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ABSTRACT

Analytical engineering methods are developed for use in predicting the static
and dynamic stability and control derivatives and force and moment coefficients of
lift-jet, lift-fan, and vectored thrust V/STOL aireraft in the hover and transition
flight regimes. The methods take into account the strong power effects, large
variations in angle of attack and sideslip, and changes in aircraft geometry that are
associated with high disk loaded V/STOL aircrafi operating in the atforementioned
flight regimes. The aircraft configurations studied have a conventional wing,
fuselage and empennage. The prediction methods are suitable for use by design
personnel during the preliminary design and evaluation of V/STOL aircraft of the
type previously mentioned.

This report consists of four volumes. The theoretical development of the
prediction methods is presented in this volume, The methods are applied to a number
of V/STOL configurations in Volume I, Details of the computer programs associated
with the prediction methods are given in Volume III. The results of a literature

survey are presented in Volume IV,
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Z

c centroid of body cross section

P resultant angle of attack
r vortex strength
complex coordinate in circle plane ¢ = re16

¢

¢, point on the mapping circle
separation point on ¢ylindrical body
location of vortex center

angular distance in mapping circle plane
freestream density

roll angle

e e Yo

p—

complex conjugate

derivative with respect to x

— —

-
—
.

derivative with respect to time

real part

=

imaginary part
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A,B,D, LW, I' matrices in downwash Equation (126)

c airfoil chord
C section pitching moment about 1/4 chord

m

1/4

CN section normal force coefficient
C circulation normal force coefficient

N

IND
(CN)a - 90 normal force at a= 90
d'!f increment of vorticity
by, by positions of lifting lines relative to 3/4 chord position (see p. 131)
p rolling velocity
P, ¥y, 2) downwash control point
q pitching velocity
T yawing velocity
R distance from vortex element to dovnwash control point
U mainstream velocity
VI_! _Vt velocity vectors due to lifting line and trailing vorticity
respectively
W, W, downwash due to lifting line and trailing vorticity respectively
Wt circulation weighting function [= 1":l /(r1+ I‘Z)]
X chordwise position of center of pressure for viscous crossflow
force

X, g X - coordinate of wing rotational center
z, g Z - coordinate of wing rotational center
X,¥,% coordinates defined in Figure 63
X l’yl coordinates defined in Figure 64
o angle of attack
@ offective angle of attack

[ 5]
Bo ' effective angle of sideslip
r circulation strength
sy circulation strength of two lifting lines
é; sweepback angle of lifting line
Ey sl coordinates defined in Figure 63
Nyt M1* =+ My circulation control points
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lift coefficient

pressure coefficient

jet exit diameter

jet induced force

radial coordinate in plane of jet exit

constant value of radial coordinate in plane of jet exit

jet exit area

planform area
jet thrust

jet exit velocity
freestream velocity

downwash velocity component
chordwise coordinate

spanwise coordinate

" jet deflection angle (from horizontal, degrees)

lift increment due to jet operation
downwash angle (degrees)

angular coordinate in plane of jet exit (degrees)
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component of force vector in i-direction

source strength

component of moment vector in i-direction
component of a unit vector in i-direction

pressure

velocity component at i"; induced by all causes except the

singularity there

position vector of point a

surface and surface element of an infinitesimal sphere

velocity components in i- and j-directions
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freestream velocity

X5 xj cartesian coordinates in i- and j-directions
o angle of attack
i, Hy doublet vector and i-component of doublet vector 7
Vaky W elliptic coordinates
) density
¢ velocity potential
Subscripts
a conditions at point a
o conditions at body surface
SECTION IX
Aj jet exit area
D drag
Dv drag due to unit impulse of v
D2 drag due to unit impulse of v2

angular mean diameter of plate
diameter of jet exit
load induced on plate

height of jet exit over ground plane

}{b‘o&cu

Laplace transform

p ambient static pressure

Pt’ p plenum total pressure

9 maximum jet impact pressure at x
8 planform area of plate, includes jet
S variable of Laplace transform

T jet thrust

t time

v velocity

X distance normal to jet exit

Xi point of maximum rate of impact pressure decay
r dummy variable
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SECTION I

INTRODUCTION

The problem of specifying the in-flight behavior of an aireraft can be considered
as one of determining the effect the dynamic motion of the craft has on the fluid through
which it is moving and, hence, on what forces and moments are impressed on the
vehicle due to this motion, The forces and moments thus impressed on the vehicle
together with thrust and inertial response completely determine the aireraft behavior,
The determination of the forces and moments experienced by an aircraft is, therefore,
of importance for determining aircraft performance and stability and control require-
ments, Methods for predicting the aerodynamic behavior of conventional airecraft have
been established and are documented in a form suitdble for use by the preliminary
designer in Reference 1. V/STOL aircraft of the lift jet, lift fan, and vectored
thrust type pose aerodynamic problems- which are significantly different from the
aerodynamics of conventional aircraft. New problem areas arise mainly through
the interference of the lifting jet or fan efflux on the relative mainstream flow due to
aireraft forward speed or natural wind, Also, due to its particular form of propulsion,
a V/STOL vehicle is likely to fly at large angle of attack and/or sideslip during some
part of its flight path so that nonlinear aerodynamics become an important factor in
determining the aerodynamic forces and moments on these vehicles.

To date no satisfactory methods for estimating the power induced aerodynamics
of the lift jet, lift fan or vectored thrust V/STOL aircraft have been established. The
subject of nonlinear aerodynamics has received little attention and no generally acceptet_:l
prediction methods exist at this time. This study has been concerned with obtaining
the air induced forces and moments on V/STOL aircraft of the lift jet, 1lift fan and
vectored thrust type in a convenient form to allow motion studies to be made. This
requires that the magnitude of the force and moment components be determined as
functions of a consistent set of flight variables.

These force and moment components are treated as being functions of the flight
variables, a consistent set of which are @, 8, U, ,6 8, p,q,r and any higher
order of terms such as i which may be considered pertinent. The basic problem
of any aerodynamic stability study thus reduces to obtaihing accurate functional



relationships between the forces and moments and the flight condition, for example,

L= L{ a’ﬁ’U’C'\!'ﬁ.’p,q ,I' L }
These functional relationships then permit all the necessary aireraft motions to be
obtained assuming the thrust and inertial characteristics of the vehicle are known,

A complete functional relationship such as the above equation is seldom obtain-
able in practice. However, the effect of the most significant parameters on given
components or parts of the aircraft is usually obtainable, These effects are added

together and assumed to hold for the complete airplane.

1. PURPOSE

The purpose of this investigation was to develop analytical engineering methods
for predicting the static and dynamic stability and control derivatives and force and

moment coefficients of lift jet, lift fan, and vectored thrust V/STOL aireraft in the

hover and transition flight regimes. These methods were to take into account the
strong power effects, large variations in angle of attack and sideslip, and changes in
aireraft geometry that are associated with high disk loaded V/STOL aireraft operating
in the aforementioned flight regimes. Where appropriate, use was to be made of high
speed computers to obtain solutions having reasonable time periods for implementa-
tion. The aircraft configurations studied were to have a conventional wing, fuselage
and empennage. The methods developed were to be suitable for use by design
personnel during the preliminary design and evaluation of V/STOL aircraft of the

type previously mentioned.

2. TECHNICAL APPROACH

This investigation has been concerned with the development of theories for
predicting the forces and moments on lift jet, lift fan aﬁd vectored thrust V/STOL
aircraft. In general, due to the complexity of the interaction between the propulsive
system and the airframe, it has been found necessary to use computer programs to
enable the forces and moments to be calculated. Some of tile methods developed are
simple enough to be reduced into a handbook procedure. Examples of such methods

are those based on slender body theory and the viscous cross flow hypothesis.

This investigation has followed the conventional procedure in a manner most
suitable for the treatment of V/STOL aircraft.



A basic assumption, for the methods developed inthis investigation, is that
the power induced effects can be treated separately from the unpowered aerodynamic
effects and the two sets of solutions added together to produce the total aerodyanmic

effect.

A second assumption is that the aerodynamics can be treated component by
corﬁponent and the results added together for the total aircraft. This assumption
holds for both the power-induced and unpowered effects. Whenever possible,
mutual interference between components has been taken into account to obtain a more
accurate solution. This approach is essentially the procedure used in Reference 1

and is considered to be most suitable for use as a design tool.

The technical approach used in developing the prediction methods was based on
theoretical and semi-empirical analyses. It was thought that correlation of wind
tunnel test data, in terms of geometric and flow variables, would be an impossible
task without theoretical and semi-empirical methods to indicate correlation vari-

ables.

An extensive literature search was-conducted to identify available test data
and areas for which further data was required to develop and validate the prediction
metheds. As a result of this liferature search, two wind tunnel test programs were

conducted.

In the first of these test programs, a flat plate model containing up to three
nozzles was tested to assist in the development and validation of the jet flow field
theory. The results of these tests have been documented in Reference 3. In the
second test program, a complete configuration model was tested in the NASA
Langley Research Center V/STOL tunnel. This model consisted of two wing-mounted
vectored thrust engines and a lift-jet engine embedded in the fuselage. The vectored
thrust nozzles were designed for exit positions at two longitudinal locations. For the
aft location, two nozzle exit diameters were available. Data from this test has
been used to verify the prediction methods. A data report for this test will be
published by NASA at a later date,

3. REPORT ORGANIZATION

The report consists of four volumes, entitled;

Volume I - Theoretical Development of Prediction Methods
Volume IT -  Application of Prediction Methods



Volume IIT - Manual for Computer Programs
Volume IV - Literature Survey

In Volume I, the aerodynamic prediction methods are developed in a form suit-
able for application to each aircraft component. The apglicable theoretical analyses
or semi-empirical bases are presented. Empirical coefficients are determined,
where necessary, and then extensive comparisons of calculations with test data are
made. |

Volume II gives detailed examples of the application of the prediction methods
to the determination of the aerodynamic forces, moments, and in some cases, surface
pressure distributions, on the aircraft wing, fuselage and empennage. In each case,
a sample problem is given to illustrate the application of the methods and method
limitations are also discussed. Also discussed in Volume IT is the wind tunnel
test program conducted in the NASA Langley V/STOL tunnel and the use of the
resulting data to validate the applicable prediction methods.

Volume III contains a detailed description of the computer programs developed

in this investigation,

Volume IV documents the resuits of the literature survey conducted to identify

existing test data and theoretical methods relating to this investigation.



SECTION II

JET FLOW FIELD THEORY

A fundamental problem in the development of methods for predicting aerodynamic
characteristics of lift-jet, vectored thrust and lift-fan V/STOL aircraft is that of for-
mulating a mathematical model to estimate the effects of the propulsion system efflux
interaction with a crossflow, During the transition flight phase, this efflux is directed
at large angles to the freestream and has a significant influence on the aircraft aero-
dynamic performance as well as on its stability and control characteristics.

A number of analytical formulations of the problem of a single jet exhausting into
a crossflow exist, and details of the different approaches may be found in Reference 2.
An approach to the problem of a single, normally exhausting jet, which appeared to
offer possibilities of treating more complex configurations, is given in Reference 4.
In this reference, an entrainment model was developed from dimensional analysis and
physical considerations. The force on the jet boundary as a result of the pressure
differential around the jet was accounted for by a crossflow drag. The geometry of the
jet cross section was represented by an ellipse. Assuming constant and equal density
for the jet and the crossflow, the continuity and momentum equations were solved for
the jet path. The jet-induced velocity field was then determined by replacing the jet
by a distribution of sinks and doublets.

The analytical model described above has been further extended to treat jets
exhausting into arbitrarily directed freestreams as well as multiple~jet configurq.tions.
Multiple-jet configurations are treated as combinations of discrete jets, with leading
jets assumed to develop independently and downstream jets assumed to exhaust into a

freestream of reduced dynamic pressure.

To generate data which would substantiate these assumptions and also provide
information for further refinements to the analytical model, a wind tunnel investigation
of jets exhausting into a crossflow was conducted. The test configuration consisted of
a four-foot diameter circular plate, containing up to three circular jets, which was
elevated 12 inches from the tunnel floor and aligned with the air flow. The plate con-
tained pressure taps to determine the surface static pressures. Jet centerlines and
decay characteristics were obtained with a total head rake. Data from this investiga-

tion have been presented in Reference 3,



Data from the wind tunnel investigation have been analyzed and used to verify
some of the assumptions made in the development of the analytical approach. The

mathematical model has been refined using data from the wind funnel investigation,

The single jet is considered in Sections II, 1 and II, 2. The details of the analyti-
cal model are presented. Refinements of the empirical parameters, based on analysis
of the experimental data,are discussed. Extensive compariscons between theory and

experimental data are presented.

Two-jet configurations are treated in Sections II. 3 and I1. 4. An expression for
the effective dynamic pressure which the downstream jet ''sees" as a result of the block-
age of the crossflow by the upstream jet is derived. The test data are used to verify
that the upstream jet develops independently of the downstream jet., Calculations of
jet centerlines and induced surface static pressures are compared with test data for

a number of two-jet configurations,

Applications of the analytical model to more complex configurations are pre-
sented in Section I1.5. Computations of the induced pressure distribution around a
two-jet configuration, with the jets at different thrust levels, are compared with test
data. The extension of the computational procedure to the treatment of more complex
jet arrangements is carried out for a three-jet configuration. An empirical relation-
ship for the reduction in crossflow dynamic pressure for the third jet, as a result of
blockage by the two upstream jets, is given. Comparison between theory and data for

the variation of surface static pressure induced by a three-jet configuration is shown,



1, SINGLE JET ANALYTICAL MODEL
a. Normally Exhausting Jet

Consider a circular jet exhausting at a right angle into a uniform mainstream
as shown in Figure 1. When a jet exhausts at an angle into a mainstream it is deflect-
ed partly by viscous entrainment and partly by the force on the jet boundary resulting
from the pressure differential around the jet. It is agssumed that the flow is incom-
pressible and vigcous effects other than entrainment are neglected. Dimensional con-
siderations then suggest that the entrainment of mainstream fluid per unit length of

jet may be written as

) 0 Ez (U ~Ueo 5i78) C
£ = pfilUsodcasO + [+ Es ko cO56/U;

(1)

A fluid particle approaching the jet near the plane of symmetry will be more
easily entrained by the jet than a particle that is moving away from the jet, The sus-
ceptibility of the approaching particle to jet entrainment is accounted for by the term
pE,Uxdcosf in Equation (1). Particles moving away from the jet or to its side, with

momentum not directed toward the jet,are less tolerant to jet entrainment, The term

(952 (Y~ lhosinB) C
/ + éf;c;asél/Uj

takes this into consideration while satisfying the Ricou-Spalding solution for the freejet
case when U_= 0. The net force acting on the jet boundary, as a result of the pressure
differential around the jet, is accounted for by a crossflow drag. The force on a jet

element of unit length is

Fp = Cpé—pUécoszé?d @)

where CD is the cross flow drag coefficient of the jet.
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FIGURE 1, JET EXHAUSTING NORMALLY INTO THE FREESTREAM




(1) Equations of Motion

The entrainment of mainstream fluid into the jet and the pressure forces on the
boundary of the jet govern the equations of motion which can now be written, using the
coordinate system defined in Figure 1.

The continuity equation may be written as
p dids (4;U) = £ 3

The only tangential forces acting on the jet are the viscous forces resulting in
entrainment, so that the momentum equation for the jet flow in the tangential direction

is

o dfds (AU = ElwsnE (4)

The deflection of the jet is due to the centripetal action of the pressure force on
the jet boundary and the entrainment of mainstream fluid with momentum in that direc-

tion, The force equation governing the curvature of the jet may now be written as

PAUYR = FlecosE r (p4 pl’cos*dd (5)
- /o/bUJZXVL l+u(,)z‘]5}2.

where R is the radius of curvature of the jet centerline and the primes denote differen-
tiation with respect to Z. Replacing d/ds by cos 6 (d/dz) in Equations (3) and (4)

reduces the problem to one of finding d, U, and X as functions of Z, the entrainment

J
parameters El , E2 . E3 and the cross flow drag coefficient Cp. However, a func-
tional relationship between the cross sectional area Aj’ the circumference C of the

jet and the jet growth must be established.

Experimental observations show that there is a region in which the jet deforms
from its initial circular cross section into a kidney-shaped one (Reference 8). Once
this shape is attained, the jet cross section remains relatively similar {Reference 7).
Since it did not appear possible to treat the exact jet shape, a simplified jet shape, an
ellipse, was chosen. Correlation of data for a normally exhausting jet indicates that
the extent of this region, in which the cross-sectional deformation occurs, is a func-

tion of the jet exit to mainstream velocity ratio Ujof’ Ug. The extent of this region may



be expressed by 05Z/dg<. 3Uj,/Uw. When Z/dop2. 3Ujo/ U, observations show that
the best fit of the jet cross section with an ellipse is one with a ratio of minor to major
axis of 1/4. Experimental data further indicate that, in the development region, the
ratio of minor to major axis decreases linearly with distance from the jet orifice

(Reference 5). Therefore, the geometry of the jet may be treated in two regions:

® A region in which the jet deforms to an elliptical cross section and the ratio
of minor to major axis decreases linearly with Z from 1 at Z/d_=0to 1/4
at 2/d,=H = .3 Ujo/Uy

2= ratio of minor to major axis
= A(Z/d)+ B

Substituting boundary conditions above, yields

D = /- ZE(Z/)
/ - 152 (Fdo)(Uoft),) ]

it

then

¢ = md [+ - 7"(2"/d )121"2

2 0sZ/dosH  (6)

A, = 7

- 7d l/f[l-ﬂz(z/da)( Voo /o )J"']"Z
[/ 7“’(2'/0’)19’_’
[

= 7 | /- 8z (&) Uw/{JJo)J d?

From the preceding expressions it can be seen that if Uj,#0, as Uy=0, the development
region becomes 057/ ,s®and the jet retains its circular cross section, which is to .

be expected since the jet is now exhausting into quiescent surrcundings.

® A region in which the jet retains a similar cross section

2 = /4
C = 224d Z/do>H (7

Aj =  md¥e

10



(2) Integration of the Equations of Motion

The left hand side of Equation (3) may be rewritten as

palds (4jtf) = pdids (Al?

U, ()
now
p Alds (AUS) = p dids (4U2) +pWdt;*)dids(L) (9)
7 U . 4,
where from Equation (4)
pad/ds (4;Uj%) = Eleo smE (9
then
° afds (A,[UJ z) = 1 Elew 516 —(LD_AJ_UJ:) dfdb ( q;) (11)
g I *
substituting into (8)
& Ensn - p4jalfds (U) = & an

Substituting for Aj, C and letting d/ds = cos 6 (d/dZ)

pir (/ﬁ- 52 Z %n_;) g_z cos8 didz (U)) = (13)

clo

{pg' Uno deos & Lol thosn€)rd [ 1111-% (Zoe) ) | WJ
2

X {%:95/}99-1]

J

11



Dividing by pdUg and letting Z* = Z/do, Uj* = Uj/Ujo, and m = Ujy/ Uy

n/al1-%ZE d s dfaz(U;) = (14)

{ Ficos@ + £3 (mUj*~smb) i [ i+ (!--5{2-%*);}""} {,s‘mg-mdf }

! / + £33 <cos6/L"m 2 myy*

if :d/dZ = (1/dg) @/dZ* and d* = d/dp then the left-hand side of (14) becomes

/4 (1- 925 d* cas0 dfdz* (Ui/us)

or

/4 (1= E ) d*asé m dldz (U;')

Equating and solving

AU;T — VEcosO ¢ Fr (miE-sin8)iT { / +(!_5/2_§;)-zjuz
/?"55"0.59/({,?”7 2 (15)

x sn8-mi*t
/4 (/- Sz A;_') d*mil*cos8

The equation for de*/ dZ* applicable for the developed region is obtained by substi-
tuting Equation (7) for Aj and C in (12) '

gu;* - /G
dZ gaitmidrcasé

% (16)

Ecos0 i LalmUitsmO)2.24 [.smé- mU;’]
/+ £z 058/ m

12



Substituting Equations (6) and (7) into Equation (3) and again letting Z*= Z/d,,
d* = d/do’ Uj* = Uj/Ujo and m = Ujo/U‘” yields

dd* - {5.4‘059 s Ezlml*- .:smﬁjﬂ‘ll.lf (i-2% %‘)zjifz} d*

; 2 meos6
a z¥ an
. - ¥ m -,
+ 58 p-d*énz;'f_ nd’ Z(/-b"/,z%*).g%: / zr%"U,' - E)
and
£ cos6 1+ Lz ImUi-sm8)2.24 _ [)ncas@d* ay?
.dﬁd; = [+ EscasE Y m 6 dz*
az (178) mcoso Ut (18)
Substituting Equations (6) and (7) into Equation (5) leads to
dZXI- / (
o Z** dZ ’ (19)
(£ +.5Cp)cosB +_£7 (md&‘"—;y}yé’)ﬁ I P+(I-5/2;ni)l']
/* &3 cas8/Yy*m | zZ cos B
() A Y (- 572 2
and
d z*? (% dz* ) * (20)

(6050 (G +.5Cp)cosO® +  £ylml)~=inb) 224
rmra* Ut e+ Ezcase/U'm

Equations (15), (17) and (19) are applicable to the development regicn of the jet and
Equations (16), (18) and (20) are applicable for the developed regicn, thatis, when
Z*/m>.3.

