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Research at Mellon Institute on the dilute solution properties of high
polymers is reviewed, Of concern in theoretical studies have been: the dimensions
of branched chain molecules in poor solvents; the effect of heterogeneity in
molecular weight on the second virial coefficient for linear polymers; and the
effect of intermolecular correlations on Rayleigh scattering when both molecular
dimensions and thermodynamic interactions are large. In experimental investiga-
tions, polystyrene has been studied to explore the properties of a particular
branched structure and the nature of specific solvent effects on configurational
and thermodynamic properties. The intrinsic viscosity-molecular weight relation
for poly-(vinyl acetate) in butanone has been confirmed for molecular weights lower
than have been studied previously. A precision light scattering photometer has
been designed and built to meet the exacting requirements of projects now getting
under way.

Introduction

Since 1960, research in polymer science at Mellon Institute has been
aided by contracts with the Wright Air Development Division. 1In this paper we
present a review of activities in one major division of this effort; that of
dilute solution properties of synthetic polymers. Investigations have been both
theoretical and experimental in character and have been pursued by a number of
investigators individually and collaboratively as indicated by the following sub-
division, which will be adopted for the ensuing discussion.

(a) Conformation of branched-chain structures (G. C. Berry, T. A. Orofino)
(b) Properties of branched polystyrene (T. A. Orofino)

{c) Dimensions of polymers: specific solvent effects (T. A. Orofineg)

(d) The second virial coefficient for heterogeneous polymers in good
solvents (E. F. Casassa)

(e) Theory of Rayleigh scattering: effect of intermolecular correlations
(E. F. Casassa)

(f) Viscosity-molecular weight relationship for poly-(vinyl acetate)
(R. E. Kerwin, H. Nakayasu)

(g) Light scattering photometer (G. C. Berry, E. F. Casassa, D. J. Plazek)

Detailed discussions of some of these topics will be found in a Technical Report1
entitled "Polymer Structures and Properties."
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(a) Conformation of Branched Chain Structures

Except at the Flory temperature, the configuration of a polymer chain is
not described by the average magnitudes arising straightforwardly from random-flight
statisties since the existence of net interaction forces between remotely connected
chain segments weights the probability of ceccurrence of many configurations. The
effect may be regarded as the manifestation of a volume which the presence of one
segment denies to occupancy by another, and thus the determination of chain proper-
ties as a function of this parameter is referred to as the now-famous problem of
the "excluded volume."

In very good solvents the large volume effect has so far defied truly
rigorous analysis, but for sufficiently small excluded volume, perturbation treat-
ments have been carried out as far as the linear or quadratic approximation to the
expansion in terms of a variable

3/2
. = ( 32\ axt/2
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where b is the equivalent segment length, N is the number of statistically
effective segments in the chain and B is the mutually excluded volume for a pair of
segments., For the mean square radius of gyration <;R2:> of a linear chain the
result is well known.2

o = <!’~2>/<R2>0 = 134z/105 + --- (1)

where<cR2>0 = Nb%/G represents the mean square radius for a true random flight. In
the present investigation it has been found possible to generalize this result to
the case of the star molecule with f branches radiating from a single point. Aside
from being an abstraction amenable to mathematical treatment, this model is of
genuine interest in that useful procedures for synthesis of such meclecules have now
been developed in this laboratory {cf. below). The basis of the calculation is the

general relation
<> 1 ) Va,
1j
2N &
i3

together with the expression from the perturbation treatment2
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Here, N is the tgtal number of segments in the molecule, whatever may be its
structure and ¢Lj;> is the mean square of the vector distance Ljj separating
segments i and j.  The probability densities P(gij) for the occurrence of Ljj,
P(Ok1) for the existence of a contact (Ly) — 0) between segments k and 1, and
P(Lij, Okl) for both events simultanmeously, are given by random flight statistics,
and are thus readily formulated.? The integration over space assumes a standard
form and one is left with the laborious summations (Iintegrations) with respect to
i, j, k, 1. It is clear that to obtain a result correct through the second term in
equation 2 configurations must be considered in which the separation Lij and the
contact Oy] are specified. The pertinent configurations occur in three groups

(a) segments i, j, k, 1 all in one of the f branches, (b) the segments distributed
within two branches, (c) the four segments distributed among three branches. The
first two types are equivalent and relate simply to results already known (cf.
equation 1) for linear chains having respectively (for the case of equal branches
of n segments) n and 2n segments. Since configurations with i, j, k, 1 distributed
simultaneously among four branches contribute nothing to the second term of
equation 2, only the third category of configurations introduces anything new in
the calculation for the f-functional star.

