-written as: 

D w< 4 >-Gbt (l+u +u )2w"-Gb(l+u +u) ( 1 
t 3 1 2 1 2 t(EA) 

1 

+ (3-14) 

After applying the scale factors, 

(3-15) 

Eliminating u
1 

using (3-llb), the moment boundary condition reduces to: 

MR = ~; ( -w ( 4 ) + ( l+G' ) w ( 2 ) ) I · 
x-L 

(3-16) 
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Thus, the set of "natural" boundary conditions become: 

( 5) -w + (l+Y)G' w< 3
> I = (G' /Dt) VR, 

x-L 

M = 
R 

-w< 5
> + (l+Y)G' w< 3

> I = 
x-o 

-w 
( 

(4) 
+ (l+G') w<'l)l:.:nd 

-(G'/D) V, 
t L 

ML .. - ~; ( -w ( 4) + ( l+G') w ( 2)) I · 
x-o 

(3-17a) 

(3-17b) 

(3-17c) 

(3-17d) 

These force-type boundary conditions agree with those obtained by Mead 

and Markus [a,b]. Only four "natural" boundary conditions now remain to 

specify the sixth-order equation. Thus, it is necessary to specify two addi

tion "kinematic" constraints; otherwise, the problem is not well-posed. 

Representative "kinematic" constraints are: 

cl amped-free-

simply supported-

simple-roller-

no rotation-

w =w '=0 or w =w '=0 
R R L L ' 

w =w =0, 
R L 

w =w' = 0 or w '=w = 0, and 
R L R L 

w '=w '= 0. 
R L 

(3-18a) 

(3-18b) 

(3-18c) 

(3-18d) 

Mead [a] discusses other exotic boundary conditions that are permutations of 

the above "natural" and "kinematic" end conditions through relaxing the vari

ous boundary tractions. 

4.0 DISCUSSIOB/OBSERVATIOR 

The equations of motion and associated boundary conditions for a three

layer composite laminate were derived in Section 2.0 (Eqns. 2-12a thru 

2-131). The "natural" or force type boundary conditions are a consequence of 

the energy method formulation [e,l]. That system of equations is of twelfth-
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order and the solution is completely specified by the "natural" boundary 

conditions; thus, the equations of motion are well-posed. Consequently, 

since the system solution is completely specified by its "natural" boundary 

conditions, the formulation can be employed in the analysis of built-up 

structures (eg. a finite element analysis), albeit cumbersome. The exist

ence of all "natural" boundary conditions permits the universal satisfaction 

of internal compatibility conditions required in a finite element type solu

tion. Miles and Reinhall [c] proceed to perform an assumed modes solution to 

examine the thickness deformations in a three-layer composite. Their studies 

showed that thickness deformation is an important damping mechanism, espec

ially in higher order modes. 

The twelfth-order system was reduced to a single sixth-order partial 

differential equation (2-
1

18), as shown in Section 2. 0 .· By a similar process, 

the "natural" boundary conditions are reduced to four in number (3-17a thru 

3-17d). Both the boundary conditions and the sixth-order equations agree 

with those derived by Mead [a,b]. 

The point to be observed here is that only four "natural" boundary condi-. 
tions remain to specify the solution of a sixth-order differential equations; 

that is, a deficit of two differential equations. By constraining the 

extentional degrees of freedom (3-3), two boundary conditions are lost. 

Thus, two geometric or "kinematic" boundary conditions must be specified for 

the solution to be well-posed. Several possible "kinematic" boundary condi

tions are pro~ided in Section 3.0 (3-18a thru 3-18d) to augment the "natural" 

boundary conditions. Mead discusses other admissible boundary conditions [a, 

b] . 

Since the sixth-order partial differential equation cannot be completely 

specified by the "natural" boundary conditions, a complex built-up structure 

cannot be modelled. Only simple structures (eg. single span beams and 

plates) can be evaluated. For example, element compatibility conditions in a 

finite element formulation cannot be universally satisfied without the impo

sition of a "kinematic" ,constraint; thus, the type of structure evaluated is 

limited, that is a general sixth-order beam or plate finite element cannot be 
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formulated. 

Further, Mead demonstrated that all solutions to the sixth-order equation 

are complex-valued functions, with the sole exception of the case with simply 

supported boundaries. (The solution to the simply supported case is a real

valued function. This case can be further reduced to the standard RKU equa

tions [c, k].) Thus, computationally, the sixth-order equation is effective

ly a twelfth-order system. No gain in computational effeciency is obtained . 

The principal benefit derived from the sixth-order equation is when the 

relative extentional motion of the face sheets becomes significant, that is 

when one or .both of the face sheets possess a low stiffness relative to the 

core shear stiffness. In this case, Maynor [j] has shown that numerical 

solution is ne~ther particularly easy nor necessarily guaranteed. For the 

majority of engineering applications, a fourth-order (RKU) formulation is 

adequate to describe the dynamic behavior of damped laminate beams and plates 

. [ j] . 

5.0 SUltNIRY 

The author has presented a detailed derivation of the sixth-order beam 

equation and attendant boundary conditions. The author has shown how these 

boundary conditions naturally arise as a consequence of the variational 

energy method approach. The author shows how the boundary conditions vanish 

as a result of constraining the extentional motion of the face sheets, there

by requiring the imposition of "kinematic" constraints for a well-posed solu

tion. These additional restraints restrict the types of structures which can 

be evaluated using the sixth-order equation. A useful modification to these 

boundary conditions is the inclusion of damping into the boundary conditions 

[m]. Inman has observed that such terms in the boundary conditions are 

important in the me~hanics of line-of-sight/slewing or pointing/control 

applications of articulating structures. 
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