13



With the additional substitution

cos @ _ ___/_*U
[1r (g8)]™
s 60 = dX/dz*

L1+ (X 7az) 1"

the preceding equations are seen to constitute a set of differential equations to be

solved for Uj*, d*, and X* as functions of Z* and the parameters E1 , E2 R E3 , and Cp-

Initial conditions at the jet exit are
Z*¥ =0., X*=0., Uj* = 1., and dX*/dZ* =0,

It has not been possible to integrate these equations in closed form, but they
have been integrated numerically with the aid of a digital computer, The system of
first order differential equations is solved by means of a fourth order Adams

predictor/corrector method using a Runge-Kutta starting solution.

(3) Determination of Empirical Parameters

The parameter E, is determined by considering the results for a freejet, since
E, is the only parameter remaining in Equation (1) when Ue = 0. From the data of
Reference 6, Eo was originally determined to be .08, on the basis of measured entrain-
ment rates in the fully developed region of a jet exhausting into a quiescent environ-

ment.

The entrainment of amhient fluid into a jet in the development region will gener-
ally be a function of the exit characteristics of the jet and therefore will usually vary
from test to test. The entrainment characteristics of the jet of Reference 3 are shown
in Figure 2, It is observed that entrainment of fluid by the jet increases in the devel-

opment region and approaches the asymptotic value of Reference 6.

The variation of entrainment with distance from the jet exit has been incorporated
into the jet model by allowing Ez to vary in the development region. Knowledge of the
entrainment characteristics for the static case is, therefore, used in determining

crossflow effects. For the calculations presented in this report, the variation of Eq

14
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in the development region to its asymptotic value of .08 is based on the information of
Figure 2,

Cp is also varied in the development region to take into account the change in the
cross-sectional profile of the jet in this region. The relationship between Cyy and the
cross section of the jet which is employed in the computations has been obtained from

an investigation of the data presented in Reference 25 and is given by

: = -—} ; &. & +,4 l
o= |4 + & 4]0

where 40 is the ratio of minor to major axis of the ellipse representing the cross sec-
tion of the jet in the development region. This expression for Cpy was derived from
subcritical test data and thus the range of Reynolds numbers for which it can be con-
sidered valid is approximately 10’s Re=10°, Variations in Cp do not appear to have
a great effect on the predicted values of jet-induced velocities, so that use of the ex-
pression outside the Reynolds number range defined above is not expected to lead to

significant errors.

The parameters E; and Eg were chosen at values giving good correlation bet-
ween experimentally and theoretically determined jet centerlines and jet-induced sur-
face pressures. The details on the test data utilized are presented in Section II, 2.

This approach led to a final set of values of E; =. 45 and E5=30.

{4) Calculation of the Induced Velocity Field

To obtain the velocity field due to the jet interference, the entrained fluid is
represented by a uniform sink distribution along an axis normal to the mainstream
and the jet blockage effect by a doublet distribution along the jet centerline as shown
in Figure 3. The strength of the doublet distribution is obtained from the 1/Z term
in the complex velocity potential expansion W(Z) for the two-dimensional flow past an
ellipse. In effect, by replacing the jet with a doublet distribution, the flow past an
equivalent circular cylinder is being considered.

Consider an element of the jet, length és, centered at (X, 0, Z). The sink

strength per unit distance in the n direction will then be given by

# = | Eleedcos® ;o o (Ui-Uosing)C
1+ £3 .:os-é’/og’

&
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The velocity potential for a sink element of length én

@ = -4 dy
e

The induced velocity at a point P (Xp, Y., Zp) due to a sink element of length 47

p
will be
(22)
Vl = - ad/ar
iFrt
27 [(Z-2p) + (X-Xp)* +(+Y0)"]
The velocity component in the X direction is given by
Us = - d@F/or = -(d@/or)( Or/0x)
Performing differentiation with respect to Xp
Us = - .M dp o (23)
- Y S
dy = i dp (X=Xp)

47 [ (Z -ZP).Z + (X"XPV A (YP.‘_Y?):].SIZ
Similarly the induced velocities in the direction of the axes Y and Z are obtained

Va = ___iTo dn (Yotp) (24)
4| (2-2)% + (x-XpV + (Yptrp)* 17?

Ws = Al (Z-Zp) | (25)
4 [ ( Z-2pY* +(X- XY +(Yp +1g)? 132

18



- Equation {23) represents the velocity component in the X-direction due to a sink
element dn. Integration over the range — gsns% will give the velocity induced by a jet

element of length és,

Integrating ug:

o |
m (X-Xp)dg -
4ir | (Z-2pY* + (X~ XY +(YptpY ]2 (26)
=71
. A2
M (X-Xp) [ — an_ —
4T [(Z-2p)° +(X-Xp)* + (Yp +p)*]*?
=

Substituting in Equation (26) and evaluating from —d/2 to d/2 yields

A, = -_/m X-Xp . X (27)
47 [(Z-2pY r (X-Xp)']

Yp~diz o Yot+dilz }
[(Z-20 + (X-Xp)2 +(¥pcl2Y* 112 [(Z-Zp)*+(X-XpV+ (pdiz)* ]

Equations (24) and {25) can also be integrated to yield

Ne T y L . - (28)

241 | [(Z-ZpY +(X-XpV+ (Yp~d/zf ]2

l
[(Z- ZP')?-+ ( X‘XPY‘ + (YP +cd /Z)z]qz

SWs = -z (2-2p) ___ (29)

4 [(Z-Zo)+ XX

Yo~z i} Yo +djz
UZ 2o t(X XY+ (Yo JAR TR [E-ZoR + R H(prcy2y] ™
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Equations (27), (28}, and (29) give the induced velocity components at Xp, Yp, and
Zp due to replacing a jet element of length 45 by the sink distribution.

To this the blockage effect must be added. The strength of the doublet distribu~
tion utilized to represent the blockage effect of the jet is obtained from the complex
velocity potential for the two-dimensional flow past an ellipse. By equating the
strength of the doublet to the coefficient of the 1/Z term, the flow past an equivalent
circular cylinder is being considered.

For the two-dimensional flow past an ellipse

WE) = 3 U (Q+b)[ Q'-iu[z* z Y] + ez - (2% c?)"] ]
2 3+b prp— (30)

for flow along a, the major semi-axis. Rotating flow 90 degrees makes a the minor

semi-axis, b the major semi-axis, o= 0°,

WE) = L UG@w)| 2r@Eia)t | - (zioyn
z I+b T =555

From binomial expansion, the leading two terms in a series of inverse powers
are

W(E) = U=z + L U@b)(b)(/Z)

the coefficient of the 1/& term is equated to the strength of the doublet,p

In the coordinates of Figure 1

U- Ug, cos &

a = minor axis of jet

b = major axis of jet

AL = é Uno cO5E (3*5)/5)
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Considering the two geometric regions of the jet described in Equations (6) and '

(7} yields
o= I cgodzca_sé[i-- 5z _'L_J_ee]
P 4 do U_io
0<7Z*/m=<.3 y
A = 57 U d?cos &
32
/
Z*/m>.3

(31)

With the notation of Figure 1 the induced velocity held at a given point P (¢, n, ¢)

due to a doublet of strength u at (¢, n, ¢) = (0, 0, 0) may be evaluated

The velocity potential of a doublet is given by

@ = 2&. <5 &
4rr*

where r = [§2+,Izzf £2]hz
cos@=  /Jr

then

@ = 24 g
27 [Finie 5z

with the induced velocilies in the &, n and { directions being given by

Yg = - a¢/af
Vi = - OCD/a}Z
W= - 08/0%
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Equation (32) is differentiated to yield

U = -~GESU/ 4T (Fregte £2)2 -
Vi = -Golu/ar (Erpi £2)7 o
W = 2 _ _3%

| AT (F2 e % SONE {' (E2+ )7+ 57%) (35)

From the relationship between £,n,4, and X, Y, Z in Figure 1, it can be seen that

Olg = U, sinG + W cosé

36
éVB = -V 36)

AWz = U cosBG- W =in&

and

il

£ (Xp=X) sin® + (Zp"Z) cos &

4 = "
§ =  (Xp-X)cos® + (Zp~2Z)zmb

where éUB, $Vy, 8Wp are the induced velocities at P (Xp, Yp, Zp) due 1o a jet element
of length §s centered at (X, 0, Z), and ¥ is obtained from Equation (31).

The total interference velocity at a point may be determined by integrating Equa-
tions (27) - (29) and Equation (36) over the extent of the jet, giving the total induced
sink and doublet component velocities. These component velocities are then summed
to give the total interference velocity. In treating a jet exhausting from an infinite
wall, an image system of the singularity distributions is utilized to satisfy the bound-
ary condition at the wall. The flat plate pressure coefficients shown in Section II, 2
were computed in this manner. Boundary conditions for a wing or fuselage in the

presence of a flow exiting from a nozzle are discussed in Sections TV and VIIL

In the treatment of the blockage effect discussed above, the jet curvature does
not contribute anything to the doublet strength, Three-dimensional effects are
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accounted for through the doublet position and orientation and by calculating the
induced velocity field from the three-dimensional counterparts to the doublets.

For the lower velocity ratios (Ua,/Ujo), where the jet curvature is quite small,
this model can be expected to be a good representation of the physical situation. As
the jet curvature increases with increasing velocity ratio, the quasi-two dimensional
approach becomes less valid, Calculations of induced surface static pressures for the
higher velocity ratios (Ug/U jo~ .250) did not correlate with test data as well as did

calculations for the lower velocity ratios (Um/Uj o= +125).

Attempts were made to improve the correlation, by changing the entrainment
expression of Equation (1), without success. This suggested that some other
mechanisin was responsible for the lack of correlation between calculations and test
data. It was thought that jet curvature had not been adequately included in the model.
Also, it was argued that this curvature would allow relief for the crossfiow fluid
ahead of the jet and might be accounted for by applying a distribution of sources
along the jet centerline. One would expect the strength of the sources to be a
monotonically increasing function of the jet centerline curvature. Subsequently, it
was learned that Werner and Chang (Reference 50}, using a slender body matched
asymptotic expansion technique, had deduced similar results. Calculations of jet-
induced static pressures, using a source distribution, displayed markedly improved

correlation with test data.

The source distribution has been made pr'oportional to jet curvature and best
correlation with test data, over the range of velocity ratios , 1< Um/Ujog .3, has been
obtained by taking the source strength equal io three times the jet curvature.

The formulation for the induced velocity components at arbitrary points given in
Equations (21) to (36) is, of course, not valid for points inside the jet. Figure 4 shows
schematically, the variation of the downwash component induced in the plane of the jet
exit by a flow exhausting from a nozzle located at Y=0. The large variation across the
jet in the freestream direction is typical of the computed downwash distributions. Thus,
a certain amount of care must be exercised in choosing the control points at which in-
duced velocities are to be evaluated for use with the methods of computing forces and

momentg in Sections IV and VIII.

b. Arbitrary Jet Direction

Although the equations of motion for the jet model developed in the preceding

discussion are written for a jet exhausting normally into a cross flow, they are valid
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for any jet in a local coordinate system, oriented with the X'-axis in the direction of
the mainstream flow and the X'Z'-plane defined by the mainstream flow vector and the
jet exhaust vector, The direction of the mainstream, the location of the center as well
as the initial direction of the exhausting jet, and the position of the control points at
which induced velocity components are to be evaluated may be arbitrarily specified in

a general, fixed coordinate system as shown in Figure 5.

A local coordinate system, centered at Xj ) Yj . Zj is then established as shown
in Figure 6(a). The direction cosines of ?{’ with respect to the fixed coordinate system
A
are @ ﬂo ; }’0 and the direction cosines for Y' and 2’ are determined from the follow-

ing relationships,

—_— M o~
Y' o=V, x X
A NN
2= X'x Y

A
where Vj is the unit vector in the initial jet exhaust direction, obtained from ¢ and ¥,

the jet exhaust angles,

This establishes the co-planar relationship between the mainstream flow and the
jet centerline required by the equations of motion formulated for the normally exhaust-

ing jet.

Initial conditions at the jet exit (shown schematically in Figure 6b) are now

1- 003290

i 2
AA
Z*=0,, X¥=0,, U*=1,, d*=1,, and dX*/dZ* = 1 ] where cosfp= Vj* 2!

j cos?8,
Both 8, and the angle dj, the angle specifying the exhaust direction in the exhaust

plane, are shown in Figure 6(b).

Observations during the experimental investigation of Reference 3 showed that a
jet exhausting into the direction of the crossflow, §j>90°, appears to deform from its
initial circular cross section more rapidly than a jet exhausting with the crossflow,
$j<90°, Consequently, the development region, in which the jet deforms to an ellip-
tical cross section with a minor to major axis ratio of 1/4, has heen made a function
of the jet exhaust angle 8j. For §j>9(°the extent of the development region is defined
to be H'= H (cos 6,) and for §j<90° the development region becomes H'= H/cos 8,
where H = .3 Uj o/ U 18 the extent of the development region for a normally exhausting

jet, defined previously.

The geometry of the jet and the jet-induced velocity components can now be
computed in this local coordinate system, utilizing the equations developed for a jet

exhausting normally into a crossflow.
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2. COMPARISONS OF SINGLE JET COMPUTATIONS WITH TEST DATA

a. Jet Centerlines

Figure 7 shows a comparison between computed and experimentally determined
centerlines for normally exhausting jets, with velocity ratios of U,;,l-,/Uj o = +125, .250
and U°°/Ujo =,123, 233. The correlations shown in Figure 7 were instrumental in

the determination of the entrainment parameters Ej and Eg.

Extensive computations were carried out for jets at various velocity ratios and
exhaust angles. A comparison of computed jet centerlines with an empirical equation
for the centerlines of jets exhausting at angles other than 90 degrees to the mainstream
is shown in Figure 8(a) through 8(d). These correspond to Figures 12(a), 13(a),

14(b), and 15(a) of Reference 9. The solid curves represent centerlines computed for

the specified conditions. The broken curves represent the empirical eguation

di = - (Ue/U)” (__2__ \)5 - Z cotd (37

' 4sn? de clo

The curves superimposed on the photographs of Figures 12 through 15 of Refer-
ence 9 show the fit of this equation. It should be emphasized that the broken curves
represent an empirical rather than experimental determination of the centerlines.
They are included in Figure 8 primarily to aid in orienting the computed centerlines

with respect to the photographs of the jet wakes in Reference 9,

Figure 9 shows a comparison of experimental and theoretical jet centerlines for
a jet of velocity ratio U°°/Ujo =, 120 exhausting at various angles into the mainstream.
Since, in this figure, the agreement between theory and experiment is not as close as
might be desired, a comment regarding the differences is in order. It is noted that
the theoretical curves in Figure 9 employ values of entrainment coefficients based
partly on correlation with the experimental data of Reference 7 (Figure 7). Compari-
son of the experimental centerline for the normally exhausting jet of Figure 9 with
the test data of Figure 7(a) reveals differences which appear to be inconsistent with
the small change in velocity ratio. In view of these experimental differences for the
normally exhausting jet, the correlation for the jet centerlines shown in Figure 9 is

considered to be adequate.

A further comparison of theory with experiment for jets exhausting at an angle
other than 90 degrees is presented in Figure 10. Good agreement between theory and

experiment can be observed,
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b, Induced Pressures

Extensive computations to determine induced surface static pressure distribu-
tions due to single jots exhausting into a crossflow were carried out. Comparisons
between theory and test data from References 3, 12, 13, and 14, are shown in Figures
12 through 18 for a number of jet configurations, Figure 11 is a schematic of the
single jet arrangement, with surface pressure taps indicat:ad, employed in the tests of
Reference 3.

The surface static pressure variations with X/do at Y/do = 0 and 1.5 are shown
in Figure 12 for a jet with a velocity ratio Ua,/UJ. o = +125. Test data from References
3, 12, and 13 are plotted for comparison with the calculations. At Y/do = 0, the dif-
ferences between the test data of References 3 and 12 are within experimental accuracy
ahead of the jet, whereas the data from Reference 13 show significant differences.
Behind the jet there are discernible differences in test data, due in part to the unsteady
nature of the flow in this region. At Y/do = 1.5, the test data of References 3 and 12 are
seen to be in good agreement, There is some discrepancy between these data and the

data of Reference 13 in the region behind the jet.

The same static pressure variations for a jet with velocity ratio Ug/ Uj o= .250
are shown in Figure 13, At Y/do = 0, the data of References 3 and 12 are in good
agreement ahead of the jet, while significant differences are noted for the data of
Reference 13, Differences in the test data behind the jet are again evident. All three sets

of test data show good agreement at Y/do = 1.5.

The purpose of making these comparisons was to determine whether there were
discrepancies among data from different tests and, if so, the reasons for these dis-
crepancies, The data of Reference 3 are in good agreement with the test data of
Reference 12 except in the wake region behind the jet, where discrepancies might be
expected because of the unsteady nature of the flow in this area. The differences
between the data of Reference 13 and the data from the other tests could be due to
boundary layer effects. The plate boundary layer was thicker for tests of Reference
13 than for the others. Boundary layer thickness has been shown to have a significant
effect on the surface static pressure distribution (see Figure 5 of Reference 13). The
correlation among the sets of test data also gives confidence in the data of Reference

3 for inclined jets and multiple jet configurations for which there are no other data

availablie for comparison,
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The theoretical pressure variations show good agreement with test data in
Figures 12 and 13 for the regions ahead of the jet exit. It might be noted that the
agreement between theory and test data for the velocity ratio of . 250 was greatly
improved by utilization of the source distribufion to account for the curvature of the

jet, which was discussed on page 23.

There are significant differences between theory and test data in the wake
regions behind the jet. The singularity representation of the jet used to compute the
jet-induced pressure distribution assumes potential flow in the areas external to the
jet. Physically meaningful results can only be expected in regions where the flow
outside the boundary layer is potential. It is posgible that a distribution of sources
along the jet boundary may be used to represent the wake effects and to achieve better
correlation with test pressures in the wake region. Also, it should be noted that the
wake region is usually small with respect to the total area being investigated (see

Figure 15 for example},

Figures 14, 15 and 16 show the pressure distributions in the plane of the jet
exits around jets exhausting at angles of §j = 120°, 90° and 60° into the freestream.
When the jet is directed against the crossflow ( & = 12(°) extensive regions of negative
pressure result primarily ahead of the jet. As the jet exhaust angle changes to 90
degrees and then to 60 degrees, these regions of negative pressure are observed to
move downstream (Figures 15 and 16). Agreement between theory and test data is
noted to be betier for the 4j = 20° and 4j = 60° configurations than for the 4j = 120°
configuration. In all three cases, discrepancies between theory and test data exist in

the wake regions of the jets for reasouns discussed previously.