The final result for the star molecule with equal arms of length n = N/f

is
2
o = 1+Caz+ -
where
_ 2 268+2 .. 6] 3 _ (2021/5 92
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Numerical results for a few cases are given in Table I.

It is evident from the tabulation, first that the requirement of identical
results for £ = 1 and £ = 2 is met, and second that the effect of increasing
branching at fixed molecular weight (fixed N) is to increase the expansion factor.
The latter finding is consistent with the intuitive notiomr’that the volume exclu-
sion effect should become more marked as the segment density is increased. Every
test indicates the correctness of the foregoing results: however, it must be
remarked that they are at variance with C4 = 1.12 reported by Fixman.? We have
confirmed that Fixman's somewhat different method does give his numerical result
(and find also that it gives Cg incorrectly); but we have so far not been able to
discover the origin of the discrepancy.

In current studies the same methods are being applied in elucidating the
initial effect of volume exclusion on the dimensions of regular-comb molecules--the
branched structures formed by attaching uniform chains at equal distances along a
backbone chain.
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TABLE I

Expansion of the Mean-square Radius for Star Molecules

f C

£
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(b) Properties of Branched Polystyrene

Two polystyrene samples closely approximating the idealized uniform
three-branched star were employed in a preliminary experimental investigation.
These materials were two fractions (of molecular weight about 3 x 103) isolated
from an already narrowly distributed mixture of trifunctionally branched molecules
prepared (by Dr. F. Wenger of this laboratory) by coupling nearly monodisperse
polystyryl lithium with an aromatic compound containing three chloromethyl groups
The synthesis is described in detail elsewhere.3 From fractionation data the
weight to number average moclecular weight ratio of the parent linear polymer was
found to be 1.03; and for one of the branched fractions the same ratio was unitv
within the error inherent in the comparison of molecular weights from osmotic
pressure and light scattering.
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The results of the measurements may be summarized as follows:

The Flory temperature4 6, at which the second virial coefficient Az
vanishes, is 34.3 + 0.5°C in cyclohexane irrespective of branching.

The Huggins constant k' In good solvents (benzene at 25°, toluene
at 30°) is 0.38 # 0.02 and unaffected by branching; but there are indica-
tions that in a theta solvent k' is slightly larger than that found for
the linear polymer.

The intrinsic viscosity ratio g' = [n] in cyclo-

branched/[nllinear
hexane at 8 is 0.90 in good agreement with the theoretical value predicted
by Zimm and Kilb. Results indicate, however, that in good solvents, the
Zimm-Kilb relation is not applicable.

Near 6, the second virial coefficient is about one-third smaller (in
absolute magnitude) than that found for the linear polymer of the same
molecular weight. To put it another way: the entropy parameter® ¥y is
reduced from 0.33 to 0.21., In the good solvent toluene, however, the
virial coefficients are indistinguishable.

The unperturbed mean square radius of the trifunctionally branched
chain calculated from intrinsic viscosity and virial coefficient data is
in good agreement with the random-flight relation

2
<R >
0 _ 3f -2
M = ———2 X constant

6f

and the constant established for linear polystyrene either directly5 by
light scattering or by the combination of viscosities and virial
coefficients.

(c) Dimensions of Polymers: Specific Solvent Effects

According to the familiar theory developed by Flory and Fox,7 the intrin-
slc viscosity of a polymer solution may be expressed by the relation

] = wit’203

where the constant K is given by

K = o @RP> 372
and ¢' is a universal numerical constant., Viscosity measurements at the Flory
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temperature, where & is unity, can thus be used to determine K. If the unperturbed
chain size<:R270 is a characteristic of the polymer chain at a given temperature
without regard to the nature of the solvent, K must similarly be dependent only on
temperature and the polymer. Many experimental studies indicate this view to be
correct as a first approximation; but it is only reasonable to expect that specific
interactions between solvent and polymer may modify <R? ?p to some degree, and there
does exist some expesimental evidence supporting the idea that variations of K with
solvent may occur.