Additional comparisons between computed and experimental induced pressure
distributions around a single jet exhausting normally into the freestream are shown in
Figures 17 and 18, for velocity ratios of .125 and .089. The experimental data of
Figure 17 provide additional confirmation for the correlation between theory and experi-
ment observed in Figure 15. They also indicate that the theoretical results lie within
experimental differences. Very good agreement between theory and experiment is
evident in Figure 18. '
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3. MULTIPLE JET ANALYTICAL MODEL

The basic single jet analytical model has been applied to the computation of the
interaction flow field due tc multiple exhausting jets. A multiple jet configuration is
treated as a combination of discrete jets, with each jet (including jets resulting from
the coalescence of other jets) being replaced by its representative singularity distri-
bution to obtain the induced velocity field. In the development of the two-jet model

described in detail in this section two assumptions were made
e The leading (or upstream) jet develops independently of the downstream jet

e The downstream jet exhausts into a freestream of reduced dynamic pres-

sure which it sees as the result of blockage by the upstream jet,

Data from the wind tunnel investigation of Reference 3 have been analyzed to
substantiate these assumptions and to establish quantitatively the empirical relation-
ships utilized in the two-jet computations, Details of this analysis are also given in

this section,

a. Two-Jet Computations

Figure 19 shows the planform of three jet configurations in relation to the main-
stream flow. Arrangements (a) and (c) represent limiting cases, The arrangement of
(a) allows each jet to develop independently to the point where the growth of the jets in
the direction normal to the flow causes them to intersect, The configuration shown in
(c) places the downstream jet entirely in the zone of influence of the upsiream jet, The
downstream jet is located partially in the zone of influence of the vpstream jet in the
arrangement depicted in (b).

Although Figure 19 shows the relatioﬁship of the jets in the plane of the jet exits,
as an illustration, the determination of the degree of influence of the upstream jet
(JET1) on the downstream jet (JETZ2) can be carried out for each element of JETI,
as shown in the general case of Figure 20,

Plane 1., defined by the mainstream flow vector and the diameter of JET1, iden-
tifies the element of JET2 influenced by a given element of J ET1, Plane M, which
contains the mainstream flow vector and the local jet velocity vector of the given
element of JET1, is then established. The intersection of the plane M with the jet
diameter of the appropriate element of JET2 is computed to determine the extent to
which the two jets overlap.

42



(a) (b) (c)

FIGURE 19. JET EXIT CONFIGURATIONS

JET1

X:ane M /
" : | ‘

(@) by

FIGURE 20. SCHEMATIC OF JET INFLUENCE

43




An expression for the effective dynamic pressure which the downstream jet
"sees'' as a result of the blockage by the upstream jet, based on analysis of experi-
mental data will be derived in the following subsection. Configurations with complete
overlap between the two jets (jets aligned in crossflow direction) and partial overlap
will be considered, and the extent of overlap between the two jets will be a principal
parameter. Thus the influence of the upstream jet on the downstream jet is intro-
duced into the computations as a reduced freestream velocity, Ue/Uso= [do/Qeo)’? in the
continuity, momentum and force equations governing the development of the down-
stream jet.

When calculations of the distance bewteen the two jet centerlines indicate that
the jets have intersected, initial conditions for the merged jet which results are deter-

mined from the continuity and momentum considerations:

Ay + Azl = AzUs
(A:L.Iﬁ)%x' *(Azq;z)(.j/zx = (Azlsz) QISA S
Ah)yy +U2le)ley = (Asls) Usy

(AU Uiz #0Aelfz) ez = (Asls) Us,
where

Ay Az, A3 = area of JET1, JET2 and resulting merged jet, respectively
Uj1, Uja, Ujg =jet velocity of JET1, JET2 and resulting merged jet, respectively,

Initial conditions for the coalesced jet, in the local coordinate system centered
at the point of intersection of the two jets (taken to be an average of the coordinates of

the centerlines of JET1 and JET2 at intersection), are now

Z¥ =0., X* =0,, Up* =1., d* = 1. and dX*/dZ* = Ujgyr/ Uiz,

with the velocity ratio being given by Ux/Ujy = Uoo/Uj3.

Subscripts X' and z' denote components in this local coordinate system.

These initial conditions are employed in integrating the set of differential
equations for U=§, d* and X*.

The cross-sectional area of this coalesced jet is not taken to be circular as is
normally specified for an exhausting jet at Z* = 0, Experimental cbservations and cor-

relation with test data were instrumental in establishing the geometrical features of the
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initial cross section of the coalesced jet for different jet configurations. Details of

the initial geometry of the merged jet will be discussed in the following subsection.

The velocity field induced by a two-jet configuration can now be determined by
replacing each jet (including the coalesced jet) by its representative singularity distri-
bution, The induced velocity components due to each singularity distribution are addi-

tive at every control point,

b. Determination of Empirical Parameters

Analysis to substantiate the assumptions made for the two-jet computations and
to establish quantitatively the empirical relationships for the computational procedure

described above was based on the experimental data from Reference 3,

(1) Effective Dynamic Pressure for Downstream Jets

The blockage effect of the leading jet in a two-jet configuration may be deter-
mined from the test data., The centerline of a single jet exhausting into a crossflow
at a velocity ratio Ug/ UJ.0 = .125 together with test data from References 5 and 12 are
shown in Figure 21, The data from the three tests are seen to be in close agreement,
This is significant since all three tests were carried out using different values for the

jet-exit dynamic pressure.

Data for the two-jet configurations, aligned in the crossflow direction, are
plotted in Figures 22, 23 and 24 for the three different spacings between the jets.
These data, together with the single jet data, may be used to derive "effective velo-
city ratios' for the downstream jets, making use of a similarity relationship derived
in Reference 15. Tt was determined in Reference 15 that centerlines of single jets
with different velocity ratios are similar and that for a given displacement in the
crossflow direction, Ax/dgy, the penetration into the crossflow normal to the jet
exit is inversely proportional to the velocity ratio (U m/Ujo). By applying this
similarity relationship to a number of displacements, Ax/d,, of the downstream
jet, it is shown in Figure 25 that the centerline of the downstream jet in a two-jet

configuration is the same as the centerline of a single jet exhausting into a crossflow

of reduced dynamic pressure.

The information in Figure 25 has been used to obtain an empirieal relationship

for the dynamic pressure g o which the downstream jet ''sees, ' as the result of
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crossflow blockage by the upstream jet, in terms of the crossflow dynamic pressure,
Gee 2nd spacing between the two jets, s. It is given by

f_—q'; = S/de--\ { s/ce 71} (39)

Gen S/da +.75

The expression for lan/a,1"? given in Equation (39) is now used as a limiting value
when the {wo jets are aligned in the crossflow direction, when complete overlap

between the two jets exists.

The above expression has been derived from test data for which the Reynolds
number, based on freestream velocity and jet exit diameter, was approximately 2x 10°,
Comparison with jef trajectories from References 7 and 12, in Figure 21, indicates
that there is no measurable change in jet trajectory in the Reynolds number range
10°s Re£2x10°. However, it is possible that a large change in Reynolds number
could affect the jet path and consequently influence the formulation for effective dynamic

pressure given in Equation (39).

When the two jets are not aligned in the crossflow direction, an effective cross-
flow dynamic pressure, g 5’ which is a weighted mean of R and qq, is utilized. The
weighting of the dynamic pressure is determined from the degree of overlap between

the upstream jet and the downstream jet (see sketch below)

Thus

Vge = x1qe r (dz-x) {ge (40)

.=
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(2} Jet Decay Characteristics

The decay characteristics of the single jet and the three two-jet configurations
are shown in Figures 26 through 29. The information, obtained by analyzing the data
of Reference 3, is presented in terms of the jet dynamic pressure rather than the
impact pressure which has customarily been used. The reason for this is that the
decay of jet momentum is due to entrainment of ambient or crossflow fluid. Thus,
for jets of differing pressure ratios, the jet momentum flow parameter should be
invariant rather than the impact pressure parameter. This observation is supported

by the data presented in Reference 16.

Figure 26 illustrates that, in the presence of a crossilow, a jet decays ata
greater rate than when it exhausts into a quiescent environment, Figures 27, 28 and
29 show the dynamic pressure decay for the two-jet configurations at three different
jet spacings, The dynamic pressure has been obtained from the impact pressure by
assuming that the static pressure throughout the jet is constant and equal to ambient
pressure. Small variations in static pressure are expected but they should not affect
the general conclusions., The distance, s, along the jet centerline is measured from
the center of the jet orifice with the downstream jet exit used as the origin for the jet

resulting from the coalescence of the upstream and downstream jet.

From the data in Figures 27 through 29 it is deduced that the rate at which down-
stream jet dynamic pressure decreases with distance along the jet centerline, increases

with increased spacing between the two jets.

The decay characteristics of the upstream jet in each of the three two-jet con-
figurations, together with data for the single jet, are shown in Figure 30. Tt is deduced

that the decay of dynamic pressure for the leading jet in a two-jet configuration is inde-

pendent of the spacing between the two jets. Since the centerline of the leading jet is
algo independent of the jet spacing (see Figures 22 through 24) and identical to that for
the single jet, it is concluded that a leading jet in a two-jet configuration develops
independently of the downstream jet.

This result, along with the finding that the downstream jet behaves as if it were
exhausting into a crossflow of reduced dynamic pressure, is important in the applica-
tion of the analytical model to the multiple jet problem since it permits a two-jet

configuration to be treated as a combination of three discrete jets.
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(L] Geonietry of Merged Jet

Test observations seemed to indicate that the downstream jet, being the stronger
jet at the point of intersection, due to shielding by the upstream jet is the dominant
jet.

This feature of the two-jet interaction is readily discernible in Figure 31. The
dominant influence of the downstream jet on the characteristies of the coalesced jet
results in the high degree of penetration exhibited by the coalesced jet. This same
feature may be noted in Figures 22 through 24, As a result of these observations,
geometrical features of the initial cross section of the coalesced jet are treated as a
function of the jet orientation angle, £ . The jet orientation angle is defined as the
enclosed angle between the freestream vector and the line joining the centers of the
two jet exits.

For the jet spacings of the experimental investigation, it appears that best
correlation between theory and test data is obtained by employing an initial circular
cross section for the coalesced jet for jet orientation angles up to 20 degrees. For a
iet orientation angle © = 90° (the jet configuration shown in Figure 36) the geometry
of the jet cross section of the coalesced jet is initially represented by an ellipse,
with a minor to major axis ratio of 1/2.

At this time the functional relationship of the coalesced jet cross section with
orientation angle has not been established for the range 20°< Q < 90°. It should also be
noted that, while the above discussion is limited to jet configurations with a maximum
spacing of 7.5 jet diameters, the importance of establishing a relationship between
orientation angle and coalesced jet cross section decreases for large jet spacings, since
the effect of the merged jet on induced pressures in the plane of the jet exit diminishes.
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4. COMPARISON OF TWO JET CALCULATIONS WITH TEST DATA

Computations for a range of two-jet configurations were effected. Comparisons
between theory and test data from Reference 3 are presented in Figures 32 through
42,

Comparisons between predicted and experimentally determined pressure distri-
butions in the plane of the jet exits around two-jet configurations with spacings of
2.5, 5 and 7.5 jet diameters are shown in Figures 32 through 34. In the computations
shown in Figures 32 through 34, "effective velocity ratios” of .058, .087 and .098
were utilized for the downstream jets at the respective spacings of 2.5 do, 5 do and
7.5 do. These are based on an actual velocity ratio of . 125 and the relationship
between crossflow dynamic pressure, q_. and the reduced dynamic pressure experi-
enced by the downstream jet as given by Equation (39). For the spacing of 2.5 diam-
eters it may be noted that the pressure distribution is similar to that induced by a
single jet exhausting into a crossflow, although the regions of negative pressure are
more extensive. As the jet spacing increases, the downstream jet is seen to have its
own, discrete effect on the pressure distribution. Isobars of Cp = -,3 are noted
around the leading jet and the downstream jet in Figure 33; and in Figure 34, which
shows the larger jet spacing, isobars of Cp=-.2, -.3, are noted around each jet.

Generally good agreement between theory and test data is discernible for all
three jet configurations. It should be pointed out that relatively small differences in
measured pressure coefficients at stations of constant Y/ do’ when the variation with
X/ do is small (i.e., when the curve is very flat) can lead to what appear to be much

larger discrepancies in the position of the isobars shown in the figures.

Theory and test data for the centerlines of the three two-jet configurations above
are shown in Figures 22 through 24. Generally, the prediction for the centerline of
the coalesced jet does not achieve the degree of penetration exhibited by the experi-
mental data.

Figure 35 shows a sketch of a two-jet configuration, indicating the location of
pressure taps, and defines the sideslip angle 8. The variation of induced pressure
with angle of sideslip for this configuration is shown in Figures 37 through 39.

Figure 37 shows comparison between theory and experimental data for induced
pressure variation with X/do at Y/do = 1.5 and 3.0 for zero sideslip. Figure 38 shows
the same comparison for a sideslip angle 8= 20°. The effects of positive sideslip

are seen to be an increase in the magnitudes of the induced pressures in the region
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ahead of the leading jet exit and a decrease in the region immediately behind it.

Figure 39 displays the effects of a sideslip angle 8= -20° on the above pressure dis-
tributions. Negative sideslip is seen to reverse the two effects discussed. It results
in a decrease in the magnitudes of induced pressures in the region ahead of the leading
jet exit and an increase in the region immediately behind it. These trends in the test
data are also evident in the computed results. For both positive and negative sideslip,
the downstream jet is discernible as a more discrete influence on the pressure distri-
bution when compared to the zero sideslip configuration. This feature of the induced

pressure distribution is predicted quite well by theory.

The correlation between theory and test data in Figures 37 through 39 and the
effects of positive and negative sideslip are representative of results obtained for a
two-jet configuration with a jet spacing of 7.5 diameters also. Figures 40 and 41 show
the pressure variation with X/d0 at zero sideslip and at £ = 20° for a two-jet configu-
ration with a spacing of 2.5 diameters. The correlation hetween theory and test data
is seen to be very good for the zero sideslip condition of Figure 40. Noticeable differ-
ences between theory and test data exist for the 8 = 20° case of Figure 41.

At zero sideslip, [qo/dw)? = .46 for the downstream jet, as computed from
Eq. (39) with s =2.5 do. This means the downstream jet "sees' a low crossflow
dynamic pressure and, consequently, does not exert a strong influence on the induced
flow field. The assumption that the upstream jet develops independently of the down-
stream jet is therefore justified, despite the close jet spacing. The good agreement

between theory and test data in Figure 40 supports this conclusion.

At 8=20°, lge/qwl? = .93 for the downstream jet , as given by Equation (40),
The jet now has a stronger influence on the induced flow field. This strong influence,
together with the close jet spacing, makes the assumption that the upstream jet
develops independently of the downstream jet no longer representative of the physical
situation. Further mutual interference effects between the two jets must be included
to improve correlation between theory and test data.

Figure 36 shows a schematic representation of a two-jet configuration with a
spanwise jet spacing of 7.5 diameters. Theoretical and experimental pressure varia-
tions with Y/d0 are shown for five stations of constant X/d o in Figure 42, As expected,
correlation between computed answers and test data is better at stations ahead of the
jets than at stations immediately behind the jets. The wake region of the two jets is
clearly defined at station X/ dO = 1.5 in Figure 42(d). Correlation again improves
farther behind the two jets where the importance of wake effects tends to diminish.
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5. APPLICATIONS TO MORE COMPLEX CONFIGURATIONS

As outlined previously, the computational procedure treats each jet in a multijet
arrangement as a gingle jet, with shielded downstream jets exhausting into a cross-

flow of reduced dynamic pressure.

This approach does not restrict jets in a multijet arrangement to have the same
velocity ratios. Figure 43 shows the computed pressure distribution around a two-jet
arrangement with the leading jet at a velocity ratio of . 215 and the downstream jet at

a velocity ratio of .150. Test data are also shown for comparison.

The extension of the computational procedure to the treatment of more complex
jet configurations was effected for a three-jet arrangement. In the three-jet configu-
ration sketched below, Sl is the distance between Jet No. 1 and Jet No. 3 and 52 is
the distance between Jet No. 2 and Jet No. 3.

Jet #1 Jet #2 Jet #3
UCB
me Q O \J
b

The effective freestream dynamic pressure into which Jet No. 2 exhausts is

obtained from the relationship for the two-jet configuration given by Equation (39), where
8 is the spacing between Jet No. 1 and Jet No. 2 above. The crossflow dynamic pres-
sure which Jet No. 3 ""sees' is given by

L a—

Qe = I 5 --~i__]léaﬁj__ -! {Sz/do?\?s (41)
qm . :S(/do-r,'?:‘}- 52/()(,1" 751 )

Equation (41) accounts for shielding by both of the leading jets on Jet No, 3. If
8o is very large, there is effectively no shielding and [qe/ q m]V =1, If 81 is very
large, only Jet No. 2 provides shielding, and

\f -~ Szfde -1
’ r/d;_,i'.75

Both jets contribute to the reduction in dynamic pressure when Jet No. 1 and Jet No.

2 are close to Jet No. 3.
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Figure 44 shows a sketch of the three-jet configuration tested in Reference 3.
The computed centerlines for this jet arrangement are shown in Figure 45, A com-
parison between predicted and experimental pressure variations at spanwise stations
of 1.5 and 3.0 jet diameters is presented in Figure 46. In the computations shown in
Figures 45 and 46, "effective velocity ratios" of .058 and .069 were utilized for the
two downstream jets spaced at 2.5 d0 and 7.5 do from the leading jet, respectively.
These are based on an actual velocity ratio of . 125 and the relationships for reduced
dynamic pressure of Equations (39) and (41). Good correlation between theory and
data is noted.
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SECTION I
MAPPING METHOD FOR ARBITRARY CROSS SECTION

To use the transformation method and the nonlinear body aerodynamics method
which are described in Sections IV and VI, it is necessary to have a method of mapping
an arbitrary wing or body cross section into a unit circle. It is the purpose of this
section to describe the method developed during this investigation to obtain such a
mapping.

There are numerous methods available to map specific shapes into a unit circle
such as the Joukowski transformation for wings. It is also possible to map polygons
by the Schwarz-Christoffel transformation, but this transformation maps the polygon
into a straight line, not into a circle.

The only suitable transformation for mapping an arhitrary section into a unit
circle is that developed by Skulsky in Reference 46. This method uses a procedure
gsimilar to the Schwarz-Christoffel transformation. This method would be suitable for
the mapping required by the programs developed during this study except for the
following restrictions on the method. First, the method replaces the cross section by
one made up of straight line segments giving only an approximation to the desired
shape. Second, the mapping procedure is an iterative one and the question of con-
vergence in the iteration arises. Third, a large number of terms in the mapping are
reQuired.

These restrictions are not so severe as to prevent the use of the Skulsky method
for the present study program methods, but the method is restricted to symmetrical
shapes and this restriction means that general airfoils could not be treated. For this
reason, it was decided to develop a mapping function which would be more suitable
for the present study. i

The mapping method developed in this section presents an alternative approach
to the computation of a mapping function. This method is not restricted to symmetri-
cal sections and does not require any iterative procedure. The mapping is obtained
by finding the potential for an arbitrary section which corresponds to a simple vortex
flow about the corresponding circle. The potential is equated to that for a circle
and equivalent points are located on the mapping circle. Knowing the point-to-point

correspondence, the mapping function is then obtained.
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1. COMPUTATION OF COMPLEX POTENTIAL FOR VORTEX FLOW

The method used to obtain a mapping function is to develop a potential function
about an arbitrary shape which satisfies the boundary condition of no flow through the
body and behaves as a simple vortex flow at large distances from the body. This
expression is written in body plane coordinates (see Figure 47) and is compared to
a similar flow about a circle expressed in circle plane coordinates, which is a well-

known function.

The complex potential of a vortex flow about a circle is

42
W=¢+il =itng “2)
The velocity in the circle plane is
iﬂ=- ; =_£_ 43
9% Uerive =7 (43)

To obtain the corresponding velocity about an arbitrary section it is necessary
to obtain an analytic function of Z which satisfies the boundary conditions at the body
and behaves like i/Z at large distances from the body. It is possible to obtain such a
function by writing the velocity in the body plane

dwW , {

d—z-=-ub+u.vb=';,_—ﬁ(z) (44)
where £(Z} is some function which approaches 1 as Z approaches infinity and which is
chosen to satisfy the boundary conditions at the body. By writing the velocity in terms

of polar coordinates i.e.,

- Sl e - LA (2) 5)

satisfying the boundary condition at the body reduces to finding a function f£(2) which

matches a specified variation of @ around the section.

Assuming temporarily that the section to be mapped is smooth, that is has no

corners, the log of Equation {45) can be taken to give
b Vy=ta=-LT - tn 24 tn 5 (2) (46)

and 1n Vb and « are conjugate functions. Thus, if 1n f(Z) is taken to be a Laurent
series with no nonnegative powers, l.e.,

-b . -b
Q(Z)-hf(Z)-—d'%“_,-ﬁ aa*lbz-* a.s"‘ 3+'._.-

Z° Zz3 (47)
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the coefficients of this expansion can be chosen to obtain any desired variation of a
about the body.

This gives the expression for the complex velocity in the section plane as
~ido_ L. e9(B) 48
Vbe z € (48)

When the section to be mapped has corners a will be discontinuous and it is necessary

to obtain an expression which has similar discontinuities. Assume that a corner exists

k
Z m.
on the section to be mapped at Z = Zm. Then, the factor ( - -Z—-)

where

= _QC%m
Am - W'ﬁdam

will have a singularity at Zm with a discontinuity in angle of Aam. This can be shown
by comparing the limits on the two sides of the corner. Letting Z = Zm - AZ

A, .Q,,, i (=T~ w)4
(- ety T

y . (/—%”-’ Am=.4m.&u (-%:—) +i Ay (a_-T-w)

Again, letting Z = Zm + AZ

(, Em )4 (E) - [_4_3_ e "("“*'w_)]""
Z 2/ LRy
Zm)Am_ As),
""’(,__2_ —Am.&m(ﬁb)ukm (m,s'w)
subtracting these two expressions gives
ihm(a,-a_+T)=-i dapy 49)

which is the result sought. The magnitude of this factor gives an infinite velocity for

an outside corner and zero velocity for an inside corner which is to be expected.
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The complex velocity for an arbitrary section can thus be written
, . M A (g)
-i& . _ .t _ gﬂ) m_9 _
Vpe = 1T (1 r 7 (0)
ms/
where M is the number of corners. This expression, being written wholly in terms of
the section coordinate Z, can be evaluated directly.
Defining,
Zm ig,

=% =Hme

the log of this function can be written
M M
I lfy-ia = Z; A, I pipm-tn Rbn(m; Am am-rr—w)+g(z) (51)
The imaginary part is
M
a-Tr-w+ Z’Am By == (g(z)) (52)
mua

The left hand side of this equation is a continuous and periodic function of s and can be
evaluated at any point on the body. This makes it possible to evaluate the coefficients

of g(2Z) to satisfy the boundary conditions to any degree of accuracy desired.

Letting

M
emx-M-w "‘"Z’km Bm+ym(9(‘z))

where

N
bn C0S nw —@n Sin nw
fm(g(Z))=z . n .
n=f Rb

and setting

E'=_9§ €®ds

E represents the least square error in fitting a. Differentiating with respect to each
of the a's and b's and setting the results to zero

=13
—_—=0
an-

& _

abj

gives a set of linear equations solvable for the a's and b's,
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Once these coefficients are determined, the real part of Equation (51) can be
evaluated and Vb obtained. Then, comparing the potential functions in the circle plane
with that about the section gives

_2WfVyds
e fvbds (53)

where ¢ is the angular distance about the circle. This gives a relationship between the
points on the section and points on the mapping circle which permits a mapping to be
obtained,

2. COMPUTATION OF DERIVATIVE OF MAPPING FUNCTION WITH CORNERS

Once it is known which point on the section maps into which point on the circle
it is relatively simple to obtain the mapping function, and this relationship has been

obtained above.

The derivative of the mapping function can be written as a Laurent's series in ¢

as
dz ., ds dn
= =] + ETERER — DN
ds 7z 7 rer (54)

the 1/¢ term being zero for a closed section. It can also be shown that

dZ _ ds i(a-6-T/e)
€~ Rde® )

when the mapping is evaluated at the mapping circle. Then the coefficients of the
mapping can be evaluated as follows. The radius of the mapping circle can be deter~

mined by 3efting,

f.’. dZ g =2

¢ d§
or
/ ! (-0 — d x:)
2?7": -f-’:me‘(“ e me)d_;d(fce‘ )
2 = -;i—fe"(“'e'me)ds
or

*cgz—’fr'fe {a-0-mfe) ds | (56)
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similarly

fc " g2 dg =2md,

2mid, =f;~c”"e {(n-n6 —3—,:59 e {@-9- 7’/2)4' rc e‘9de
e

Since it has been shown above how to evaluate ¢ as a function of s it is possible to

obtain the derivative of the mapping function.

It is possible at this point to integrate dZ/d{ directly and to obtain the mapping
function, When the section to be mapped has corners, however, the region in the
vicinity of the corners is not mapped accurately unless an extremely large number of
“terms in the mapping function is retained. For this reason, it is desirable to rewrite
dZ/d¢ in such a manner that the corner singularities are expressed explicitly, This
requires that dZ/d¢ be wrigzen as

JZ _ M _ fxm ( N A )

& —;JI (1 %M_J T (1 +HZ” .c_nﬂ (58)

It is now possible to expand the product factors of Equation 58 by binomial expan-
sion, complete the expansion by further multiplication and the terms equated with like
terms of Equation (54). This results in a set of expressions which can be solved for
the A's, Eqguation (58) allows a satisfactory mapping near the corner points with a
limited number of terms but cannot be integrated directly to give the mapping function
analytically. It is possible to integrate (58) numerically, however.

3. COMPUTATION OF MAPPING FUNCTION

The computer programs written for the transformation method and the nonlinear
body aerodynamics method do not permit the use of the derivative of the mapping func-

tion but require that the mapping function itself be known and be written in the form.

C
E=§'+Co+-r—’-+-----'+§—’,’, (59)
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To obtain the mapping function in this form, the expression of Equation (58) is expanded

to obtain the derivative of the mapping by expanding each of the terms
Adapy,

(1-m) 7"

by a binomial expansion., These expressions are then multiplied together and also
multiplied by the summation term in Equation (58). This results in an expression for
dZ/d¢ which can immediately be integrated analytically into the form of Equation (59).
This integration allows calculation of all the coefficients of Equation (59) except for Cye
To obtain <, it is necessary to compare the original and the mapped section and shift
the mapped curve to best reproduce the original crosgs section. The amount of shift

required is then the value of co.

4, SAMPLE CALCULATIONS OF MAPPINGS

This method has been used to map several sections. Figure 48 for example is a
mapping of an extremely thick Joukouski airfoil which was mapped since the exact point-
to-point mapping correspondence could be determined. Shown on the figure are both a
complete mapping from the physical coordinates of the airfoil giving anh excellent repro-~
duction of the airfoil with the exception that some error is introduced near the trailing
edge, and a mapping starting with the true ¢ distribution which shows even better

agreement. In the complete mapping twenty terms of the expansion for g(Z) were used.

Figure 49 shows a mapping of a 65-010 airfoil using the above method. In this
case only ten terms of the expansion were used so that the agreement in this case is
not quite so good, although still satisfactory. To obtain this mapping it was necessary
to place a singularity within the airfoil at the center of the leading edge radius. With-
out this additional singularity an unsatisfactory mapping was obtained.

Figure 50 shows a mapping of a much more difficult section, the section being
that of a T-38 section in the region where the jet inlets are adjacent to the body. This
section, which is symmetrical, has five discontinuities on each side. The mapping
was made using twenty terms in the expansion for g(Z). The resultant agreement

between the true section and the mapped section is very good.
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FIGURE 50,
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SECTION IV
TRANSFORMATION METHOD
1. INTRODUCTORY REMARKS

Under the assumption of inviscid flow, the force and moment on an immersed
body arise from the pressure alone. Thus, the problem is that of determining the
pressure distribution on a wing or fuselage with one or more jets exhaust-
ing into a uniform crossflow. The flow is assumed to be inviscid, incompressible
and irrotational. The wing or body configuration can be fairly general as long as its
cross sectional profile can be mapped into a ciccle on a two-dimensional space. The
governing differential equation for the motion is the three-dimensional Laplace
equation (viscosity has been implicitly included in the jet model), The boundary
condition is the usual flow tangency condition,

In addition to these assumptions, we further assume that the presence of the
body has negligible influence on the jet. Thus, the jet flow field, i,, may be computed
independently and used in the formulation of the boundary conditions for the present
problem.

-
The total velocity vector, ‘5. , may then be written as:

"?’: Um-i-?j-i-;{-i- A (60)

where EL,is the freestream vrelocit:y,A ? , the perturbation velocity due to the presence
of the body in the freestream, and fhis the perturbation velocity due to the body
presence in the jet induced flow field. The problem of determining fz. is here termed
the power-on problem that of determing U +‘i.' , the power-off problem and that of
determining i_ 12, the power-effect problem. Emphasis will be placed on deter-
mining the power effect since we assume that methods already exist for determining
the power-off pressure distribution,
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Thus, the problem is reduced to that of solving for the perturbation velocity
-t
'i-z , in the presence of a body and a given jet induced flow field, ?-} . The governing

differential equation, as mentioned above, is the three-dimensional Laplace equation

¢ 3¢ _
31'." + 33 a#z * 331- - OJ (61)

where x, y and z are body-oriented coordinates (Figure 51) and ¢ is the perturbation
velocity potential. The perturbation velocity components are U, = 3?_- . V= - l“b—
wo T 2 . The perturbation velocity vector may then be written as:

2%

7 = wivuiruk (62)

The problem is then to find a solution of Equation (61),subject to the boundary
conditions that

=3 -4
( ?1- — 3md ) n=0 on the body surface, (63)

and grad ¢ vanishes at infinity. The vector R refers to the body surface outward
normal,

It is possible to obtain a numerical solution to the problem by applying Green's
Theorem using distributed singularities on the body surface. The basic formualation
of the problem would be similar to that given by Hess and Smith in Reference 17.
This approach, although giving a numerically exact solution, is not convenient for
the present investigation for two reasons. The first reason is that a large amount of
computing time is required to generate solutions for practical problems. The second
reason is that a large number of control points are required to describe the body
geometry.

Thus, in this investigation, a gquasi-two-dimensional method has been developed
which is an approximate solution to Equation 61 and satisfies the boundary conditions
in an approximate way. The technique consists of essentially two parts which corre-
spond to two steps in the computation and are called the segment method and the
three-dimensional modification. Step (1), or the segment method, consists of
obtaining an approximate three-dimensional veloeity potential by determining exact
solutions of the two-dimensional Laplace Equation at a number of body stations. In
Step (2), this velocity potential is modified to better satisfy the three-dimensional
Laplace Egquation,
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Step (1), or the segment method, is an application of slender body theory in
which the x-derivatives are neglected in favor of derivatives in the other two direc~

tions, Thus, the governing differential equation reduces to

%{% %?-o (64)

The boundary conditions are then
——Q ?J on each y - z section (65)

and grad2D4> vanishes at infinity, where ; is an outward normal to each y-z section.
This boundary value problem may now be solved by first mapping the contour of
every y-z section into a circle and then using the method described in the following
subsection, The potential so determined involves x as a parameter and may be
written symbolically as ¢ (v, z;X). These potentials could, however, be consolidated
to form a three-dimensional velocity potential. This latter potential will not, in
general, satisfy the three-dimensional Laplace equation. To remedy this, a techni-
que is developed as Step (2).

Step (2) is, in effect, an alternative method of including some three-dimensional
effects in the problem in place of the usual procedure employed in the slender-body
theory. (A general description of the slender-body theory may be found in
Reference 18.) The present technique is based on the fact that failure of the consolidated
potential to satisfy the three-dimensional Laplace Equation impliés local violation of
conservation of mass. To remedy this deficiency, a distribution of residual sources
and sinks are included. -

Inclusion of these residual sources and sinks supplements the old velocity field,

?;- - gradZD ¢y, 2;x), and is denoted by -?;. The existence of the body will also
have to be recognized in this supplementary field. To do this, we again use the
segment method. The new flow field after Step (2) may then be written as:

i ]

F- ?'; - Grodyo (Y 35%) "'z - grad, & (4,3;2) (66)

This process could, in principle, be repeated, Each time when the process of three-
dimensional modification is involved, two more terms, similar to _?;and gradZD 4’5 )
would be added to the above expression.
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2, COMPUTATION OF FUSELAGE PRESSURE DISTRIBUTION

As stated above, the present technique comprises two steps, the segment
method and the three-dimensional modification. The former can be used inde-
pendently, whereas the latter, being a modification procedure, must be used in con-

junction with the first step. Some details of these two steps will now be discussed,

a. Segment Method
(1) The Boundary Function

The method is, in effect, a numerical extension of the procedure described
in Reference 19, The problem considered in Reference 19is that of determining
the complex velocity potential for a ¢yl nder moving two-dimensionally in
infinite fluid at rest at infinity. The motion of the cylinder is described by a
velocity of translation U and an angular velocity w. Let C be the contour of
the cylinder cross-section and O the origin of coordinates about which the
cylinder is rotating,

Z-plane ¢ -plane

+y
Using + xw

Y

/)

PHYSICAL PLANE MAPPED PLANE
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Suppose the region outside C in the Z-plane is mapped conformally on the outside of
the unit circle  [¢1 =] inthe §-plane by the relation

z = £(s) (67)

with the points at infinity in the z and § -plane corresponding. Again, following

Reference 19, the normal velocity of the cylinder along the outward normal is
g ¢
(U coso - gtw) sin@ = (Usinu + zw) cas @
in which 9’ is the inclination of the tangent to the x-axis. Thus,
¥ _ (Ucasa’yw)—o—(i - (Usinx +1w)g'zf'
25 ds S (68)

Integrating along the cylinder boundary, we get

i 1 . T 2 ,1
W=Uzs.na—Ugcosa+2w(7-+g)+6 .

where B is an arbitrary constant which, without loss of generality, may be set

equal to zero.
Thus, ¥ is equal to the imaginary part of the function
- ~e% Z
Y o= - = Lwr?
f( Z,2) Ute +3
so that finally, on the boundary of the cylinder, the stream function Y is such that
Y 1 - o -
2i¢=-Uze +UZe +iwi? (0)

Let 4g= e"a denote a general point on the unit circle in the ¢-plane. Then, on
the unit circle, Equation {70) gives

209 = Bla)=-Ufte) €+ UR(F) ™+ cwf)F(F)

This function, B(4), is called the boundary function by Milne-Thomson.
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If the boundary function is expanded in a power series in 6 , we can write

B(s} = Bia) + 8,(d)
where 8;{g) contains the negative powers of ¢ only so that 8,(g¢) is holo-
morphic ( 8,(¢) is finite, single valued and has a finite single valued differential

coefficient) outside the unit circle and vanishes at infinity.

Thus, in terms of the complex velocity potential function W' {¢), Equation(71)

may be written in the form

w(c) - W(g) = Bi(c) +B,(c) (72)

Let 7 be the circumference of the unit circle. Then Equation 72 may be used

to obtain
J | wiwidd _ ! [wgids _ ! [8odd | 1 | g(n)de
ni d~ ni| o-¢ 2mef 4-§ me)  g-%
7 7 7

. el ‘
Now, W($)and B($) are holomorphic outside 7, while W (g ) and By(Z)
are holomorphic inside 4. Therefore, if $ is outside ¥ , application
of Cauchy's Theorem shows that the second and fourth integrals vanish and
the first and third give

w(s) = B, (5) (73)

Thus, Equation (73) gives the complex velocity potential as a function of 5.

Elimination of § between Equations 67 and 73 yields the complex potential
as a function of 2,

In summary, to determine the complex potential W(Z), it is necessary to
know the mapping function of Equation 67 and the stream function on the
boundary of the cylinder (Equation (70)). The boundary function in the circle
plane may then be determined and, hence, that part which contains only
negative powers of § . The complex potential is then immediately deter-
mined.
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{2) Application of Boundary Function to the Segment Method

Although a cylinder under translation and rotation was given as an example
of the boundary function, this approach may be used to solve more general problems
in which § may be determined around a contour for which the mapping into a unit
circle is known.

Consider an elongated body with its longitudinal axis aligned in the direction
of the freestream (Figure 51). Let the velocity components in the x, y and z
direction be denoted by u, v, and w respectivaely. The body is divided by cuts as
shown and the volume adjacent to each cut represents a segment.

From the computation of the jet flow field (see Section Iy, we know what the
jet induced velocity components of u, v and w along the cross sectional boundary of
each cut would he if the body were not present. Due to the presence of the body
segment, we must satisfy the boundary condition that no fluid penetrates the surface
of the body segment. In the method of segments, this boundary condition is not, in
general, satisfied exactly, It is satisfied approximately by moving the cross section
of each cut in such a way that the velocity component normal to the cut is equal and
opposite to that induced by the jet. Thus, application of the boundary condition does
not account for growth of the hody in the x-direction.

The method developed in Section ITI may be used to determine the rhapping
function of Equation 67 so that the problem of obtaining the complex potential and,
hence, velocity and pressure distribution, is reduced to one of determining the
stream function on the given boundary.

Following the procedure for determining a boundary function, we first transform

the cross sectional area of each cut to a circle by the mapping function

Z= ¢-+b, +—-t21-+£.2-+“‘+--—* ’

5§ ¢ §"

where Z =y + iz (physical plane}, £ = reu9 (mapped plane).
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The complex constants bO, bl’ ‘e bn’ which signify the geometry of the cut,
are determined by the procedure discussed in Section III of this volume. The complex
potential on the mapped plane due to the motion of each cut is assumed to be

(J.-.

W:cp-ri“lJ:ﬂ?ﬂnf“f'%L*'%*“ gn‘ (714)

To compute the boundary function for every cut, we write

When we perform the integration of this formula along a circle where the variable

r remains unchanged, it reduces to

o _ 6
Y 2 Y 7, _ 0 3
v=[ (553 51)49--ﬁ%'5§-9£)d9, s
0

where vj and Wj are the jet induced velocity components.

If we set the upper limit to 2 1, this integral gives the net flow of fluid
through the boundary. This may not be zero, due to the fact that only two velocity
components have been accounted for instead of three. This source or sink inside the
boundary is accounted for by the logarithmic term in Equation 74 .

We first determine the coefficients a - &, in Equation (74) by consider-

1°
ing the periodic part of Equation (75), Thus, we form

W=y + j(w-’-ei 4,22 ) do
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The boundary function zpl can now be expanded in the form of a Fourier series
by the usual method

n n
\P' = Z A,Ccesn0 + Z 8, Sinnb
n=0 n=j

The boundary function may now be used to determine the coefficients ayy -

a in Equation (74, and, hence, determine the potential for the flow which will
cancel the normal component of velocity calculated by the jet program.

The first term in Equation (74) represents the source and circulation potential, and

will be considered later. The coefficients, a;, a C A, of the remaining terms

A
. : x =gt i .
may be determined by equating them to An and Bn' Setting a,=aj +1i a'i, 2, =8y +

ia'z',...,weobtain
: J " I'4
& a4 g% g4 (76)
AsT BT g AT B
or .
a|=_rb8|+1'rbﬂl)

O,= =Yy B, +i 1y A, ,

L ] Ll L

; ..
A, = _rb"Bn-f- v, An_

where Iy is the radius of the mapped circle.

To evaluate the coefficient of the logarithmic term in Equation (74), we write
Ao bnl = 2y bnr + i,
For a body without circulation, a, is real and is given by

ds = a; = —ﬁ (m%ng_ --'U‘:i‘i)d.e

f=3
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Thus far, the complex coefficients in Equation(74)have all been determined,
which sets the flow through every cross section of the cut to zero in a predetermined
external flow field. The complete complex potential is then the summation of Equa-
tion 74 and the potential induced by the exhausting jets. Once this potential
is known, it is a relatively simple matter to write a computer program to calculate
the pressure distributions along the boundary of every cut, which result in the power
effect by the segment method. Sample calculations are discussed in Volume II.

b. Three-Dimensional Modification

By establishing the real part of the complex potential in the physical plane, we
obtain the velocity potential at every point exterior to the body on the planes passing
through the cuts. These velocity potentials all exhibit the same form except that
their coefficients are different from one plane to another. In other words, every
coefficient is actually a function of x. To show this parameter x explicitly in

Equation 74, we write the velocity potential at station x, with the help of Equation (76)

$(43;2) = alrfar + B[ AL2)sin6-B12) cas6)

At : 77
rbm[“z(")slﬂw B,(x) Cos20] + - —"’—’,I-,?[A,,ﬂ)sinne—Bnmcosnﬂ] an

in which r and 8 are functions of y and z given by the mapping function. By consoli-
dating these expressions from every station, we could construct a three-dimensional
velocity potential. This potential does not, however, satisfy the three-dimensional
Laplace equation. To remedy this deficiency, we proceed to Step (2).