In order to study solvent effects it is necessary to eliminate the
possibly predominant effect of temperature per se. Evidently, this can be done if
a polymer is found to exhibit sufficiently similar values of 6 in two different
solvents. In a preliminary screening, polystyrene with the solvents cyclohexane
and diethyl malonate proved to be one combination with the requisite properties
In order that unambiguous results might be obtained it was considered that the
polymer used should be relatively homogeneous, teo eliminate possible complications
from a dispersion of molecular weights; and that it should be of such molecular
weight that accurate osmotic pressure, light scattering, and viscosity measurements
could be made without difficulties from leakage through osmotic membranes, from
high dissymmetry in light scattering, from shear corrections in viscosity, or from
phase separation too near 6. Further, enocugh material should be available to
permit all wmeasurements to be made on the same sample. A thirty gram sample of
anionically polymerized polystyrene of molecular weight about 4 X 10° (prepared by
Dr. F. Wenger) was considered to meet these criteria and was used in the measure-
ments,

The second virial coefficient A9 was measured by light scattering for
both systems over a range of temperatures including 6. Interpolation to Ay =0,
yielded 6 = 34.8 + 0.3°C in cyclohexane and & = 35.9 + 1.0° in diethylmalonate, the
reduced precision in the latter figure arising from the relatively small tempera-
ture dependence of A; in this system. The value of 6 was confirmed for the
cyclohexane system by osmotic presgsure, which gave 6 = 34.6 £ 0.2°, in good agree-
ment also with published results.l0 Since4fR27b does not vary rapidly with
temperature, comparison of the intrinsic viscosities at the respective wvalues of 0
will indicate whether there exist differences in specific solvent effects in these
two systems. From viscosity measurements at & and two degrees above and below it
was concluded that for polystyrene-cyclohexane [nlg is 0.555, but for polystyrene-
diethylmalonate [n]g = 0.491. The difference is small but well beyond the limits
of experimental uncertainty.

The significance of this effect and its relevance in other systems is of
continuing interest. The comparisons made here will be supplemented by data on
polystyrene in l-chloro-n-undecane which also exhibits & near 35°. Direct
determinations of <R%> for a high molecular weight polymer in all three solvents
are also planned.

(d) The Second Virial Coefficient for Heterogeneous Polymers in Good Solvents

Available theoretical treatments of the second virial coefficient in the
equation of state for polymers im good solvents give results in complicated forms
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which it has not been found possible to apply to the general case of solutes
heterogeneous in molecular weight. Mathematically, the task involved generally is
a double integration,over a molecular weight distribution, of a function that cannot
itself be expressed analytically.ll'

In a2 new approach to the problem we abandon all pretense of a sophisti-
cated model and simply assume that the wvirial coefficient for a homogeneous polymer
is proportional to a negative power of molecular weight. This assumption is quite
without theoretical justification, but empirically it conforms to virtually all
experimental data on well-fractionated polymers to within the limits of experimental
accuracy. Hence we regard it merely as a convenient representation of empirical
results, but one which is a vital factor in the avoidance of mathematical diffi-
culty. Thus we write for a homogeneous polymer of degree of polymerization n
(which need not be identified with the number n of chain segments discussed earlier)

A, = B.n (3)

where Bp and a depend on the nature of the polymer-solvent pair and the temperature,
but not on molecular weight. The virial coefficient Ay is defined in the usual way
as the coefficient of the linear term in the equation of state: e.g., for the
osmotic pressureTl

T 1
RTe - M T4t

with c the concentration in units of mass/volume.

Since equation 1 still implies little about the virial coefficient for
heterogeneous polymers an additional condition is required; that is, we require
some relation among the coefficients Bij in the two general expressions

m .
A2 = BleLWJ (4)
i3
for the osmotic pressure, and
-~

AZ(R) = Z ZB nlwan j/ (Tniwi>2 {5)
i3]

for light scattering, in which W is the weight fraction of component i in the
solute. Probably the simplest assumptlon with some physical basis is that the
unlike molecules interact as hard spheres of equivalent radii defined by the Bij
from equation 3. An elementary calculation in statistical mechanics gives the
appropriate result:

2(B, nin.)1/3 = @O ¢ @, 2D

6
iji] iii iji ®)
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As a test of the averaging assumed in equation 4, we can examine the special case
of a solute consisting of a mixture of two sharp fractionsll,14,15 of the same
polymer. The very simple theory derived here indicates, interestingly, that there
are physically reasonable conditions, determined by the value of a and the molecular
weight ratio of the two solutes, for which A;W) and AéR) both pass through a maximum

as a function of the relative amounts of the two polymers in the sclute. At least
qualitatively, this result is in agreement with more sophisticated theory11 and with
some experimental results.l4,15

In dealing with continuous molecular weight distributions we adopt the
Schulz distribution functionlb

Z

Z+1 n -yn
fm = ¥y rziD® )

y = (Z4+1¥/n

where f(n)dn 1is the weight fraction of polymer with n lying between n and n + dn.
The parameters of the distribution are<{n>the weight average value of n and the
parameter Z, which increases with decreasing heterogeneity: the limit of infinite
sharpness corresponds to Z = o while Z = 1 denotes the "most probable” or "polyester”
distribution.

Substitution of equations 3, 6, and 7 in the integral forms equivalent to
equations 4 and 5, yields integrals involving only a single standard form, the T
function., We obtain for the second virial coefficient from osmotic pressure

Az(“) = Boyaqb(v)/h[l"’(z + 1)1°

oM = Pz +2-a)(z) + 332 + 4 — 2a)/3ITL (32 + 2 — a) /3]

and for light scattering

AéR) = Boya¢(R)/h[F(z + 2)]2

o® o T +3 -8z + 1) + 3032 + 7 — 2a)/3IT[BZ + 5 — 2) /3]

These results are such that the form of relation between the virial
coefficient and average molecular weight is still that of equation 3 for a single
species: he?c? for a given Z, plots of log Ap versus log n for a sharp fraction,
and of log A2Tr versus the logarithm of the number average n or of log AfR) versus
log«<n>are 3ll predicted to be straight lines of the same slope -a. If“"the three
functions (for empirically meaningful values of a) are superimposed on a single
graph, the plots for a heterogeneous system lie above that for the homogeneous case
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with the Afﬂj plot uppermost; and the difference increases as heterogeneity
increases.” In this definite sense, Ay is predicted to be increased by heterogeneity,
and more strongly for osmotic pressure than for light scattering. In the case of
the polyester distribution with a = 1/4 (a typical value for systems in good
solvents) AéﬂlegR) for a given polymer exhibits, according to this theory, a value

equal to 1.26, and thus a difference from unity sufficiently great to be detected
by careful measurements. However, in the same instance, the ordinates of AN
versus number average n and of A(ﬁ) versus Zn > should be in the ratio 1.26; and
thus it appears that these two flinctions may not show experimentally significant
differences.

It is possible to apply the theory ocutlined here to more complicated
distributions made up from several Schulz distributions, each determined by a
certain Z and<n» The results can become cumbersome indeed, but the necessary
integrations are as elementary as before. Perhaps the most interesting prediction
is that the maximum in A7 obtained for some mixtures of two homogeneous polymers
should in fact be enhanced by heterogeneity i1f both fractions have the same Z.

(e) Theory of Rayleigh Scattering: Effect of Intermolecular Correlations

A statistical model developed earlier13 in deducing approximately the
osmotic properties of solutions of polymers in thermodynamically good sclvents has
been applied to the problem of the scattering of light for the general case in B
which solutions do not obey van't Hoff's law and the polymeric solute molecules are
so large that intramolecular optical interferences cannot be ignored.

In our molecular model a bimolecular cluster (two solute molecules in
contact) is represented as a spherically symmetrical distribution of chain segments
centered about an arbitrarily chosen "initial contact.” With this model it was
found that the series expansion for the second virial coefficient in powers the
excluded volume B {or of z), as derived by Zimm,]-7 could be summed in closed form
prior to a final summation (integration) required for averaging over all inter-
molecular segment-segment pairs as initial contacts. Although this final step
could not be performed analytically, it was possible to show that a simple
approximation yielded a result very close to the. exact integral. Comparison of
this result with that of Flory and Krigbaum,ll (based on the representation of the
bimolecular cluster as the interpenetration of two spherically symmetrical distri-
butions of polymer segments centered at the positions of the respective molecular
centers of mass) showed a more rapid decrease in Ay with increasing molecular
weight. In some cases, at least, this behavior appeared in better accord with
experiment.13

In brief, the present study constitutes an attempt to calculate from
theory for a homogeneous solute the function Q(8) in

Ke 1
R(8)  MP(6)

+ 2A2Q(6)c + e

307



where R{8) is the light intensity scattered through the angle 8; M is the polymer
molecular weight; c¢ is the weight concentration; amnd P(9)}, Q(8), are functions,
normalized to unity at 6 = 0, that determine the angular distribution of scattered
radiation. The theory may be regarded as providing some degree of correction to
the well-known treatment of light scattering by Zimm in which Q(8) is unity at all
angles.l8 Zimm's theory is based on the so-called "single contact" approximation
by which, in the enumeration of the configurations of a bimolecular cluster,
simultaneous multiple intermolecular contacts are rnot considered. The electro-
magnetic aspects of our derivation include nothing novel and the statistical
mechanical treatment follows Zimm's procedure rather closely except for the
introduction of the particular properties of the model. In spite of the simplifi-
cations involved, the single-contact contributions are accounted for properly.
Unlike the case of the virial coefficient, 13 however, double-contact configurations
are not treated rigorously. This means that the expression of A2 in this theory as
a series in powers of z reproduces the first two terms of the exact series while
only the first term is correct in the analogous develcopment of Q(9). In both cases,
higher order terms involve approximations of uncertain effect since, of course, an
exact result is not available for comparison.

The final result

wo rl — exp(-¢w )
Q) = ;9[ “}

1 — exp(-w,) (®)

depends on two variables: the thermodynamic parameter
3
¥ = 4z [0

and a quantity characterizing the optical interference effects (and thus the
molecular size)

where A is the wavelength in the medium. The function wy is extremely complicated
but actually turns out to be nearly comstant: it is wp = 1.433 for u = 0, increases
with increasing u to about 1.469 and then decreases again to wg as u becomes
infinite. It must follow that Q (8) is always close to unity whatever the value of
¥ and hence that the single-contact approximation of Zimm should always apply for
practical purposes.

This is a rather surprising and perhaps implausible result although there
seem to be no completely unequivocal experimental data to cite in comparlson It
i1s, however, very much at variance with the predlctions of Flory and Buechel? who
derived Q(G) from the Flory-Krigbaum molecular model 11 and found a marked decrease
from unity with increasing ¥ at sufficiently large, but physically reasonable,
values of u. Equation 8 also predicts a decrease in Q(8), at first, as either u or ¥
increases, but the effect is small as compared both to that found by Flory and
Bueche and to the limiting dependence at u = 0 indicated by exact theory. It
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seems to us that this behavior is a consequence of the extreme symmetry of our
model in which all configurations of a bimolecular cluster are represented as
spherically symmetrical. The Flory-Krigbaum model is undoubtedly a much more
realistic model for the intermolecular interference effects, although it may
perhaps err in the opposite direction of underemphasizing the contributions from
highly symmetrical configurations.

In the derivation leading to equation 8, it is assumed that the expansion
factor ¢t is the same for a single molecule and for a bimolecular cluster. However
a completely consistent treatment of the statistical model we have employed,

suggests that the expansion O of a single chain is less than that @, of the cluster,
according to the relation

5 5 3
o o, = 1.601(ozl czl)

The scattering function obtained if this modification is adopted is

woIl = exp () 11P(6,u,)12

2
Wu2[1 - exp(-wwo)][P(e,ul)l

Qf (o)

where v), uy indicate the quantities u determined by the respective expansion
factors al, aé.

With this refinement, values of Qf(e) are found significantly less than
unity though the effect is still very much smaller than that predicted by Flory and
Bueche. Some numerical values are listed in Table II.

TABLE II

The Scattering Function Q(6) in Two Approximations

Q" (o) @@

- 'I_—_—-———-—J .
) Yu W > 7) W = 1 L = 2 ¥ = 10
0 1.433 = wg 1 1 1 1
2 1.458 0.983 0.905 0.876 0.841
4 1.467 0.977 0.863 0.822 0.774
8 1.468 0.976 0.836 0.787 0.729
18 1.459 0.982 0.824 0.772 0.710
w© W, 1 0.822 0.771 0.707

To gain some sense of the physical meaning of these results it is useful
to make an estimate of magnitudes of u and ¥ attainable in experiment. Choosing
polystyrene in toluene as a typical instance of a polymer in a good solvent and
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calculating the desired quantities from intrimsic viscosity parameters we obtain,
at four molecular weights the results given in Table III.