In Step (2), we first divide the region of the flow field into a network of small
parallelepipeds whose ""centers" are situated on the planes passing through each cut
(Figure 52) and then compufe the flux through the surfaces of each parallelepiped by
using the available velocity potential. To account for this flux approximately, we
have

— [ 24 31r _Q___
Qi"‘ 31. )"‘

in which the partial derivatives are evaluated at the center of the parallelepiped and
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AV refers to its volume. Upon denoting the potentials at this and its neighboring
stations to be 4"- Py , 4’.—,,, , and the velocity components to be # = - gif- ) b"=—2{k'

?ﬂ s 4.

and w = - 2% , we obtain

33
b, ¢, .. ]av

Qf: =-2 [’(1.'-;“1‘;)(1;.."1;-”) - (z.'-l'z.')(l'; “Zier) ¥ (Ii‘laziﬂ)(.li-liﬂ)

.

The quantities in the bracket represent an approximation for the partiai derivative

é’ Bﬁ%ﬁ_ These reduce to the central difference formula for stations of equal
intervals. The sum %+%—; is always equal to zero, since c?‘ is the potential
obtained by the segment method. However, the net flux Q- computed in this manner, is
not in general equal to zero. This implies that fluid has been created or destroyed
within the parallelepiped. In other words, the Laplace equation has a residual term,
since the continuity equation and the Laplace equation are equivalent. To counter-
balance this residual term, a source of the same strength but of opposite sense is
placed at the center of the parallelepiped, so that the three-dimensional Laplace
equation is approximately satisifed in its neighborhood. Repeating the process for
each parallelepiped yields a network of residual sources and sinks in the space. These
sources and sinks create a new field which will modify the old one.

A schematic diagram for the parallelepiped network is shown in Figure 52.
Though there are only two layers and few parallelepipeds indicated, it is understood
that for computational purpeses we need at least four or five layers to cover a space
extending several body diameters outward. To illustrate the effects of residual
sources and sinks, let A be an arbitrary point on the body surface (Figure 52) with
the coordinates Xy ¥q and z,- Let the centers of the surrounding parallelepipeds

be X Vo and z;. The residual velocity components at Point A are then given by

| i ZM _ me (2,~2; ) 3.
e tod) = B0 L [t (4435 %

‘ - L ZM ﬂ{('ga"#i)
v (%,49.3) = n - [(2-2.5+(%,-%+(3,-3.) ] %

" _
. _ i m: (3, .9

W (%, 4:3.) = fmZ [(2-x)+t4,-4.0+(3,-3)"] ¥

£=1

in which m.= ~Q and M refers to the total number of the residual singularities whose

presence may affect the velocity distributions at Point A. A schematic arrangement
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PARALLELEPIPED NETWORK

FIGURE 52,



is shown in Figure 52 and the arrows indicate the influences of neighboring singulari-
ties to Point A.

Owing to the fact that this is a linear problem, we can solve the residual field
separately, which upon superposition with the velocity potential obtained in Step (1)
gives a modified velocity potential. The computational procedure is essentially the
same as in Step (1), except that prior to Step (1) we calculate the velocity components
induced by the residual sources and sinks along the boundary of each cut. This step
again results in a set of velocity potentials defined on the planes passing through the
cuts. Consolidating these potentials in a similar manner as for Equation (77) gives a
three-dimensional potential due to the residual sources and sinks, This potential
added to the potential found in the segment method forms a new potential. This new
potential should better satisfy the three-dimensional Laplace equation. If the accuracy
is still not acceptable, we can usually repeat Steps (1) and (2) to perform a second
iteration. This procedure can be, in principle, carried out indefinitely. However,
inasmuch as this is a quasi-two-dimensional method and the flow field involves
inaccurate guantities in and near the exhausting jet, higher iterations may not be

very meaningful.

3. COMPUTATION OF WING PRESSURE DISTRIBUTION

A finite wing is also a three-dimensional body, but it has a distinct property of
generating lift in a uniform flow. Consequently, the above procedure is applicable
with the additional requirement that the Kutta-Joukowsky condition be satisfied at

the trailing edge. To accomplish this, consider the following:

dw _ de ay
__.__.__.._..._E.-i_..._

d§ g snn
. n
" 4a; ; . - 10, Sinl4+1)0
= 22050 —Z 30;Ca5521)6 i£25ing + & 3% ond
4=l

ré+! , yde!
3=t

If it is assumed that the trailing edge occurs at @ = 0, it becomes necessary to set

the tangential velocity component equal to zero here, i.e., to set the imaginary pari
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of the equation to zero at § = 0. Referring ai‘ to the imaginary part of aj, we have

n - & n

& .

0=y L3 = ) ik
J=! 6 J=1

Thus the first term in Equation (14} is defined.

Since the computational procedure in step (1) disregards the variation of the
circulation along the wing span due to the wing planform, the computed lift is likely
to be larger than it should be. To better estimate the wing lift, we apply the lifting
line theory in a reverse manner. In other words, we make some attempt to reduce
the magnitude of the "downwash" components (actually upwash for the usual adverse
lift caused by the exhausting jet), so that the over-prediction in step (1) could be partially
compensated for. The procedure is to represent the circulation I, obtained in step

(1) in a Fourier series in the wing spanwise direction. We next use the equation

b
2
/

wiy) =

i
3 Wm| ar 47

tojo-

to compute the downwash components at every section. The symbol b denotes the

span length or that portion of the span length over which the power effect is significant.
Then a new flow field on the fictitious wing is constructed by subtracting w' from the
modified w components in step (2), This constitutes the modification to account for

the spanwise variation of the circulation around the wing after inclusion of the residual

source distribution.

It is noted here that there are two arbitrary elements involved in the above
procedure. These are:

() The factor 1/3 in Equation 78 is an added empirical factor to the
original equation.

(b) Since only the lifting line theory is invoked, all the components at any given
section, regardless of the chordwise position, are reduced by an equal
amount equal to w'(y).
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4. COMPUTATIONS AND RESULTS

On the basis of the ahove analysis, computer programs have been written to

calculate the pressure distributions on a wing or body. These pressure disiributions

can be integrated to give force and moment on the wing or body.

To recapitulate, the sequence of the computational procedure is:

(a)
(0)
(c)
(d)

(e)
(f)
()

(h)
()

Sever the wing or body into 2 number of sections.
Obtain the mapping function for each section.
Transform the sectional contour into a circle,

Acquire the velocity distribution along the boundary of each section be

means of the jet flow field program.
Find the boundary function at each section.
Expand these boundary functions in Fourier series.

Determine the coefficients of the complex potential at each section from

the Fourier coefficients.
Compute the pressure distribution from the complex potential.

Determine the force and moment by integrating the pressure distribution.

If the three-dimensional modification is needed, we skip step (i) and include the follow-

ing steps:
(3
(k)
)

(m)

(m)

Form a network of parallelepipeds in the exterior space,

Compute the net flux in each parallelepiped.

Place a source of the same strength but of opposite sense at the center of

each parallelepiped.

Determine the velocity distributions along the sectional boundaries induced

by the residual sources and sinks.

Repeat steps (e) through (i) to obtain the force and moment.

Extensive calculations have been carried out for two wings and two bodies

with lifting jets in a uniform crossflow. The parameters involved in these computa~-

tions are;

freestream tc the jet velocity ratio , angle of attack, sideslip angle,

location of the jets and the number of lifting jets. The calculated results have

been compared with wind tunnel test data. The agreement has been fairly

103



satisfactory. Some examples can be found in Volume II. A general feature from these
investigations indicates that the power effect is a strong function of the velocity ratic
but is rather insensitive to angle of attack.
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SECTION V

INLET FLOW FIELD

Inlet flow models are developed which allow lift, drag, and moment estimation
for bodies containing inlets normal to the free stream., A propulsion model for lift-

ing fans is developed relating internal and external flows.

1. ANALYSIS

The basis of the inlet flow field analysis is the assumption that the flow about
an inlet normal to the free stream may be approximated by the potential flow produced
by a concentrated sink embedded in an infinite plane above which passes a uniform
flow. The force produced on the surface containing the inlet is assumed to be the
force acting on that portion of the infinite plane obtained by projecting the planform of
the surface onto the infinite plane. For purposes of calculation, the force upon the
affected portion of the infinite plane is divided into two portions: a lip force acting in
the immediate vicinity of the inlet, and a surface force acting on the remaining plan-

form area.

a. Lip Forces

The lip forces and moments are calculated by establishing a control surface of

radius R, about the inlet centroid and applying the law of conservation of momentum

1
(Figure 53).

The lip force in the free stream direction is expressed as shown below.

D, =/’5uxu,, dS + 5 PdS,
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The pressure and velocity at the hemispherical control surface may be expressed in
terms of the sink induced velocity, ug.

»U
H

= B 3 (U212 Us ugsing cos@ + 0 )

unp = Ug 1-U°° Smf cos 6
U

o+ Ug Sing cos O

“Us COS%

=
>
t

<
L
{

The velocity ug is obtained from the sink strength or fan flow rate.

Ug = m/4-77‘R,2
m= 2A¢ Ue

The conditions at the lower control surface are shown below. The constant K is

defined as shown and the constant n is a dynamic head recovery factor for the inlet.
P =P tnfhUc-BCu?rul)
= R, v/ Uy~ /& Cuy vug

Un = ”'U.F
KU

Uy
The drag is then found.
D= pAg Us Un ((1-K)

As the free stream velocity component is reduced to zero or near zero in passing

through the fan, we may calculate the total drag by assuming the turning to take place
in the inlet.

D._= /*A.f. Ue Uns
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The moment ahout the centroid, and normal to the free stream is found as shown
below.

M,_=/95(U XF)updS + §P(AxF)ds
Moz pAg UnUs (R 72 + KAz )
ML-':/)A;U&,U.;: R,/Z

MmL= ML- COS/@

M,QL. _ML Slﬂ/B

As in the drag calculation, the parameter K has been set equal to zero for consistency.

it

The lift may be calculated from the expression

L,_=/juzunc15 +-5-P d S,

Thus,

L= Ac[UF (1-Ae/4nR] ) U5 (1K) ]

The parameter, K, is retained in the expression as the change flow direction

in passage through the fan does not affect the pressure at the lower control
surface, the source of the term. In the equations for drag and pitching moment,
the parameter K reflects an unremoved freestream momentum flux and later
elimination of this component, in the fan or nozzle, will cancel the terms
containing K.
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b. Surface Forces

The forces and moments on the remaining effective area are calculated by
integration of the pressure distribution created by the sink. The pressure coefficient
at any point is described by the expression shown below.

Us Ag

CP ='E;72 ces 6/3) (J;: i )

Uss art

The lift can then be expressed as the following integral.

. o7
$= 2/_.Um55CPPer9

Integrating with respect to r yields the intermediate result which may be used in
conjunction with a body description tc obtain the force,

27
As ' r
U U ' , - QJG
/o ;.’ [cs/éé anifccs
27
l'\
t Sm/BjOInl—é") smecle]

n

+/;_- U_fz (A,;/.?;?'RI)R 50 [! -(R|/r)2] 46

In a similar manner the pitching and rolling moments are found.

s s 5 o SR )
¥ sm/B),(R -] Jeos© sm@dQ]

/2). 2 (A /2”) 5(" R/r ) cos & d6
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A¢ R
M,ls =/Z UOQU.;: _;. i[

cos/ij(l I“/R,)casesme d 6
t sin ),(I !‘/R Sm ede_‘]

ﬁUfZM)_j(R /r* I)sm@de

It must be noted that the effects of the body edges on the pressure distribution created
by the inlet have been neglected, and that the forces and moments due to edge effects
are not included in the analysis.

2. LIFT-FAN PROPULSION MODEL

A simple expression has been obtained relating the flow parameters to propul-
sion parameters for lift-fan units. The model is based upon the assumption that the

pressure difference across the fan may be represented by the following relation.

AP‘%/O Ct Utz

If the exit static pressure is assumed to be that of the free stream, and if
allowance is made for loss of dynamic head at the inlet and for nonaxial flow at the

fan entrance, the pressure differential may be related to flow conditions.

AP-%/’[U-fz*(KE'l)U"fJ

The fan flow rate may then be described in terms of free stream conditions and fan

speed.

U_F2= Ct Utz f (Q‘KZ) Ud-;z
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The fan flow rate is often expressed in terms of flow ratio and tip speed ratio.

...t_/&-.-...u_oc[ — _.,_]
PR VA Ce * ('I'K J(Uex /U )

The thrust carried by the fan blades may be obtained in terms of fan flow or tip speed

parameters.

TF = A}‘AP
T = ‘i‘/%[”{z*“i'{,) Us

13}

! ra
2/ Ag Ct Ue
The effect of the presence of a fan centerbody may be considered by assuming it to

produce a base drag force, or momentum loss.

Te=Ag AP =20 Up CoScs

C ~K )Cp SC.B A
-/)%-A-F[’*'CDSCB/A{-] /"2 [+ CpScs fAg Ve

where;

2, | 2 2, 2
U{-'- - [ v Cuscg/Af[ct Uf_- '*(7:’( )Uab]
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3. COMPARISON WITH PREVIOUS RESULTS

If the preceding relations are applied to the case of a simple fan in an infinite
plane, having an inlet which turns the flow by ninety degrees with no flow losses, the

results of the present expressions may be compared with previous work (20, 21).

The lip and surface forces become:
2 2
Love =/ As [Uru]

The fan thrust reduces to:

TF =/;'2‘)" A,)c [Uf_z-U:']

And the total lift may be expressed as:

,_ L t+ Tf

LS

2
o As U

a result in agreement with Theodorsen (20).

The expression for the fan flow rate is then found to be

ra 2 2
U'f : Ct Ut # Uca
2 2
= U‘F I-Uog 'f‘or' U‘L‘ = Ccnsfan'f'
Y20

This result is in agreement with Grahame (21), who derived the expression by other

means.
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4. DEVELOPMENT OF HANDBOOK METHOD

The simplicity of the empirical model outlined above enables estimation of in-
let effects without resort to sophisticated computer techniques. The lip force and fan
flow equations are applied in the form given. The integrals used to describe the sur-
face forces may be easily integrated by finite summation using a work sheet as shown
in Table 1. Because the induced forces are concentrated in the immediate vicinity of
the inlet, large angular increments may often be used with liftle loss of accuracy.
Semigraphical integration is often a convenient alternate.
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SECTION VI

NONLINEAR BODY AERODYNAMICS

To evaluate the body contribution to the aerodynamic derivatives of V/STOL air-~
craft it is necessary to include the range of flight conditions which is likely to be
encountered in operation. This requires the aircraft to operate at extensive angle of
attack and sideslip since the flight attitude near hovering flight is not determined by
aerodynb.mic forces but rather from the application of power. There is, however, an
area of flight where the aerodynamic and power effects will tend to be of the same

order of magnitude and where neither component can be safely neglected.

It is to treat the aircraft behavior in the region where both aerodynamic forces
and power are important in supporting the aircraft weight that nonlinear aerodynamics

is important,

To obtain the total aerodynamics of bodies at large angles of attack and sideslip
it is necessary to treat both the potential flow contribution and the viscous effects,
This study has utilized slender body theory for the potential contributions, while two
methods of treating the viscous effects have been examined. The first method using
vortex tracking was found to be unreliable within the present state of the art and to be
too unwieldy for use as a haﬁdbook procedure. The second method, using the viscous

crossflow concept, appears to be quite suited for a handbook procedure.

1, SLENDER BODY THEORY

To completely represent the aerodynamic forces and moments on a body it is
necessary to combine both the potential and the viscous contributions. To obtain the
potential contribution, slender body theory is used. The development of the equations
representing the slender body solutions is an adaptation of the methods of Sacks(zz).
The basic equations have been modified to permit large angles of attack and sideslip
to be accounted for. The ability to handle arbitrary body shapes has been attained by

introducing a method of obtaining a mapping function for an arbitrary body shape.
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A computer program has been written which computes five component force and
moment coefficients as functions of resultant angle of attack, roll angle, yaw velocity
and pitching velocity. From these coefficients the aerodynamic derivatives can be
easily obtained.

The equation for the forces and moments given by Reference 22 when modified
to eliminate the rolling velocity, the effect of which can be considered negligible for a

body, and the time derivatives, can be written in complex form;

Y-iL=2MeyA, _,+plp[sR+ bL6E), - (79)

-

y A
94 _
N~iM=-2T7PU, f (x-Xcq) Gt IX -y f(x—xcg) 5‘2—[sn+u,£ (sZ)ax  (80)
[+] (]

2
U'=$ oY RS, Fa(az)-2mo]fRa ax-20, [ R s (S2)ax 1)
o o
The evaluation of these equations requires that the complex potential
o0
F-B(x),&a.2+’§ A,,(x)/Z"-r—JJ(:O (82)

be known, When the residue of the potential A (x) is known, the only difficulty in eval-
uating the total forces and moments arises in evaluating the first term of the moment
equation above:

R #ri(z2)

The rest of the terms are readily evaluated,

Sacks(zz) has shown that

B(x)= g% gg (83)
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It remains to evaluate the coefficients A,(x) since the coeificient D (x) is not required.

The coefficients A,(x) can be evaluated by re-expressing Equation (82) in terms

of the mapping circle plane coordinate ¢, i.e.,
[--]
F=B00tn 5+ 2 Ap (03" (84)

Reference 22, Appendix B, shows that this expression can be evaluated from the
coefficients of the mapping from the circle plane,

[ -]
Z = Z:*a,+nz=l a,,/f" (85)

and is expressible as

F=R3 ap[s"-R r2ft +Ty(8) (86)
where
§=rel® (87)

and ’I‘N (¢) is the portion of the potential required to satisfy the boundary conditions of
the body and is equivalent to the expression of Equation (25) of Reference 23:

' N ~(n+l)
Tn (§)=rc"'Uo{"”Zo(a’n-2n ;rf’a-n)_;_ "

n+/
(88)
& ! (n-m)
nr 2 = mrc! - -
+mZ=O r%L_,[m(,—c“amﬂn-a,ﬂanl) #n( FF anam-anaml](n_m)rcz(m,};
m>n
+HIn 2
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The coefficient H by comparison with the coefficient B (x} can be shown to be

H=Ye

4 {89)

o
*[G;

A comparison of the two expressions for F gives the expression

= N {m-i) ' = = m
A, (x)=Ra,~Rr.2~r2 U, ja, *Z {m(_r'_dmarn-: —amam-:)/"cz
(90)

Q dS

Uy =Ugyp cosa
(81)

with this expression and the definition of R (again with 2= 2

5t = 9

R =—[r cos@+g sin ¢](x -xcg)- t'[Umsina +(gcosg -rsin ¢)(x—xcq)_7 (92)

This expression for R has been modified from the definition of Reference 22 to utilize

resultant angle of attack and roll angle instead of angle of attack and sideslip.

All of the necessary information is now available 1o solve Equations (79) and (80)
if it is assumed that the coefficients of the mapping function {(Equation (85)) are known,
The expression

R _f £d(28)

can be evaluated by integration by parts 1o be

|"30|°' _

- fzEa]
Iz I twy, X=4 (93)
=-R [f fzcﬂ:’]

=-R[$z(512() % 43]

prd(zz) R[rzz
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since the first term of the integration by parts is imaginary. On the surface of the
body Z can be represented by the expression

SRR i LI Y
2,28 *d,+2 =, =5—+d +2 &, -6
3 c 0 L0 c” c © pnep 7 re2n (94)

and the expression for F can be differentiated with respect to { and the residue of the
integral can be obtained.

Thus, assuming that a mapping function is available, it is possible to solve
Equations (79}, (80) and (81) for Y, L., N, M and L' as functions of @, ¢, q and r. Also
by direct differentiation or by perturbing either a, ¢, q or r, it is possible fo obtain
the derivatives of the coefficients as well, The above analysis can also be readily
extended to include either the rolling velocity or the time-dependent behavior of the
coefficients should these be desired. In the treatment of these equations it has been
assumed that the forward velocity can be resolved into an axial and a crossflow com-

ponent which permits the equations to be solved at angles of attack up to 90 degrees.

a. Simplified Method of Obtaining Major Mapping Coefficients

Section III has described the method which has been developed under this study
for determining the coefficients of the mapping function, This solution makes the
problem of solving for the slender body aerodynamics solvable, It is desirable, how-
ever, to simplify the procedure for treating the body aerodynamics by eliminating the

need for mapping the body since this requires a great amount of work,

To obtain a method of using slender body theory for a handbook method, it is
necessary to find an approximate method for estimating the most important coefficients
of the mapping function in a simplified fashion., An examination of Equations (79) and
{80) shows that except for the term A, all the variables are independent of the mapping,
i.e., they can be obtained directly from the body geometry and flight attitude. In addi-
tion, it can generally be assumed that the rolling moment of the body can be considered
negligible. It can also be shown that the derivatives of Y, L, N and M with respect to q
and r are dependent only on the radius of the mapping circle and the coefficient a,, The
other coefficients enter into the derivatives with respect to angle of attack and sideslip
(or resultant angle of attack) through the cos @ terms appearing in Equation (90). It
appears from this expression that coefficients other than Tor 2 and a, may be
neglected in treating the body. This would imply the simplification of Equation (90) to
the form
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A (D =Ra,-Rr2-r2 lya- S0t 95 ©5)

This approximation and a suitable method of estimating T2, and a, would per-
mit a relatively simple procedure to be outlined for treating the potential contribution
to the body aerodynamies., The most suitable method of approximating these three
coefficients is to treat a, as if it were equivalent to the centroid of the cross section,
and to estimate r, and a, from the maximum vertical and lateral dimensions of the
body. If 2a is the maximum lateral dimension and 2b is the maximum vertical dimen-
gion, then by letting

. ___a+b (96)
c P-J

_b=a 97
&,="3 (97)

a relatively good approximation for these coefficients is obtained, These approxima-
tions have been made for the T-38 body and their values are compared with those
obtained from an analog mapping method and shown in Figures 54 through 56. Consid-
ering the complexity of the chosen body, it is considered that the agreement obtained
is quite good, The effects on the coefficients of using these approximate values and
neglecting all other coefficients are shown in Figure 57.

1t is felf that this is an adequate demonstration of the capabilities of predicting
this portion of the body aerodynamics,
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2. VORTEX TRACKING

One method of obtaining the nonlinear characteristics of bodies is to treat the
viscous flow as if the vorticity were collecting in a single vortex pair. Under this
assumption the paths of the concentrated vortices are traced and the effects of these
vortices on the body are computed.

This computational model requires several simplifications to the true flow pat-
tern about a body and the degree of success in predicting the aerodynamics is depen-
dent upon obtaining a satisfactory set of assumptions., Reference 23 presents in detail
a procedure which has been used in an attempt to obtain a valid model for arbitrary
bodies at angles of attack. The basic model used is that of Bryson(24] which balances

the forces between the concentrated vortex and a "feeding sheet" to obtain the equation
: Vai
5+ (5= %) =W, (98)

which relates the vortex path to the local potential and to the rate of growth of the vor-
tex strength. This equation differs from that for a free vortex (t., = w,) in that an addi-
tional velocity (§, - :0) I_{: , is imposed on the vortex due to the presence of the feeding
sheet,

The Bryson model also postulates the existence of a stagnation line on the body
which in effect permits the strength of the vortex to be computed when used in conjunc-
tion with Equation ($8).

The method of Reference 23 is a generalization of the Bryson model which per-
mits the introduction of an arbitrary body with unsymmetrical flow conditions in the
crossilow plane, This formulation refains the major features of the Bryson model
but generalizes the method by relating the flow in the body plane back to a similar
flow about a body of revolution by means of a mapping function. Other meodifications
are made as required to permit a more general flow pattern and to permit more

flexibility in specifying the stagnation line,

The method was used on the T-38 body, and doing so showed several limitations
in the model, the most serious of which was caused by the feeding sheet force. This
force at times became exceedingly large which, in turn, produced an unrealistic path
for the vortex,

During the present study, modifications were made to the above model with the

intent of improving the accuracy of the method. The most satisfactory modification
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consisted of two changes in the model. First, the effect of the feeding sheet was
neglected, That is, the vortices were assumed to move freely with the potential flow
field including the effects of the other vortex of the pair and both image vortices but
assuming no feeding sheet force, The second modification was fo relax the stagnation
line requirement. Originally, the selection of a pair of separation lines fogether with
the requirement that the cross flow velocity went to zero there, permitted the specifi-
cation of the vortex strengths. This condition was replaced by the assumption that the
rate at which the vortex was being fed was equal to the crossflow velocity at the sepa-
ration lihe. This condition, which may bhe stated as

g%' =Up+lUp _ (99)

is more realistic as a condition from a consideration of the buildup of vorticity in the
boundary layer. It also has the advantage of permitting a gradual change of vortex
strength buildup regardless of the location of the separation line. With the original
assumption, an abrupt change in the separation line would cause an abrupt change in
the vortex strength.

Figure 58 shows a comparison of the results obtained with this modified model
and test data, The agreement at angles of attack up to 40 degrees is quite good but the
theoretical results begin to act erratically at higher angles. Further attempts to
extend the resulis to higher angles of attack were unsuccessful. Additional calcula-
tions were made with this model in sideslip. In sideslip the flow pattern in the cross-
flow plane is unsymmetrical and the path of each vortex is different, Calculations
made under these circumstances showed a very erratic behavior and did not agree at
all well with available test data',. The appérent reason for this was the unsymmetrical
vortex location which tended to exaggerate the asymmetry.

This model has several drawbacks due to the simplifications necessary to per-
mit a solution to be obtained. Among these are separation, a quasi two-dimensional
flow field and the assumption that the vorticity behaves as a rectilinear vortex with
the rotation confined to the crossflow plane.

It was decided that it would not be possible to refine the model sufficiently to
allow realistic aerodynamic loads to be computed within the program time limitations
so the alternative viscous crossflow model was studied and utilized to account for the
viscous effects instead,
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3. VISCOUS CROSSFLOW

The viscous crossflow concept assumes that the effects of an angle of attack or
sideslip can be estimated by treating only the component of dynamic pressure in the
crossflow plane, and that the forces exerted at each segment of the body are indepen-
dent of those sections forward or aft of this segment. This treats the body by what is
essentially a strip theory based on local two-dimensional values of the body drag.

Using this concept, the incremental force on any segment can be written in the

form
d . e _e_ .
K(Y-‘L)vlsc B ZZEDQ Cy Vol Vo) -i Cp,Ce Wolwa|] (100)

where (Cy, cy) and (Cp cz) are local values of the crossflow drag areas per unit
Z
length in tl¥e yaw and pitch directions respectively,

To include the effects of pitching and yawing velocity, it is necessary to define
- the crossflow velocity components V o and W0 as

Vy = Uy sina sin @ -r(x-Xcg) (101)

Wo == Up sin sing -g(X~Xcg) (102)

With these definitions and Equation (100), the viscous contributions to the forces

and moments can be written

!
: =L | 103
[Y-cl.]' =3 f[caycy Valvol" cnzcaw,,|wo| dx (103)
visc [
y/
: B .
[N-:M]' = 2j(x-xc9)[r-:oycy VOIVOI_ICDECE w,,lw,l]dx (104)
vis¢ o

The above formulations permit the viscous contributions to Y, L, N and M to be
computed as functions of @, 9, q and r. No attempt has been made to include a viscous
contribution to rolling moment since if does not seem to be a significant contribution

to the overall aircraft aerodynamics, Nor is it possible to formulate a model which
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would include acceleration effects of the body. It is believed that the above formula-

tions give the most significant effects due to viscosity.

The values for the crossflow drag coefficients can be obtained by considering
two-dimensional section data for the shape under consideration or a similar shape.
Calculations made thus far have shown that treating the body as an equivalent ellipse

will give reasonable values for the viscous forces and moments.

Calculations were made for the T-38 body using for the crossflow drag coeffi-
cient Equation (20) of Reference 25, Chapter III.

= 2e be
Cp, 2C¢(t+be)+l.!(ae) (105)

with
C = .0075
a, and be which in Equation (105) are the ellipse semi-axes parallel and perpendicular

to the crossflow respectively were agsumed to be the maximum dimensions of the

local T-38 cross section.,

The results obtained with this equation, together with the slender body values,

are shown in Figure 59 as compared with test data.
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SECTION VII
NONLINEAR WING AERODYNAMICS

When a V/STOL aircraft is operating in the hover or transition speed regime,
there will be occasions when either the aircraft angle of attack or sideslip angle are
of such a magnitude as to necessitate an investigation of the nonlinear aerodynamics
of the vehicle. This section deals with the problem of determining the nonlinear aero-
dynamic characteristics of a wing.

The method which has been developed is a modification and extension of the

Weissinger method. Weissmger(zs)

replaced the wing by a concentrated vortex at
the quarter chord position, and, by determining the downwash due to this vortex and
associafed trailing vortex system at a number of control points on the three quarter
chord line, was able to determine the strength of this vortex. To do this he balanced
the downwash due to the vorticity with the upwash due to the attitude of the wing at the
control points on the wing, This procedure is effectively one of taking theoretical
section data and including aspect ratio effects by accounting for the trailing vorticity.

Choice of the quarter chord line for the vortex implies Cm = 0 and satisfying the
1/4
downwash boundary condition at the three quarter chord line results in a limit of 2

per radian for the lift curve slope for rectangular wings as the aspect ratio is increased
indefinitely, Or equivalently the section lift curve slope is 27 per radian,

The model for the nonlinear wing problem is similar in that nonlinear section data
are used to generate information for finite wings. The variation of the section lift curve
slope throughout the angle-of-attack range is accounted for by locating two lifting lines
at appropriate locations on the section chord and the relative strengths of the vortices
are determined from test or estimated section characteristics. The problem of pre-
dicting wing lLift and pitching moment characteristics is then one of solving for the
induced downwash angle associated with the planform under consideration and of evaliat-
ing the lift and moment contributions at an effective angle of attack as determined from
the induced downwash.

130



1. NONLINEAR SECTION MODEL

The analytical model used to represent nonlinear wing section data assumes that at
an angle of attack of 90 degrees the normal force on the section is entirely due to a
viscous drag, and that there is a contribution to the normal force at an arbitrary angle
of attack a proportional to sinza. The circulation effect of the section is represented
by two vortices as illustrated in the sketch below, The boundary condition for no flow

through the airfoil surface is set at .75 of the chord.

s e . — X

Satisfying this boundary condition, we obtain

L . L _ Usax (106)
AT, ark,

The normal force contribution due to circulation effects CNIND is given by

™

a
_ ‘. 107
NIND N (CN),‘,% Sin ao7)

in which (C is the normal force at « = 90°,

N)d =90
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The contribution to the normal force coefficient due to circulation effects is assumed
to be represented by

r
R(U'—c + 5‘;) = Cuznp a08)

Equations (106), (107), and (108) may be solved for I 1./ Ue, I, 2/ Uc from given section
data for any combination of hl / and hz X As in the case of the linearized model of
( c C

26), the positions of the two vortices are found by congidering the section
pitching moment data.

Weissinger

The pitching moment about the 1/4 chord position c  is

1/4
Cmy = E(& _'5) -l-SlE—(—ﬁ—“ "»5>
* Ue \ C Uec\ ¢
- X
+(CNL=%smx(.a5 - -C—) (109)

in which X is distance on the airfoil chord through which the viscous force acts, Sub-
substituting for l“l /Ue, Fz /Ue from Equations (106), (107), and (108} we obtain

¢ ¢ C

Chy, = (% + £ —.S) Crnp —um kL sin

2 —
+ (cN) Sin o (.25 - x/c> (110)
oL=90

The positions of the vortices represented by h1 and h2 in Equation (110) are chosen to
give good correlation between the pitching moment calculated from Equation (110) and
the section test data, The strength of the two vortices may then be obtained from
Equations (106), (107), and (108) using the section normal force data,

This procedure has been checked against data from a NACA 0012 airfoil (27).
With the two vortices positioned so that h1 / = 546 and h2 e = .083, calculations of
the pitching moment against angle of attack are compared with test data in Figure 60,
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The strengths of the two vortices Fl and I 2 which will give the required section
normal force (given in Figure 61) are shown in Figure 62.

The capability of the section model to fit the normal foree and pitching moment
data very closely suggests that this section model may be used to calculate wing

characteristics.
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2. APPLICATION OF THE SECTION MODEL TO WING CALCULATIONS

The method used to determine finite wing characteristics involves determining
the effective angle of attack at a number of reference stations on the wing, using the
section model. The weighting of the circulation at these sections may then be deduced,
and from this weighting of circulation, the fotal circulation around the sections deter-
mined by satisfying the no-flow boundary condition at appropriate points on the wing.
Since the circulation is not a linear function of angle of attack, an iterative procedure is
necessary, First an effective angle-of-attack distribution is assumed. The weighting
of the circulation between the two vortices is then determined, The circulation across
the wing span may then be calculated and a new effective angle-of-attack distribution
defermined, and this procedure is repeated until convergence of effective angle of

attack is achieved,

a. Downwash Due to the Bound Vorticity

It is necessary to determine the downwash at the control points due to bound and
trailing vorticity, We first consider the downwash due to the bound vorticity.

Consider a bound vortex line of strength I'(m) extending from (¢i, 7 i) to (& 17
’7i +1). Let the downwash control point be at P(x,y,0,). This arrangement is shown
In Figure 63.

x4 *Pix,y, 0)

FIGURE 63. GEOMETRY FOR BOUND VORTICITY
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Let VL be the velocity induced by the bound vorticity from (¢, 77,) to (¢,,,. 7;,,) &t P
then
I.f.l‘ lt‘.v'
~/ - | | AL T \
VL = = r'(")) __z‘L_ (111)
R
5o, .
in which (X"j')o '1"(; ‘l)} ;R=’TI .
and fdj' "{Z (’;"lSL'n¢ v + 0054) J)
Thus
l_”. f'a-nﬁé "{'I_ D(Z o
'L [
AT = X - - o)
A ] -t (112)
A N
p ¢ k

The downwzsh due to this piece of the lifting line w, follows as

'
L ) ) —‘“-o'“¢ 3~ Z) dr 13
- J[(x -1+ z)][ _ ﬂ“)

Now = {, - L ALZ..Lfa"L v
j j.. +(z Z") ] ¢

zbﬂ

[ - (e Bt 4 (3 1) T*x

x [!.ZU tan§; (3-1) = (x-5.2 -2;)’-;-’ tang, )] (114)

i
so that WL = 7=
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Equation (114) enables the downwash to be calculated in terms of r(r;) for a given
downwash control point and wing geometry.,

b, Downwash Due to the Trailing Vorticity

Let \_ft be the velocity induced by the trailing vortex system at the point P(x,y, z).

Then with the aid of Figure 64 we obtain
o0

Al oy deAT 1)

AL R

AV, = -

The lower limit in the integral, LL, represents the point on the bound vortex from which
the vorticity di"has been shed,

—_— . N A A
when T = (x— x,) L +(5t —J,)? +(£ —%,)ﬁ (116)
and AL = a(x,'i + d},i + dz, 2 (117)
-—Y.Ylu’?
(€isni)

Bound Vortex

. (§410M549)
X, Xy,

®P(x,¥,2) dr

Trailing Vortex

FIGURE 64, GEOMETRY OF TRAILING VORTICITY
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If we assume that the trailing vorticity follows the effective angle of attack and sideslip
directions we obtain

adx, = Cosﬁ,_ CoS o, \/o{x','z + ofgf +d2*

dy, = — §inge /alx," + dy] + Az

Az, = COSB, Sinme Jdx+dy" + d2}
Thus equation (117) gives

dé:[z - ;:;:J + Fanol, i]ix (118)

Substituting for Yy» and Zys in Equation {118) we get

T =(x-x, ""'[o'( Z*C““a(’( 5]41{ - 3 ~tunl, (¥ jﬁ (119)

Equations (118) and (119) may be used to decduce

) - _fiﬁé? ‘!‘Rn ole
Cos ol
o{é,\:r_' = [ x-x, J—z+t§£"(".‘§) 2 -5 —fan c't’e(i’<,-5)1r1lx‘, (120)
N
i i :
Writi —_— A A
riting th = ducc -+ a{-uer + dw, £
we obtain
i
1 tanf. oXx,
Aw, = ;Tl:;—z +-c:—"s‘€e(x—-f)]alr = 21
o}

140



in which

R = [(x-x)'+ (57 - § ool o fenhe x)’

Cosoly

a a
+(2-—S+ f-’-an ®o — "'AAD'&X.)J

(122)

From Equation (122) we may obtain R3 in the form

3 ¥a
R =Za.+$x +c.><] (123)

in which
&
e

)

- —R[X' Tange (J y - ;ﬁn/ﬁ) ( —K+_f'f'and9+ﬁ:l°(¢]

Coscle Cosuly

o= X + (4-1 - % Jfﬂﬁ'— ) (a -3 + § fan ot

Ccosxe

o
C = S Ccaﬁc.
cos olg
L

The integral f —0-{-? in Equation (121) may be

ob

integrated in closed form and an integral expression deduced for W The analysis,

given in Appendix I, results in the following expression for W,

[
| (DA F1+6) i (Hropdl_4 w20
4 \/(—!H-anaﬁ)(f,. Di+E) J ( dy Ay f‘Byfc

Equation (114) with Equation (124) are the basic expressions for determining the down-
wash at a control point for a given wing geometry and flight condition.
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3. METHOD FOR CALCULATION OF WING CHARACTERISTICS

The downwash at a control point P(x,¥y, 2) due to the bound voricity in the interval

LYW which is given by

the integrals in Equations (114) and (124), By determining similar integral expressions

(ni, ’71 +1) together with the associated trailing vorticity is w

for the other bound and trailing vortex segments, it is possible to determine a series

of integrals whose sum will represent the downwash at a general control point. The
problem we are faced with is the indirect one of being given the downwash at the con-
trol points, and being required to determine the I'(7) distribution which will give this
specified downwash. Since I'(#) is to be integrated to determine the downwash we have
an integral equation for 1(n). The procedure which has been taken to solve this equation
is to choose a number of circulation control points, say Ty 171. tee vees ,??n , and to
write [{n) as a Lagrangian polynomial in terms of the circulation at these contro! points.

Thus P(Z) = Q‘ Z-‘)“'73)(2'2n) F([,)-‘__’_[Z_Z) ‘[Z'Z ) P[z,‘) (125)
(Zo-2)2 ) {1.-2) (1= 1) (1)

and Wt to be evaluated

This representation for (1) permits the integral for WL
in terms of the coefficients I mi)’ i=0,1, .....n. The total circulation at a given
wing station is distributed between the two lifting lines by weighting the vorticity. This
weighting of vorticity, which is a function of effective angle of attack, is determined
from the section model., An example of the weighting function calculated for the NACA
0012 airfoil is shown in Figure 65. The expression for the downwash may be written

in matrix form as follows:

[AW+B(|-W)}F =D (126)

in which A’B are the matrices for the leading and aft lifting lines representing the
coefficients of the circulation column vectorn Wa.nd l —Ware matrices which give
the weighting of the vorticity between the leading and aft lifting lines. D is the

downwash column vector.