TABLE III

Parameters for the System Polystyrene-Toluene

M ¥ ul* uz* R(45) /R(135)
10° 1.4 0.22 0.25 1.05
10° 2.7 3.0 3.5 1.9
5 % 10° 4.1 19.1 22.3 1.9
107 4.9 42.8 50.2 5.2

*
For blue light (436 mp)

(f) Viscosity-Molecular Weight Relationship for Poly-(vinyl acetate)

The intrinsic viscosity-molecular weight relationship for linear poly-
(vinyl acetate) in mechyl ethyl ketone has been studied previously,21‘24 but most
of the investigations have dealt principally with polymers of molecular weights in
excess of 100,000. 1In connection with other work under way in this laboratory it
has become important to know the relationship accurately in a lower weight range.
Accordingly, intrinsic viscosity and light scattering measurements on this system
have been carried out with nine fractionated polymers of molecular weights from
6,000 te 30,000,

Viscosity measurements were made at 25°C in a Cannon-Ubbelochde viscometer
such that kinetic energy corrections were negligible, ZLight scattering measurements
were made at four solute concentrations and at least seven scattering angles and
the data were analyzed according to the familiar method of Zimm. Molecular weight
calculations were based on a refractive index increment of 0.089 cm3/g, as reported
by Shultz,21 and Matsumoto and Ohyanagi.24

The new data are well fitted by the equation
log [n] = —1.871 +0.71 log M (9)

which also describes the results of Schultz and Howard22 covering the high molecular
weight range 240,000 to 3,460,000.

Combining molecular weights from both light scattering and sedimentation
diffusion data, Elias and Patat23 obtained an equation which differs by about
25 per cent from the lowest molecular weight data of this study. However, if their
light scattering data alone are considered and one point for a poorly fractionated
sample is rejected, the agreement with the present data and those of Shultz is much
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improved. Matsumoto and Ohyanagi obtained intrinsic viscosities about 15 per cent
lower than given by equation 9 but showing the same molecular weight dependence.
However, their polymers were not fractionated and it is perhaps possible that their
method of sample preparation leads to some hydrolysis of acetate groups.

We can conclude therefore that Shultz's equation is valid over the entire
molecular weight range so far studied 6 X 103 to 3.5 x 106. From theoretical
considerations an abrupt change in slope of the log [n] versus log My, relation is
expected at some rather low molecular weight, hence further experiments are planned
at still lower molecular weights to determine if possible the lower limit of valid-
ity of the relation.

(g) Light Scattering Photometer

A precision light scattering photometer has been designed and built with
a view to its use in studies of configurational and thermodynamic properties of
polymers in dilute solutions. Since a comprehensive description will be found in
an ASD Technical Reportl we offer here only an outline of the main characteristics
of the instrument. Most elements of the design are fairly conventional and
individually nearly all may be found in instruments constructed previously: a
mercury arc light source, glass filters to isclate either the strong blue or green
line of the spectrum; a rotating sector to modulate the light source; optical
elements to cancentrate, collimate and define the incident beam; photomultiplier
tubes to detect both scattered radiation and a reference intensity deducted from
the incident beam; a tuned bridge circuit for balancing the two photocurrents; a
sensitive amplifier-voltmeter as the null detector, a goniometer permitting
accurate measurement of scattering angle, and a thermostat for control of sample
temperature. While there fs thus nothing exceptional in the ¢onception, the abiding
goal has been to achieve the utmost of which such apparatus ought reasomably to be
capable in precision and reproducibility of measurements. To this end much effort
has been put into the finer details of design and in tracking down and
eliminating effects that might be characterized as of a second order in regard to
influencing accuracy. For example, it is expected that the optical system will
prove of such quality that in comparison to commercial instruments there can be
attained more accurate measurements of depolarization and better angular resolution
of scattered light over a wider ramge of scattering angles. Also, by a rather
simple but effective thermostat design, the precise temperature control needed for
meaningful thermodynamic studies over an extended temperature range can be achieved.
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