The procedure has been first checked for the linear angle-of-attack range.
Calculations of the spanwise loading for an aspect ratio 5 rectangular wing with sweep
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back angles of 0° and 45° are shown in Figure 66. These calculations compare
favorably with the caleulation of Reference26and test data of Reference 28, Further
calculations for nonlinear o will be given in Volume II,

2.4 mH==7 —— | Sweepback Angle

~a 0 A = 0°

SE. 0O A = 45°

[+
=)
o -
g Lelo—= \\}
o N
=] \\
2 \\E]
e o\
i, \
E \\
& \\
© \
\
0 G
0 .2 4 6 .8 1.0

Y/(b/2)

FIGURE 66. SPANWISE LOADING FOR ASPECT RATIO 5 RECTANGULAR WING

It is possible, using this approach, to make calculations for a wing with a flap.
The section lift and pitching moment would be changed depending on flap deflection
angle, flap chord, etc. The change in section characteristics would, in turn, change
the circulation weighting function. No calculations have been made for wings with
flaps. It may be necessary to include two more lifting lines to represent the flap
for more satisfactory correlation with tegt data.
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SECTION VIII
EMPIRICAL METHODS USING JET FLOW FIELD THEORY

The computer program which calculates the induced velocity field due to single
or multipie jets exhausting into an arbitrarily directed mainstream, developed in
Section II, may be utilized in the development of handbook methods for estimating
induced forces and momenis on supporting structures adjacent to the exhausting jets.
In this section, methods for the wing and fuselage are presented to illustrate the

utility of the jet flow field program for the development of handbock methods.
1. EMPIRICAL METHODS FOR THE WING

Three different approaches, each utilizing the jet flow field program, have been
used to obtain empirical methods for the wing. The first approach taken was to substi-
tute an equivalent area circle for a wing to evaluate the induced forces and moments.
The second approach considered the wing planform geometry ( A© method). In the
third method an equivalent plain wing is constructed so that classical metﬁods for
calculating wing force and moment may be used. A discussion of the methods and
results follows.

a. Equivalent Area Circle

The major part of the lift loss experienced by a VTOL vehicle is due to adverse

pressure distributions on the lower surface of the vehicle (18), (29) .

This suggests
that a good estimate of theselift losses might be obtained by determining the lift
losses on an equivalent circular area of an infinite flat plate from which the jet or
jets are exhausting.

Pressure coefficients computed by the Jet Flow Field Program were integrated
numerically to obtain total induced forces in the plane of the jet exit. Figure 67 shows
the computed variation of the induced force on a flat plate around a normally exhaust-
ing jet with velocity ratio for two vaiues of the parameter J..SSJ.- , where Sj is the jet
exit area and S the portion of the infinite flat plate area over which the induced force

is evaluated. The lift increment due to jet operation, AL, is defined as AL=F +T
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where F is the jet-induced force and T the static thrust of the jet. Good correlation
with the experimental data of Reference 29 is discernible. Experimental data on
induced forces for delta wings with similar J:I values indicate the utility of the

jet model and the associated computer program in estimating forces induced by
exhausting jets on finite wings. The variation of induced force with velocity ratio
for a range of the parameter ¢/_J is shown in Figure 68. Figure 69 shows the
induced moments computed about the axis of the jet as a function of velocity ratio for
g range of the parameter >~

Experimental data points cbtained for a rectangular wing with an aspect ratio
of 3.0 are shown in Figure 68 for comparison with computations for a flat plate with
the same _sa!. value. Very good agreement for the low velocity ratio data points
is evident. The error incurred in the computed values, by letting a circle of equiva-
lent area represent the rectangular wing, becomes significant for the high velocity
ratio data point.

This substitution of an equivalent area circle for the purpose of evaluating
induced forces, as shown schematically in Figure 70(a), disregards induced forces
on the shaded portions of the rectangular wing and replaces them with the induced
forces on the cross-hatched portions of the circle. For the rectangular wing of
Reference 2, this affects approximately 36 percent of the total area of the wing. By
comparison, Figure 70(b) shows the relationship between a delta wing, sweep back
angle of 60°, and the circle of equivalent area. The shaded area which is replaced
by the cross-hatched area now represents approximately 16 percent of the total wing
area. The shaded and cross-hatched areas are also seen to constitute a better sub-
stitution, in terms of respective distances from the centrally located jet exit, for the

delta wing configurdtion as compared to the rectangular wing.

fa)

o

FIGURE 70, EQUIVALENT CIRCULAR AREAS FOR RECTANGULAR
AND DELTA WINGS
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b. A6 Method

Due to the need for improved accuracy a method was developed which includes
the wing planform in greater detail. The contribution to the

FIGURE 71. SCHEMATIC OF SAMPLE WING

ratio of total induced force to installed thrust on a wing of the shaded segment of
Figure 71 can be evaluated if R/de

Jererd) drrd)

I/2

is known as a function of 6 , for a given velocity ratio and deflection angle of the

exhausting jet. Then the ratio of induced force to thrust ratio on the segment,

- +a®2 R/de

_’J:Z = # (%:g) f f cp (r/7da) d(r/ds) de (127)
e-as/2 /2

R/d,
£= £ (M.-.)z A fc,, (rrd,) d(r/d.) (128)
T ” U'i 72
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By employing numerical integration of the pressure coefficients computed by the jet

flow field program in the plane of the jet exit, curves of
R/d,

[ep (rrde) derrdo)
172

versus R/d0 at constant © can be generated for a range of velocity ratios and jet
deflection angles. Figures III-1 through III-6 in Appendix III are examples of sets of
curves that can be utilized in the method.

A wing of arbitrary planform can be broken down intc a number of segments as
illustrated in Figure 72. The ratio of induced force to thrust is

(61,R1.46))
z

7
(6;,R;,A8;)

FIGURE 72. SEGMENTATION OF SAMPLE WING

R/da
evaluated by obtaining the appropriate value of f cp (r/d.) d (r/d)

Irz

from the curves and multiplying by the appropriate A©  and coefficient. The
contributions are then added to obtain the total induced force to thrust ratio on the
wing.

A comparison of experimental and the calculated values of surface force on a
flat plate is shown in Figure 73. The results of a delta wing and a rectangular wing
are shown in Figure 74 and Table 2.
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TABLE 2. INDUCED FORCES ON A RECTANGULAR WING (46 METHOD)

Jet
Location

U3/Uss (AL/T)exy, (AL/Thmp,

0.2 -5 0.43 0,40
0.2 10 0.70 0.75
0.2 15 0,85 0.89

0.5 5 0.52 0.21
0.5 10 0,66 0.68
0.5 15 0,82 0,84

0.8 5 1,00 0.18
0.8 10 0.81 0.67
0.8 15 0.82 0.83

1.0f -+ - , '

6'_: [T :; SR - I . .
. s ' ; i
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T i . |
i i
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i
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FIGURE 74, INDUCED FORCES ON A DELTA WING,
A G METHOD
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c. Equivalent Plain Wing

A jet exhausting into a freeatream will induce a downwash component of velocity
over the wing planform. The surface boundary condition will be satisfied, in a
linearized form, when this downwash velocity component is cancelled by some mecha-
nism. A convenient way of producing a downwash to cancel that produced by the jet
is to construct an equivalent plain wing with an appropriate camber distribution.
Classical methods may then be used to calculate the power induced force and moment
on the wing.

Power induced section characteristics may be determined using linearized
thin airfoil theory as follows.

Consider the problem of determining the lift and pitching moment on a wing
section in the presence of a jet exhausting into a uniform freestream U_, directed along
the positive x-axis. Let the jet induced downwash over the wing section, O0¢ ¥ &«

be w(x}. Let z be the displacement normal to the x-axis of the equivalent airfoil
w

section as defined above. Then, dz _ w , and so
dx Uo
x
Z(x) = f W9 A (129)
U
Thus, writing o0
dz . w - > B, cosng (130)
dx U& n=D
in which ¢ is givenbyx=¢/2 (1 + cosg), {131y
., W
btai = = 4 = 2 % L.
we obtain B, "_[ i ¢ ) B, = = J 5 cosad D(L?Jpo. Azt (132
o o o

The section lift and pitching moment ccefficients may be determined as functions

of BO’ Bl’ and B, {details may be found in Reference 47), Thus,

c, = -am (Bo«r 1 B,) (133)
and
Cm: E(8 +8,) ~%Co (134
Finite wing lift and pitching moment coefficients may be determined using the
methods described in References 48 and 49 .

Examples of equivalent section camber lines are shown in Figures 75, 76 and 77.
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d. Applicatlon to Calculations of Downwash at Tall Surface

The jet flow field program may be used to compute the velocity components in-
duced by exhausting jets at arbitrary points in space. Thus, the program has the
capability of determining the jet induced downwash in the vicinity of the horizontal
tall, The power induced contributlon to the pitching moment due to the presence of
the horlzontal tail may then be deduced.

The results of a typical calculation are shown in Figure 78. The jet induced
downwash, €, is shown for two tall stations.

R i Tt A ...;..L.,ﬁ,r,,,,;,._ T s e e
co i B ' -

i, _Pléae qof—j_e‘t A 1‘ .: R

W[ . ABlane 1.5 do ‘Above Jetii o i
T )

i
1
!

0
0
¢ y/do
13 Jet Diameters Aft,Sj = 90", uj/um =5

FIGURE 78 , JET EXHAUST EFFECTS ON TAILPLANE
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2. BODY METHOD

a. Application of Lagally's Theorem in Relation to the Present Problem.

The most fundamental information in the present study is the knowledge of the
induced velocity field due to the powered lift system. Based on this, alternative
procedures may be found to predict the power induced forces and moments on an
immersed body. Such alternative methods provide not only competing approaches
but often an understanding of the problem derived from taking a different viewpoint.

The end result of the present jet model is a distribution of sinks and doublets
along the jet path., A source, a sink, or a doublet will all induce a force to attract
the submerged body towards the singularity on the basis of incompressible inviscid
flow theory. This explains in part the loss in lift of a V/STOL aircraft in the presence
of a downward jet. If instead of a single source, 2 system of sources (sinks are con-
sidered to be negative sources) and doublets is introduced, the total force and moment
are the additive forces and moments induced by individual singularities. This is, in
effect, Lagally's theorem and holds troe in two-dimensional as well as in three-
dimensional cases (References 30 and 31). It applies, in principle, to a submerged
body of arbitrary shape in a uniform stream with arbitrary number of sources, dowblets,
and higher order singularities. Using this theorem for the present problem, the task
is then to determine the velocities and their gradients "induced' by the fuselage and the
image systems for singularities outside the immersed body, since these velocities and
gradients represent the force and moment exerted on the fuselage by the jet.

For a two-dimensional body, finding such an image system is possible, as long
as it can be mapped into a unit circle on the transformed plane. Thus, the power-effect
forces and moments may be calculated for a general class of bodies, Unfortunately,
there is no corresponding procedure for a three-dimensional body. The image of a
singularity in that boundary is usually a complex one. Only for the special cese of a
sphere, may the image system be fdund conveniently and exactly. Since a fuselage is
a three—dimensional body of complicated geometry, it is virtually a hopeless task to
determine the image system for this kind of body. However, if we can approximate the
fuselage by a prolate spheroid of equal volume, the possibilities are improved. On
the strength of this simplification, we propose to employ Lagally's'theorem as a
possible empirical method for the fuselage,

Before we dwell on the main aspect, some explanation seems to be pertinent in
regard to the justification of this simplification. Lagally's theorem is derived by
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means of the integral equations in which the force and moment are expressed in terms
of momentum flux through an enclosing control surface. The process of integrating the
detailed surface pressure has in effect been circumvented. The details of the fuselage
geometry, which reveals in the form of velocity potential, become increasingly indistinct
as the distance from the surface increases. For a two-dimensional body, the general
complex potential at large distances can be expressed in terms of a Laurent series.
The leading term is proportional to 1/(x + iy), which behaves like a doublet. The
higher order terms signify more refined details. By the same token, the disturbance
potential of a three-dimensional body decays like 1/ (zic2 + yz + z2) at great distances.
This is recognized to be a doublet. Thus, the total force and moment on an immersed
body by all singularities will be insensitive to the detailed geometry, provided that we
can show that a substantial portion of the forces and moments are derived from the
"induced' velocities and their gradients at positions of singularities sufficiently far
from the fuselage. By examining the outputs from the jet model in which the strength
of singularities increases with the distance away from the exit and using a simple body,

say a sphere, one could confirm this conjecture.

b. Lagally's Theorem and Computation of 2 Sphere ag a Test Case

Since the computation is based on inviscid flow, the forces acting on the surface
of a fuselage arise from the preésure alone. Thus, the components of the force are
given by

F: =—f Pn,-dS , = 1,23 (135)
(S)

where p is the pressure, and n; are the cartesian components of a unitinormally drawn
outward to the element dS of the fuselage surface S. This equation may be reduced
by Bernoulli's equation and Green's theorem to

M
i
F£=Zﬁf(ﬂ;ajﬂi-?aJajﬂ;)dS) i)j_-: /, 2 3 (136)

where the repeated indices j refer to summation, u; are the velocity components, and
8 g Y€ the surfaces of spheres of infinitesimal radii which surrounds N1 singularities
at the positions 'i"a @a=1,2, -— NI). This is a general expression, To specify the

nature of the singularities, we shall make distinction between 2z source and a doublet.
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For a source of strength m, located at the position ¥, , the velocity components

a
on the surface of the infinitesimal aphere a, after the series expansion, may be written
ag

o0 = + Mo (X -Zig) Ay .. L(_i—a é )z- ven, €1, 0=1¢,%

Al icta) + (35)% +3 Zag ) ikt s Gik=G4k

where the subscript a indicates the position of singularity, and g, are the velocity
components at the point 'z'"a induced by all causes except the singularity there. The
second term represents the velocity components by the singularity, in which r refers
to the radius of the infinitesimal sphere. The third, fourth and the rest of the terms are
members of the Taylor series, Upon substitution of this expression into Equation (136),
we obtain

Fioa = 4Ty P $i0 (137)

This may be looked upon as a force ﬁa acting on a fuselage in a line through the source
at fa' Thus, the moment on the fuselage due tom a is the vector product of Fa and
-

Fa and is given by

Mia= 4TMPE34 %a Gy + Go#:%=1.2,3 (138)

where Eijk is the permutation symbol, €123 = €231 = €a12 = 1; €913 = €132° %321 = -1, and

€ ik =0, ifi, j, k are not all different., For a doublet of strength 'D.b situated at the point
i‘“b, the force and moment may be obtained by a similar but somewhat more complex

procedure. For details, one is referred to the above memntioned references.

The total force and moment on the fuselage are the summation of individual
contributions and are given by

N, N
R
as| b=/ :

(139)

”I ”2
M= 4npeya] J mut +7 (ltu+ % %%)]J t§.hl=123
d=y b=
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The subscripts a and b have been dropped for convenience. The quantities m, #, T
are known from the jet flow field program, but the velocity components q must be
determined according to the given configuration. Thus, to use Lagally's theorem, the
problem is that of determining these components.

As gtated above, the quantities q, at the point in question are the velocity com-
ponents induced by all caugses except the singularity there. But the contributions due
to other singularities outside the body may be neglected without affecting the final
result, because the force and moment induced at one singularity by another are equal
and opposite to those at the latter singularity by the former. This is sometimes
referred to as the reciprocal relation. Consequently, the relevant induced velocities
9 resulting from a body in a uniform crossflow with an exhausting jet may be classified
as: (a) the velocity induced by the body, (b) the velocity induced by the image system
of sources, and (c) the velocity induced by the image system of doublets, These veloc-
ities are all functions of body geometry. A general expression for an arbitrary body
is not known at present. The velocities of type (a) can be determined, if we assume
that a fuselage be replaced by an ellipsoid of equal volume. The solution to this is
known and can be found in many books. Unfortunately, it is still difficult to obtain
velocities of types () and (¢) even under this assumption. Thus, it appears that some
further approximation is needed. Before exploring possible approaches, it seems
worthwhile to know the magnitude of these velocities and the relative importance of
each type. To do this, we shall work out a simple example,

The only known three-dimensional configuration for which all three types of the
induced velocities can be determined exactly is a sphere. For this reason, we choose
this as our test case. The power effect may be calculated with the singularity distribu-
tion given by the jet flow field, It turns out that type (a) contributes roughly 80 percent
of the total effect. For an elongated body such as a fuselage, it is conceivable that
this percentage may be somewhat reduced. Nevertheless, the evidence seems to point
out the fact that the effect of the image system is relatively small as compared to that
due to the body and may be neglected for the first approximation.

Prior to this finding, attempts were made by the trial-and-error methods to get
approximate image systems for a source outside a prolate spheroid, using the image
system of an ellipse and the correspondence between a circle and a sphere as the
guide. This effort did not persist long enough to examine various approaches, buf it
appears that some useful approximation should result, depending on the accuracy
required.
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(¢) Application of Method to Fuselage

By choosing elliptic coordinates v, ¢, w, the velocity potential at a field point
for flows past a prolate spheroid at an angle of attack a is given by

44 .
& = - Upeosa hvg - U, sina A(1-1J (€= 1) cosew - A [$Ebug o - 1]

£ 3 + | €
ROV [ - o T,

A= Un & cosx oA — Uy # pina
TS Ly &t T o ip Kt &-2
£1-1 270 8- Zhg E(5:-1)
A
!
A=ae, e= 7 ‘é(g:-f)z'-"c-

where U, is the freestream velocity, a and ¢ are the polar and equatorial radii of the
given spheroid that is a2 member of the confocal family ¢ = Eo’ The relationship between
this and the cartesian coordinate system is

x._.ﬁ,,g) 4= -wrnw, F=wceosw,
f. 2 2
w = h(i-2)(§-1)

in which the surfaces ¢ = constant and ¥ = constant are confocal ellipsoids and hyper-
boloids with the common foci of (zk, 0, 0) as illustrated in Figure 79. By knowing

the velocity potential and this coordinate transformation, we can determine 9 and
aqi/axj at every position of the sources and doublets in the jet flow field. Application
of Equation (139) then gives the force and moment on the given body caused by the
induced velocities of type (a). These are assumed to equal approximately the force

and moment on the fuselage. Calculations were subsequently made for the test fuselage
with a 1ift jet at freestream to jet velocity ratios equal to 0.2 and 0.3. The results are
shown in Figure 80, along with the test data and those computed by the transformation
method,
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SECTION IX

HOVER AERODYNAMICS

The hover region of V/STOL flight requires special treatment due to the lack of
steady freestream conditions. Two areas of special treatment for this flight regime
have been studied. The first deals with the power effects in a state of true hover,

The second treats nonlinear and nonsteady power off aerodynamics at near hover con-
dition. These studies provide a limit point for the transition aerodynamics and permit

an approach to V/STOL hover flight analysis.
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1. POWER EFFECTS IN HOVER

A number of experimental, empirical, and theoretical investigations have been
devoted to the problem of determining the forces exerted on a stationary body from
which a jet exhausts, Particular attention has been devoted to thrust losses of lifting
jet configurations both in and out of ground effect; a good summary of these efforts
may be found in Reference (32).

The most pertinent results to date are contained in an empirical relation for lift

loss out of ground effect,

¢l 5 [3Cqn/ Pop-p)/ 3 (k)]
—— | = 0.0oq - x‘/J (140)

T

from Reference (33), or

a:» J

-0, €4
[g]: . [f:zf] 5 a(?,‘-/&d,—p)/awd)]“
T " lp N4y i/ d "

from Reference (34), and in an empirical correlation for the change in force due to the

presence of the ground plane,
2‘ 3

. G D/d4 -
%_ [:F]: 0.012 [_ff};__’] ,RAE dat£35) (142)

[« 3]

or,

2.02 (36)

G [G] [ D/d - | ] NACA data ® (143)
—-|=|= 0.025
T T h/d

The preceding results are primarily applicable to single or closely spaced, cen-

s 4]

trally located jets, Although derived from small-scale, cold-jet tests, Equations (140)
(34,37 E
qua-

tion (142) has been applied with reasonable success to full-scale configurations having
(37, 38)

and (141) have been shown to apply to more complicated configurations.

closely spaced turbojet propulsion.

Equations (140) and (141) differ because of the addition of a jet pressure parame-
ter by a later investigator,
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Equations (142) and (143} vary because different data were used in determining
the constants. A cursory examination of later NASA data(as) indicated a preference
for Equation (143) and a brief effort was made to determine if the empirical constants
of Equations (142) and (143) could be related to the area ratio, jet decay rate, or out-
of-ground effect loss.

The nature of Equations (140) thru (143) indicates that lmbwledge of jet decay
rate, out-of-ground effect loss, and true jet thrust for simple configurations is
required for such an effort. A requirement for this data group greatly reduces the
amount of useful data available, As can be seen in the data summary of Table 3, only
data from References (33) and (39) remain, and Reference (39) does not consider ground
effect. References (34) and (37) contain the proper data group but involve more complex
body geometry.

During early attempts to correlate Equations (142) and (143), nonlinearities of
log-log plots of G/T - (G/’I‘)m versus h/d led to the plotting of G/T versus h/d in semi-
log form, One such plot i8 shown in Figure 81, As the quality of the correlation
seemed remarkable, additional data was correlated in this manner, Figure 82 indi-
cates that correlation ig possible for circular flat plates with an error band of 20 per-
cent. Datum outside this band and much of the scatter within this band may be
attributed to errors in transcribing information from Reference (33).

An expression of the form

5[ it

T T

(144)
is therefore suggested. The value of B obtained from the data of Figure 81 differed
from that obtained from Figure 82; B was found to be 0.97 and 1,23, respectively.

The difference may be attributable to the different jet turbulence levels produced by

a rectangular plenum (Figure 81) and a cylindrical plenum (Figure 82), For the two

configurations that have been examined, it is noted that the constant B is inversely
proportional to the sguare root of the out-of-ground effect loss,

B [@./.D»] > (145)
B~ Le/T),
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Equation (145) in combination with relations (140) and (141) may be used to relate

the constant B to the rate of jet (impact) pressure decay.

7 0.25

B’_I Y4/ Pp-p)/ (arq,‘/PT,},—g)

B A x/d) /x/d I(xA4) x;/d) l (146)

Relation (146) in combination with Equation (144) suggests Equation (147).

-~0.25.
_c_:[__] N { J5/A- | [a rg,\-/Pw-P)/axx/d\] } -
T P h/d x,-/d (147

However, further analysis is necessary before conclusions can be drawn regard-
ing the validity of Equation (147) which has been developed using limited data for cen-
trally located jets in circular plates,

It should be noted that a correlation similar to that of Equation (144) may be

found in the form

T

T

(148)

G- {G] , BULGIT)/(h1d)]

<0

This suggestis that (G/T)m is proportional to \/TAJ -1 and not to S/Aj as indi-
cated in Equations (140) and (141). This seems intuitively correct as one would desire
the calculated load on the plate to go to zero if no plate is present, S/A =1, A com-
parison is shown in Figure 83. Thus, \/S_/I 1 is a significant parameter hoth in and
out of ground effect.

It is probable that relations of the type listed above will not be useful for a body
very near to the surface where small details of specific body and jet geometry become
significant. Additional terms will be required in this region,

*Note: For circular planforms, v S/Aj = D/d.
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2, PERTURBATION METHOD

To attack the problem of nonlinear and nonsteady aerodynamics at near hover
condition, a study combining theoretical analysis and water tank tests was undertaken
to determine the feasibility of obtaining a method for predicting stability derivatives
under flight conditions.

A small existing water tank was used to try out possible techniques of obtaining
test data for further study, This tank and the arrangements used for these tests are
shown in Figure 84. The model was suspended from a beam that was free to roll
across the tank, Motive power was supplied by unbalancing the weighte on the two
weight pans. Weights were shifted from the afi side to the forward side, providing
an incremental loading while keeping the total mass of the system constant, An accel-
erometer attached to the beam supplied a force trace versus time plot. Strain gages

were mounted on the supporting rod to provide moment measurements.

Acceleration and moment plots were obtained for the model, and measurements
were made both with the model in water and in air, Typical plots are shown in Figure
85 for different increméntal weight loadings. The initial accelerations in both cases
were plotted against incremental weight, and straight lines were faired through the
points. From these straight lines, it was possible to determine the apparent mass of
the model in water. (The apparent mass in air was assumed to be negligible compared
to that in water.)

The acceleration curves were integrated, and the values of force and moment
versus velocity then were obtained for three different incremental weights, The force
due to the acceleration (apparent mass multiplied by acceleration) was subtracted from
the total force, and a net force was obtained 'Whi,ch was assumed to be due fo viscous
effects, The results of this data reduction, reduced to drag coefficient and plotted
against velocity multiplied by time, are shown in Figure 86. The shape of the three
incremental weight curves shows good correlation throughout the test range. The
four-pound curve is somewhat low, but this could be attributed to inaccuracies in the
data reduction,

Since both accelerometers and sirain gages were not only measuring the linear
motion of the rigid body but also were picking up elastic transients and other spurious
inputs, isolation of the reduced data was somewhat difficult. This problem was fur-
ther increased by the use of strip chart recorders which contributed their own noise
and pen-arm inertia to the plots, Of the models tested — rectangular plate, cylindrical
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FIGURE 84, PRELIMINARY HYDRODYNAMIC TESTBED
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tube (see Figure 84), and trapezoidal flat plate — the latter offered the most clearly
defined data, especially for calculation of apparent mass,

The recorded data were surprising in two more ways: First, the drag coeffi-
cients obtained near the end of the plots were about three {(hased on the frontal area),
which seemed to be too high. Second, the drag coefficients in the beginning stages of
the run were high, with indications that the drag was more nearly proportional to V
than to V2.

The data were analyzed according to the concept of indicial functions. Northrop
assumed that the curve for the particular derivative or coefficient under consideration
could be built up from a series of step functions. For example, from the tests made
so far it can be agsumed that the derivative of the drag with respect to V (or perhaps
VZ) is a function of time alone, Using velocity as an example, this can be written as.

Dle) = %/D,(ﬂ Vie-v) L= (149)

where DV(‘F) represents the value of the drag for a unit step function of velocity, This
equation can be evaluated by taking the Laplace transform of both sides to give

D4 = 4D, () V(b (150)
and hence,

= D4 (151)
Ovl2) 4 V(a)

Equation (151) was derived under the hypothesis that a Dv(t) could be defined
which was independent of the driving force and, hence, of the velocity history. It was
not necessarily expected that this would be true, but that by examining the test data
and seeing if the resultant curves would collapse, a proper functional relationship
could be obtained which would permit a step function to be defined which could be used

to reproduce the test time histories, As an example of this, two other definitions
which were considered to define the step function were

¢
Dit) = 9%_'/;0”&'1 Vie-z) o (152)
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and

vE
plve) = ﬁ,—t/oﬁ&) Vilve-e) /r (153)

Equations (149), (152), and (153) together with alternative formulations were
examined to determine which would best collapse the test data for the different weight
increments, Equation (153) showed the most promising results of all those tested.
However, the preliminary test data indicated a discrepancy for the various weight dif-
ferences. While the shapes of the resulting curves were similar, the magnitude dif-
fered. In order to better correlate the data, a step function was added to the solution
to account for data beyond the test period, The magnitude of the step was set equal to
the last data point, so that

S s -:--“k_ : —ave” ‘
/Dﬁ.f Fe = DF/.I e = Q,[-—i_e ] (159)

and, assuming s>o

..(Vv}FA-'

L{cverp = 0, 2 (155)

Through the use of this modified expression, the parameter Dv(s) was evaluated
for 0<s=5.,0 for incremental weights of 3, 4, 5, 6, and 7 pounds, Figure 87. Excel-
lent agreement is shown for the 3-, 4-, and 7-pound test runs, while the 5- and 6-pound
runs did not conform. A detailed examination of the testing techniques and the instru-
mentation arrangement revealed that the instrumentation was simply not sensitive
enough for runs with incremental weights greater than 7 pounds.

In spite of the inadequacy of the test data accuracy, an attempt was made to
determine the time-dependent response to a step input. For this purpose the results
obtained by the definition of Equation (153) were used and the inverse Laplace trans-

form was obtained to see if any additional problem areas would be encountered.

A study of the properties of the Laplace transforms indicated that the values of
the quantity D(s)/ V2 (8), Figure 88, would have to approach a constant for large values
of 8. This was required to retain a finite force at the start of acceleration. For this
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reason, the values of the ratio were evaluated at large values of 8 as shown in Figure
89. Over this larger range of s the previously obtained correlation between the test
loads was lost. This is not surprising since the increase of the parameters corre-
sponds to a decrease in the vt parameter so that the scatter obtained at large s values
can be attributed fo errors in measuring the very low forces at the very early part of

the model acceleration,

A typical curve

D(8) _ 204 Lo, (156)
Vv a)  seno

was selected within the range of the test data scatfer and the drag variation with time

due to a step input of V2 was obtained as shown in Figure 90,

This study has shown that a possibility exists of obtaining the time-dependent
buildup of forces and moments of a shape accelerating from rest using a combination
of testing in a relatively simple water tank and analysis of these results by using the
indicial function concepts of Reference 45. Although the present study was restricted
to the drag of relatively simple models, no special difficulties should be encountered

in treating any force or moment history for much more complicated shapes.

Although no practical and usable results have been obiained to enable the predic-
tion of aerodynamics of V/STOL aircraft, the procedure described appears very

promising for future refinement and ultimate use in obtaining prediction techniques,
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APPENDIX 1

EFFECT OF ROTARY VARIABLES

In Figure 1 p, q and r represent the magnitudes of the rotary variables defined
in the coordinate system shown. The effect of the rotary variables p, q and r on the
development of the jet may be represented by a change in the mainstream velocity
vector. The perturbed mainstream velocity vector at a given point along the jet center-

-line is expressed as

Up = Ou-(pl4+gqlark)xR

where 'i", ’j\, % are unit vectors in the fixed coordinate system and R is the position
vector of the given point along the jet centerline.

In evaluating the jet-induced flow field, the computations are carried out for a
number of segments as shown in Figure 2. Each segment is treated as a separate jet,
with proper initial conditions and the appropriate mainstream velocity. The number
of integration steps per segment may be arbitrarily specified. The perturbed main-

stream velocity vector is assumed constant over the extent of each segment.

In the following discussion, subscripts 1 and 2 refer to jet properties of the
segments [ and II of Figure 2.

Yo,, Zo_. Initial conditioens for seg-

The jet of diameter do1 is located at Xol, 1° 1

ment I are

d¥ =1, W=W=1\ m= g
U Uoo

The initial jet exhaust vector is utilized as an approximation to locate the midpoint A
, Up
of segment I. At this point |—I~J—£—| is determined hy vector addition as shown, where
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=5
R* = R
do

The direction cosines of the perturbed mainstream velocity vector ﬁpl are
determined and a local coordinate system is established, centered at Xol, Yol, Zol,
and aligned with the perturbed mainstream velocity vector and the jet exhaust vector
(see discussion of arbitrarily directed jet).

The effective inverse velocity ratio for segment I is

Myge = Yo Ueo = m/LGQ!|
Uos \UPl\ Uoce

* ok * .
The equations for Uj, d, and X are then integrated numerically over the extent
of segment I.

Point on, Yoz, Zo2 then becomes the origin of the next jet, with a diameter of

do2 = g* dol, where d* is the last computed value of the nondimensionalized jet diam-
eter of segment I.

Other initial conditions for segment II are

. 4 } )
a? = b, U3= = _8115_ =4, maz = Ué::— = U_fm.
o2

where U*j is the last computed value of the nondimensionalized jet velocity in segment
I.

The jet velocity direction after the integration over the extent of segment I is

Up
used to approximately locate midpoint B. At this point ‘—[—];-i—l is evaluated and the

direction cosines of the perturbed mainstream velocity vector ﬁpz are determined.
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A new local, jet-oriented coordinate system is established, centered at on,
Y02, Zoz. The effective inverse velocity ratio for this segment is

U Uo _ yt* O
e =G g - /AR

The equations for U}", d*, X* are then integrated over the extent of segment II.

The computations described above continue until integration over the extent of
the entire jet has been accomplished., Although each segment is treated as a separate
jet, the segments are linked to each other in determining the degree to which the jet

has deformed from its initial circular cross section, This is done by setting

Doy = D), Doy=D
i.e., specifying the initial ratio of minor to major axis for a given segment to be equal

to the last computed value for the previous segment.

The induced velocity components at a given control point are determined by sum-
ming the velocity components due to each segment of the jet. Again sach segment is

treated as a separate jet for these computations,

Figure 3 shows the effect of the rotary variable r on the centerline of a jet

exhausting normally into a crossflow at a velocity ratio U_ / Ujo = .125. One curve
rd

(r* = ?:D = 0, 0) shows the centerline of the undisturbed jet exhausting intc a ecrossflow
at this velocity ratio. It was computed by considering the jet to consist of a number of
segments, as described in detail in the preceding discussion, with V* = 0.0 for each
segment, The centerline computed in this manner deviates less than 1 percent from

previously computed results.

The sign convention for the rotary variable r was established in Figure 1. For
r# < 0.0 the perturbed mainstream velocity 1U p|<Uw and the jet centerline shows less
deflection. For r* > 0.0 the perturbed mainstream velocity |Up| >U,, which results
in a greater deflection of the jet centerline.

Induced velocity components in the plane of the jet exit were evaluated for two
values of r*., Table 1 shows the incremental change in velocity components at three
control points as a function of the rotary variable r*. It can be observed that 4 (u/U)/A r*,
A(v/U)/4r* and A(w/U)/Ar* are not constant at each control point. Since the incremen-
tal changes in induced velocities are directly related to the induced forces and moments
due to the rotary variable, it is desirable to establish the range over which they could
be considered linear with r*,
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Penetration into Freestream, Y/do

0 2 4 6 8 10 12
Distance in Freestream Direction, X/do

FIGURE I-3. EFFECT OF ROTARY VARIABLE ON A JET CENTERLINE
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Z/do
7.6.5.4.3,2.1. 0.

r'y )
A7 115
Y. v 2.5
3.5
4,5
Us Xu A 5.5
- B 6.5
7.5
Z,w 8.5
9.5
A
c X/do
r* Point A Point B Point C

Au/U Av/U Aw/U Au/U Av/U Aw/U Au/U Av/U  Aw/U

002 |-,000866 .000391 -, 000602 |~-.000998 .000296 -.000337 | -.000409 -,000486 .0000L7
.004 1-,001898 ,001153 -.001068 |[-.001954 000974 -.000580 |-.000926 -.001121 .000043

-.002 | . 001036 -.000494 .000500 | .000941 -. 000410 .000256 | .000518 .000349 -.000034
-.004 | 002148 -.000779 .001115 | .002114 -,000584 .000588 | .001144 .000646 -.000058

TABLE I-I. EFFECT OF ROTARY VARIABLE ON INDUCED VELOCITY COMPONENTS

X=,95, Z2=.7 X=,55, Z2=.7 X =15, Z=.7
WU v/U  w/U WU  v/U  w/U u/U v/U w/U
q=0. L0180 ~.0307 -, 0411 L0337 -.0162 -,0296 L0273 -.0016 -.0095
q=.1] .0179 -, 0303 -.0407 .0334 -.0159 ~-.0292 L0269 -, 0015 -.0093
c/ L0177 -.0299 -, 0410 L0332 -,0156 -.0294 . 0267 -.0013 -.0094
X =95 Z=.1 X=.55, Z =.1 X=.15, Z =.1
u/uU v/U w/U u/U v/U w/U u/U v/U w/U
q=0.[-,0131 -.1073 -.0239 .1482 -,1985 -, 1790 L0342 .0159 .0048
g=.1]-,0130 -.1070 -,0236 L1474 -, 1974 -.1784 .0339 .0158 0050
c/C -, 0135 -.1075 -.0242 . 1498 -. 1985 -.1793 .0334 .0163 .0049

TABLE I-II. EFFECT OF ROTARY VARIABLE IN A REACTION CONTROL CONFIGURATION
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The velbcity components of Table 1 were obtained by considering an equal number
of integration steps along the %' -axis in solving for the geometry of the jet. This
means that for every value of r* a different length s of the jet was considered in eval-
uating the induced velocity components. In an effort to separate the effects due to a
change in the rotary variable from the effects due to integrating over a variable length
of the jet, two different approaches to establishing an equivalent length s were utilized.

One approach was to sum contributions to each induced velocity component due
to the singularity distribution along the jet centerline until the contribution from a given
segment represented less than .1 percent of the total up to this point. Further contri-
butions were neglected. The other method utilized a straight line approximation for
the jet centerline to determine an equal length s of the jet for each value of r*.

For both of the methods described above, the axis of rotation was taken through
the jet exit and the behavior of the incremental changes in velocity components at the
various control points was examined., For the range of r* considered, which encom-
passes a variation of r from .1 to .4 radians/sec, it appears that the incremental
changes in velocity components are small enough, relative to the overall accuracy of
the method, to preclude a meaningful determination of the quantities A(u/U)Ar*,
A(v/UYAr*, Aw/Uybr*.

Computations to determine the effect of rotation about an axis other than the jet
exit were carried out. Rotation about the center of gravity in a reaction control con-
figuration for the XV-6 was chosen as an example. Computations with the moment arm
f=11.2ft, d = .2t U =400 ft/sec, U = 50 ft/sec and q = .1 rad/sec again
showed small changes in the induced velocities evaluated in the plane of the jet exit.

A check case in which the freestream velocity was assumed to be uniformly perturbed
over the extent of the jet, ﬁp = Uost 4U, where AU = £x q = 1.12 ft/sec, was also com-
puted, Table 3 shows induced velocity components at various control peints for q = 0.,
q = .1 and the check case, Again, indications are that the effects due to the rotary
variables in a reaction control configuration are negligible.
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APPENDIX II -

DETERMINATION OF TRAILING VORTEX INTEGRAL

in Equation (121) may be

Fra
The integral f o-{'k-i
3
o 'y
written in the form

AN

f "{x__.! where X : a +d X, + C\(:l
. XIX

using the same notation as Equation (123)

5
A, = alact *‘l’] bk
Now xrf @ac-ii)Ja+bj+Cj’ (hac-37)

Let a = M‘-

Cosde
3 = tamoe
¥ = o
then a = x1+0—zoa,§)l + LE+$,§)L
3 = -a[x-a (4-7-ay) +(Z 4 })L,]
c = 1+a +3,
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Thus ac- b,‘-: = [+ 72 +fa*+4"] f‘--f-.?ﬂ,}‘? ~afy+y4 4o ta,8,t] s
| + a[2h -ga, -ax 4% ] §

+ JL+.1=— +4,"x" +£,=~KL+L’«.J»+%1—¢=—+‘MK? -24,x2 +24,b 4yt

§-= 5+ (1-4) L:;J Yy

Now

So that with

A = 1447

A = ﬁ.tfb,t

A; = Qa,

A, = -2 [J_; 36,L+4.x +a, b, a—]

a i
As = ~aLay b+ +a x 44 %]
A, = Jt+%b+¢,‘xt+$. x"ré,kjt-rq,t%t*r Q4,xYy -2b x2
We obtain ac-3 = A1 tA S u ATy + A 1A A
A
and then ac-b

4 = A’?v‘l‘B? +C

where A

A+ Ay dam'd, + Ay l_;_{ fam ¢,

B - 24 [§-7 1y ot | 'l tand, 44, [5-4 J_;r famd |
+A"+ +45 (_77{ J'IA\¢‘

C o= Al bt tnd ] e Ac[f g bl bt o

acg+4 = 2(Fy+ &)

F = U tag - a,
7 [

Now

where

G = § -y 1y fanp. —x ta,9 —b %
4

193



Thus 7 A, Fr+& ' - Jiareb”
[, (A" + By 1) [&-9) -y + 2T Ay +By+C

Now (x-;)bi.;.(?.?)k.;.%" = ?"1-3? +E
y _ (g - Il et )Y o)
hee D = -2y Xl tand, (& - % #)5 4%‘4.—)

and X+ JL-#%L ~ax[§ -2 ly {M‘A]*[i '/ fol 1"‘“"\6~]
E = : *
I+ ‘Mmlﬂ'
Thus Equation (121) becomes
- 4 - -4 P FL?"C'I— = vb*b;b]
o = [+t 0] 4 | B I
A1 +By + C
Now 3-7 + 1‘!&.[3#.. (x—}) = H? + T
Crnds
-with = - | q, ’! .
H [1+a ) g ]
mi T = §eax-a,[f -y 1y bnd, |
8o that finally we obtain
Ty o
o, = L |{@rT)F+&) _ Jials (#1+T) 4]',/7

‘o U; Heamd, (ﬂ;‘+37+¢)“7‘+']>7+5_ Ay +3y+C d?
.
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APPENDIX III

Auxiliary Curves Used in Empirical Prediction Methods for the Wing
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0. 4,0 8,0 12.0
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FIGURE III-1, SURFACE FORCE DISTRIBUTION AROUND A JET
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FIGURE III-1.
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FIGURE III-2, SURFACE FORCE DISTRIBUTION AROUND A JET
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